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The Finite Volume Method for
Diffusion Problems

Introduction

The nature of the transport equations governing fluid How and heat wanster and the
formal control volume ntegration were described in Chapter 2. Here we develop the
numerical method based on this integration, the finite volume (or control volume)
method, by considering the simplest transport process of all pure diftusion in the
steady state. The governing equation of steady diffusion can castly be derived trom
the general transport cquation (2.39) for property o by deleting the transient and
convective terms. This gives

div(l grad ¢) + Sp =0 (4.1)

Ihe control volume mntegration, which forms the key step ol the finite volune

method that distinguishes it trom all other CED techniques, yields the following
torm:

div(l grad )dV , SpdV = ‘ n (I grad ¢)d 4 Spdb =0
(vl (.'l' .l (]
(4.2)

By working with the one-dimensional steady - state  diftusion  equation  the
approximation technigues that are needed 1o obtain the so-called  discretised
cquations are mtroduced. Later the method s extended to two- and three-
dimensional  diffusion problems. Application of the method to simple one-
dimensional steady state heat transter problems is illustrated through a series of
worked examples and the accuracy ol the method is gauged by comparing numerical
results with analytical solutions
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Fig. 4.1

Fig. 4.2
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4.2 Finite volume method for one-dimensional steady state
diffusion

.
2

Consider the steady state diffusion of a property ¢ in-a one-dimensional domain
defined in Figure 4.1, The process is governed by

d (I_ (/(/f LS -0 (4.3
(/\ r/\'

where I is the diffusion coeflicient and § is the source term. Boundary values of ¢ at
points A and B are prescribed. An example of this type of process. one-dimensional
heat conduction in a rod, is studied in detail in section 4.3,

Control volume houndarics

N, ==k

vy d P P \
) e et 1 I
:_ﬁfﬁ— 4 = ! /.~ |
/ \ /

Control volume Naodal points

D4 = constant
>
=]
Dg =constant

Siep 1: Grid generation

The first step in the finite volume method s to divide the domain into diserete
control volumes. Let us place a number of nodal points in the space between A and
B. The boundaries (or faces) of control volumes are positioned mid-way between
adjacent nodes. Thus cach node is surtounded by a control volume or cell It 1S
common. practice to set up control volumes near the edge of the domain in such a
way that the physical boundaries coincide with the control volume houndarices.

At this point it is appropriate to establish a system of notation that can be used in
future developments. The usual convention of CFD methods is shown in Figure 4.2

A general nodal point is identificd by P> and its neighbours in a one-dimensional
geometry, the nodes to the west and cast, are identified by Wand £ respectively. The
west side face of the control volume is referred to by “‘w” and the cast side control
volume face by ‘", The distances between the nodes Wand P, and between nodes 2
and £, are wdentified by dxyp and Sxpy. respectively. Similarly the distances between
face w and point P and between P and face ¢ are denoted by Sv,.p and Opy
respectively. Figure 4.2 shows that the control volume width is Ay - 5y
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Step 2: discretisation

The key step of the finite volume method is the mtegration of the governing equation
(or equations) over a control volume to yield a discretised equation at its nodal point
P For the control volume defined above this gives

Cd [ dp ! L dg L dy
“(r=2Yar + | sav = [raZ2) - [racf) ©sar =
J dx ( l[\‘>( l ( ( (I\), ( oy )“ o0 :
AV AV ’

(4.4)

Here 4 1s the cross-sectional area of the control volume face, AV is the volume and S
15 the average value of source S over the control volume. It 1s a very attractive feature

of the finite volume method that the discretised equation has a clear physical

interpretation. Equation (4.4) states that the diffusive flux ot ¢ leaving the east face
minus the diftusive fux of ¢ entering the west face 1s equal to the generation of ¢,
Le. 1t constitutes a balance equation for ¢ over the control volume.

In order to’derive usctul forms of the discretised equations, the wterface diffusion
coethicient [T and the gradient d¢/dx at east ("e’) and west (‘w’) are required.
Following well-established practice, the values of the property ¢ and the diftusion
coctherent are defined and evaluated at nodal points. To calculate gradients (and
hence fluxes) at the control volume taces an approximate distribution of properties
between nodal points 1s used. Linear approximations seem to be the obvious and
stimplest way of calculating interface values and the gradients. This practice is called
central differencing (see Appendix A). In a uniform grid hinearly mterpolated values
for [', and ', are given by

Iy + g <
r, = w4l (4.54)
P
. I'p + 17 .
I = AL;N £ (4.5b)

And the diftusive Hux terms are evaluated as

(H d‘-”) 1A, ( e = 1/77?»') (4.6)
dx . ()\/if

¢

rad? l“.‘slu-<ﬂ"‘/}“> (4.7)
dr W ()l”';'

In practical situations, as illustrated later, the source term S may be a function ot the
dependent variable. In such cases the finite volume method approximates the source
term by means of a linear form:

§.Al - Su 1 Slﬂ‘/,f‘ (48)

Substitution of equations (4.6), (4.7) and (4.8) into cquation (4.4) gives

r(.‘i:.((f)'f, (4.9)
Ihis can be re-arranged as
f[f A t S,
().l’p[.;
(4.10)
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Identifying the coefficients of ¢, and ¢y in equation (4.10) as ay and az. and the
coefficient of ¢, as ap, the above equation can be written as

\ku,'(/),‘ —awy V apdy S‘,J‘ (4.11)

where

ay ar dp

I I, P
— A, — A, ay v ap — Sp
oXyp OXpy:

The values of S, and S, can be obtained from the source model (4.8):
SAV =S, + S,,(,b,,. Equations (4.11) and (4.8) represent the discretised form of
the equation (4.1). This type of discretised equation s central to all further
developments.

Step 3: Solution of equations

Discretised equations of the form (4.11) must be set up at cach of the nodal points i
order to solve a problem. For control volumes that are adjacent to the domain

boundaries the general discretised equation (4.11) is modified to incorporate,

boundary conditions. The resulting system of linear algebraic equations s then
solved 1o obtain the distribution of the property ¢ at nodal points. Any suitable
matrix solution technique may be enlisted for this task. In Chapter 7 we describe
matrix solution methods that are specially designed for CFD procedures. The
techniques of dealing with different types of boundary conditions will be examined
in detail in Chapter 9.

4.3 Worked examples: one-dimensional steady state
diffusion

The application of the finite volume method to the solution of simple diffusion
problems. involving conductive heat transfer s presented in this section. The
equation governing one-dimensional steady state conductive heat transfer is

U L ' (4.12)
dx dx o .

where thermal conductivity k takes the place of T" in equation (4.3) and the
dependent variable is temperature 7. The source term can, for example, be heat

generation due to an electrical current passing through the rod. The incorporation of

boundary conditions as well as the treatment of source terms will be introduced by
means of threc worked examples.

Example 4.1  Consider the problem of source-free heat conduction in an insulated rod whose ends
are maintained at constant temperatures of 100 “C and 500 “C respectively. The one-

(58




Worked examples: one-dimensional steady state diffusion 89
Fig. 4.3 Q.5 m
R e — — =
A ) B
| Q
14 =100 o I'y =500
Area (A)
dimensional“problem sketched in Figure 4.3 is governed by
o R (4.13
dv \ dx 13)
Caleulate the steady state temperature distribution in the rod. Thermal conductivity k
“equals 1000 W/m/K, cross-sectional area 4 is 10 x 10
Solution  Lctus divide the length of the rod into five equal control volumes as shown in Figure
4.4 This gives ox = 0.1 m.
Fig. 4.4 The gnd used | 2’ 3 4 S
v - | oo | - % o . "
Ly . s s i . . * { 74
dai2 1 O b | da/2 l
. = | e -

The grid consists of five nodes. For each one of nodes 2, 3 and 4 temperature values
to the east and west are available as nodal values. Consequently, discretised
equations of the form (4.10) can be readily written for control volumes surrounding
these nodes:

ke Ky .
L
OXpp Oxyp

k'\ B AL
— A | Ty + | <
OXypp 0

OXpp

(4.14)

The thermal conductivity (A, = k. = k), node spacing (0x) and cross-sectional area
(4, — A, = A) are constants. Therefore the discretised equation for nodal points
2,3 and 415

with |

(l/'.l‘/' — ay I‘n‘ | ayg /1

(4.15)

S, and S, are zero in this case since there is no source term in the governing equation

(<h.13).

Nodes 1 and S are boundary nodes, and therefore require special attention.
Integration of equation (4.13) over the control volume surrounding point | gives

B —T% Tp — T
AA(J;_ BV =daf L) =
o Ox ox/2

(4.16)

T
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This expression shows that the flux through control volume boundary A has been
approximated by assuming a linear relationship between temperatures at boundary
point A and node I We can re-arrange (4.16) as follows:

<k r42k4>7' SR LI T AT 417
()_\' (S X ! " 5 X ! (5.'( ) ' ( )

Comparing equation (4.17) with equation (4.10) it can be casily identified that the
fixed temperature boundary condition enters the calculation as a source term
(Sy +SpTp) with §,, = (2kA/6x) T4 and S, = — 2kA/dx and that the link to the (west)
boundary side has been suppressed by setting coeflicient ay to zero

Iiquation (4.17) may be cast in the same form as (4.11) to yield the discretised
equation for boundary node I:

l\ apTp —ayTy VaplTy + Su (4.18)

with

ay ar ap , Sp Sy
b kA L g 2kA 2kA
o Gy G Op oy Ox !

The control volume surrounding node S can be treated in a similar manner. Its
discretised equation is given by

Tg - Tp Tp — Tw
Y] LIl ) L | (4.19)
ox/2 ox

As before we assume a linear temperature distribution between node /> and boundary
point B to approximate the heat flux through the control volume boundary. Equation
(4.19) can be re-arranged as

k 2k . k N 2k .
— At —A)Tp=|=—4 Tw+0 . Tp+4 |4 I'n (4.20)
ox ox dx A

The discretised equation for boundary node 5 is

l\u,ﬁlﬁ = awTw v apTr + S, ) (4.21)

where
aw ag. ap Sp Sy
kA 0 3 ¢ 2kA 2kA
ox e = 3x e ®

The discretisation process has yielded one equation for each of the nodal points 1 to
5. Substitution of numerical values gives k4/dx = 100 and the coefficients of cach
discretised equation can easily be worked out. Their values are given in Table 4.1
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Table 4.1

Fig. 4.5 Companson of
the numerical result with
¢ analytical solution
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Node ay dag Sii Sp ap = ay + ag — Sp
| 0 100 2007, —200 300
2 100 100 0 0 200
3 100 100 0 0 200
4 100 100 0 0 200
5 100 0 2007y -200 300

The resulting set of algebraic equations for this example 1s
3007, = 10075 + 2007,
120075 = 1007 + 10075
20075 = 1007, + 1007} (4.22)
2007y = 10075 + 10075
30075 = 10075 + 2007y

This set of equations can be re-arranged as

0o 100 0 0 0117, 2007,

100 200 —100 0 ol 0
0 —100 200 100 ollz, ] =1 o (4.23)
0 0 100 200 —100 || 7y 0
0 0 0 100 300 | 74 2007,

I'he above set of equations yicelds the steady state temperature distribution ot the
given situation. For simple problems involving a small number of nodes the resulting
matrix equation can easily be solved with a software package such as MATLAB
(The Student Edition of MATLAB, The Math Works Inc., 1992). For T = 100 and
Ty — S00 the solution of (4.23) can obtained by using, for example, Gaussian

climimation:
T, 140
T 220
Iy | = [ 300 (4.24)
T, 380
15 460

I'he exact solution is a linear distribution between the specified boundary
temperatures: 7= 800y + 100, Figure 4.5 shows that the exact solution and the
numerical results coincide.

60X

SO0

Temperature (°C)

400

300 |- Numerical

200

100

1 It | |
0 0.05 0.15 0.25 0.35 0.45 0.5
Distance A (m)
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Example 42 Now we discuss a problem that includes sources other than those arising from
boundary conditions.

Figure 4.6 shows a large plate of thickness I = 2 cm with constant thermal
conductivity k = 0.5 W/n/K and uniform heat generation ¢ — 1000 kW/m®. The
faces A and B are at temperatures of 100 “C and 200 “C respectively. Assuming that
the dimensions in the y- and z-directions are so large that temperature gradients are
significant in the x-direction only, calculate the steady state temperature distribution.
Compare the numerical result with the analytical solution. The governing equation is

d de g —20 5
s ) B 23}

Fig. 4.6

Solution  As before the method of solution is demonstrated using a simple grid. The domain is
divided into five control volumes (see Figpre 4.7) giving ox - 0.004 m: a unit arca
is considered in the v z plane.

Fig. 4.7 The gnd used l S l
- e =
| 2 3 4 5
I
w W r ¢ I
| 5.‘/z»|¢ S _»‘4 R »] \‘,\‘)./14
Formal integration of the governing equation over a control volume grves
d dT ' A )
[ — |k ,,,,>(“f I l qdl” =0 (4.20)
] dx dx 5 )

AV AV

We treat the first term of the above equation as in the previous example. The second
integral, the source term of the equation, is evaluated by calculating the average
generation (i.e. SAV = gAV) within each control volume. Fquation (4.26) can be
written as

1T 1T
] — (M‘— +gAV =0 (4.27)
dx / dx ),
T, — Tp T~ Tip
k, A Te—Tr\ 4.4 ~-’4-—1> { gASx =0 (4.28)
ox ox
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The above equation can {hc re-arranged, noting that ky — &,
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The above equation can be re-arranged as

B o e (B, o (% 4 e 4.2
ox ox ) o /Y t “on 'k + qAdx (4.29)

This cquation is written in the general form of (4.11):

aplp = awly + ag Ty + S, (4.30)

Since k. = k, = k we have the following coeflicients:

t{u' ay (l,, SI’ S“

= =] -t
kt | kA ¢ | s
ov | aw | AwhaETSy L

-quation (4.30) 1s valid for control volumes at nodal points 2, 3 and 4.

To mcorporate the boundary conditions at nodes 1 and 5 we apply the linear
approximation for temperatures between a boundary point and the adjacent nodal
point. At node 1 the temperature at the west boundary is known. Integration of
equation (4.25) at the control volume surrounding node 1 gives

(T iy
[ fusl (kA =) | +qav =0 (4.31)
de/, \ dx ),
Introduction of the lincar approximation for temperatures between A and £ yields
Ty —1p Iy — 1, :
ked| —"—— | —kyd| ——~- tgAox = 0 4.32
[‘ ( o > ! < ox/2 La ( )

The above cquation can be re-arranged, using k. = k, = £, 1o yield the discretised
cquation for boundary node 1:

e Ty v, | @)
where o
ol o[ e
0| H Doayg s ~ 8. 0 2A VR y‘.'/[:

. I

At nodal point 5, the temperature on the east face of the control volume is known.
The node is treated in a similar way to boundary node 1. At boundary point § we

have
dT dr\ )
k A— -k A— - qAV =0 (4.34)
dx B dx )
I'y — Tp Ty Ty ) .
hy Al ——— =k A ——— Aox = 0 4.35
[ “ < ox/2 ) < ox ), i ( )

— k, to give the

T T
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Table 4.2

RPRRUOS TSR —

discretised equation for boundary node 5:

apTp —=awTy +apTr + S, J (4.36)

where
ay —‘ ar. ap S/) Su
kA ‘ 2k ,
- () ay b oay .\,, - (/,'10\ | //{
ox N N

Substitution of numerical values for 4 = 1, k = 0.5 W/m/K., g = 1000 kW/m' and

ox = 0.004 m everywhere gives the coeflicients of the discretised equations
summarised in Table 4.2,

Node ay ay Si Sp ap = aw +ap - S,
| 0 125 4000 + 2507, 250 375
2 125 125 4000 0 250
3 125 125 4000 0 250
4 125 125 4000 ) 250
S 125 0 4000 + 25075, =250 175

Giiven directly in matrix form the equations are

375 125 0 0 o] [ 29000

<125 250 125 0 ol 4000
0 -125 250 125 07| = | 4000 (4.37)

0 0 125 250 125|714 4000

0 0 0 125 375|710 54000

* The solution to the above set of equations is

7 150
1§ 218
Ty| = | 254 ' (4.38)
Ty 258

T 230

Comparison with the analytical solution

The analytical solution to this problem may be obtained by integrating equation
(4.25) twice with respect to v and by subsequent application of the boundary
conditions. This gives

s | ——F(L=x]|x+ Ty (4.39)
The comparison between the finite volume solution and the exact solution is shown

m Table 4.3 and Figure 4.8 and it can be seen that, even with a coarse grid of five
nodes, the agreement is very good.

TR




v

T

Table 4.3

Fig. 4.8  Companson ot
the numenical results with
the analyucal solution

Example 4.3

Fig. 4.9  The geometry
for Example 43
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Node number /4 2 3 4 5
A (m) 0.002 0.006 0.01 0.014 0.01¥
Finite volume solution 150 218 254 25% 230
Exact solution 146 214 250 254 226
Percentage error 2.73 1.86 1.60 1.57 1.76

300 T T T T T T T T

250 -
¢
2200

N

Exact

Temperalur
@
>

N
Numerical

0.0 0.4 0.8 1.2 1.6 2.0

Distance (¢m)

In the final worked example of this chapter we discuss the cooling of a circular fin by
means of convective heat transfer along its length. Convection gives rise 0 a
temperature-dependent heat loss or sink term in the governing equation.

Shown i Figure 4.9 15 a cyhindrical fin with uniform cross-sectional area 4. The
base is at a temperature of 100 “C (7y) and the end 1s insulated. The fin is exposed to
an ambient temperature of 20 “C. One-dimensional heat transter in this situation is
governed by

/ I
‘<A-.4‘---> WP(T — Ty) =0

4.40
dx dx ( )

where A is the convective heat transfer coefficient, P the perimeter, & the thermal
conductivity of the material and 7, the ambient temperature. Calculate the
temperature distribution along the fin and compare the results with the analytical
solution given by
cosh{n(L 2
coshln(L__ x)| (4.41)
cosh(nl.)
where n? = hP/(k4), L is the length of the fin and v the distance along the fin. Data:
L= 1m hP/(kd) =25 m * (note k4 is constant).
i
Insulated

(¢ero heat flux
across this boundary)

Iy )lv
(

D

r.unblcul
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Solution The governing equation in the example contains a sink term, ~AP(T — T, the
convective heat loss. which is a function of the local temperature 7. As before the
first step in solving the problem by the finite volume method is to set up a gnd. We
use a uniform grid and divide the length into five control volumes so that
ov = 0.2 m. The grid is shown in Figure 4.10.

Fig. 4.10  The gnd used 75 =100°C 4 < ¢ =0
in Example 4.3 | . o ' . ! . |
i T
177 N R - S ISR . S— | 8wz, |
When kA = constant, the governing equation (4.40) can be written as
1 (dT
— (l—r ~ (T - T.) = 0 where n’ = hp/(kA) (4.42)
dx \ dx
Integration of the above equation over a control volume gives
i (dT
[ SE)av - [ W (T = Ty )dV =0 (4.43)
1 odv \ dx i

Al Al

I'he first integral of the above equation is treated as in Examples 4.1 and 4.2 the
second integral duc to the source term in the cquation is cvaluated hy assuming that
the integral is locally constant within cach control volume

dT d1 . .
(), ()] v o

First we develop a formula valid for nodal points 2,3 and 4 by mtroducing the usual
lincar approximations for the temperature gradient. Subsequent division by cross-
sectional arca A gives

‘7'/. = 7'/v [-[’ o Tll Y 4 . -
£ SO — : O 0 4 44
l< ox ) ( Rt >} [” T~ T \. ( |

This can be re-arranged as

| | | :
ﬁ‘ 4 — |7, ( T, + <~ )T,. bl oxT ol (4.45)
dx  Ox dx X

lor interior nodal points 2, 3 and 4 we wiite, using general form (4.11),

(I,’]‘/x = (I||'7‘||' { ar I, | .S‘,, ‘ . (4 4(‘)
with
‘7 ay ar ap Sp S
‘ l } S 25 25xT
o e aw b dp — = N"0X noox/t ~
ox ox # & r

Next we apply the boundary conditions at node points 1 and 5. At node 1 the wes
control volume boundary is kept at a specified temperature. It 15 treated i the same

e
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way as Bxample 4.1, Le.

[(TESTTJ:) (l"'fé_‘f/z'f“)] (T~ Ta)ox] = 0 (4.47)

The coefficients of the discretised equation at boundary node 1 are

ayy ap ap Sp .\‘“
I 25 2 T
0 —= aw +ag =S, —n°ox - noxT Iy
ox ox X
‘)a f ) ——— —_— — e —— _——
3 , At node S the lux across the east boundary is zero sinee the east side of the control
volume 1s an mnsulated boundary:
y Tp =Ty ; ) :
? 0 - < — "-) W2 (T~ T )0x] = 0 (4.48)
4 Ox

Hence the east coefficient is set to zero. There are no additional source terms
associated with the zero tflux boundary condition. The coetlicients at boundary
node S are given by

ap SI’ S“

D —
~
S
~

— 0 aw +ag — Sy —n?ox n2oxT,

Substituting numerical values gives the coeflicients in Table 4.4

} :

; lable 4.4 Node ay uy Su 5 ap - ag tag S,
I 0 5 100 1 107y 15 20
2 S S5 100 -5 15
3 S 5 100 S IS
4 b ¢ S 100 S 15
5 S 0 100 5 10

The matrix form of the equations set 1s

5’() 50 0 o) [n
s 1 s 0 0|
0 -5 15 =5 0|7

0O 0 s 15 S|l n

O 0 0 =5 10|71

I'he solution to the above system 1s

T 64.22
e 3691
Ty = |26.50
Ty 22.60

Ts 21.30

1100 ]

100

100 (4.49)
100

|()()'

(4.50)
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Table 4.5

Fig. 4.11  Comparison
of numerical and
analytical results

Table 4.6

Comparison-with the analytical solution

Table 4.5 compares the finite volume solution with analytical expression (4.41). The
maximum percentage error ((analytical solution ~ finite volume solution)/analytical
solution) is around 6%. Given the coarseness of the grid used in the calculation the
numerical solution is reasonably close to the exact solution.

Node Distance Finite volume Analyvtical Difference Percentage
solution solution Error

l 0.1 6422 68.52 430 627

2 0.3 36.91 37.86 0.95 2.51

3 0.5 26.50 26.61 0.11 0.41

4 0.7 22.60 22.53 -0.07 0.31

5 09 21.30 21.21 0.09 0.42

The numerical solution can be improved by employing a finer grid. Let us
consider the same problem with the rod length subdivided into 10 control volumes.
The derivation of the discretised equations is the same as before, but the numerical
values of the coefficients and source terms are different owing to the smaller grid
spacing of ox = 0.1 m. The comparison of results of the second calculation with the
analytical solution is shown in Figure 4.11 and Table 4.6. The second numerical
results show better agreement with the analytical solution; now the maximum
deviation is only 2%.

100 — T T
= The analytical solution
® Numcrical solution (coarse grid)
80 W Numcrical solution (finc grid)
ma
g 60|-
&
- :
e
40
20 L | L | 1 | !
0.0 0.2 0.4 0.6 0.8 1.0
Distance (m)
Node Distance Finite volume Analvtical Difference Percentage
solution solution eror
| 0.05 80.59 82.31 1.72 2.08
2 0.15 56.94 57.79 0.85 1.47
3 0.25 4253 42.93 0.40 0.93
4 0.35 33.74 33.92 018 0.53
5 0.45 28.40 28.46 0.06 0.21
6 0.55 25.16 25.17 0.01 0.03
7 0.65 23.21 23.19 0.02 008
8 0.75 22.06 22.03 0.03 013
9 0.85 21.47 21.39 - 0.08 0.37
10 0.95 21.13 21.11 0.02 - 009
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Fig. 4.12 A part of the
two-dimenstonal gnd
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Finite volume method for two-dimensional diffusion
problems

The methodology used in deriving discretised equations in the one-dimensional case
can be easily extended to two-dimensional problems. To illustrate the technique let
us consider the two-dimensional steady state diffusion equation given by

d O 0 o)
— (=2 ) + = [T ] +85=0 i
m( 0;) ' ;)_‘,<r ,-)_,,> ¥ ( (4.51)

A portion of the two-dimensional grid used for the discretisation is shown in Figure
4.12. .

g N
U] OO SN S FR S
W P L A3
W ¢ ‘ *
- Lo
S
—~= AN

In addition to the east (£) and west (W) neighbours a general grid node P now
also has north (N) and south (S) neighbours. The same notation as in the one-
dimensional analysis is used for faces and cell dimensions. When the above equation
is formally integrated over the control volume we obtain

() () -0 ()
[ LA PR A T ‘ O (r2) 4y gy [ SpdV =0 (452)
) Ox ok )y dy ;
AV

Al AV

So, noting that A, = 4, = Ay and 4, = 4, = Ax, we obtain:

re Ac’ ()i o rw An’ f)i,)
ox ), ox ).,
C ()
3 {r A, (i)f> I, A, (‘.,»‘ff> ] +SAV =0 (4.53)
ay/, dy ),

As before this equation represents the balance of the generation of ¢ in a control
volume and the fluxes through its cell faces. Using the approximations introduced in
the previous section we can write expressions for the flux through control volume

faces: )
! J T :
Flux across the west face = ', 4,, —,(E =1, A4, (MJ (4.54a)
()X 5 ox WP
) L0 (pp — ¢Pp)
Flux across the east face = ', 4, i =T,4. —d-h- d)'— (4.54b)
()X o OXI’E
. 0 . » — )
Flux across the south face = I'y 4, Tf =1, A4 (—ML (4.54c¢)
dy | dysp
0 - — ¢,
Flux across the north face = I', 4, ib =T, 4, W)N ,,,M (4.54d)
v, dypn
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By substituting the above expressions into equation (4.53) we obtan

r(’ '4(’ (d)E - d),)) o rw A\r (d),’ B (b”‘) } rn An g(bl’fhl)
Oxpg dxwp Ovpn
~1T, A, (br — 9s) + SAV =0 (4.55)
oysp

When the source term is represented in linearised form SAV = S, + Spdp, this
equation can be re-arranged as

rw Aw rr /1(‘ r.tAv rn An
K - S,,) b

Sxwp  Oxpr  Oysp  Ovpw

o (r‘!' ‘4u>(/) ' (Ir Ar / + r,& A\ lnn An
= | —— . —— ) I . = i %
Shnp I ki b B b . )ff’N {5, (4.56)

Fquation (4.56) is now cast in the general diseretised equation form for iterior

nodes
aphp = awdy | apdy o asds Faypy 1Sy } (4.57)

where

The face areas in a two-dimensional case are A, = A, = AviA, = A= Av.

We obtain the distribution of the property ¢ in a given two-dimensional situation
by writing discretised cquations of the form (4.57) at cach gnd node of the
subdivided domain. At the boundaries where the temperatures or fluxes are known

‘the discretised equations are modified to incorporate boundary conditions in the

manner demonstrated in Examples 4.1 and 4.2, The boundary side cocfficient is set
to zero (cutting the link with the boundary) and the flux crossing the boundary 1s
introduced as a source which is appended to any existing S, and .S, terms.
Subsequently, the resulting set of equations is solved to obtain the two-dimensional
distribution of the property ¢. Example 7.2 in Chapter 7 shows how the method can
be applied to calculate conductive heat transfer in two-dimensional situations.

Finite volume method for three-dimensional diffusion
problems

Steady state diffusion in a three-dimensional situation is governed by

0 O 0 O a (')(/)) ,
O(r%?) L (r 284 = (T ) +S=0 458
Ox ( (')x) ' Jy ( (')y) 0z ( 0z ( )

Now a three-dimensional grid is used to subdivide the domain. A typical control
volume is shown in Figure 4.13.
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Fig. 4.13 A cell in three
dimensions and
neighbouring nodes

A cell containing node P now has six neighbouring nodes identified as west, east,
south, north, bottom and top nodes (W, E, S, N, B, T). As before, the notation, w, e, s,
n, b and ¢ are used to refer to the west, east, south, north, bottom and top cell faces
respectively.

Integration of Equation (4.58) over the control volume shown gives
- () ) ! () ¢
l‘e Ae (l_q‘)' o rw An‘ ﬂ + rn All (i o r) Ax fib‘
ox ), ox/, dy/, dy /.,

, ‘ , 7
| [r, A,(—i) o, A,,((,—d)) } +SAV =0 (4.59)
0z ), Jz /,

Following the procedure developed for one- and two-dimensional cases the
discretised form of the equation (4.59) is obtained:

{I’ (g — dpp)de r (¢p — <f)w)Aw]
’ Oxpg . OXpyp
4 {r (¢w — ‘/)J)_ﬁ T (¢p — (/’S)A"
! Oypn ’ Ovsp
b — pp)A , — 4 . .
N U AV N
dzpy Ozgp
As before this can be re-arranged as to give the discretised equation for interior
nodes:
appp = awdy + apdp +asdg +andy +agdy +ardp + S, | (4.61)
where

aw ag ‘ ay ay dp ar ap

| N l_“, A, Fl A, (T, A4, I‘b Ay T A4, aw + ag +as + ay

Oxyp (SXpb' (sygp (S_\’I*N Ozgp 52[“'[‘ tag +ar — SP

Boundary conditions can be introduced by cutting links with the appropriate face(s)
and modifying the source term as described irrsection 4.3.
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4.6 Summary of discretised equations for diffusion problems

e The discretised equations for one-, two- and three-dimensional diffusion problems
have been found to take the following general form:

apdp = Z anpP oy + Su (4.62)

where ¥ indicates summation over all neighbouring nodes (nh), and a,, are
the neighbouring coefficients, aw,ag in 1D, aw,ap ag,ay in 2D and
aw.ag,as,ay,ag,ar in 3D; ¢,, are the values of the property ¢ at the
neighbouring nodes and (S, + .S',,d),,) is the linecarised source term.

e In all cases the coefficients around point P satisfy the following relation:

ap = Z At — S (4.63)

e A summary of the neighbour coefficients for one-, two- and three-dimensional
diffusion problems is given in Table 4.7.

ay ap oy ay Uy ‘1
oA, oA,
n kel =
Oxyp OXpy
: [Ay I.A. T Aq Iy An
2D e — adides -
Ox wp (3.\’,';. oysp Ovpy
D | S /% I A, FeAx Iy Ay 1y A, L'y A,
. (S,\'u r (S,l,-k (S»\‘.(p (S_V/W (S,W"’ (32[)7‘

e Source, terms can be included by identifying their linearised form SAV =
LS Sy¢p and specifying values for S, and .

e Boundary conditions are incorporated by cutting the link to the boundary side and
introducing the boundary side flux — exact or linearly approximated- through
additional source terms S, and S,,. For a one-dimensional control volume of width
A with a boundary B:

link cutting :  set coefficient ag = 0 (4.64)
5 ] . 2/\’[4/‘[1
source contributions :  fixed value ¢ : S, = ——
AC
, (4.65)
. 2kpAp
Sp AL

fixed lux gg = Su + S,hp = qn (4.66)

P =




