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TABLE 5.2 . Pid g S . &

Performance of fan in Prob. 5.22

rad/s Q, m'/s SP, Pa rad/s Q, m’/s SP, Pa

157 1.42 861 126 3.30 114
1.89 861 94 0.94 304
2.36 796 1.27 299
2.83 694 1.89 219
3.02 635 2.22 134
3.30 525 2.36 100

126 1.42 548 63 0.80 134
1.79 530 1.04 122
2.17 473 1.42 70
2.36 428 1.51 55
2.60 351

(b) If the SP is to be computed as a function of Q and w, propose a convenient
form of the equation (just use symbols for the coefficients; do not evaluate
them numerically). .
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CHAPTER

SYSTEM
SIMULATION

6.1 DESCRIPTION OF SYSTEM SIMULATION

System simulation, as practiced in this chapter, is the calculation of operat-
ing variables (such as pressures, temperatures, and flow rates of energy and
fluids) in a thermal system operating in a steady state. System simulation
presumes knowledge of the performance characteristics of all components as
well as equations for thermodynamic properties of the working substances.
The equations for performance characteristics of the components and ther-
modynamic properties, along with energy and mass balances, form a set
of simultaneous equations relating the operating variables. The mathemati-
cal description of system simulation is that of solving these simultaneous
equations, many of which may be nonlinear.

A system 1s a collection of components whose performance parameters
are interrelated. System simulation means observing a synthetic system that
imitates the performance of a real system. The type of simulation studied
in this chapter can be accomplished by calculation procedures, in contrast
to simulating one physical system by observing the performance of another
physical system. An example of two corresponding physical systems is

.When an electrical system of resistors and capacitors represents the heat-

flow system in a solid wall.

au SOME USES OF SIMULATION

System simulation may be used in the design stage to help achieve an

improved design, or it may be applied to an existing systein to explore

111
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prospective modifications. Simulation is not needed at the design conditions
because in the design process the engineer probably chooses reasonable
values of the operating variables (pressures, temperatures, flow rates, etc.)
and selects the components (pumps, compressors. heat exchangers, etc.)
that correspond to the operating variables. It would be for the nondesign
conditions that system simulation would be applied, e.g., as at part-load
or overload conditions. The designer may wish to investigate off-design
operation to be sure that pressures, temperatures, or flow rates will not be
too high or too low.

The steep increase in the cost of energy has probably been responsi-
ble for the blossoming of system simulation during recent years. Thermal
systems (power generation, thermal processing, heating, and refrigeration)
operate most of the time at off-design conditions. To perform energy studies
in the design stage the operation of the system must be simulated throughout
the range of operation the system will experience.

System simulation is sometimes applied to existing systems when there
is an operating problem or a possible improvement is being considered. The
effect on the system of changing a component can be examined before the
actual change to ensure that the operating problem will be corrected and to
find the cheapest means of achieving the desired improvement.

After listing some of the classes of system simulation, this chapter
concentrates on just one class for the remainder of the chapter. Next the
use of information-flow diagrams and the application to sequential and
simultaneous calculations are discussed. The process of simulating thermal
systems operating at steady state usually simmers down to the solution

of simultaneous nonlinear algebraic equations, and procedures for their |

solution are examined.

6.3 CLASSES OF SIMULATION

System simulation is a popular term and is used in different senses by various

workers. We shall first list some of the classes of system simulation and
then designate the type to which our attention will be confined.

Systems may be classified as continuous or discrete. In a continuous
system, the flow through the system is that of a continuum, e.g., a fluid or

even solid particles, flowing at such rates relative to particle sizes that the -

stream can be considered as a continuum. In discrete systems, the flow is
treated as a certain number of integers. The analysis of the flow of people
through a supermarket involving the time spent at various shopping areas
and the checkout counter is a discrete system. Another example of a discrete-
system analysis is that performed in traffic control on expressways and city

streets. Our concern, since it is primarily directed toward fluid and energy

systems, is continuous systems.
Another classification is deterministic v. stochastic. In the determin-
istic analysis the input variables are precisely specified. In stochastic analy-

ot
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sis the input conditions are uncertain, either being completely random or
(more commonly) following some probability distribution. In simulating
the performance of a steam-electric generating plant that supplies both
process steam and electric power to a facility, for example, a deterministic
analysis starts with one specified value of the steam demand along with one
specified value of the power demand. A stochastic analysis mignt begin
with some probability description of the steam and power demands. m<m
shall concentrate in this chapter on deterministic analysis, and reserve for
Chapter 19 the study of probabilistic influences. .

Finally. system simulation may be classed as steady-state or dynamic,
where in a dynamic simulation there are changes of operating variables with
respect to time. Dynamic analyses are used for such purposes as the study
of a control system in order to achieve greater precision of contro! and 0
avoid unstable operating conditions (Chapter 15). The dynamic simulation
of a given system is more difficult than the steady-state simulation, since
the steady state falls out as one special case of the transient analysis. On
the other hand, steady-state simulations are required much more often than
dynamic simulations and are normally applied to much larger systems.

N The simulation to be practiced here will be that of continuous, deter-
ministic steady-state systems.

6.4 INFORMATION-FLOW DIAGRAMS

Fluid- and energy-flow diagrams are standard engineering tools. In system
simulation, an equally useful tool is the information-flow diagram. A block
diagram of a contro! system is an information-flow diagram in which a block
signifies that an output can be calculated when the input is known. In the
block diagram used in automatic-contro! work the blocks represent transfer
functions, which could be considered differential equations. In steady-state
system simulation the block represents an algebraic equation. A centrifugal
pump might appear in a fluid-flow diagram like that shown in Fig.
6-la, while in the information-flow diagram the blocks (Fig. 6-1b) represent

Py —— Pump 5
P, Wl )3. pan)=0 Py
or
P ——— Pump
Py ———d J(ppyn)=0 w
(a) (h)

FIGURE 6-1
(a) Centrifugal pump in fluid-flow diagram (b) possible information-flow blocks representing
pump.
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functions or expressions that permit calculation of the outlet pressure for
the one block and the flow rate for the other. A block, as in Fig. 6-1b,
is usually an equation. here designated as f(p,.p>.w) = 0, or it may be
tabular data to which interpolation would be applicable

Figure 6-1 shows only one component. To illustrate how these individ-
ual blocks can build the information-flow diagram for a system, consider the
fire-water facility shown in Fig. 6-2. A pump having pressure-flow charac-
teristics shown in Fig. 6-2 draws water from an open reservoir and delivers
it through a length of pipe to hydrant A, with some water continuing through
additional pipe to hydrant B. The water flow rates in the pipe sections are
designated w; and wa, and the flow rates passing out the hydrants are wy
and wg. The mn:p:o:, for the water tlow rate through open hydrants are
wa = Cy\/p3 — pa and wg = Cp \/ps — pu. Where C4 and Cp are constants
and p, 1s the atmospheric pressure. H:m)g:p:o: for the pipe section 0-1
1S Pa — P C, :.w + hpg, where C;w | accounts for friction and hpg 18
the pressure drop due to the change in elevation h. In pipe sections 2-3 and
34

pr—pi=Cwi and  p3—ps = Caws
These five equations can be written in functional form
filwa, p3) =0 (6.1)
falwg. py) =0 (6.2)
fawi.py) =0 (6.3)
falwy, p2, p3) =0 (6.4)
fs(wa, p3, ps) =0 (6.5)

The atmospheric pressure p,, is not listed as a variable since it will have a

b Aws
2 . Hydrant A Hydrant B
_ Wy — 3 Wy —e= 4 ‘
| I |
u < W Pump
| hm ! characteristics
)t ) | 8 g )=
Py ._a v ﬁ fip, pypwi)=0
. f
Wy
FIGURE 6-2

Fire-water system and pump characteristics.
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Pump Pipe

M, { 1
| m Mass balance

m \w:, s PPy \‘A_x_.\vv_ “ '~ ‘T.x_,:.,.:.u, '
e ——————_ R AR | |
| i
| T | "
‘ !
L Pipe Ps Hydrant A
.\,._A:,_.Eu.ﬁi o \_ Aye )
i Mass balance
W §
2 § \ [
+
- — t
Pipe P4 Hydrant 8 | %
fs(wy, propy) b flwgepy)

FIGURE 6-3
Information-flow diagram for fire-water system.
known value. An additional function is provided by the pump characteristics

felwi,pr.p2) (6.6)

The preceding six equations can all be designated as component

performance characteristics. There are eight unknown variables, wy, w,,

Wi, Wg, Py, P2. P3, and py, but only six Ec.:_osf so far. Mass balances
. provide the other two equations

Wy = wy + owy or 0wy, wy,wa) (6.7)

W2 = Wpg or wpg) Aomv

Sa(wr

Several correct flow diagrams can be developed to express this system,
one of which is shown in Fig. 6-3. Each block is arranged so that there is
only one output, which indicates that the equation represented by that block
15 solved for the output variable

6.5 SEQUENTIAL AND SIMULTANEOUS
CALCULATIONS

Sometimes it is possible to start with the input information and immediately

calculate the output of a component. The output information from this first

omponent is all that is needed to calculate the output information of the next

-component, and so on to the final component of the system, whose output

is the output information of the system. Such a system simulation consists
of sequential calculations. An example of a sequential calculation might
. occur in an on-site power-generating plant using heat recovery to generate
.. steam for heating or refrigeration, as shown schematically in Fig. 6-4. The
exhaust gas from the engine flows through the boiler, which generates steam
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Exhaust

Absorption
refrigeration
unit ;

Engine Generator

B

FIGURE 6-4
On-site power generation with heat recovery to develop steam for refrigeration.

to operate an absorption refrigeration unit. If the output information is the
refrigeration capacity that would be available when the unit generates a
given electric-power requirement, a possible information-flow diagram for
this simulation is shown in Fig. 6-5.

Starting with the knowledge of the engine-generator speed and electric-
power demand, we can soive the equations representing performance char-

acteristics of the components in sequence to arrive at the output information,

the refrigeration capacity.

The sequential simulation shown by the information-flow diagram of

) Speed . Exhaust-gas :ﬁ% %
M 1 H Engine
Input _¥
| i Electric
L l! generator { ]
Electric- S — | e Exhaust-gas
power [ Engine
demand —— temperature
( Steam
| ST flow
Outpus ;. xn?_ma.g_o: - Boiler
| Refrigeration unit H
\ capacity _—
FIGURE 6-5

Information-flow diagram for an on-site power-generating plant of Fig. 6-4.
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Fig. 6-5 is in contrast to the simultaneous simulation required for the infor-
mation-flow diagram of Fig. 6-3. Sequential simulations are straightforward,
but simultaneous simulations are the challenges on which the remainder of
the chapter concentrates.

6.6 TWO METHODS OF SIMULATION:
SUCCESSIVE SUBSTITUTION AND
NEWTON-RAPHSON

The task of simulating a system, after the functional relationships and inter-
connections have been established, is one of solving a set of simultaneous
algebraic equations, some or all of which may be nonlinear. Two of the
methods available for this simultaneous solution are successive substitution
and Newron-Raphson. Each method has advantages and disadvantages which
will be pointed out.

6.7 SUCCESSIVE SUBSTITUTION

The method of successive substitution is closely associated with the infor-
mation-flow diagram of the system (Fig. 6-3). There seems to be no way
to find a toe-hold to begin the calculations. The problem is circumvented
by assuming a value of one or more variables, beginning the calculation,
and proceeding through the system until the originally-assumed variables
have been recalculated. The recalculated values are substituted successively
(which is the basis for the name of the method), and the calculation loop is
repeated until satisfactory convergence is achieved.

Example 6.1 A water-pumping system consists of two parallel pumps draw-
ing water from a lower reservoir and delivering it to another that is 40 m
higher, as illustrated in Fig. 6-6. In addition to overcoming the pressure dif-
ference due to the elevation, the friction in the pipe is 7.2w" kPa, where w
is the combined flow rate in kilograms per second. The pressure-flow-rate

characteristics of the pumps are

Pump 1: Ap. kPa = 810 — 25w, — 3.75w

Pump 2: Ap, kPa = 900 — 65w, — 30w3

where w; and w; are the flow rates through pump ! and pump 2, respectively.
Use successive substitution to simulate this system and determine the
values of Ap, wy, w,, and w.

Solution. The system can be represented by four simultaneous equations.
The pressure difference due to elevation and friction is
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AAAANANAA NN,

_AEj_
l

FIGURE 6-6

Water-pumping system in Exumple 6.1,
pumping sy

(40 m)( 1000 kg/m’)(9.807 m/s”)

ap = hodw® + 1000 Pw/kPa 183
Pump 1: Ap = 810 — 25w; — 3.75w? (6.10)
Pump 2: Ap = 900 — 65wy — 30w (6.11)
Mass balance: W= 9w+ wh (6.12)

One possible information-flow diagram that represents this system is shown
in Fig. 6-7. If a trial value of 4.2 is chosen for w,. the value of Ap can
be computed from Eq. (6.10), and so on about the loop. The values of
the variables resulting from these iterations are shown in Table 6.1, The

SYSTEM SIMULAT,

TABLE 6.1
Successive substitution on information-flow diagram

of Fig. 6-7

Iteration Ap W W Wy
| 638.85 2.060 5.852 3.792
3 661.26 1.939 6.112 4,074
3 640.34 2052 5.870 3.
o 659.90 1.946 6.097 4

47 649,98 2.000 S5.983 R

4h 650.96 1.995 5.994 3y

44 650.04 2.000 5.983 3.

50 650.90 1.995 5.993 3.998

6.8 PITFALLS IN THE METHOD OF
SUCCESSIVE SUBSTITUTICN

Figure 6-7 is only one of the possible information-flow diagrams that can
be generated from the set of equations (6.9) to (6.!2). Two additional flow
diagrams are shown in Figs. 6-8 and 6-9.

The trial value of w, = 2.0 was chosen for the successive substitution
method on information-flow diagram 2, and the results of the iterations are
shown in Table 6.2. A trial value of w = 6.0 was chosen for the solution
- of information-flow diagram 3, and the results are shown in Table 6.3.

Information-tflow diagram | converged to the solution, while diagrams
2 and 3 diverged. This experience is typical of successive substitution. It
should be observed that the divergence in diagrams 2 and 3 is attributable
to the calculation sequence and not a faulty choice of the trial value. In

474

By

calculation appears to be converging slowly to the values w; = 3.99! w, = : ) ) ) N )
1.99, w = 5.98%, and Ap = 650.5 “ both cases the trial value was essentially the correct solution: wy = 2.0 and
. ‘ W =6.0.
—_—
Ap Elevation m
EESEEAS and i Ap Elevation
” friction - W! r - and
4 e W friction w
2 alance i ) o > ump 2 3
| = i A Balance N P » |
! ——————————— 1 > i |
— Pump 2
W i > Pump |
[ ee——
W
|
FIGURE 6-7
FIGURE 6-8

Information-flow diagram | for Example 6.1.

information-flow diagram 2 for Example 6.1.
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In the method of successive substitution each equation is solved for

one variable, and the equation may be nonlinear in that variable, as was true,
% for example, for the calculations of w and w» in diagram 1. No particular
problem resulted in computing w and w, here because the equations were
quadratic. An iterative technique, which may be required in some cases, 1s
described in Sec. 6.10.

Elevation

Mass b

& 3 ¢
§
W { _||'||'“ and
| [ ————— Vo 1 Balance { .
e ! { friction

6.9 TAYLOR-SERIES EXPANSION

-The second technique of system simulation, presented in Secs. 6.10 and
6.11, the Newton-Raphson method, is based on a Taylor-series expansion. It
is therefore appropriate to review the Taylor-series expansion. If a function

=z, which is dependent upon two variables x and v, is to be expanded about

;. the point (x = @,y = b), the form of the series expansion is

FIGURE 6-9

Information-flow diagram 3 for Example 6.1. ¥

TABLE 6.2
Iterations of information-flow diagram 2 2= const + first-degree terms

; + second-degree terms + higher-degree terms

Iteration Ap w Wy W

or, more specifically,

! 650.0 4.000
2 653.2 3.942 2=c, + [c(x —a) + c2(y — D)) + [exlx —a)”
3 635.5 4.258 )
4 726.5 2.443 +ceg(x —a)(y —b) v cs(y — b))l + -+ (6.13)
5 42.8 + ; : . S
Now determine the values of the constants in Eq. (6.13). If x is set equal
+Value of w became imaginary. o a and y is set equal to b, all the terms on the right side of the equation
reduce to zero except ¢,, so that the value of the function at (a.b) is
TABLE 6.3 ) . ¢ o = 2(a,b) (6.14)
Iterations of information-flow diagram 3 W
To find ¢, partially differentiate Eq. (6.13) with respect to x; then setx =a
Iteration ap W) W B and v = b. The only term remaining on the right side of Eq. (6.13) is ¢y,
1 651.5 3.973 1.992 5.965 d
2 648.5 4.028 2.008 6.036 dzid.B)
3 654.6 3.91 1.975 5.891 ) = ———= (6.15)
4 642.1 4.142 2.042 6.184 X
5 667.6 3.672 1.903 5.575 19 a simil
6 616.1 4.593 2.178 6.771 (A& SImuAL glanner,
7 722.3 2.539 1.580 4.120 92(a.b)
8 514.5 6.149 2.662 8.811 0y = ———— (6.16)
9 9512 + - ay

The constants ¢3,cy, and cs are found by partial differentiation twice fol-
lowed by substitution of x = ¢ and y = b to yield

+ Value of w) became imaginary.

Are there means of checking a flow diagram in advance to determine }
whether the calculations will converge or diverge? Yes, and a technique;
will be explained in Chapter 14, but the effort of such a check is probabliy ;
greate: than simply experimenting with various diagrams until one is foun
that converges.

1 9%z(a, b) d%z(a. b) 1
= —m—m—— Cp = —————— Cg = ==————
2 x? ’ ox dy ST 2 ay?

. For the special case where y is a function of one independent variable x,
te Taylor-series expansion about the point x = a is
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My i 1
dv(a) ld-v(a) 3
y=v(a)+ —(x—a)t+ | z——— (x—a) + (6.18)
dx 12 dx® |
The general expression for the Taylor-series expansion if y is a func-
tion of n variables x,, xa,....x, around the point (x; = a;, Xo =
Ary ... Xy = @y) 18
VX, Xa, L. Yu) =vilday, dae ..., ay)
n mw A \
i @it o« 2 Gn)
L:AJ yia, =\A.~‘.I.Q,v
ya %.0r S J
X
j =1 J
| n n QJ A v
1 a~v(ay.....,a .
o Sy o e L oy —a)(x; ey ov (6.19)
2= = Ax; dx;
i=1j=l .

Example 6.2. Express the function In (x?/y) as a Taylor-series expansion

about the point (x = 2,y = 1},

Solution

5

=c, +c(x —2) +caly = 1) + ca(x —2)°

Fegfx =2y = 1) +es(y =17 +

Evaluating the constants, we get

uu
QHEHHH:AH 1.39
az(2, 1) 2xfy 2
¢y = a = == =
ax xX=/y x
0z(2, 1) vy 1
@u = = = - = —_—— = .Iw
ay x=/y )
_lemeon 1 2)_ 1
Y37 62 20 X2 T4
*z(2, D
Py = “O
- axdy
o 1é%2(2, 1) 11 1
ST g ay? Im.,.ulm
The first several terms of the expansion are
1 2, (1
=139+ (x—-2)—-(v =1 L-JQ -2 + ZC_ - L e
,L.\ ,N\,

2
'~
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6.10 NEWTON-RAPHSON WITH ONE
EQUATION AND ONE UNKNOWN

In the Taylor-series expansion of Eq. (6.18) when x is close to a, the higher-
order terms become negligible. The equation then reduces approximately to

vy =v(a) + [v'(a))(x —a) (6.20)

Equation (6.20) is the basis of the Newton-Raphson iterative technique for
solving a nonlinear algebraic equation. Suppose that the value of x is sought
that satisfies the equation

Define v as
yx) =x +2—¢" (6.22)

and denote x, as the correct value of v that solves Eq. (6.21) and makes
y=0

viv,) =0 (6.23)

The Newton-Raphson process requires an initial assumption of the
value of x. Denote as x, this temporary value of x. Substituting x, into
Eq. (6.22) gives a value of y which almost certainly does not provide the
desired value of v = 0. Specifically, if x, = 2,

vix,) =x, +2—e"=2+2-739=-3.39

Our trial value of x is incorrect, but now the question is how the value of
x should be changed in order to bring v closer to zero.

Returning to the Taylor expansion of Eqg. (6.20), express v in terms
of x by expanding about x . ;

y(x)=y(x,) + [y(x)l(x —x) (6.24)
Forx = x,. Eq. (6.24) becomes
y(x;) =y(xe) + [y'(x)lx, —xe) (6.25)

Equation (6.25) contains the further approximation of evaluating the deriva-
tive at x, rather than at x., because the value of x is still unknown. From
Eq. (6.23) y(x.) = 0, and so Eq. (6.25) can be solved approximately for
the unknown value of x.

yi(x;)

.26
y "(xg) ® v

Xe =x, —

In the numerical example
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Second trial, v = 1.469

-

First trial, x = 2

_4 -
FIGURE 6-10

Newton-Raphson iteration.

The value of x = 1.469 is a more correct value and should be used for the
next iteration. The results of the next several iterations are

¥ m 1.469
!

The graphic visualization of the iteration is shown in Fig. 6-10, where we
seek the root of the equation v = x + Z — ¢*. The first trial 1s at x = 2,
and the deviation of v from zero divided by the s!ope of the curve there
suggests a new trial of 1.469.

The Newton-Raphson method, while it is a powerfu!l iteration tech-
nique, should be used carefully because if the initial trial is too far off from
the correct result, the solution may not converge. Some insight into the
nature of the function being solved is therefore always helpful.

6.11 NEWTON-RAPHSON METHOD WITH
MULTIPLE EQUATIONS AND UNKNOWNS

The solution of a nonlinear equation for the unknown variable discussed in
Sec. 6.10 i1s only a special case of the solution of a set of multiple nonlinear
equations. Suppose that three nonlinear equations are to be solved for the
three unknown variables x, x>, and x;

filxy.x2,x3) =0 (6.27)
falxp,x2,x3) =0 (6.28)
fa(x1,x2,x3) =0 (6.29)
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H:n .9008:8 for solving the equations is an iterative one in which
the following steps are followed: o

mpw H. wms,:a Em Bmw:ozm mo:::m:Rgmm%o:o:muamojg equality
: sign [Egs. (6.27) to (6.29) already exist in this form). .

2. Ass ary values f ari
sume temporary values for the variables, denoted los X2, and xq,.

. 1 e 5 i
3. anochmﬁm the values of £, £, and £+ at the temporary values of x,, x,
anc xj.- < -

4. Compute the partial derivatives of all functions with respect to all vari-
ables. ‘ ,
ITe ; 1 1

5. Use the Taylor-series expansion of the form of Eq. (6.19) to establish

a wmq. o.ﬁ,m_zE:mzmoE equations. The Taylor-series expansion for Eq
(6.27), for example, is . |

Frlxy,e, Xap, x3,) =~ fi(x, ., X3y X3)

X2us Xay)

n \w.\,Hﬁ,x.H;.
ax (x e = \/._.ﬁv

+ Afi(xy,. X2y X3,)
dXH

h.ﬁ. 20 .».m.ﬁv

+ af(xy,, X2y X3,0)

PP (X3, —x3,.) (6.30)
The set of equations is
Tof dfy  af J:u 7
%HN L.du L.ﬂ.w ‘ of Lo Le .\._Iﬁ
!
af>»  df» I~ |
\.. fa i | ~u~l<~um\H /> 6.3
dx)  dxa  dxy ‘ _ * - K0.31)
ZEN | PO B P
l%\«_ %Hu %.«u _l - -

6. Solve the set of linear simultaneous equations (6.31) to determine x; , —
Xie .
7. Correct the x's :

Xlinew =Xy 0ld = (X1, —x.)

X3 new = X3 g — (x3, — X3.¢)

8. Homm for convergence. If the absolute magnitudes of all the f's or all the
Ax’s are satisfactorily small, terminate; otherwise return to step 3.
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Example 6.2. Solve Example 6.1 by the Newton-Ruphson method.

Solution
Step 1.

fi=Ap—72w =392.28 =0

fo = ) + 25w, + 3, 75w =0

Ap =18

f3=A4p =900 + 65w~ + 30w3 =0

fe=w—w —w.=0

Strep 2.

= 750, w, = 3, wa =

| LA

1.5, and w = 5.
Step 3. Calculate the magnitudes of the fs at the temporary values of
the variables, f, = 177.7, f» = 48.75, f3 = 5.0, und fy = 0.50.

Step 4. The partial derivatives are shown in Table 6.4,

Step 5. Substituting the temporary values of the variables into the equa-
tions for the partial derivatives forms a set of linear simultaneous equations
to be solved for the corrections to x:

as Ap

0.0
47.5
0.0
=1.0

0.0
0.0
155.0
-1.0

—72.01TAx,7  T177.7 1
0.0l axs 48.7
|
0.0 Ax;y 1

L0.LAxs. L 0.50.

where Av, = v, , — x;

vk

Srep 6. Solution of the simultaneous equations

D.a_ = 0X.84 .V.A.u = —1.055 P.ﬂ.w = —0.54! .V./.L = —1.096

5

Step 7. The corrected values of the variables are

Ap =750.0 — 98.84 = 651.16 w; =4.055 w, =

2.041 w = 6.096

=

These values of the variables are returned to step 3 for the next iteration.

The values of the s and the variables resulting from continued itera-.

tions are shown in Table 6.5.
The calculations converged satistactorily after three iterations.

TABLE 6.4

dla .V\u Al awy A/ dws alow

dflad 1 0 0 =14.4w
afila 1 25 + 7.5w, 0 0
L\.W\Q 1 0 65 + 60w, 0
dafslo 0 =1 =1 1

Choose trial values of the variables. which are here selected °

8
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TABLE 6.5

\fter

#eration /| 1 fs fa Ap n W W

! 4.170 8.778 0.000 651,16 4,053 2.041 6.096
i) 0.0148 0.056 0.000 650,48 3,992 1998 5,989
3 0.000 0.000  0.000 650.39 3.99] 1907 5988

1612 SIMULATION OF A GAS TURBINE
. SYSTEM

¢ A simulation of a more extensive thermal system will be given for a nonre-
generative gas-turbine cycle. This cycle, shown in Fig. 6-11, consists of a

compressor, combustor, and turbine whose performance characteristics are
known. The turbine-compressor combination operates at 120 r/s.

The objective of the simulation is to determine the power output
-at the shaft, £, kW, if 8000 kW of energy is added at the combustor
by burning fuel. The turbine draws air and rejects the turbine exhaust to
atmospheric pressure of 101 kPa. The entering air temperature is 25°C.
Certain simplifications will be introduced in the solution, but it is understood

£ that the simulation method can be extended to more refined calculations.

The simplifications are

Turbine

—r
kW 1|.<

» {E KW

Shaft

Compressor  p

101 kPa

FIGURE 6-11
Uas-wurbine cycle.
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1. Assume perfect-gas properties throughout the cycle and a ¢, constant at
1.03 kJ/(kg- K)

2. Neglect the mass added in the form of fuel in the combustor so that the
mass rate of flow w is constant throughout the cycle

3. Neglect the pressure drop in the combustor so that p; = p3 and the high
pressure in the system can be designated simply as p

4. Neglect heat transfer to the environment

The performance characteristics of the axial-flow compressor and the
gas turbine' operating at 120 r/s with an atmospheric pressure of 101 kPa that
will be used in the simulation are shown in Figs. 6-12 and 6-13, respectively.

With the techniques presented in Chap. 4 equations can be developed
for the curves in Fig. 6-12,

p = 331 + 45.6w — 4.03w? (6.32)
and
E, = 1020 = 0.383p + 0.00513p" . (6.33)
where p = discharge pressure of compressor, kPa

w mass rate of flow, kg/s

E. = power required by compressor, kW

When operating at a given speed and discharge pressure, the charac-
teristics of the turbine take the form shown in Fig. 6-13. With the techniques °

600 ﬁ T T T T

S

Discharge pressure, kPa

e T SN |
Compressor power, kW

B

:
:
“

1 I ! ! 1000 _ ! ] ]
5 J
6 8 10 12 14 100 200 300 400 500
Flow rate, kg/s Discharge pressure, kPa
(a) (b)

FIGURE 6-12
Performance of axial-flow compressor operating at 120 r/s with 101 kPa inlet pressure.
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1 =900"C
1 - hY
z \
=< 3000 — -
i - = \ 800°C
z = 2000 — —
6 900" C - / 700°C |
4 | ! L 1000 ! L ,
200 300 400 200 300 400
Inlet pressure, kPa Inlet pressure, kPa
(a) h)
FIGURE 6-13
“erformance of gas turbine operating at 120 r/s and 101 kPa discharge pressure.
of Sec. 4.8 equations can be developed for the curves in Fig. 6-13
w =8.5019 + 0.02332p + 0.48 x 10" *p= = 0.02644r
+0.1849 X 107 %7 + 0.000121pr — 0.2736 x 10™p*r
~0.1137 X 107 + 0.2124 x 107 %p%° (6.34)
and
E, = 1727.5 — 10.06p + 0.033033p — 7.4709r + 0.003919:°
+0.050921pr — 0.8525 x 10 *p*r — 0.2356 x 10~ *pr?
+0.4473 x 107 p*r? (6.35)
where r = entering temperature = 73, °C
E, = power delivered by turbine, kW

To achieve the simulation the values of the following unknown vari-
ables must be determined: w, p, E., 1>, E,, 13, and E,. Seven independent
equations must be found to solve for this set of unknowns. Four equations
are available from the performance characteristics of the compressor and
turbine. The three other equations come from energy balances:

Compressor: E. = wep(r: = 25) (6.36)
Combustor: 8000 = wc,(r3 — t2) (6.37)
Turbine power: Ey = Ez + E; (6.38)
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TABLE 6.6
Newton-Raphson solution of gas-turbine simulation

W Id E. I E I8 E,
Tria!
value 300.0 1000.0 250.0 1500.0 R00.0 2400.0
10.91 3522 1507 .8 150.8 15693 877.5
10.77 3548 1530.0 162.8 1597.7 884.2
10.77 354.9 1520.1 173.0 1598.5 884.5
4 10.77 354.9 1530.1 173.0 1598.5 884.5

The execution of the solution follows the steps outlined in Sec. 6.11. A
summary of the trial values and results after the Newton-Raphson iterations
1s presented in Table 6.6, ;

The shaft power delivered by this system is 1598.5 kW.

6.13 OVERVIEW OF SYSTEM SIMULATION

Steady-state simulation of thermal systems 1s fast increasing in applicability
The uses of simulation include evaluation of part-load operation directed
toward identifying potential cnaacsa problems and also predicting annu
energy requirements of systems.- System simulation can also be one ste
in an optimization process. For example, the effect on the output of the
system of making a small change in one component, e.g., the size of a heat
exchanger, is essentially a partial derivative of the ?dm 52 will be needed
in certain of the optimization techniques to be explained in later chapters.

If the exposure to system simulation in this chapter was the reader's
first experience with it, wrestling with the techniques may be the majol
preoccupation. After the methods have been mastered, setting up the equa
tions becomes the major challenge. In large systems it may not be simpl
to choose the proper combination of equations that precisely specifies th
system while avoiding combinations of dependent equations. Unfortunately
no methodical procedure has yet been developed for choosing the equation
a thorough grounding in thermal principles and a bit of intuition are still the’
necessary tools.

The mathematical description of steady-state system simulation is that
of solving a simultaneous set of algebraic equations, some of which
nonlinear. One impulse might be first to eliminate equations and variables by
substitution. This strategy is not normally recommended when using a com-
puter to perform the successive substitution or Newton-Raphson solution.
Working with the full set of equations provides the solution to a larger

SYSTEM SiML

number of variables directly, some of which may be of interest. Performing
the substitution always presents the hazard of making an algebraic error,
and the equations in combined form are more difficult to check than their

simpler basic arrangement.

Two methods of system simulation have been presented in this chapter,

“smecessive substitution and Newton-Raphson. Successive substitution is a

straight-forward technique and is usually easy to program. It uses computer

~memory sparingly. The disadvantages are that sometimes the sequence may

gither converge very slowly or diverge. As far as can be determined through

“the web of commercial secrecy, many of the large simulation programs used
.Bﬁn petroleum, chemical, and thermal processing industries rely heavily

“om the successive-substitution method. 44 The experienced programmer will

mnnwmsom his chances of a convergent sequence by choosing the blocks in the

imformation-flow diagram in such a way that the output is only moderately
affected by large changes in the input. The Newton-Raphson technique,

-while a bit more complex, 1s powerful.

This chapter serves as an introduction to system simulation and pro-
vides the tools for solving useful engineering problems. Chapter 14 con-
tinues the study of steady-state system simulation in greater depth. In that
chapter the successive-substitution method is explored further by identify-

.ing the nature of calculation sequences that result in convergence. Methods

are developed to accelerate convergence or damp divergence. The Newton-
Raphson technique as explained in the foregoing chapter required extracting
partial derivatives by hand—a process | that is tedious. Chapter 14 explains

.m.o structure of a generalized program?® that extracts the partial derivatives

go:om:v\. A challenge also addressed by Chapter 14 is the simulation of
large systems where the number of equations and unknowns, », becomes
very large. The Newton-Raphson technique requires the solution of an n X n

“matrix, so acceleration techniques become valuable.

PROBLEMS

6.1. The operating point of a fan-and-duct system is to be determined. The
equations for the two components are

Duct: SP = 80 + 10.73Q"*
Fan: © Q0 = 15-1(73.5x 10°%SP*
where SP = static pressure, Pa
Q = airflow rate, m%/s
Use successive substitution to solve for the operating point, choosing as trial
~values SP = 200 Pa or Q = 10 m'/s,

Ans.: 6 m*/s and 350 Pa.
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FIGURE 6-14
Torque-rotative-speed curves of engine
drive and load on a truck.

] 20) 40 60

. r/s

6.2. The torque-rotative-speed curve of the engine-and-drive train of a truck g

operating at a certain transmission setting is shown in Fig. 6-14, The T vs,
w curve for the load on the truck is also shown and is appropriate for the !
truck moving slowly uphill. The equations for the two curves are

Engine drive: T = =170 + 29 .40 — 0.284w"
Load: T = 105w
where T = torque, N * m

w = rotative speed, r/s

(a) Determination of the operating condition of the truck is a simulation of a
two-component system. Perform this simulation with both tlow diagrams
shown in Fig. 6-15. Use an initial value for both simulations of w = 40
r/s and show the results in the form of Table 6.7.

(b) From a physical standpoint, explain the behavior of the system when
operating in the immediate vicinity (on either side) of A.

1

Engine i

- Engine

Load

(a) (b)

FIGURE 6-15
Flow diagrams in Prob. 6.2.

t

(S
‘w
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TABLE 6.7
Results of iterations in Prob. 6.2

Flow diagram Fig. 6-15b

Flow diagram Fig. 6-15q

Iteration T w Iteration T w
0 X 40 0 x 40
T
1 o
2 2
3 3

0 Converging to point
U Diverging

UQ::QE:WEvc::l
=R
— Diverging

6.3. A seawater desalination plant operates on the cycle shown in Fig. 6-16.
Seawater is pressurized, flows through a heat exchanger, where its tempera-
ture is elevated by the condensation of what becomes the desalted water, and
flows next through a steam heat exchanger, where it is heated but is still in
a liquid state at point 3. In passing through the float valve the pressure drops
and some of the liquid flashes into vapor, which is the vapor that condenses
as fresh water. The portion at point 4 that remains liquid {lows out as waste
at point 6. The following conditions and relationships are known:

Temperature and flow rate of entering seawater.
. UA| and UA, of the heat exchangers.
F Enthalpies of saturated liquid and saturated vapor of seawater and the
fresh water as functions of temperature:

hy = fi(r) and he = falr)
For heat exchangers with one tluid condensing, use Eq. (5.10).
The system operates so that essentially ry = 15 = 1.
Steam
Uds 150°C
- V_A Condensate
54 ﬁ o
& amﬁw 3 e

4 Float valve

" Desalination plant in Prob. 6.3.
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Set up an information-flow diagram that would be used for a suc-
cessive-substitution system simulation, indicating which equations apply
to each block. For convenience in checking, use these variables: ra. t3, hs,
My By gy he s 1, ws, xy, and ¢ where x4 is the fraction of vapor at
point 4 and ¢ is the rate of heat transfer at the fresh-water condenser. .

6.4. On some high-speed aircraft an air-cycle refrigeration unit is used for cabin
cooling, one concept of which is shown in Fig. 6-17. Equations available
tor the compressor are: power =fy(1, p. p2, m) and m= fa(r,, py. w, pa).
For the turbine the equations are: power = fi(r3, p3, i, ps) and m =
Ffilra, pa. w. py) where f() indicates a function or equation in terms of
the variables in the parentheses. Assume no pressure drop through the heat
exchanger. The compressor-turbine combination operates when p; is greater :
than p;. The following data are imposed and known: py, ), py, the UA of
the heat exchanger, and the temperature and flow rate of ambient air through :
the heat exchanger. Construct an information-flow diagram to simulate the
system using the equations and variables previously listed as well as others
that are necessary. <

6.5. Steam boilers sometimes use a continuous blowdown of water to control the
amount of impurities in the water. This high-temperature water i§ capable

Boiler

— 340°C

Wy vapor

0.2 kg/s r |
| |

_ | |

| Feedwater heater

Feed water

LUA=10KW/K |

Blowdown i

Condensate
Separator \

|
i

of heating feedwater, as shown in Fig. 6-18. A flow rate of 0.2 kg/s at a7 Level
temperature of 340°C is blown down from the boiler. The flow rate of the 5 ool "7
feed water to the heater is 3 kg/s and its entering temperature is 80°C. The i

/A value of the feed-water heater is 10 kW/K. Equations for the enthalpy of - )
saturated liquid and vapor are, respectively, by =4.19r and h, = 2530 + 0.4, FIGURE 6-18

where 7 is the temperature in °C. The system is to be simulated and the
following variables computed: 75,7,, w4 and wg.
(«) Construct an information-flow diagram.
(b) Using successive substitution, compute the values of the variables.
Ans.: r» = 108.2°C.
6.6. In a synthetic-ammonia plant (Fig. 6-19) a 1:3 mixture, on a molar basis,
of N, and H, along with an impurity, argon, passes through a reactor

Blowdown from a boiler in Prob. 6.5.

where some of the nitrogen and hydrogen combine to form ammonia. The
ammonia product formed leaves the system at the condenser and the remaining
H;, Na, and Ar recycle to the reactor.

The presence of the inert gas argon is detrimental to the reaction. If no
argon is present, the reactor converts 60 percent of the incoming N, and Hz
into ammonia, but as the flow rate of argon through the reactor increases, the

Heat exchanger

T Ambient air

- —AAVMAM, - :
5 | 3 300 mol/s H, |
ol I W0 ic ks 20 B ol A |
! | | 100 mol/s N, NH;. Ny Hy Ar | —AaAaAAA— | 3
, i , , »{ Reactor - Condenser —
| shaft 1 N !
Compressor Turbine 3 -
, o rev/s
4
From compressor - ‘ =
of engine ! y Bleed. 25 mol/s of mixture
FIGURE 6-17 - FIGURE 6-19

Air-cycle refrigeration unit in Prob. 6.4. A synthetic-ammonia plant.
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percent conversion decreases. The conversion efficiency follows the equation

where w' is the flow rate of argon through the reactor in moles per second.

To prevent the reaction from coming to a standstill, a continuous bleed
of 25 mol/s of mixture of N,, Ha, and Ar is provided. If the incoming feed !
mol/s of Ar, simulate

3N OF THERMAL §

. —-0.016
Conversion, % = 60¢ 01"

consists of 100 mol/s of N5, 300 mol/s of H,, and

this system by successive substitution to determine the flow rate of mixture
through the reactor and the rate of liquid ammonia production in moles per ¥

second.

Ans.: 893.2 and 188 mol/s.

6.7. For x(tan x)

to determine the value of x.
Ans.: 1.0769.

6.8. The heat exchanger in Fig. 6-20 heats water entering at 30°C with steam §
entering as saturated vapor at S0°C and leaving as condensate at 50°C. The
flow of water is to be chosen so that the heat exchanger transfers SO kW. The

based on this area is given by

where w is the flow rate of water in kilograms per second. Use the Newton- &
Raphson method for one equation and one unknown to determine the value

| . 0.0445
m:d.. - K)/kW = q

of w that results in the transfer of 50 kW.
Ans.: 0.6934 kg/s.

6.9. Solve Prob. 6.1 using the multiple-equation Newton-Raphson method with

trial values of SP =200 Paand Q =10 m'/s.

6.10. An oil pipeline has ten pumping stations, each station having the pressure-

flow characteristic of

where Ap

w

Water, 30° C,w="

Ap = 2100 — 20w — 0.5w?

pressure rise in the station, kPa
flow rate of oil, kg/s

| Steam, 50°C

FIGURE 6-20

¥ Condensate, 50°C

Heat exchanger in Prob. 6.8.

2.0, where x is in radians, use the Newton-Raphson method %

+ 0.185

|
< T = 200K, h = 230kl/kg

SYSTEM SIMULAT

In normal operation the flow rate is 25 kg/s. The pressure drop in the pipe is
proportiona! to the square of the flow rate. If one pumping station fuils and

nine stations”’

In a closed loop a centrifugal and gear pump operate in series to deliver fluid
through a long pipe. The equations relating Ap and the flow rate for the three
components are:

Ap = 6+ 2Q —0.50°
Ap = 40-5Q

centrifugal pump:
gear pump:
pipe: Ap = 0.1Q°

where Ap = pressure rise (or drop in the pipe), kPa
Q = flow rate, m'/s

(a) Plot on a Ap — Q graph the performance of all components.

(b) If a system simulation were performed (no need to perform this simu-
lation), what would be the approximate solution? Discuss the physical
implications of the solution.

In some cryogenic liquefaction systems the temperature of a stream of liquid

is reduced by flashing off some of the liquid into vapor through a throttling

valve and heat exchanger as shown in Fig. 6-21. With the values shown in

Fig. 6-21, use a Newton-Raphson simulation to determine the flow rate of

liquid leaving the heat exchanger and its temperature.

Ans.: outlet temperature of liquid is 157.3 K.

A centrifugal pump operates with a bypass as shown in Fig. 6-22. The

pressure drop through the bypass line is given by the equation

Ap = 1.2(wpp)*
the characteristics of the pump are expressed by the equation

Ap =50 + Sw, = 0.1w;

Vapor 120K

h = 1460 kJ/kg

|
W

Float valve “ Low pressure

UA = 1.57TkW/K

flow rate = 7

Y i

i =8

taquid, flow rate = 1.1 kg/s 1= 120K T =
e ]

= 2kJ/(kg - K)

#Eryrgenic liquid cooler in Prob. 6.12.
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— Wy valve to maintain an outlet-air temperature somewhere between 10 and 12°C.
P —— The flow-pressure-drop relation for the valve is w, = C, (p2 — ps. where
N C, is a function of the degree of valve opening. a linear relation, as shown
v "p ' . in Fig. 6-24. The fully open value of C, is 0.012.
b= 40 kPa N P Use the Newton-Raphson method to simulate this system. r.nﬁaa:::::
_ [ | Pump FIGURE 6-2 at least the following variables: w. . ru. fucow. p2. p3.and C, . Use as the

test for convergence that the absolute values ot pressures r?:?m less thun
1.0, absolute values of temperatures less than 0.001, and absolute value of
C. less than 0.000001. Limit the number of iterations to 10.
Ans.: p, = 64,355 (baused on p, = 0), ry, = 14,14, C, = 0.0108.
A two-stage air compressor with intercooler shown in Fig. 6-25 compresses
air (which is assumed dry) from 100 to 1200 kPa absolute. The following
data apply to the components:

g

T K -

( Centritugal pump with bypass line
in Prob. 6.

and the equation for the pressure drop in the piping system is

pr—pr = 0.018w"
where the flow rates are in kg/s and the pressures in kPa. Use the Newton-
Raphson technique to determine w,wp, Whp and pa.

6.14. Air at 28°C with a flow rate of 4 kg/s tlows through a cooling coil counterflow
to cold water that enters at 6°C, as shown in Fig. 6-23. Air has a specific
heat, ¢, = 1.0 kJ/(kg - K). No dehumidification of the air occurs as 1t passes
through the coil. The product of the area and heat-transfer coefficient for
the heat exchanger is 7 kW/K. The pump just overcomes the pressure drop
through the control valve and coil, such that p; = p,. The pressure-flow
characteristics of the pump are

) [ 0.2 m¥s low-stage compressor
Displacement rate =« i
1 0.05 m'/s high-stage compressor

Volumetric efficiency n, % =
tlow rate measured at ro:GRIIE suction, m'/
displacement rate, m'/s

100»

and for both compressors

14

py— py.Pa = 120,000 — 15,400w},
. : o . 7 % = 104 — 4,0 Lo |
where w, is the flow rate of water in kilograms per second. The specific Puetion
heat of the water is ¢, = 4.19 kJ/(kg - K). The pressure drop through the

coil is px — py = 9260w? . The outlet-air temperature regulates the control

"

The polytropic exponent n in the equation pyv7 = pavi is 1.2, The intercooler
is a counterflow heat exchanger receiving 0.09 kg/s of water at 22°C. The

Air
T ANV IAIA——— RO
w, = 4kg/s

0.012
UA = 7 kKW/K

11 12
FIGURE 6-24

FIGURE 6-23 Outlet air temperature, °C Characteristics of valve in Prob. 6.14.

Cooling coil in Prob. 6.14.
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1200 kPa
—_—

Intercooler :
Air ] e o i 5

100 KPa
r=26C

W r.mv\/

g water

09 ky/s

FIGURE 6-25
Two-stage air compression in Prob. 6.15.

product of the overall heat-transfer coefficient and the area of this he#
exchanger is UA = 0.3 kW/K. Assume that the air is a perfect gas.

Use the Newton-Raphson method to simulate this system, determini
at least the values of w . p;, 7> and 75. Use as a test for convergence that af
variables change less than 0.001 during an iteration. Limit the number
iterations to 10.

Ans.: w = 0.18 kg/s, 12 = 101.8°C, p, = 387.7 kPa, 13 = 43.84°C %

6.16. A helium liquefier operating according to the flow diagram shown in Fig#s
6-26 receives high-pressure helium vapor, liquefies a fraction of the vapor.
and returns the remainder to be recycled. The following operating conditios:
prevail:

Point | (vapor entering warm side of heat exchanger), T =
h = 78.3 kl/kg, w =5 g/s, p = 2000 kPa

Point 5 (vapor leaving turbine), T = 8 K, h = 53 kl/kg, w = 4 gls 58

SYSTEM SIMULATION

Separator, p = 100 kPa, saturation temperature at 100 kPa = 4.2 K,
hy = 10 kJ/kg, h, = 31 kl/kg

Heat exchanger, UA = 100 W/K

Specific heat of helium vapor:

_ [ 6.4 kJ/(kg K) at 2000 kPa

71 5.8 Kkg K) at 100 kPa

Using the Newton-Raphson method, simulate this system, determining
the values of wy, 7>, 77, and Ty. Use as the test for convergence that all
variables change less than 0.001 during an iteration. Limit the number of
iterations to 10.

Ans.: wy, = 0.447 g/s, T, = 7.316, 77 = 5.97, and Ty = 10.93 K.
A refrigeration plant that operates on the cycle shown in Fig. 6-27 serves as
a water chiller. Data on the individual components are as follows:

30,600 W/K
26,500 W/K

evaporator

UA
condenser

(6.8 kg/s evaporator
!
( 7.6 kg/s condenser

Il

Rate of water flow

The refrigeration capacity of the compressor as a function of the evaporating
and condensing temperatures f, and .., respectively, is given by the equation
developed in Prob. 4.9.

Ge KW = 239.5 + 10.073r, — 0.109¢] — 3.41r, — 0.00250:>
=0.2030r,1. + 0.00820rr. + 0.0013¢,¢7 = 0.00008000512¢>

9

2
8 7 6 Separs
. AAAAAAA f - Separator
JA = 100 kPa
w=Sg/s UA = 100 W/K , 4R
-y AAAAAAA——| A AR A AT
| i 5 |
[ “ Y
m L « 4
o : ! Throuling
| 3 w=4 valve

\i

Il
.J’x
!

Turbine

=
n
A

FIGURE 6-26
Helium liquefier in Prob. 6.16.
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ration plant in Prob. 6.17.



