LESSON 37

Numerical Solutions (Elliptic
Problems)

|
- PURPOSE OF LESSON: To show how a partial differential equation
| can be changed to a system of algebraic equations by replacing the partial
| derivatives in the differential equation with their finite-difference approx-
imations. The system of algebraic equations can then be solved numerically
by an iterative process in order to obtain an approximate solution to the
PDE. _
It is also pointed out that the reader can obtain an existing computer \

package (ELLPACK) that will solve general elliptic problems.

So far, we have studied several techniques for solving linear PDEs. However,
most of the equations we've attacked were reasonably simple, had reasonably
simple BCs, and had reasonably shaped domains. But many problems cannot
be simplified to fit this general mold and must be solved by numerical approx-
imations. Over the past ten vears. scientists and engineers have begun to attack
many more problems as a result of more computing power and more sophisti-
cated numerical methods. Several new techniques have been developed to take
advantage of high-speed computing machinery. Nonlinear problems in fluid
dynamics, elasticity, and potential theory involving two and three dimensions
are being solved today that were not even considered ten years ago.

There are several procedures that come under the name of numerical methods.
The reader can look in reference 1 of the recommended reading for a more
complete discussion of these techniques. This lesson and the next two show how
the very popular finite-difference method can be used to solve elliptic, hyperbolic,
and parabolic equations.

To begin. we introduce the idea of finite differences. We then show how to
use these finite differences to solve a Dirichlet problem inside a square.

Finite-Difference Approximations
First, we recall the Taylor series expansion of a function f{(x)

. fe + k) = flx) = POk + \M..l
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If we truncate this series after two terms, we have the approximation
flx + h) = flx) + f(x)h

Hence, we can solve for f'(x)

(37.1) Fl) = E

which is called the forward-difference approximation to the first derivative f'(x).
We could also replace & by — A in the Taylor series and arrive at the backward-
difference approximation

f) = fix = h)

(37.2) fx) = A

or by subtracting
flx = h) = flx) = f()h
fle + h) = fx) + f(0)h

from

we can obtain the central-difference approximation
1 .
(37.3) F) =5 [flx + ) = fix = h)]

By retaining another term in the Tay.or series, this type of analysis can be
extended to arrive at the central-difference approximation of the second deriv-
ative f"(x)

. 1 y ;
(37.4) f'(x) = e [flx + h) = 2f(x) + flx — h)]
We now extend the finite-difference approximations to partial derivatives. If
we begin with the Taylor series expansion in two variables

\Nu
ux + hy) = u(x,y) + u(x,y)h + UpX,y)57 +

h?
ux = hy) = ulx,y) — ulx,y)h + z:?..&ﬂ -

we can deduce the following:

u(x + hy) — ulx,y)
h
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u(xy) = \ﬂT;\« + hy) — 2u(x,y) + u(x — hy)]
u(x,y + k) — u(x,y)

u,(x,y) = . -

R k
1, ,

u,(x,y) = m??% + k) = 2u(xy) + u(x,y — k)]

Which approximation to use (forward, central, or backward) depends on the
problem, but in this lesson, we will use the central-difference approximation.

To illustrate how to use these approximations, we consider the simple Dirich-
let problem.

Dirichlet Problem Solved by the Finite-Difference Method

PDE u, +u,, =0 0<x<1

xx yy

(37.5) 0<y<l1
BCs u =20 On the top and sides of the square

u(x,0) = sin (mx) 0=x=1

We begin this problem by drawing the grid system on the xy-plane shown in

Figure 37.1.
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FIGURE 371  Grid lines for the Dirichlet proplem inside a square,

Itis also convenient (especially if we want to use a computer) to use the following
notation:

u(x,y) = u,

u(x,y + k) = u,



u(x,y — k)

Il
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ulx + Ay) = u,

:Cﬂ.l hy) = u
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Our strategy for solving this Dirichlet problem is to replace the partial derivatives
in Laplace’s equation

U, + u, =0
by their finite-difference approximations. Doing this and using the compact
notation u, ;, we have the following difference equation:

o

. I 1
\/dnt - |m Atr\.iﬁ - NE: + Ir\.lwv + m AS‘IH.\ o N:i + t..lf\.v = O

By letting the two discretization sizes # and k be the same, Laplace’s equation
is replaced by

AM\NOV Awfb_\. El 2_.|~,\ + N\«:I_ + nsn,\l_ o n_.:,.;v = O

or solving for u,,

- IH u
U; i

i= 1] Lj+1

o, tu + u + Uy y)

Note that here the u,;'s would stand for the solution at the interior grid points.
This last equation says that we can approximate the solution . by averaging
the solution at the four neighboring grid points. Hence, we can devise a numerical
strategy for solving the problem.

Numerical Algorithm for Solving the Dirichlet Problem
(Liebmann’s method)

STEP 1 Seek the solution u,, at the interior grid points by setting them equal
to the average of all the BCs (reasonable start).

STEP 2 Systematically run over all the interior grid points, replacing the old
estimates by the average of its four neighbors. It doesn’t make much difference
in what order this process is carried out, but, generally, it is done in a row by
row (or column by column) manner. After a few iterations, this process will
converge to an approximate solution of the problem. The rate of change of this
process is generally slow but can be speeded up in a number of ways; interested
readers should consult reference 1 of the recommended reading.

This completes the discussion of our Dirichlet problem; the reader is asked
to carry out three iterations of Liebmann’s method in the problems.

NOTES

1. If we write equations (37.6) for four interior grid points (that is, m = n
= 4), we will get the four algebraic equations:

~duy, + 0 + sin (7/3) + Uy + Uy, = 0
(37.7) —duyy + u,, + sin (2m/3)
—duyy, + 0 + Uy + uyy +
—duyy + Uy F Uy + 0+

mnoaérmorimomcmo_<mmo~§e:@:wemaa:mu.ﬁ:mmo_:aozo:rmmn
equations can be found by iterative methods, and Liebmann’s method is one
of them.

2. If we made our discretization sizes 4 and k smaller (so that we had more
grid points), the analysis would be similar except that the system of algebraic
equations (37.7) would be larger. In general, the number of equations will
be equal to the number of interior grid points.

3. The system of equations (37.7) can be written in matrix form

-4 1 1 0 Uy —sin (w/3) -0.86
1 -4 0 1 Uy | _ | =sin 2w/3) | | —0.86
1 0 —4 1 Wy | 0 a 0
0 1 1 -4 Uss 0 0

In general. when we have several equations (maybe 1,000) this coefficient
matrix takes on a specific form with many zeros. The solution of these sparse
systems of equations can be found by special numerical methods. Iterative
procedures, such as Jacobi's method, Gauss Seidel, and successive over-
relaxation (SOR) are commonly used (along with techniques for speeding
up convergence).

4. Tosolve the Neumann problem where there are derivatives on the boundary,

we must also replace these derivatives by some finite difference approxi-
mation.



5. We can also solve equations like:

(a) wu, + u, = flx,y) (Nonhomogeneous equations)

(b) =xu, + u, + 2u =sin(x —y) (Variable coefficients; non-

- homogeneous)
(c) sinxu, + u, +3u = 0 (Variable coefficients)
by the finite-difference method.

6. If the domain of the problem is an irregularly shaped region, we can overlay
the region with grid lines and then approximate the solution at nearby grid
points by interpolating the boundary conditions. After doing this, we can

proceed in the usual manner. See Figure 37.2.
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FIGURE 37.2

7. Several journals list computer programs for solving PDEs; some of them
are:

(a) ACM Transactions on Mathematical Software

(b) Computer Journal

(¢c) Numerische Mathematik

(d) BIT
In addition, an extensive package of programs, called ELLPACK, has recently
been designed for the purpose of solving fairly general elliptic boundary-value
problems. This package will solve a wide variety of problems in two or three
dimensions. various coordinate systems, arbitrary boundaries, general BCs, by
an assortment of different methods.*

* Anyone interested in obtaining information about this program should contact Dr.

John Rice. ELLPACK User’s Guide CSD-TR 226, Computer Center, Purdue University,
West Lafayette, Indiana 47907.
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PROBLEMS

1.

(%)

N

Derive approximation equation (37.4) for the second derivative f"(x)
f'x) = 5 [flx + h) — 2f(x) + flx — h)]

Carry out the computation for two iterations in Dirichlet problem (37.5)
using the Liebmann iterative process. Is the method converging?

What algebraic equations must be solved when you use finite-difference
approximations to solve the following Poisson equation inside the square:

PDE u, + u, = flx,y) 0<x<1 D<y<l1
BC u(x,y) = glx,y) On the boundary

What algebraic equations must you solve when replacing the derivatives in

PDE Ue + Uy, +2u=0 0<x<1 0<y<1

xx

BC u(x,y) = glx,y) On the boundary

by their finite differences?
How would you solve the Neumann problem inside the square

PDE U, + u, =0 0<x<l1 0<y<1 T
-
u=20 On the top, bottom, and
BC ou left-hand side of the square

(1,y) =1 0sy=<1
ax

by the finite-difference method?
Write a flow diagram to solve the Dirichlet problem inside the square

PDE u, + u, = flx,y) 0<x<l1 0<y<l1
BC u(x,y) = glx,y) On the boundary

i:d an arbitrary number of grid lines. If you know a computer language,
write a program to carry out these computations.
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An Explicit Finite-Difference
Method

_

PURPOSE OF LESSON: To introduce the idea of explicit finite-dif-
ference methods and show how they can be used to solve hyperbolic and
parabolic problems. The basic idea is that after a PDE like

is replaced by its finite-difference approximation. we can solve for the
solution explicitly at one value of time in terms of the solution at earlier
values of time. In this way, an initial-boundary-value problem (hyperbolic
or parabolic) can be solved by consecutively finding the solution at larger
and larger values of time.

A problem we face is that as we make the grid sizes small so that the
finite differences accurately represent the derivatives, the number of com-
putations increases, and so the roundoff error increases.

In the previous lesson, we solved elliptic boundary-value problems (steady-state
problems) where the PDE was satistied in a given region of space, and the
solution (or its derivative) was specified on the boundary. In those types of
problems, we found the approximate solution at the interior grid points by solving
a system of algebraic equations. In other words, the solution at all the interior
grid points was found simultaneously.

[n this lesson, we will show how time-dependent problems can be solved by
finite-difference approximations. The idea here is that if we are given the solution
when time is zero, we can then find the solution for ¢ = Ar, 2A1, 3A¢, .. . by
means of a marching process. Replacing both the space and time derivatives by
their finite-difference approximations, we can then solve for the solution U, in
the difference equation explicitly in terms of the solution at earlier values of
time. This process is called an explicit-type marching process, since we find the
m.oEzo: at a single value of time in terms of the solution at earlier values of
time.

To show how this method works, we consider a representative preblem from
heat flow.
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