Condensación de Vapores Simples

Tabla 1. Correlaciones para la determinación de coeficiente de película en condensación		
Condiciones	COEFICIENTES DE PELÍCULA	
CONDENSACIÓN FUERA DE LOS TUBOS	$h_o \left(\frac{\mu^2}{k^3 \rho^2 \cdot g} \right)^{1/3} = 1.5 \cdot \left(\frac{4G}{\mu} \right)^{-1/3} $ (Ec. 3)	
Todas las propiedades corresponden a las de líquido saturado a la temperatura de la película. $T_p = \frac{T_w + T}{2} \ \ (\text{Ec. 1})$	Condensador Horizontal $G' = \frac{\dot{m}}{Nt^{2/3} \cdot L}$ (Ec. 4)	
$T_{w} = \bar{t} + \frac{h_{o}}{h_{o} + h_{io}} (T - \bar{t})$ (Ec. 2)	Condensador Vertical $G' = \frac{\dot{m}}{Nt \cdot \Pi * do}$ (Ec. 5)	
t = Temperatura promedio refrigerante T = Temperatura condensación		
	Condensador Horizontal : (Cavallini)	
	$h_i = 0.05 \mathrm{Re}_{eq}^{0.8} \mathrm{Pr}_l^{0.33} rac{k}{d}$ (Ec. 6)	
CONDENSACIÓN DENTRO DE LOS TUBOS	$\operatorname{Re}_{eq} = \operatorname{Re}_{v} \left(\frac{\mu_{v}}{\mu_{l}} \right) \left(\frac{\rho_{l}}{\rho_{v}} \right)^{0.5} + \operatorname{Re}_{l} \text{ (Ec. 7)}$	
Las propiedades del fluido se evalúan como líquido o como vapor de acuerdo al subíndice I o v que acompañe a cada parámetro de las ecuaciones a la	$\operatorname{Re}_{v} = \frac{GxD_{1i}}{\mu_{v}} \operatorname{Re}_{l} = \frac{G(1-x)D_{1i}}{\mu_{l}} \text{ (Ec. 8)}$	
temperatura de condensación.	X = Calidad del vapor (fracción de vapor)	
	Condensador Vertical :	
	$Nu = \frac{hL}{k_l} = 0.943 \left[\frac{\rho_l(\rho_l - \rho_v)g \cdot \Delta \hat{H} \cdot L^3}{\mu_l \cdot k_l \cdot \Delta T} \right]$ (Ec. 9)	
	(LC. 7)	

Tabla 2. Rangos Típicos en Parámetros de Condensación sobre tubos

Condiciones	Coeficientes de Película	Coeficiente Global Transferencia de
	(h _o)	Calor (UD)
	(BTU/h pie ^{2o} F)	(BTU/h pie ^{2o} F)
Condensador	150-300	75-100
Horizontal		
Condensador Vertical	75-150	50-100

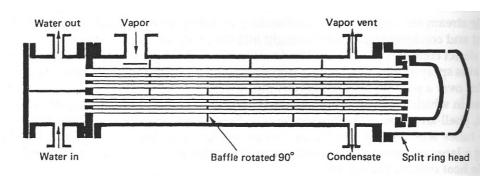


Figura 1. Condensador horizontal 1:2 (Vapor en coraza)

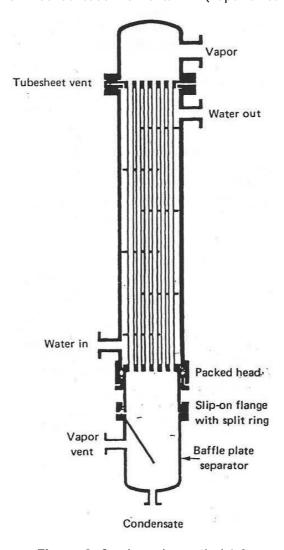


Figura 2. Condensador vertical 1:2

FUENTE [Kacak]