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Abstract - The Mohr-Coulomb (MC) criterion possesses a linear shear failure envelope and is widely used 
ingeotechnical engineering calculations. However, the failureprocess in rockmass is more complex than that 
of soils, and it can be more adequately described by the k&k-Brown 0 failure criterion. This criterion 
has been updated as well as modified, but its effect on the shear failure envelope has not been studied. The 
shear failure envelope for the modified form of HB criterion is &rived in this paper, which shows that a 
change in the value ofparameter a from 0.5 to 0.6 affects the shear envelope more signifiantly for a rockmass 
characterized by a larger value ofparameter m and high effective normal stress. The instantaneous friction 
angle is also affected by a change in the value ofpammeter a. 
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Introduction 

M ost of the theoretical development in geotechnical 
engineering has been based on the MC failure 
criterion. While it applies fairly well to soil me- 

chanics problems, its extension to the problems of rock 
mechanics is questionable, although it is still applied in 
rock mechanics (Jumikis 1983; Daemen 1983). Based on 
available experimental evidence and theoretical experi- 
ence with the fracture of rock, Hoek and Brown (1980) 
derived a criterion for its interpretation. This criterion has 
since been updated (Hock and Brown 1988) as well as 
modified (Hoek et al. 1992). 

While the shear failure envelope for the original form of 
HB criterion is known War 19861, the shear failure enve- 
lope for its modified form is not known. This paper presents 
its complete derivation. Two computational aids are given 
for quick use of the associated equations in practical calcu- 
lations, and their use is illustrated. Some sample calcula- 
tions are done in order to study the consequences of modi- 
fications in the original form of the HB criterion. 

Construction of Shear Envelope 
A strength criterion is essentially a function of stresses 

and some material parameters which, when satisfied, 
defines the material failure under the particular combina- 
tion of stresses and for the given values of material param- 
eters. In problems of geotechnical engineering, failure is 
characterized by shear deformation, and therefore it is 
more informative to express the strength criterion in terms 
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of the normal and shear stresses acting on a plane inclined 
at some angle to the principal stress direction. This 
alternate representation is termed the shear envelope. A 
general procedure for derivation of the shear envelope was 
given by Balmer (1952). This procedure was then used by 
Ucar (19861 to derive the shear envelope of the original 
form of the HB criterion. The shear envelope for the 
generalized HB criterion is derived in this paper. The 

Notations 

a = Material constant of HB criterion; 
C = Cohesion in MC medium; 
i = Effective roughness; 
m = Material constant of HB criterion; 
S = Material constant of HB criterion; 
a = Angle between failure surface and 

direction of stress; 

: 
= Instantaneous friction angle; 
= Angular polar coordinate; 

0 = Basic friction angle; 
oandr = Normal and shear stress on a plane 

dipping at an angle a, respectively; 
0, = Uncon6ned compressive strength of 

intact material; 
a, and o3 = Major and minor principal stresses, 

respectively; 
0,. and o, = Radial and tangential stress, respec- 

tively; 

d = Derivative 2 ; 

? = Derivative 9 ‘5 
a-i? 
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procedure adopted does not require solution of any differ- 
ential equation, and the solution given by Ucar (1986) now 
becomes a particular case of this derivation. 

General Analysis 
Let o and ‘T be the normal and shear stresses, respec- 

tively, acting on a failure plane in a rockmass. The object 
of the analysis is to derive an expression for z’ = dzlda 
using the generalized HB criterion. From the analysis of 
Mohr circle, it can be easily shown that 

1 
(T olfa3]a+72=(%j%3) (1) 

Let cr’= $$ where CJ, and (TV are the major and minor 

principal stre&es, respectively. 
By differentiating eq. 1 with respect to 03, the following 

expressions are obtained: 

q-Q3 
ts=o3+ I+d (2) 

2= -G Q1-03 

1 + d (3) 

CT1=(T+7J;;T 
(4) 

a,=0 -z 
G 

From eqs. 4 and 5, (6) 

Let a be the angle between the failure surface and the 
direction of minor principal stress and p be the inclination 
of envelope to the Mohr circle. From the Mohr circle 
construction (Fig. l), it can be seen that 2a = 6 + x!2; 
therefore, 

tana= Jd and tanp=o’ (7) 

Fromeq. 7, tan 6 = ‘7::;’ (8) 

On substitution of eq. 7 into eq. 8, a quadratic equation 
in Jo’ is obtained. Taking the positive root of this equation 
and using eq. 8, 

(9) 

Therefore, 

a,_1=2sinP(1+sinp) 
CO82 p 

and d + 1 = 2 (tJs$ p, (10) 

Application of Generalized HB criterion 
The generalized HB criterion may be written as 

cgL(m~+sy (11) 

where cre is the unconfined compressive strength of the 
intact material and m, s and a are the material parameters 
associated with the HB criterion. Therefore, 

From eq. 2, 

(12) 

(13) 

-&Z (mz+s’ 
2+ma(m$+sr-l 

[1+ma(m2+s)s-1]m (14) 

Combining eqs. 11 and 12, 

o’=l+ ma 
01-c3 (a-l/a) 

( 1 0, 

Substituting in eq. 15 from eq. 6, 

(15) 

(16) 

I Normal stress o\ 

Figure 1. Graphical representation of stress conditions at failure. 
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1a*o- 
Inset Table. - Factors In Ex Verne Range 

II 1.0 I 5.7 ??2728 1 0’982842 II 

107 38.1630 0.974474 

2-o 28. $025 0.966 238 

2.5 22*8620 O* 958129 

3-O 19 00314 0 * 950140 
I 

3’5 16* 2923 00 94 2267 

4*0 14.2355 0.934504 

12-6335 0. 926047 

??11.3499 08 919290 

Instantaneous friction angep (degrees I 

Figure 2. Aid I for fihre envelope computation. 

With the help of eqs. 7,8 and 9, eq. 16 may be written as 

From eqs. 6, 9 an’d 11, 

(18) 

In eq. 18, o3 may be eliminated with the help of eq. 5. 
On using eqs. 7, 9 and 10, the final result appears as 
follows: 

2+=cosp m 
[ ( +-x2EJ- 

c 0, l+sinp 1 P 
+s (19) e 

Eliminating & from eq. 19 by using eq. 18 and on 
simplification, the folliwing expression is obtained: 

(20) 
The zero of the right hand side of eq. 20 occurs when 

sin6 = 1.0 or -a. The sets of eqs. 13 and 14 or eqs. 17 and 
20 give the required. failure envelope. The latter set is in 
terms of angle l3 which is termed the instantaneous friction 
angle (Hoek, 1983). The failure envelope may also be 
presented in a compact form as follows: 

-. 2g=fgy (mE+s) cm 

For the particular case of a = 0.5, the eqs. 17,20 and 21 
may be presented as’ 

r _m 1_-sinp -__. 
0, 8 twp co+7 (cot p- CO8 B) (22) 

o-m 
0, -16 --&+2sinp)- ($+%) (231 

(24) 

Eqs. 22 and 23 were also derived by Ucar (19861, al- 
though a longer procedure was used in which solution of a 
differential equation was also involved. 

Computation Procedure 
The solution procedure of failure envelope than be- 

comes: 
Step I: For the given value of g, m, s and a, solve eq. 20 

for 3. 

Step II: Compute value of the factor CO8 p 
[ 1 (1 

Step III: Use eq. 21 to obtain $ 
The eq. 13 may also be written’as 

Eq. 25 may also be used for computation of a/a to be 
used in step I above. To facilitate computations witi the 
above failure envelope, two computation aids are given in 
Figures 2 and 3. The curves in these figures do not show any 
significantrariation for various values of a between 0.5 and 
0.6; therefore, they may be valid for all values of a in this 
range. Figure 2 is derived by recasting eq. 20 as follows: 
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USP column 3 of inset table 
of Fig.2 

k 

Figure 3. Aid 2 for failure envelope computation. 

A. m$+5)(1-0)=(~). (l+~p)“-” (26) 

illustrative Computations 
The theory presented in the previous sections was used 

to prepare sample illustrations of Figures 4 and 5, in which 
the failure envelope and variation friction angle are pre- 
sented for extreme values of m, s and a. It was shown by 
Hoek (1983) that large values of m, of the order of 15-25, 
give a steeply inclined Mohr envelope and high instanta- 
neous friction angle at low effective stress levels. These 
characteristics correspond to brittle behavior of igneous 
and metamorphic rocks such as andesite, gneiss and gran- 
ite. The lower m values, of the order of 3-7, give a lower 
instantaneous friction angle, and tend to be associated 
with more ductile carbonate rocks such as limestone and 
dolomite. The parameter s is unity for intact rock and 
implies a finite tensile strength. The minimum value of s 
= 0 applies to a heavily jointed or broken rockmass. In such 
cases, the tensile strength is zero and the rockmass has 
zero cohesive strength when the effective normal stress is 
zero. Figures 4 and 5 may be examined in light of this 
information. 

It is seen in Figure 4 that for m = 25, the envelope for a 
= 0.6 lies considerably above that for a =0.5, suggesting a 
more brittle behavior. The curves for s = 0 lie a little below 
the corresponding s = 1 curves but otherwise these curves 
are close to each other. The envelopes behave differently 
for smaller values of m. A change in the value of s from 
unity to zero has a more pronounced effect on the failure 
envelope than it did in the case of larger values of m. Also, 
the difference in envelopes for a = 0.5 and 0.6 is significant 
at higher values of effective normal stress and s = 1.0. 
When s = 0, the two envelopes are practically identical. 

Figure 5 shows that a change in the value of a from 0.5 
to 0.6 enhances the friction angle, which becomes more 
pronounced for higher effective normal stress. The curves 
for s = 0 lie above the corresponding curves for s = 1. These 
curves differ more significantly for smaller values of effec- 
tive normal stress. For higher values of m, the region of 
significant difference is narrow (0 to 0. l), while for smaller 
values of m, this region is considerably larger (0 to 0.6). 

This appears reasonable because larger values of m apply 
to brittle rocks, and smaller values to ductile rocks. Some 
of these findings may be substantiated as follows. Let + be 
the effective friction angle and i the effective roughness. 
These are related as follows: 

r= atan ($+ i) (27) 
Eq. 27 applies to the shear resistance of non-planar rock 

joints and predicts an increase in the instantaneous fiic- 
tion angle. In the case of sands, the angle i denotes the 
average angle of deviation of particle displacements from 
the direction of the applied shear stress. In the case of rock 
joints, i is related to the geometry of the asperities. The 
value ofi reduces at high normal stress, as asperities would 
tend to shear off (Barton 1976). This feature is clearly 
visible in Figure 5. 

At extremely low normal stress, Barton and Choubey 
.(1977) have measured the instantaneous friction angle in 
excess of 88”. Barton (1976) has also discussed the possi- 
bility of having a vertical tangent at or close to the shear 
stress axis (zero normal stress), particularly so for all 
mating surfaces when there is measurable non-planarity 
(i.e. JRC > 5). Therefore, a theoretical calculation of p = 
90.0 at Q = 0 (Fig. 5) for d = 0 appears reasonable. These 
arguments may also be valid in the case of rockmass, 
particularly during the initial stages of loading when the 
elastic stress distribution is also valid. 

Numerical Examples 
Ucar (1986) has given three examples which are resolved 

subsequently to illustrate the use of Figures 2 and 3. 

Example 1. Granite rockmass of good quality. Slightly 
weathered with joint spacing of 2 m. 

Blocky seamy, folded and faulted. This rock description 
in conjunction with the table of constants given by Hoek 
(1996) gives the following: m = 2.5, s = 0.004$ a = 0.5. Let 
o/u, = 2.0. 

Therefore, A. (m$ + g)(‘-) = 3.58 

From Figure 2, 5 =15” and from Figure 3, 

From eq. 21, $ = 0.878 

Example 2. Lphibolite of very poor quality, highly 
jointed and weathered with joint spacing less than 50 mm. 
With this rock description and the table of constants given 
byHoek(1996),m=0.025,s=0,a=0.5,andleta/a,=1.0. 

From the inset table of Figure 2, p = 0.8” and 

COB p 

(l+C? 

Therefore, eq. 21 gives $- = 0.247 E 
Example 3. Gneiss of poor quality with numerous 

weathered joints at 50- to loo-mm spacing. With this rock 
description and the table of constants given by Hoek 
(1996), 

m = 0.13, s = lo”, a = 0.5. Let a/ 0, = 5.0. 
From the inset table of Figure 2, f3 = 2.33” and 

From eq. 21, r/cc = 0.3874. 
These results were also obtained by Ucar (1986). 

466 TUNNELLING AND UNDERGRO~~~D SPACE TECHNOLOGY Volume 13, Number 4,1998 



$4 r 1-H 
i,/ II m=Z 

Oa8 - 

O-8 - 

Effective Normal Stress 0~ 

Figure 4. Failure envelopes for sample material parameter values. 
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Figure 5. Instantaneous friction angle for sample material parameter values. 
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Applications 
Aapplications ofthe above shear envelope in the compu- 

tation of the slip line field around circular openings in a 
jointed Hoek-Brown medium (Kumar 1997) have been 
shown. The critical height of a drained slope in a Hoek- 
Brown medium containing a planar discontinuity (Kumar 
1998) has also been computed. In both these applications, 
an iterative computational scheme has been developed to 
account for the nonlinear nature of the shear envelope. 
This scheme is not needed in the use of the Mohr-Coulomb 
criterion because its shear envelope is linear. 
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Concluding Remarks 
The shear envelope for a generalized form of HB criterion 

is derived from which the information of available pub- 
lished literature can be obtained as a particular case.. The 
behavior of the shear envelope for typical values of material 
parameters is studied and examined in the light of the 
published information. It is found that by changing the 
value of parameter a in eq. 11, which is the main feature of 
the generalized HB criterion, both the shear envelope and 
the friction angle change. This change can easily be quan- 
tified from the theory presented in this paper. 
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