OTHER READING

Finite-Difference Methods for PDEs by G. F. Forsythe and W. R. Wasow. John Wiley
& Sons, 1960. An excellent text with several physical examples illustrated. soil-drainage
problems, oil-flow problems, and a meteorological-forecast problem are a few of the
problems discussed.

LESSON 39

An Implicit Finite-Difference
Method (Crank-Nicolson Method)

PURPOSE OF LESSON: To show how time-dependent problems can
be solved by another finite-difference scheme known as implicit methods.
In this method, we again replace the partial derivatives in the problem by
their finite-difference approximations, but unlike explicit methods (where
we solved for i, , ; explicitly in terms of earlier values), in implicit methods,
we solve a system of equations in order to find the solution at the largest
value of time. In other words, for each new value of time we solve a system
of algebraic equations to find a/l the values.

Implicit methods have an advantage over explicit ones, since the step
size can be made larger without worrying about excessive buildup of round-
off error.

A popular implicit method known as the Crank-Nicholson method will
be used to solve a parabolic problem.

The difficulty with the explicit methods that we discussed in the last lesson is
that the step size in time must be small in order for the method to work properly.
In particular, if we were to solve the simhple heat-flow problem

PDE u, = U, 0<x<1 0<t<w>
u(0,t) = g,(0)
(39.1) BC (1) = g.(0) 0<tr<=>
IC u(x,0) = flx) 0=sx<1

by the explicit method, it would be necessary for the grid sizes At and Ax to
satisfy
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in order for the method to be numerically stable (the roundoff errors don’t build
up). See reference 1 (p. 45) of the recommended reading for details of numerical
stability. In other words. if the grid size Ax in the x-direction were chosen to
be Ax = 0.1, then the time increment Ar must be A7 < 0.5Ax2 = 0.005 (hence,
to go from ¢t = 0 to ¢ = 1 would take 200 steps).

There are, however, procedures (implicit methods) that allow us to take larger
steps by doing more work per step; in these methods, we can take relatively
large steps by solving a system of algebraic equations at each step. To illustrate
how these methods work, we solve the following heat-flow problem.

The Heat-Flow Problem Solved by an Implicit Method
Consider the following problem:

PDE u, = u 0<x<l1 0<t<=

(39.2) BCs 0<t<=x

IC u(x,0) =1 O=x=<1
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FIGURE 391 Grid system for implicit scheme (Ax = 0.2).
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We replace the partial derivatives u, and u,, by the following approximations:
1
u(x,t) = A [u(x.t + k) — u(x,1)]

U, (x,t) = V—:Q +oht + k) = 2u(x,t + k) + u(x — ht + k)]

h?
a-»

+ e CTAR + ht) = 2u(x,t) + u(x — h,t)

where A is a chosen number in the interval [0,1]. Note that our approximation
for u, is a weighted average of the central-difference approximation to the
derivative u,, at time values t and ¢ + k. In the special case when A = 0.5, it
is just the ordinary average of these two central differences, while if X = 0.75,
our approximation puts weights of 0.75 and 0.25 on each of the two terms (note,
if A = 0, it is the usual explicit finite-difference method we used in the last
lesson).

If we now substitute the approximations for u, and u,, into our problem, we
get the new finite-difference problem

Difference
equation

X d-»
= ﬂ?::: = Wiy ¥ Uy ) + e

1
Mﬁtl 1 T Ui

T:.T_ - N:: + F.TL
(39.3)

BC (4 =0y,

See Figure 39.1.

Now, if we rewrite the difference equation in (39.3), putting the u; 's with the
largest time subscript (i-subscript) on the left-hand side of the equation, we
arrive at the equation

(39.4)  —Nrupyy,, + (1 + 2PNy = NP

= \.ﬁ~ o V/vzs..\.r_ + —H o N\AH o V/v_t: + \AH o Vv:_.\l_
where we have set » = k/h? for convenience. Note that for a fixed subscript
and for j going from 2 ton — 1, thisis a system of n — 2 equations in the n — 2

unknowns ;. 5, U, 3. U, 4 . . . U, , [which are the interior grid points
att = (i + 1)A1].
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To help show exactly what 1, s are involved in this formula. we write it in
the symbolic or molecular form shown in Figure 39.2.
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FIGURE 39.2 The molecular form of the implicit formula.

We now show how equation (39.4) can be used to find the solution of problem
(39.2).

Implicit Algorithm for Heat Problem (39.2)

STEP 1 Pick some value for A (0 < X\ =< 1). Note that if A = 0, then equation
(39.4) is the same as the explicit formula we developed in lesson 38.

STEP 2 Pick h = Ax = 0.2 and k = At = 0.08 (r = k/h* = 2). This gives six
grid points in the x-direction (four interior grid points); see Figure 39.1. Also
let's pick the weight parameter A = 0.5 (which is called the Crank-Nicolson
method). If we now apply our computational molecule to the first and second
rows (i = 1), moving it from left to right (j = 2, 3, 4, 5), we get the following
four equations:

—Uy + BUpy — Uy = Uy — Uy T U =

H
1=s+w:ﬁl:;”:;[::.f::Hw
—Uyy + BUyy — Ups = Uy — Uy + Uys = 1

1

—Upy + Blys — Upg = Uy — Uys + Uy =

which if written in matrix form, placing the four unknown interior grid points
Uy, Ups, Uy, and u,s on the left-hand side of the equation, gives

3 =1 0 0 Usy 1

-1 3 =l 0 Uy | |1

(39:9) 0 -1 3 —1|lw]|"]1
0 0 -1 3 Uss 1
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This system of equations is called a tridiagonal system, and to solve it, we use
a method that transforms a tridiagonal system of the form

by ¢ 0 0 0 =7 [ ik |
a b, ¢ 0 - 0 X5 d,
0 a b, C, 0 0 Xy d,
: | ﬁ:l—
ro Q Q 4 * ’ a, W: ed b X 1 e l&:ll
into an equivalent one
1 ¢, 0 0 0 7 . = d; ™
0 1 ¢ 0 0 X, d,
0 0 1 cs 0 %, d;
Cumi
| 0 0 0 I _ | x, | | d, |
where
o . Ciy ;
c=¢6b, cu=7—1— j=1,2,...,n-2
biiy = ag;
and
. " d., — ad .
di =db, d.;=2"%5% 12 ... n-1
b,y — ac;

There is nothing magical about this transformation; it just involves rewriting the
original system of equations in an equivalent form. The point is, once we have

written the system of equations in the new form, it is easy to solve. Solving from
bottom to top, we have

x, =d, x, =d — cix;,, j=n-1, n=2...,2,1

Applying this method to our system of four equations (39.5), we get:

u,, = 0.60
u,; = 0.80
u,, = 0.80
uy,s = 0.60
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This gives us the solution (approximation) at the interior grid points for t = Ar.
After finding these values, we move to the next time value and solve a new set
of equations.

This implicit method takes more work at each value of time than does the
explicit method, but it enables us to pick a larger Ar and still get a good ap-
proximation.

PROBLEMS

1. Derive equation (39.4) from the difference equation in (39.3).
2. Tell how you would solve the problem

PDE U, = u 0<x<1
u(0,) =1

BCs u(1,0) + u(l,r) = g(t)

0<t<e

IC u(x,0) =0 0=sxs=s1

by the implicit finite-difference method.
3. How would you solve

PDE U, = u, + u 0<x <1

xx

u(0,0) = 0
BCs w(l) = 0 0<t<w
IC u(x,0) =1 0sx<1

by the implicit method?
4.  What is the molecular form of equation (39.4) when we pick A = 1?
5. Write a flow diagram to solve heat-flow problem (39.2). Write a computer
program if facilities are available. A good experiment would be to solve this
problem numerically with a simple IC u(x,0) = sin (mx) for different values
of the parameter X. You could compare the true analytical solution, which,
in this case, is

u(x,t) = e~ sin (mx)

with the numerical solution for different values of \.
6. Solve the system of algebraic equations (39.5) using the formulas given in
the lesson.
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OTHER READING

Numerical Methods in PDEs by W. F. Ames. Academic Press, 1977. An excellent bool
with applications to fluid dynamics and elasticity.

An Implicit Finite-Difference Method (Crank-Nicolson Method) 323



