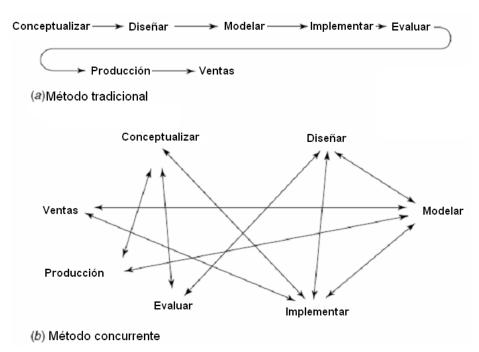

Capítulo 10

Selección de Materiales


1.10. Selección de materiales en plantas químicas y para diseño de productos

1.10.1. Falla mecánica de materiales en plantas químicas

Figura 164 Izq. Efecto de la temperatura sobre la deformación de un material debido a esfuerzos tensiles y a escurrimiento. **Der.** Influencia de la calidad de la superficie en pruebas de esfuerzos cíclicos en tubos de alta presión (diámetro nominal 6mm; presión nominal 250 MPa) hechos de una aleación 30CrMoV9 (HB30 » 3000 MPa; esfuerzo tensil = 900 – 1100 MPa) a) Trabajado en frío; b) Nitrificado; c) Electropulido; d) nitrificado; e) Pulido; f) y g) Sin tratamiento

1.10.2. El diseño de procesos

Figura 165 Comparación de diseño de procesos de ingeniería (a) método tradicional (b) método concurrente. En el diseño de procesos concurrente se utilizan equipos multidisciplinarios para llevar a cabo cada aspecto del mismo, tales como modelado, control de calidad (Evaluar), ensayos, y manufactura.

131

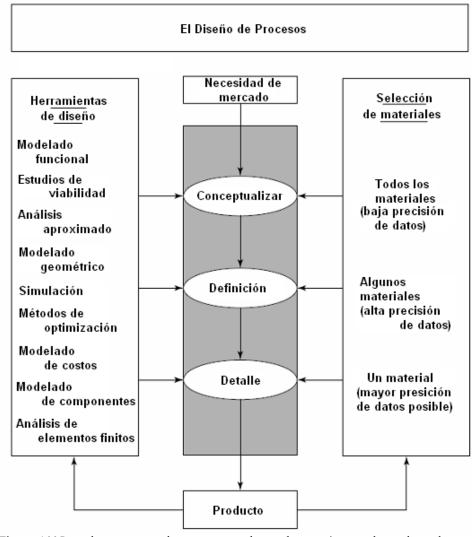


Figura 166 Procedimiento para seleccionar materiales en plantas químicas y diseño de productos.

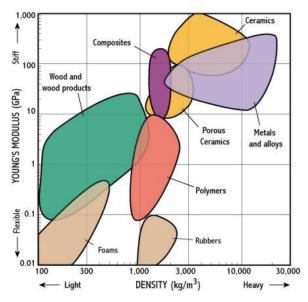
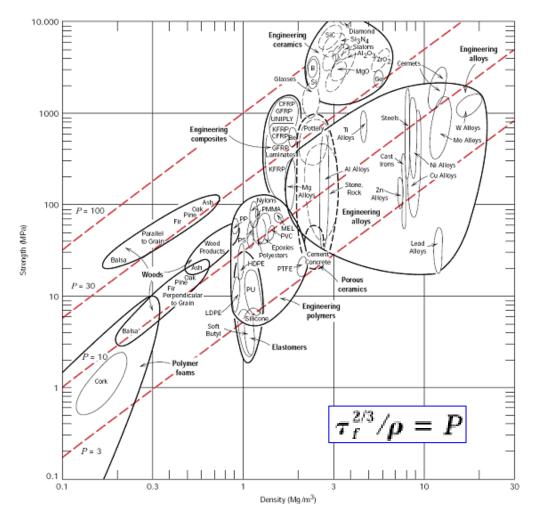



Figura 167 Gráfica para selección de materiales: Modulo de elasticidad vs. densidad

Figura 168 Gráfico de selección de materiales Resistencia vs. Densidad. Las líneas de diseño para índices de 3, 10, 30 y 100 $(MPa)^{2/3}m^3/Mg$ han sido construidas

Tabla 29 Densidad (ρ) , Resistencia (τ_l) , Indice de desempeño (P) para cinco Materiales Ingenieriles

Material	$ ho \ (Mg/m^3)$	$ au_{f} \ (MPa)$	$\tau_f^{2/3}/\rho = P$ $[(MPa)^{2/3}m^3/Mg]$
Carbon fiber-reinforced composite (0.65 fiber fraction) ^a	1.5	1140	72.8
Glass fiber-reinforced composite $(0.65 \text{ fiber fraction})^a$	2.0	1060	52.0
Aluminum alloy (2024-T6)	2.8	300	16.0
Titanium alloy (Ti-6Al-4V)	4.4	525	14.8
4340 Steel (oil-quenched and tempered)	7.8	780	10.9

 $[^]a$ The fibers in these composites are continuous, aligned, and wound in a helical fashion at a 45° angle relative to the shaft axis.

Material	$ ho/ au_f^{2/3} \ [10^{-2} \ \{Mg/(MPa)^{2/3}m^3\}]$	$\frac{\overline{c}}{(\$/\$)}$	$\overline{c}(ho/ au_f^{2/3}) = [10^{-2} (\$/\$) \{ Mg/(MPa)^{2/3} m^3 \}]$
4340 Steel (oil-quenched and tempered)	9.2	5	46
Glass fiber-reinforced compos- ite (0.65 fiber fraction) ^b	1.9	40	76
Aluminum alloy (2024-T6)	6.2	15	93
Carbon fiber-reinforced composite (0.65 fiber fraction) b	1.4	80	112
Titanium alloy (Ti-6Al-4V)	6.8	110	748

Tabla 30 Tabulación de la relación $\rho/\tau_t^{\omega s}$, Costo Relativo (\bar{c}) , y el producto de $\rho/\tau_f^{2/3}$ y \bar{c} : para cinco Materiales Ingenieriles

1.10.3. Diseño de recipientes a presión

Requerimientos de diseño:

Se requiere diseñar un recipiente a presión cilíndrico con un radio interno Ri de 0,5 m y una altura h de 1m, con casquetes removibles. Debe contener con seguridad una presión p de 100 MPa. Un acero con una esfuerzo de cedencia σ y de 500 MPa (dureza: 1,5 GPa) ha sido seleccionado. El espesor de pared necesario t está dado aproximadamente por la relación entre el esfuerzo en la pared, aproximadamente pR/t, y el esfuerzo de cedencia de el material del cual está hecho, σ y, dividido por un factor de seguridad Sf el cual será tomado como 2

$$t = \frac{S_f pR}{\sigma_y} = 0.2 \,\mathrm{m}$$

El radio externo Ro es, por lo tanto, 0,7 m. El área superficial A de el cilindro (despreciando los casquetes) es cercana a 3,8 m2. El volumen V = At es aproximadamente 0,8 m3. Aunque suene pequeño, considere el peso. La densidad del acero es cercana a 8000 kg/m3. El recipiente pesa 6 toneladas. Las consideraciones de diseño se presentan en la siguiente tabla

Tabla 31 Requerimientos de diseño para recipientes a presión seguros

Function	Pressure vessel = contain pressure, p
Objective	Maximum safety
Constraints	(a) Must yield before break or(b) Must leak before break(c) Wall thickness small to reduce mass and cost

^a The relative cost is the ratio of the prices per unit mass of the material and low-carbon steel.

Tabla 32 Restricciones de diseño para recipientes a presión

Restricción		Valor	End Cap		
Material	Acero	$T_m = 1600 \text{ K}$ H = 2000 MPa		Cylin	nder
		$\rho = 8000 \text{kg/m}^3$	2R		
Complejidad	2]		
Sección mínima	200 mm		h		
Área superificial Volumen	$3.8 \mathrm{m}^2$ $0.8 \mathrm{m}^3$				
Peso	6000 kg				
Presición media Rugosidad	$\pm 1.0 \mathrm{mm}$	nating surfaces only	End Cap	72-	

 $\sigma = \frac{p_{K}}{2t}$, Esfuerzo Tensil, donde t es espesor de la pared, R es el radio del recipiente

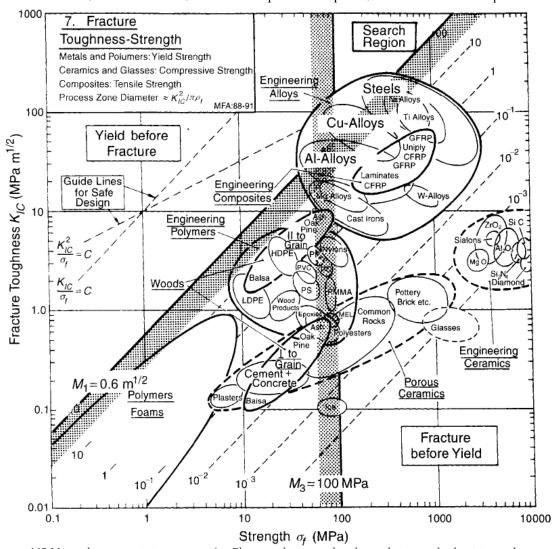


Figura 169 Materiales para recipientes a presión: El acero, aleaciones de cobre y aleaciones de aluminio son los que satisfacen mejor el criterio de "esfuerzo de cedencia antes de la fractura". Además, un alto esfuerzo de cedencia permite una alta presión de trabajo. Los materiales en el "área de búsqueda son la mejor elección. El criterio de fuga antes de la fractura lleva a esencialmente la misma elección

Tabla 33 Materiales para recipientes a presión seguros

Material A	$M_1 = \frac{K_{Ic}}{\sigma_f} \ (m^{1/2})$	$M_3 = \sigma_f$	Comentario
	-,	(MPa)	
Aceros tenacez	>0.6	300	Estos son los aceros para recipientes a presión, estándar en esta aplicación.
Aleaciones de cobre tenac	ez >0.6	120	OFHC Hard drawn copper.
Aleaciones de Al tenacez	>0.6	80	1000 and 3000 series Al-alloys.
Aleaciones de Ti	02	700	Alta resistencia pero
Aleaciones de Al	0.1	500	bajo margen de seguridad.
de alta resistencia			Buenos para recipientes
GFRP/CFRP	0.1	500	a presión livianos

Figura 170 Explosión de una planta de craqueo con vapor para producir etileno en Holanda (1975). Se produjo por fragilidad a baja temperatura de un tanque de alimentación de nafta.

La selección:

El requerimiento controlante, esta ocasión, es el tamaño. Los requerimientos de área superficial fueron mostrados anteriormente. Se tienen cuatro posibilidades mostradas a continuación: el recipiente puede ser maquinado desde el sólido, fabricado por trabajo en caliente, forjado o fabricado (con placas soldadas, por ejemplo).

La complejidad y tamaño confirman la selección. Los requerimientos de material deben ser chequeados pero no agregan ninguna restricción adicional. La tolerancia y rugosidad no son importantes excepto en los casquetes y costuras y puertos en los laterales. La respuesta es un maquinado, y posiblemente pulido superficial.

Tabla 34 Procesos para formación de recipientes a presión

Process	Comentario
Maquinado	Maquinado de una parte sólida (moldeado o forjado). Mucho material es descartado, pero se obtiene un producto confiable. Es la primera opción.
Trabajo en calient	e Acero forjado a un tubo de pared gruesa, y terminado por maquinado de las extremos, puertos, etc. Ruta preferidad por economía de uso de material.
Forja	Forja de un tubo cilíndrico, terminado con maquinado de los extremos y puertos. Los defectos de forja son problema
Fabricación	Soldadura de placas formadas previamente. No es adecuda para altas presiones; se usa para tanques muy grandes

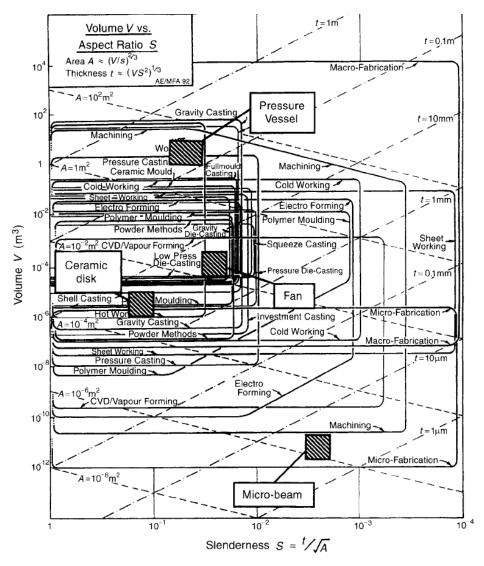


Figura 171 Selección del Procesamiento del Recipiente a Presión. Gráfica Tamaño (m³) -Relación espesor/área

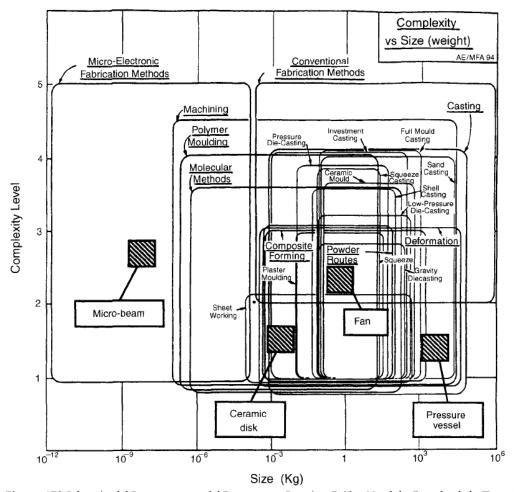


Figura 172 Selección del Procesamiento del Recipiente a Presión. Gráfica Nivel de Complejidad - Tamaño (Kg)

1.10.4. Selección del material de una tubería

Selección de una tubería cerámica para suspensiones de carbón en una planta de licuefacción de carbón

La licuefacción de carbón es un proceso a través del cual el carbón es triturado y secado, mezclado con agua para formar una suspensión, y gasificado para formar una serie de combustibles como fuel oil, propano líquido, y nafta. Una de las restricciones en el desarrollo de la tecnología de licuefacción es el desgaste por erosión de componentes como bombas, válvulas, y tuberías usadas en el procesamiento y transporte de las suspensiones de carbón. El problema es muy agudo en válvulas usadas para alimentar la corriente del proceso desde el lado de alta presión de la válvula al lado de baja presión. En estas válvulas, las cuales son diseñadas para mantener la caida de presión, la velocidad de la corriente de suspensión es bastante alta. Esta velocidad es incrementada por la expansión de los gases disueltos en esta corriente. La consecuencia de esto es desgaste por erosión en varios componentes de la válvula. Tiempos de vida nominal tan cortos como 14 días han sido reportados para valvulas de despresurización en algunas plantas de licuefacción. El problema es igualmente severo en la tubería.

Existe solo un criterio de diseño sencillo, pero poco definido, para este problema: Proponer algunos materiales que tengan resistencia mejorada ante el desgaste para partes fabricadas de bombas y tuberías de alta presión que son usadas para bombear las suspensiones de carbón.

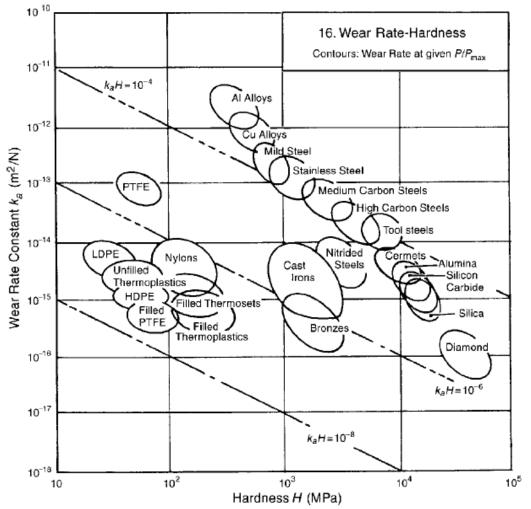


Figura 173 Gráfica de Velocidad de desgaste (m2/N) – Dureza (MPa)

El parámetro principal de diseño en este caso es el desgaste por erosión de la tubería. La constante de velocidad de desgaste se define como

$$k_s = \frac{\dot{W}_s}{F_n}$$

Donde Ws es la velocidad de desgaste por fricción definido como el volumen de material removido por unidad de distancia en la superficie, y $\rm Fn$ es la carga sobre la superficie. Por lo tanto ka se encuentra en unidades de $\rm m^2/N$

Posibles materiales: constante de desgaste baja y alta dureza.

Cemented WC

SiC

Si₃N₄

 Al_2O_3

1.10.5. Selección del material para intercambiadores de calor y aislamiento térmico

Tabla 35 Conductividades térmicas de algunos materiales usados comunmente en intercambiadores de calor [kBtu/(hr)(sqft)(°F/ft)]

		Temperature (°F)							
Metal or Alloy	-100	70	200	1000					
Steels									
Carbon		30.0	27.6	22.2					
1 Cr 4 Mo		19.2	19.1	18.0					
410		13.0	14.4	-					
304	_	9.4	10.0	13.7					
316	8.1	9.4	_	13.0					
Monel 400	11.6	12.6	13.8	22.0					
Nickel 200		32.5	31.9	30.6					
Inconel 600	_	8.6	9.1	14.3					
Hastelloy C	_	7.3	5.6	10.2					
Aluminum		131	133	_					
Titanium	11.8	11.5	10.9	12.1					
Tantalum	_	31.8	_						
Copper	225	225	222	209					
Yellow brass	56	69	_						
Admiralty	55	64		~					

Tabla 36 Conductividades térmicas de materiales aislantes para bajas temperaturas [k Btu/(hr)(sqft)(°F/ft)]

Material	Bulk/ Density, (lb/cuft)	Temp (°F)	h	Material	Bulk Density, (lb/cuft)	Temp (°F)	h
Corkboard	6.9	100	0.022	Rubber board,			
		-100	0.018	expanded,			
		-300	0.010	"Rubatex"	4.9	100	0.018
Fibreglas with						-100	0.015
asphalt coating						-300	0.004
(board)	11.0	100	0.023	Silica aerogel,			
		-100	0.014	powder	5.3	100	0.013
		-300	0.007	"Santocel"		0	0.012
Glass blocks, expanded,						-100	0.010
"Foamglas"	10.6	100	0.036	Vegetable fiber-			
		-100	0.033	board, asphalt	14.4	100	0.028
		-300	0.018	coating		-100	0.021
Mineral wool board,				•		-300	0.013
"Rockcork"	14.3	100	0.024	Foams:	2.9	-100	0.015
		-100	0.017	Polystyrene*	5.0	-100	0.019
		-300	0.008	Polyurethane b			

Tabla 37
Conductividades térmicas de materiales aislantes para bajas temperaturas [k Btu/(hr)(sqft)°F/ft)]

Material	Bulk Density, Ib/cuft	Max Temp (°F)	100°F	300°F	500°F	1000°F	1500°F	2000°F
Asbestos paper, laminated	22	400	0.038	0.042				
Asbestos paper, corrugated	16	300	0.031	0.042				
Diatomaceous earth, silica, powder	18.7	1500	0.037	0.045	0.053	0.074		
Diatomaceous earth, asbestos and bonding material	18	1600	0.045	0.049	0.053	0.065		
Fiberglas block, PF612	2.5	500	0.023	0.039				
Fiberglas block, PF614	4.25	500	0.021	0.033				
Fiberglas block, PF617	9	500	0.020	0.033				
Fiberglas, metal mesh blanket, #900	_	1000	0.020	0.030	0.040			
Glass blocks, average values	14-24	1600	_	0.046	0.053	0.074		
Hydrous calcium silicate, "Kaylo"	11	1200	0.032	0.038	0.045			
85% magnesia	12	600	0.029	0.035				
Micro-quartz fiber, blanket	3	3000	0.021	0.028	0.042	0.075	0.108	0.142
Potassium titanate, fibers	71.5	_	_	0.022	0.024	0.030		
Rock wool, loose	8-12		0.027	0.038	0.049	0.078		
Zirconia grain	113	3000	_	_	0.108	0.129	0.163	0.217

1.11. Bibliografía

J. Shackelford. CRC Materials Science and Engineering Handbook, CRC Press, EE.UU.2001

Brian S. Mitchell. An Introduction To Materials Engineering And Science for Chemical Engineers , John Wiley & Sons, EE. UU., 2004

W. F. Smith. Fundamentos de la Ciencia e Ingeniería de Materiales, 2da ed, McGraw Hill, 1993.

M. Ashby. Engineering Materials 1 - An Introduction to their Properties and Applications, 2da ed., Butterwords-Heinemann, Oxford-U.K., 2002.

D. Askeland. Ciencia e Ingeniería de los Materiales. International Thomson Ed. 3ra ed. 1998.

Callister, W. D. Fundamentals of Materials Science and Engineering, 5° ed., John Wiley & Sons, EE.UU., 2001.

Harper, C. Handbook of Materials for Product Desing, McGraw Hill, EE.UU., 2001.

141