2. Numerical Analysis by S. S. Kunz. McGraw-Hill, 1964. Chapter 13 offers a clear,
precise summary of some numerical methods in PDE theory.

3. Numerical Solution of Partial Differential Equations by G. D. Smith. Oxford Uni-
versity Press, 1965. A concise book describing finite difference methods in PDE theory:
clearly written.
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LESSON wm

An Explicit Finite-Difference
Method

PURPOSE OF LESSON: To introduce the idea of explicit finite-dif-
ference methods and show how they can be used to solve hyperbolic and
parabolic problems. The basic idea is that after a PDE like
u, = u,

is replaced by its finite-difference approximation, we can solve for the
solution explicitly at one value of time in terms of the solution at earlier
values of time. In this way, an initial-boundary-value problem (hyperbolic
or parabolic) can be solved by consecutively finding the solution at larger
and larger values of time.

A problem we face is that as we make the grid sizes small so that the
finite differences accurately represent the derivatives, the number of com-
putations increases, and so the roundoff error increases.

In the previous lesson, we solved elliptic boundary-value problems (steady-state
problems) where the PDE was satisfied in a given region of space, and the
solution (or its derivative) was specified on the boundary. In those types of
problems, we found the approximate solution at the interior grid points by solving
a system of algebraic equations. In other words, the solution at all the interior
grid points was found simultaneously.

In this lesson, we will show how time-dependent problems can be solved by
finite-difference approximations. The idea here is that if we are given the solution
when time is zero, we can then find the solution for ¢t = Ar, 2A¢, 3Ar, . . . by
means of a marching process. Replacing both the space and time derivatives by
their finite-difference approximations, we can then solve for the solution u;, in
the difference equation explicitly in terms of the solution at earlier values of
time. This process is called an explicit-type marching process, since we find the
solution at a single value of time in terms of the solution at earlier values of
time.

To show how this method works, we consider a representative problem from
heat flow.
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The Explicit Method for Parabolic Equations

Consider the problem of heat flow along a rod initially at temperature zero.
where the left end of the rod is fixed at temperature one. and the right-hand
side expericences a heat loss (or gain) proportional to the difference between the
temperature at that end and an outside temperature that is given by g(¢). In
other words. we solve the problem

PDE u, = U, 0<x<1 0<i<=
- w(0y) =1 ) .
0] <
BLS u(la) = — [u(l.) = g(0)] Sk =
IC w(x,0) =0 I=sx=s1

To solve this problem by finite differences. we start by drawing the usual rec-
tangular grid system with grid points:

X, = jh j=0000200 0000
t = ik [ =0,1.2.....m
See Figure 38.1.
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FIGURE 381 Grid system for a heat-flow problem.

Note that in Figure 38.1. the u,, on the left and bottom are given BCs and 1Cs.
and our job is to find the other «,,’s. To do this. we begin by replacing the partial
derivatives «, and u,, in the heat equation with their approximations

1
(v + k) — wulxa)] = NH:Z? - u,,)

u, =

1
k
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1 |
o = [(x + o) = 2u(x,0) + wux — o] =
2

(4, ., — 2w, + 1w )

u e (Wi i

By substituting these expressions into u, = wu,, and solving for the solution at
the largest value of time, we have

k |

Ay.wnf_wv Uiy, = U, T 2 —::A_ - r.:r_, + u,, __ ‘

This is the formula we are looking for, since it gives us the solution at one value
of time in terms of the solution at earlier values of time (note that the index
stands for time). Figure 38.1 shows those values of the solution that are involved
in the formula.

We are now almost ready to begin the computations, First, however, we must
approximate the derivative in the right-hand BC

u(lg) = — [u(la) — g(0)]-

!
(38.3) ol == - gl
1

where g, = g(ik) is given. Note that we have replaced u,(1,r) by the backward-
difference approximation, since the forward-difference approximation would re-
quire knowing values of «,, outside the domain. Solving now for «, , in this BC
gives us

., + hg
38.4 = —tn=1 _ 7o
(98:4) Wi 1+ h

With this equation and our explicit formula (38.2), we are ready to begin the
computations.

Algoritbm for the Explicit Method

STEP 1 Find the solution at the grid points for t = Ar by using the explicit
formula

Uy, = Wy, + = ey = 2wy, + uy,- ] J=2.3,....,n-1
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See Figure 38.2.
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FIGURE 38.2 Diagram illustrating the explicit method.

from formula (38.4)

1

STEP 2 Find u,,
., + hg,

Uy, =
o | + h

Steps | and 2 find the solution for + = Az To find the solution for ¢t = 2A\¢
(second row from the bottom in Figure 38.2). repeat steps 1 and 2, moving up
one more row (increase ¢ by 1) and using the values of «,, just computed: for
1= 3Ar, 4Ar, . keep repeating the same process.

In order for the reader to be able to computerize this method. we will present
a fairly detailed flow diagram of the method in Figure 38.3. Those students not
familiar with flow diagrams should think of them as links between computational
algorithms and detailed computer programs. Flow diagrams explain in a precise
manner how the computations should be carried out.

NOTES

1. There is a serious deficiency in the explicit method. for if the step size in
tis large compared to the step size in x. then machine roundoff error can
grow until it ruins the accuracy of the solution. The relative size of these
two numbers x and ¢ depends on the particular equation and the BCs. but.
generally, the step size in ¢ should be much smaller than the step size in x.
In reference 3 of the recommended reading in Lesson 37, the author proves
that we must have £/4* = 0.5 in order for this method to work.

2. A general rule of thumb is that as the step sizes Ar and Av are made smaller.
the truncation error of approximating partial derivatives by finite differences
decreases. However. the smaller these grid sizes. the more computations
necessary. and, hence. the roundoff error. as a result of rounding off our
computations. will increase. Therefore. we have the phenomenon illustrated
in Figure 38.5.
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inthe M BC «(0, ¢) =1 in the
* first column of the array U

Compute the step sizes: H = 1/(N - 1)

he
\
).

1
/

; Set the row counter [ = 1

. | Compute: UM+, J)=CU N+ R U0 J+ 1) - 200 )+ 017 -1] ]
I=7+1 : for ] =2, 3, LN -1
Compute U+ 1, N = [U(TH 1, N -1+ HG(IL+ 1) | /(H + 1)

7 We now have the approximate solution at the grid
; points, it's up to the user how to display them

FIGURE 38.3 Flow diagram of the explicit method.

3. The hyperbolic problem

PDE u, = u 0<x<1 0<r<=

\ u(0.r) = g,(1)
PSS lutn = gn 05157
u(x,0) = d(x)
u,(x,0) = W(x)
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Hence. solving for w(x.r = k) explicitly in terms of the solution at carlier

7 \ B / . values of time gives
X
4 e, ‘ v 2 ~ |t Gl w(x,t + kY = 2u(x,1) u(x.t — k)
(38.5) >
, 0 ke
. ceon | oee2) C12. 3) i 4 = ﬁ\; [w(x + ha) = 2u(x.) + wlx — ht)]
= _ i N
_ 3 wa A vi3, 2 (3. 3) | 3N el From this equation. it is clear that we must already know the solution at
A , two previous time steps. and. hence. we must use the initial-velocity con-
s ) dition
{ ! O~ )
1
, m_::.f = d(x)] = Wx)

\ Ui, 1) Ui, 2) UM N) —~ v UM, N) GiM)

to get us started. Solving for u(x,k) gives u(x,k) = d(x) + kli(x), and, thus,
we can find the solution for t = Ar. The solution at all later values of time

can now be found by our explicit formula (38.5).

FIGURE 38.4 Arrays used in the explicit method.

PROBLEMS
Total error
1. Find the finite-difference solution of the heat-conduction problem
Truncation error 5
PDE u, = U, 1 0<t<=
Roundoff error
) . w(0,0) = 0 )
BCs 0<r<=
u(ly) =0
Grid size
1C u(x,0) = sin (1mx) 0=x=1

FIGURE 38.5 Total error as a function of grid size.
for t = 0.005. 0.010. 0.015 by the explicit method. Let A = Ax = 0.1. Plot

can :_m,c be solved 7..< :,E explicit finite-difference method. Here. we can the solution at x = 0. 0.1, 0.2, 0.3, ..., 0.9, 1 forr = 0.015.
approximate the derivatives w, and u,, by 2. Solve problem 1 analytically (separation of variables) and evaluate the an-
alytical solution at the grid points: x = 0,.0.1.0.2,. .., 0.9, 1 fort = 0.015.

1

u, = I [t(x.t + k) = 2u(x.t) + w(x.e — k) Compare these results to your numerical solution in problem 1. (You may

wish to write a small computer program or use a calculator to evaluate the
separation-of-variables solution.)

3. Write a flow diagram to carry out the computations of the hyperbolic prob-
lem discussed in note 3 of this lesson.

4. Do problem 1 except now replace the BC at x = 1 by

1
U, = e [(x + hit) — 2u(x,0) + u(x — ht)]

and the derivative 1,(x,0) in the 1C by
_ u (L) = = [u(la) = 1)

u,(x,0) = X

[u(x k) — u(x,0)] = WT;R_»V — d(x)]
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