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3.43. An investment of $300,000 yields an annual profit of $86,000 that is spread
uniformly over the year and is reinvested immediately (thus continuously
compounded). The life is 6 years, and there is no salvage value. What is the

rate of return on the investment?
Ans.: 20%.
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" 41 MATHEMATICAL MODELING

~ This chapter and the next present procedures for developing equations that
represent the performance characteristics of equipment, the behavior of
processes, and thermodynamic properties of substances. Engineers may have
& variety of reasons for wanting to develop equations, but the crucial ones
in the design of thermal systems are (1) to facilitate the process of system
simulation and (2) to develop a mathematical statement for optimization.
‘Mot large, realistic simulation and optimization problems must be executed
. onthe computer, and it is usually more expedient to operate with equations
than with tabular data. An emerging need for expressing equations is in
equipment selection; some designers are automating equipment selection,
. storing performance data in the computer, and then automatically retrieving
them when a component is being selected.
Equation development will be divided into two different categories;
this chapter treats equation fitting and Chapter 5 concentrates on modeling
thermal equipment. The distinction between the two is that this chapter
approaches the development of equations as purely a number-processing
soperation, while Chapter 5 uses some physical laws to help equation
»* development. Both approaches are appropriate. In modeling a reciprocating
w,ooauamwg for example, obviously there are physical explanations for the
_performance, but by the time the complicated flow processes, compression,
-reexpansion, and valve mechanics are incorporated, the mode! is so complex
that it is simpler to use oxnodBoEa or catalog data and treat the problem as
a number-processing exercise. On the other hand, heat exchangers fcllow
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certain laws that suggest a form for the equation, and this insight can be
used to advantage, as shown in Chapter 5.

Where do the data come from on which equations are based? Usually
the data used by a designer come from tables or graphs. Experimental
data from the laboratory might provide the basis. and the techniques in
this and the next chapter are applicable to processing laboratory data. But
system designers are usually one step removed from the laboratory and are
selecting commercially available components for which the manufacturer
has provided performance data. In a few rare instances manufacturers may
reserve several lines on a page of tabular data to provide the equation that
represents the table. If and when that practice becomes widespread, the
system designer’s task will be made easier. That stage, however, has not
yet been reached.

Much of this chapter presents systematic techniques for determining
the constants and coefficients in equations, a process of following rules.
The other facet of equation fitting is that of proposing the form of the
equation, and this operation is an art. Some suggestions will be offered
for the execution of this art. Methods will be presented for determining
equations that fit a limited number of data points perfectly, Also explained
is the method of least squares, which provides an equation of best fit to a
large number of points.

4.2 MATRICES

All the operations in this chapter can be performed without using matrix
terminology, but the use of matrices provides several conveniences and
insights. In particular, the application of matrix terminology is applicable
to the solution of sets of simuitaneous equations.

A matrix is a rectangular array of numbers, for example,

ayy apn Alp
_.M -2 OJ, _. 2 3 ] ‘ﬂﬁ da» wo..*
31 -1 |- L E H nLE L -
0 11 L 2 2] ¢ Clam @my ... ap,

The numbers that make up the array are called elements. The orders of
these matrices, from left to right, are 3 x 3,3 x 2,2 x 2,and m X n.

A transpose of a matrix [A], designated [A]7, is formed by interchang-
ing rows and columns. Thus, if

3 -1 ]
[A] = |2 0| then  [A4])7 = ﬁlw M lw;
P _ _

To multiply two matrices, multiply elements of the first row of the
left matrix by the corresponding elements of the first column of the right
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matrix; then sum the products to give the element of the first row and first
column of the product matrix. For example, the multiplication of the two

matrices
:
_

1
O,

L 4]

gives

[(D(=2) + (=1)3) + (1) (D)(1) + (=1)(0) + (0)(4)] I

TNXINV T (O@) + (D) () +  (0)(0) + (1)(4), -3 6
The convention for the multiplication of two matrices offers a slightly

shorter form for writing a system of simultaneous linear equations. The three
equations

2x)— x2+3x3=6

—

x) + 3x»
hH_IN\«u.T x3=0
can be written in matrix form as
ﬁw -1 3][
1 3 0/
T —2 14l

The determinant is a scalar (which is simply a number) and is written
between vertical lines. For a | X | matrix it is the element itself; thus

la i | = ay
A technique for evaluating the determinant of a 2 X 2 matrix is to sum
the products of diagonal elements, assigning a positive sign to the diagonal
moving downward to the right and a negative sign to the product moving
upward to the right:
an aiz| / \
| ay| = T T/ =anan-—aynap

laz) 22

An extension of this method applies to computing the determinant of a 3 X 3
matrix:

a ap nj , \
az ap E: n+/+/._+/._,|\l\l
asz asz assz|

[ 4
= ananasy + apaxaiz + a;pasasn

Ta31422013 T A30a23A)) — A33A),4))
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Evaluation of determinants 4 X 4 and larger requires a more general ayx, +apx; +apjzxy=b

i ies 2 %2 3 i i
procedure, which applies also to 2 X 2 and 3 X 3 matrices. This procedure m Ay Xy + apxs + anxs = by 4.1)
w

-~

1s row expansion or column expansion. The determinant of a 3 X 3 matrix

found by expanding about the first column is a3 Xy + aypxs + azzxy = by

which can be written in matrix form

det =anAy + anAy + azAdz

ay ap

as
[A][X] = TN_ axy dan
|43 a3 axn

where A;; is the cofactor of the element a;;. The cofactor is found as

»_.m _,v ]
follows: *2| = | by| = [B] (4.2)
3l b

submatrix formed |
by striking out *
ith row and jth |
| column of [A]

|

|

T

= [(-1)'"]

[[A] matrix with [B] matrix substituted in ith column |
A

|

(4.3)

Xi =

For example, the cofactor of a,;, which is A;y, is
Example 4.2. Using Cramer’s rule, solve for x5 in this set of simultaneous

m., Cramer’s rule states that
|[én a2 a3 ¥ linear equations:

an
(a2 az
An = [(—D)?")|¥2r - a2z - a23) = (1) j
@z axy a| A 21 ;.«; j
1 -2 21| X2 =19
Ay = —(aya3; — axna;) -1 0 3% 0
Example 4.1. Evaluate Solution
1 2 -10 | 2 3 =1
TW 120 be 2
35 -1 12 ,=4-t 0 31 _ 30 _ ,
4 2 15 Tl2 o1 =1 IS
_ 1 -2 2
-1 0 3i

Solution. Two elements of the second row are zero, so that row would be a

convenient one about which to expand.
Equation (4.3) suggests that none of the x's can be determined if | Al

is zero. The equations are dependent in this case, and there is no unique
solution to the set.

Another method of solving simultaneous linear equations is gaussian
elimination, which will be illustrated by solving

det = @y Ay + anAn + anAn + auly

_H o
= (0)Ay i:T:Zi

bt e
2

L_ 2 0 —4x, +3x3=— 17 (4.4)

+ (=13 =1 2|+ (0)A,
W& 25 : wk_ + x7 — &3 = 14 4.5)
=0+ 10 + 46 + 0 = 56 2y + x2 + x3= 5 (4.6)

The two major steps in gaussian elimination are conversion of the coefficient
into a triangular matrix and solution for x,, to x; by back substitution.
In the example set of equations, the first part of step 1 is to eliminate
the coefficients of x, in Eq. (4.5) by multiplying Eq. (4.4) by a suitable
.1 constant and adding the product to Eq. (4.5). Specifically, multiply Eq.
~ {4.4)by -3 and add to Eq. (4.5). Similarly, multiply Eq. (4.4) by —2 and
“ add to Eq. (4.6):

4.3 SOLUTION OF SIMULTANEOUS
EQUATIONS

There are many ways of solving sets of simultaneous equations, two
of which will be described in this section, Cramer's rule and gaussian
elimination. For a set of linear simultaneous equations
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x|y — 4dx; + 3x3= -7 (4.7)
13x, — 11x3 = 35 (4.8)
9%, — 5x3 =19 (4.9)

The last part of step ! is to multiply Eq. (4.8) by |._m and add to Eq. (4.9),
which completes the triangularization

X — P.».u + w.ﬂu =-17 A#:vv
13x, — 1lx3 = 35 @.11)
2 e — 4.12)

13 13

In step 2 the value of x3 can be determined directly from Eq. (4.12) as
x3 = —2. Substituting the value of x3 into Eq. (4.11) and solving gives
x> = 1. Finally, substitute the values of x, and x3 into Eq. (4.10) to find
that x| = 3.

If a different set of equations were being solved, and in the equation
corresponding to Eq. (4.8) if the coefficient of x, had been zero instead of
13, it would have been necessary to exchange the positions of Egs. (4.8)
and (4.9). If both the x, coefficients in Egs. (4.8) and (4.9) had been zero,
this would indicate that the set of equations is dependent.

Most computer departments have in their library a routine for solving
a set of simultaneous linear equations which can be called as needed. It may
be convenient to write one's own subprogram using a method like gaussian
elimination.! It will be useful for future work in this text to have access to
an equation-solving routine on a digital computer.

4.4 POLYNOMIAL REPRESENTATIONS

Probably the most obvious and most useful form of equation representation
is a polynomial. If y is to be represented as a function of », the polynomial
form is

Yy =a, +ax +ax’+ -+ ax” (4.13)

where a, to a, are constants. The degree of the equation is the highest
exponent of x, which in Eq. (4.13) is n.

Equation (4.13) is an expression giving the function of one variable
in terms of another. In other common situations one variable is a function
of two or more variables, e.g., in an axial-flow compressor

Flow rate = f (inlet pressure, inlet temperature,
compressor speed, outlet pressure)

This form of equation will be presented in Sec. 4.8.
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When the number of data points available is precisely the same as
the degree of the equation plus 1, n + 1, a polynomial can be devised
that exactly expresses those data points. When the number of available data
points exceeds n + 1, it may be advisable to seek a polynomial that gives
the “best fit” to the data points (see Sec. 4.10).

The first and simplest case to be considered is where one variable is
a function of another variable and the number of data points equals n + 1.

4.5 POLYNOMIAL, ONE VARIABLE A
FUNCTION OF ANOTHER VARIABLE AND
n + 1 DATA POINTS

Two available data points are adequate to describe a first-degree, or linear,
equation (Fig. 4-1). The form of this first-degree equation is

y =a, +ax (4.14)

The xy pairs for the two known points (x,,v,) and (x,v;) can be substi-
tuted into Eq. (4.14), providing two linear equations with two unknowns,
a, and a,

Yo = dyp + ax,
Y1 =a, + ax)

For a second-degree, or quadratic, equation, three data points are
needed; for example, points O, !, and 2 in Fig. 4-2. The xy pairs for the
three known points can be substituted into the general form for the quadratic
equation

y =a, +ax + mwau (4.15)

» FIGURE 4-1

x Two points describing a linear equation.




60 < OF THERMAL SYSTEMS

o

{ » FIGURE 4.2
x  Three points describing a quadratic equation.

which gives three equations

r 2 .

,Z Xo .«Lij To,.
:

1l x .«la_‘H“.;

| | 1 VA |

L1 x, x3j19] )2

The solution of these three linear simultaneous equations provides the values
of a,,a,, and a,.

The coefficients of the high-degree terms in a polynomial may be quite
small, particularly if the independent variable is large. For example, if the
enthalpy of saturated water vapor £ is a function of temperature 7 in the
equation

h=a, +ait + - +ast® + aet®

where the range of r extends into hundreds of degrees, the value of as and
ag may be so small that precision problems result. Sometimes this difficulty
can be surmounted by defining a new independent variable, for example,
1/100.

t i 32 [t |6

h=a, +a— +
9o T 900

4.6 SIMPLIFICATIONS WHEN
THE INDEPENDENT VARIABLE IS
UNIFORMLY SPACED

Sometimes a polynomial is used to represent a function, say y =f(x), where
the values of y are known at equally spaced values of x. This situation
exists, for instance, when the data points are read off a graph and the
poinis can be chosen at equal intervals of x. The solution of simultaneous
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equations to determine the coefficients in the polynomial can be performed
symbolically in advance,” and the execution of the calculations requires a
relatively small effort thereafter.

Suppose that the curve in Fig. 4-3 is to be reproduced by a fourth-
degree polynomial. The n + [ data points (five in this case) establish a
polynomial of degree n (four in this case). The spacing of the points is

Xy — X9 =X, — X =X3— X, =x4— x3. The range of x,x; — x,, is
designated R, and the symbols are Ay, = y| — vo,Ay> = v2 — vy, etc.
Instead of the polynomial form of Eq. (4.13), an alternate form is used
_n ] ? , ‘'n 7
Yy — Yo = «:—MQ - .S: e su;wﬁ - \53 + SN,MC - \,o:
n I*
+as =(x = xq) (4.16)
LR )
To find a, to a4, first substitute the (x,, v;) pair into Eq. (4.16)
2 3
4y —xg) 4 —xg)] [40x; —x0) ]
Ay, = + az| |+ as!
Y1 = ay R 3”, R | w,r R |
[ 4
[ 4 = ;
+ay |c:x o) 4.17)

Because of the uniform spacing of the points along the x axis, n(x; —
xg)/R =1, and so Eq. (4.17) can be rewritten as

(4.18)

D<_“«:+Du + axy + a

=

FIGURE 4-3
Polynomial representation when points are equally spaced along the x axis.
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TABLE 4.1
Constants in Eq. (4.16)
Equation a4 a; az ay
Ay Av, Ay,
Fourth L(Ay, - 44y, o» -2 2 Ay Ry =1 = it = By
gt +64y; — 4Ay) ) )
Ay, —3a; — Ta,

+ % — ba,
Cubic 3Ay, + Ays (A - 2Av) Ay —ay —as

=34Ay2) —3a;
Quadratic WC.E =24y Ay, —as
Linear Ay,

Using the (x;, x2) pair and the fact that n(x; — xg)/R = 2 gives
Avs = 2a, + 4a> + 8az + 16a, (4.19)
Similarly, for (x3, v3) and (x4, vy)
Aysy = 3a; + 9a,> + 27a3 + 8lay (4.20)
Avy

4a, + 16a> + 64a; + 256a;, (4.21)

The expressions for a, to ay found by solving Eqs. (4.18) to (4.21) simul-
taneously are shown in Table 4.1, along with the constants for the cubic,
quadratic, and linear equations.

4.7 LAGRANGE INTERPOLATION

Another form of polynomial results when using Lagrange interpolation.
This method is applicable, unlike the method described in Sec. 4.6, to
arbitrary spacing along the x axis. It has the advantage of not requiring the
simultaneous solution of equations but is cumbersome to write out. This
disadvantage is not applicable if the calculation is performed on a digital
computer, in which case the programming is quite compact.

With a quadratic equation as an example, the usual form for a function
of one variable is

y =a, +ax + mmxw (4.22)
For Lagrange interpolation, a revised form is used
y =cilx —x)(x —x3) + c2(x —x)(x —x3) + c3(x —x;)(x — x3)

(4.23)
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The three available data points are (x|, y1), (x2, ¥2), and (x3, y3). Equation
(4.23) could be multiplied out and terms collected to show the correspon-

dence to the form in Eq. (4.22).
By setting x = x, x, and x3 in turn in Eq. (4.23) the constants can

be found quite simply:

Vi
cy = -
(x) —x2)(x) —x3)
V2
Ccr = —
(x7 —x)(x2 —x3)
V3
€y =

(x3 = x)(xs —x2)

The general form of the equation for finding the value of y for a given
x when n data points are known is

j (x —x;) omitting (x — x;)

) 2.Yill - — S (4.24)
i1 j=1 (x; — x;) omitting (x; xX;)
where the pi, or product sign, indicates multiplication.

The equation represented by Eq. (4.24) is a polynomial of degree

n—1.

4.8 FUNCTION OF TWO VARIABLES

A performance variable of a component is often a function of two other
variables.” not just one. For example, the pressure rise developed by the
centrifugal pump shown in Fig. 4-4 is a function of both the speed § and
the flow rate Q.

If a polynomial expression for the pressure rise Ap is sought in terms
of a second-degree equation in § and (., separate equations can be written
for each of the three curves in Fig. 4-4. Three points on the 30 r/s curve
would provide the constants in the equation

Apy =ay + b)Q + ¢1Q* (4.25)
Similar equations for the curves for the 24 and 16 r/s speeds are

Aps = as + baQ + 207 (4.26)

Apy = a3 + b0 + 307 (4.27)

Next the a constants can be expressed as a second-degree equation ir ierms
of S, using the three data points (a;, 30), (a2, 24), and (a3, 165. Such an
equation would have the form

a=Ag+ A S + AS? (4.28)
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Ap, kPa

Q. m¥s

FIGURE 4-4
Performance of a centrifugal pump.

Similarly for b and ¢
b =By + BiS + B,S? (4.29)
c=Cy+ CS + CS? (4.30)

Finally, the constants of Egs. (4.28) to (4.30) are put into the general
equation

Ap = Ag + A\S + A:S? + (Bg + B\S + B2S%HQ
+(Co+ O, + C,SHQ?

(4.31)

The A, B, and C constants can be computed if nine data points from Fig.
4-4 are available.

Example 4.3. Manufacturers of cooling towers often present catalog data
showing the outlet-water temperature as a function of the wet-bulb temperature
of the ambient air and the range. The range is the difference between the inlet
and outlet temperatures of the water. In Table 4.2, for example, when the wet-
bulb temperature is 20°C and the range is 10°C, the temperature of leaving
water is 25.9°C, and so the temperature of the entering water is 25.9 + 10
=35.9°C. Express the outlet-water temperature ¢ in Table 4.2 as a function
of the wet-bulb temperature (WBT) and the range R.

Solution. A second-degree polynomial equation in both independent variables
will be chosen as the form of the equation, and three different methods for
developing the equation will be illustrated.

Method 1. The three pairs of points for WBT =20°C, (10, 25.9), (16,
27.0), and (22, 28.4), can be represented by a parabola

t = 24.733 + 0.075006R + 0.004146R?
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TABLE 4.2
Outlet-water temperature, °C, of

cooling tower in Example 4.2

Wet-bulb temperature, °C

Range, °C 20 23 26

10 25.9 2.5 29.4
16 27.0 28.4 30.2
2 28.4 29.6 31.3

For WBT =23°C

1 = 26.667 + 0.041659R + 0.0041469R*
and for WBT =26°C

t = 28.733 + 0.024999R + 0.0041467R*

Next, the constant terms 24,733, 26.667, and 28.733 can be expressed
by a second-degree equation of WBT,

15.247 + 0.32637WBT + 0.007380WBT"

The coefficients of R and R? can also be expressed by equations in terms of
the WBT, which then provide the complete equation

1 = (15.247 + 0.32637WBT + 0.007380WBT?)
+(0.72375 — 0.050978WBT + 0.000927WBT?)R
+(0.004147 + OWBT + OWBTHR? (4.32)

Method 2. An alternate polynomia! form using second-degree expres-
sions for R and WBT 15

t =c; + QWBT + c;WBT® + ¢4R + ¢sR* + ¢4(R)(WBT)
+c2(WBT)(R) + ex(WBT)(R)” + co( WBT)*(R)? (4.33)
The nine sets of -R-WBT combinations expressed in Table 4.2 can be
substituted into Eq. (4.33) to develop nine simultaneous equations, which can
be solved for the unknowns ¢, to ¢y. The ¢ values thus obtained are

c) =15.247 > = 0.32631 c3 = 0.0073991
¢y =0.723753 cs = 0.0041474 ¢4 = — 0.0509782
c7 = 0.00092704 ¢4 = 0.0 cg = 0.0

It is possible to multiply and collect the terms in Eq. (4.32) to develop the
equation of the form of Eq. (4.33).

Method 3. Section 4.7 described a polynomial representation of a

dependent variable as a function of one independent variable by use of
Lagrange interpolation. Lagrange interpolation can be extended to a function
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of two independent variables. For example, if z = f(x,y), the form can be
chosen

I

=cplx —x)(x —x3)(y —ya)(y = v3)
Feply = Xx2)(x = X3)(8 =y ¥ — ¥3)
+€i3(x = Xa)(X —x3)(y — i)y — »2)

T e —x D —x )y =y = vl) (4.34)

To represent the data in Table 4.2, z could refer to the outlet-water temper-
ature, x the WBT, and y the range. In Eq. (4.34) x, = 20, x, = 23, and
x3 = 26, while v; = 10, y2 = 16, and y3 = 22.
" To determine the magnitude of ¢, for example, values applicable
when x = x; and v = y, can be substituted into Eq. (4.34).
27.0

cra = , . - = —0.04167
- (20 — 23)(20 — 26)(16 — 10)(16 — 22)

4.9 EXPONENTIAL FORMS

The dependence of one variable on a second variable raised to an exponent
is a physical relation occurring frequently in engineering practice. The
graphical method of determining the constants b and m in the equation

y = bx" {4.35)

is a simple example of mathematical modeling of an exponential form. On
a graph of the known values of x and y on a log-log plot (Fig. 4-5) the slope
of the straight line through the points equals m, and the intercept at x = |
defines b.

Yo
@
1000 +

I Il Il

0.1 1 10 100 1000

X

FIGURE 4-5
Graphical determination of the constant b and exponent m.
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m >0 m <0

-

(a) (h)

FIGURE 4-6
Curve of the equation y = b + qx™.

The simple exponential form of Eq. (4.35) can be extended to include
a constant

y=b+ax" (4.36)

The equation permits representations of curves similar to those shown in
Fig. 4-6. The curve shown in Fig. 4-6b is especially common in engineer-
ing practice. The function y approaches some value » asymptotically as x
increases.

One possible graphical method of determining a, b, and m in Eq.
(4.36) when pairs of xy values are known is as follows:

1. Estimate the value of b,

2. Use the steep portion of the curve to evaluate m by a log-log plot of
Y — b vs. x in a manner similar to that shown in Fig. 4-5.

3. With the value of m from step 2, plot a graph of y vs. x"™. The resulting
curve should be a straight line with a slope of @ and an intercept that
indicates a more correct value of b. Iterate starting at step 2 if desired.

4.10 BEST FIT: METHOD OF LEAST
SQUARES

This chapter has concentrated so far on finding equations that give a perfect
fit to a limited number of points. If m coefficients are to be determined in
an equation, m data points are required. If more than m points are available,
it is possible to determine the m coefficients that result in the best fit of the
equation to the data. One definition of a best fit is the one where the sum
of the absolute values of the deviations from the data points is a minimum.
In another type of best fit slightly different from the one just mentioned
the sum of the squares of the deviation ic a minimim Tha nraradies i
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establishing the coefficients in such an equation is called the method of least
squares.

Some people proudly announce their use of the method of least squares
in order to emphasize the care they have lavished on their data analysis.
Misuses of the method, as illustrated in Fig. 4-7a and b, are not uncommon.
In Fig. 4-7a, while a straight line can be found that results in the least-
squares deviation, the correlation between the x and y variables seems
questionable and perhaps no such device can improve the correlation. The
scatter may be due to the omission of some significant variable(s). In Fig.
4-7h it would have been preferable to eyeball in the curve, rather than to
fit a straight line to the data by the least-squares method. The error was not
in using least squares but in applying a curve of too low a degree.

The procedure for using the least-squares method for first- and second-
degree polynomials will be explained here. Consider first the linear equation
of the form

y =a + bx (4.37)

where m pairs of data points are available: (xi, yi), (x2,¥2)s ... (X,
vm). The deviation of the data point from that calculated from the equation
is a + bx; —v;. We wish to choose an a and a b such that the summation

m

o o) L

N (a + bx; - y;)© — minimum
=1

(4.38)

The minimum occurs when the partial derivatives of Eq. (4.38) with respect
to a and b equal zero.

m
- S 2
d =~ (a + bx; —y;)-

=1 N

(a) (b)

FIGURE 4-7
Misuses of the method of least squares.
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and

w:

|_§ + bx; — y; v-

ab

!

= MNAQ + \u.aﬁ —yi)x; = 0

Dividing by 2 and separating the above two equations into individual terms
gives

ma + bIx; = Xy, (4.39)

axx;, + bM,fu = Sx;Vi (4.40)
Example 4.4. Determine a; and a, in the equation v = ay + a, x to provide
a best fit in the sense of least-squares deviation to the data points (1, 4.9),
(3, 11.2), (4, 13.7), and (6, 20.1)

Solution. The summations to substitute into Egs. (4.39) and (4.40) are

Xi Vi fu Xy

1 4.9 1 4.9

3 I'V.2 9 33.6

4 13.7 16 54.8

’o 20.1 36 120.6

3 14 499 62 213.9
and m = 4

The simultaneous equations to be solved are

4ay + ld4a, = 499
14ay + 62a, = 213.9

yielding ap = 1.908 and a, = 3.019. Thus
= 1.908 + 3.019x

A similar procedure can be followed when fitting a parabola of the form

v =a+ bx + cx? (4.41)

to m data points. The summation to be minimized is
m
2 .
M?u + bxy +iexy = .,.;u — minimum

=1

Differentiating partially with respect to a, b, and c, in turn, results in three
linear simultaneous equations expressed in matrix form

[ m Zx, Sxfra] [Zyi
| Sx; Zx? Zx} w_ Zxiyi (4.42)
1Sx2 3x3 setilel [Zxly
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A comparison of the matrix equation (4.42) with Eqgs. (4.39) and
(4.40) shows a pattern evolving which by analogy permits developing the
equations for higher degree polynomials without even differentiating the
summation of the squared deviation.

4.11 METHOD OF LEAST SQUARES
APPLIED TO NONPOLYNOMIAL FORMS

The explanation of the method of least squares was applied to polynomial
forms in Sec. 4.10, but it should not be suggested that the method is
limited to those forms. The method is applicable to any form which contains
constant coefficients. For example, if the form of the equation is

2

y =asin2x +blnx

the summation comparable to Eq. (4.38) is

MC._. —asin2x; — Es\fuvu (4.43)
=1

hu
Partial differentiation with respect to a and b yields
a S (sin 2x;)° + b S (sin 2x;)(In x?) = X y; sin 2x;
aS(sin2x)(Inx?) +bI(Inx?)? =3y Inx}

which can be solved for a and b.

A crucial characteristic of the equation form that makes it tractable to
the method of least squares is that the equation have constant coefficients.
In an equation of the form

y = sin 2ax + bx°

the terms @ and ¢ do not appear as coefficients, and this equation cannot be
handled in a straightforward manner by least squares.

4.12 THE ART OF EQUATION FITTING

While there are methodical procedures for fitting equations to data, the
process is also an art. The art of intuition is particularly needed in deciding
upon the form of the equation, namely, the choice of independent variables
to be included and the form in which these variables should appear. There
are no fixed rules for knowing what variables to include or what their form
should be in the equation, but making at least a rough plot of the data
will often provide some insight. If the dependent variable is a function of
two independent variables, as in z = f(x,y), two plots might be made, as
illustrated in Fig. 4-8.
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FIGURE 4-8
Cross plots to aid in developing the form of the equation.

The insight provided by Fig. 4-8a is that z bears a linear relation to y,
and the fact that the straight lines are parallel shows no influence of x on
the slope. Figure 4-8b suggests at least a second-degree representation of z
as a function of x. A reasonable form to propose, then, is

Z2=ap+ ax +ayy + asx?

Several frequently used forms merit further discussion.

Polynomials

If there is a lack of special indicators that other forms are more applicable,
a polynomial would probably be explored. When the curve has a reverse
curvature (inflection point), as shown in Fig. 4-9, at least a third-degree
polynomial must be chosen. Extrapolation of a polynomial beyonc the

YA

- FIGURE 4-9
X At least a third-degree polviiomial needed.
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FIGURE 4-10 ,
_ Negative exponents of polynomials for a curve that
flattens out.

-

borders of the data used to develop the equation often results in serious
error.

b

i i ative Exponents
Polynomials with Neg P FIGURE 4-12

When curves approach a constant value at large magnitudes of the indepen- Coninutian of two Forms.

dent variable, polynomials with negative exponents
2

sales volume vs. years for many products which have low sales when first
introduced, experience a period of rapid increase, then reach saturation. The

personnel required in many projects also often follows the curve. The form
_that represents Fig. 4-11 is

-1 _
y =ag +a)x + @yx

may provide a good representation; see Fig. 4-10.

Exponential Equations I A

“where a, b, and ¢ are constants and b and ¢ have magnitudes less than
unity.

Section 4.9 has described several examples of exponential forms. The shape
of the curve in Fig. 4-10 might also include a qu.,. term. Plots on log-log
paper would be a routine procedure, although a simple plot of log y vs.

log 1 yields a straight line only with equations in the form of Eq. (4.35). Combination of Forms

It may be possible to fit a curve by combining two or more forms. For

example, in Fig. 4-12, suppose that the value of y approaches asymptotically

a straight line as x increases. A reasonable way to attack this modeling task
would be to propose that

Gompertz Equation

The Gompertz equation,* or S curve (Fig. 4-11), appears frequently in
engineering practice. The Gompertz curve, for example, represents the

Yy =y1tyr=(a+bx)+ (c+dx"

where m is a negative exponent.

~4.13 AN OVERVIEW OF EQUATION
FITTING

k. The task of finding suitable equations to represent the performance of com-
ponents or thermodynamic properties is a common preliminary step to sim-
‘ulating and optimizing complex systems. Data may be available in tabular
or graphic form, and we seek to represent the data with an 2quation that is
= both simple and faithful. A requirement for keeping the equation simple

S— FIGURE 4-11
X Gompertz, or S curve.
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in the equation. It is possible, of course, to include all the terms t
could possibly be imagined, evaluate the coefficients by the method
least squares, and then eliminate terms that provide little contribution.
process is essentially one of regression analysis,® which also is used
assess which variables are important in representing the dependent variable:

The field of statistical analysis of data is an extensive one, and thi
chapter has only scratched the surface. On the other hand, much of the omo?, 44
in the statistical analysis of data is directed toward fitting experimental datg
to equations where random experimental error occurs. In equation fitti
for the design of thermal systems, since catalog tables and charts are
most frequent source of data, there usually has already been a process
smoothing of the experimental data coming from the laboratory. Beca
of the growing need for fitting catalog data to equations, many design
hope that manufacturers will present the equation that represents the tabl
or graph to save each engineer the effort of developing the equation ag
when needed.

This chapter presented one approach to mathematical modeling wh
the relationship of dependent and independent variables was developef®
without the help of physical laws. Chapter 5 explores some special import
cases where physical insight into some thermal equipment can be used &
advantage in fitting equations to performance data. Chapter 13 extends th 3
experience on mathematical modeling and also concentrates on the importas
topic of thermodynamic properties.

o
is to choose the proper terms (exponential, polynomial, etc.) to 52%
o

4.7.

EQUATION FITTING

2x;+ x7—4dxy3+6xy+ 3xs— v =
—x;+ 2xs+ 3x3 + Sxq— 2x5 =

X — 2x3— Sx3+ 3xy+2x5+ xg=
4x,+ 3x2— 203 + 2xy4 + X¢=
3x;+ x2— x3+4dxs+ 3xs+6x¢=
Sx, +

o= = = <] ON

Naj.luldwnTw.d&Jr X5 T Xeg=

Ans.: 2, —1,1,0,3
A second-degree equation of the form

y =a+ bx + cx?

has been proposed to pass through the three (x,yv) points (1,3), (2,4), and
2, 6). Proceed with the solution for a, b, and c.
(a) Describe any unusual problems encountered.
(b) Propose an alternate second-degree relation between x and y that will
successfully represent these three points.
Use data from Table 4.3 at r = 0, 50, and 100°C to establish a second-
degree polynomial that fits A, to 7. Using the equation, compute h, at 80°C.
Ans.: 2643.3 kJ/kg.
Using the data from Table 4.3 for v, at r = 40, 60, 80 and 100°C, develop
a third-degree equation similar in 33: to Eq. (4.16). Compute v, at 70°C
using this equation.
Ans.: 4.91 m/kg.
Lagrange interpolation is to be used to represent the enthalpy of saturated
air, hy kJ/kg, as a function of the temperature 1°C. The pairs of (4, ) values
to be used as the basis are (9.470, 0), (29.34, 10), (57.53, 20), and (99.96,
30).
(a) Determine the values of the coefficients ¢; to ¢4 in the equation for A;.

PROBLEMS (b) Calculate h, at 15°C.
Q 4 < 42 -
4.1, Compate Ans.: (b) From tables 42.09 kJ/kg.
m 2 -1 03 .\ TABLE 4.3
W |._. m h_: - Properties of saturated water
— —_ | 5
3 ,
I 4 20 3| .. Temperature Enthalpy
2 ; Pressure mcaﬁmn volume
Ans.: 50. b b C T,k p, kPa ves m? /kg hy, kJ/kg hy, kJ/kg
4.2. Test the coefficient matrix in the set of linear equations 50 27315 0.6108 206.3 —0.04 2501.6
- 0 283.15 1.227 106.4 41.99 2519.9
ﬁ 12 =2 /(T J 22 293.15 2.337 57.84 83.86 2538.2
2 =i & =2]{*2] = 18 30 303.15 4.24] 32.93 125.66 2556.4
=1 3 1 —4fx3 _.lo . 40 313.15 7.375 19.55 167.45 2574.4
1 -3 5 Iu._r.«f; 13 .50 323.15 12.335 12.05 209.26 2592.2
”.8 333.15 19.92 7.679 251.09 2609.7
and determine whether the set of equations is dependent or independent. § 70 343.15 31.16 5.046 292.97 2626.9
4.3. Using a computer program (gaussian elimination or any other that is availabl, % Mww m wmw wwmw WWMNM mm%w
for solving a set of linear simultaneous equations), solve for the x’s: 100 37315 101.33 673 419.06 2676.0
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4.8. An equation of the form

Yy 7 M= a(x — 1) + aa(x — :u
is to fit the following three (x,v) points: (1, 4), (2, 8), and (3, 10). What
are the values of vg,a;, and a»?
Ans.: a, = 5.

4.9. The pumping capacity of a refrigerating compressor (and thus the capability
for developing refrigerating capacity) is a function of the evaporating and
condensing pressures. The refrigerating capacities in kilowatts of a certain
reciprocating compressor at combinations of three different evaporating and
condensing temperatures are shown in Table 4.4. Develop an equation similar
to the form of Eq. (4.33), namely,

Ge = €1 + Caty + C312 + Cate + 700+ cotlt?
Ans.: ¢ to ¢y are 239.51, 10.073, —0.10901, —3.4100, —0.0025000,
—-0.20300, 0.0082004, 0.0013000, —0.000080005.

4.10. The data in Table 4.4 are to be fit to an equation using Lagrange interpolation
with a form similar to Eq. (4.34). The variable x corresponds to f,, y -
corresponds to f., and z to g.. Compute the coefficient ¢a3. :

Ans.: —0.02026.

4.11. The values of ¢, and ¢, are to be determined so that the curve represented
by the equation v = ¢/(¢; + x)* passes through the (x,y) points (2, 4) and
(3. 1). Find the rwo ¢, — ¢, combinations.

Ans.: One value of ¢, is w

4.12. Using the graphical method for the form y = b + ax™ described in Sec. 4.9,
determine the equation that represents the following pairs of (x, y) points:
(0.2, 26), (0.5, 7, (1, 2.8), (2, 1.3), (4, 0.79), (6, 0.65), (10, 0.58), (15,
0.54).

Ans.:y = 0.5 + 2.3x 7',

4.13. A function y is expected to be of the form y = ¢x” and the xy data develop
a straight line on log-log paper. The line passes through the (x, V) points
(100, 50) and (1000, 10). What are the values of ¢ and m?

Ans.: ¢ = 1250.

4.14. Compute the constants in the equation v = ag + a,x + a2x* to provide a
best fit in the sense of least squares for the following (x, v) points: (1, 9.8),
(3, 13.0), (6, 9.1), and (8, 0.6).

Ans.: 6.424, 3.953, —0.585.

TABLE 4.4

Refrigerating capacity g, kW

Condensing temperature, ., °C

Evaporating
temperature f,, °C 25 35 45

0 1527 117.1 81.0
5 182.9 141.9 101.3
10 215.4 170.7 126.5

4.15.

. 417,

4.19.
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EQUATION 3

An equation of the form y = ax + b/x has been chosen to fit the following

(x, y) pairs of points: (1, 10.5), (3, 8), and (8,18). Choose a and b to give

the best fit to the points in the sense of least sum of the deviations squared.
Ans.: b = 8.14.

The proposed form of the equation to represent z as a function of x and y is

z=ax + b[In(xy)], where a and b are constants. Some data relating these

variables are

Z X y
2 1 2
5 2 1
< 2 2

Determine the values of @ and b that give the best fit of the equation to the
data in the sense of least square deviation.

Ans.: b = —0.35.
With the method of least squares, fit the enthalpy of saturated liquid h; by
means of a cubic equation to the temperature 7 in degrees Celsius using the
11 points on Table 4.3. Then compute the values of /2, at the 11 points with
the equation just developed.

Ans.: hy = —0.0037 + 4.2000r — 0.000505¢> + 0.000003935¢°.
A frequently used form of equation to relate saturation pressures to temper-
atures is

Inp=A4+ 4
P T
where p = saturation pressure, kPa
T = absolute temperature, K
With the method of least squares and the 1! points for Table 4.3, determine

the values of A and B that give the best fit. Then compute the values of p
at the 11 points using the equation just developed.
Ans.: In p = 18.60 — 5206.9/T.

The variable z is to be expressed in an equation of the form

=ax + by + cxy

<

The following data points are available, and a least-squares fit is desired:

0.1
-0.9
2.0
-1.8

W P =
— ) P =

Determine the values of a, b, and c.
Ans.: —2.0467, —0.9167, and 1.8833.
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_ Approaches a : |
Approaches y axis straight line
asymptotically

T
o

Y

i

FIGURE 4-13 X

Function in Prob. 4.19. 8
. . FIGURE 4-15
v.,.“oosnm:N equation in Prob. 4.23.

4.20. Three points, (x;,v|), (x2,y2), and (x3,y3), lie precisely on the straight line
v = a + bx. If a least-squares best fit were applied to these three points to
determine the values of A and B in the equation ¥y = A + Bx, show that the
process would indeed give A = a, and B = b.

auu In a certain Gom i ich i .
: pertz equation wh Sy = ab’ ;
15, c = 0.5,y =2 q which is y ab®" and represented by Fig.

e 2 and the asymptote has a valu i
. - 4 - )
. el | of 6. Determine the

4.21. An equation is to be found that represents the function shown in Fig. Ans.: g —
4-13. Since one single simple expression seems inadequate, propose that REdm =
v = fi(x) + fa(x). Suggest appropriate forms for | and f; and sketch these}.
functions. 3 REFERENCES :

4.22. The enthalpy of a solution is a function of the temperature 7 and the concen- g
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nthalpy A

B

0 0.5 1.0
Concentration, x

FIGURE 4-14
Enthalpy as a function of temperature and concentration in Prob. 4.20.



