NUMERICAL METHODS

Shear Failure Envelope of Hoek-Brown Criterion

for Rockmass

P. Kumar

Abstract — The Mohr-Coulomb (MC) criterion possesses a linear shear failure envelope and is widely used
in geotechnical engineering calculations. However, the failure process in rockmass is more complexthan that
of soils, and it can be more adequately described by the Hoek-Brown (HB) failure criterion. This criterion
has been updated as well as modified, but its effect on the shear failure envelope has not been studied. The
shear failure envelope for the modified form of HB criterion is derived in this paper, which shows that a
change in the value of parameter a from 0.5 to 0.6 offects the shear envelope more significantly for a rockmass
characterized by a larger value of parameter m and high effective normal stress. The instantaneous friction

angle is also affected by a change in the value of parameter a.
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Introduction

ost of the theoretical development in geotechnical
engineering has been based on the MC failure

criterion. While it applies fairly well to soil me-
chanics problems, its extension to the problems of rock
mechanics is questionable, although it is still applied in
rock mechanics (Jumikis 1983; Daemen 1983), Based on
available experimental evidence and theoretical experi-
ence with the fracture of rock, Hoek and Brown (1980)
derived a criterion forits interpretation. This criterion has
since been updated (Hoek and Brown 1988) as well as
modified (Hoek et al. 1992).

While the shear failure envelope for the original form of
HB criterion is known (Ucar 1986), the shear failure enve-
lope for its modified form is not known. This paper presents
its complete derivation. Two computational aids are given
for quick use of the associated equations in practical calcu-
lations, and their use is illustrated. Some sample calcula-
tions are done in order to study the consequences of modi-
fications in the original form of the HB criterion.

Construction of Shear Envelope

A strength criterion is essentially a function of stresses
and some material parameters which, when satisfied,
defines the material failure under the particular combina-
tion of stresses and for the given values of material param-
eters. In problems of geotechnical engineering, failure is
characterized by shear deformation, and therefore it is
more informative to express the strength criterion in terms
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of the normal and shear stresses acting on a plane inclined
at some angle to the principal stress direction. This
alternate representation is termed the shear envelope. A
general procedure for derivation of the shear envelope was
given by Balmer (1952). This procedure was then used by
Ucar (1986) to derive the shear envelope of the original
form of the HB criterion. The shear envelope for the
generalized HB criterion is derived in this paper. The

Notations

a = Material constant of HB criterion;

¢ = Cohesion in MC medium,;

i = Effective roughness;

m = Material constant of HB criterion;

s = Material constant of HB criterion;

o = Angle between failure surface and
direction of stress;

B = Instantaneous friction angle;

6 = Angular polar coordinate;

¢ = Basic friction angle;

cand 7 = Normal and shear stress on a plane
dipping at an angle o, respectively;

o, = Unconfined compressive strength of
intact material;

0, and 0, = Major and minor principal stresses,
respectively;

o.and 0, = Radial and tangential stress, respec-
tively;

c = Derivative g%; ;

T = Derivative 91

do
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procedure adopted does not require solution of any differ-
ential equation, and the solution given by Ucar (1986) now
becomes a particular case of this derivation.

General Analysis

Let 6 and 1 be the normal and shear stresses, respec-
tively, acting on a failure plane in a rockmass. The object
of the analysis is to derive an expression for 7’ = dt/do
using the generalized HB criterion. From the analysis of
Mohr circle, it can be easily shown that

o- g0 +=(25%

Let o’= %% where o, and o, are the major and minor
3

principal stresses, respectively.
By differentiating eq. 1 with respect to g,, the following
expressions are obtained:
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Let a be the angle between the failure surface and the
direction of minor principal stress and p be the inclination
of envelope to the Mohr circle. From the Mohr circle
construction (Fig. 1), it can be seen that 2a = p + w/2;
therefore,

tano= Vo and tanp="7 ¢
_tanzoc—l
Fromeq.7, t‘,anﬁ———2 an (8)

On substitution of eq. 7 into eq. 8, a quadratic equation

iny/ ¢ is obtained. Taking the positive root of this equation
and using eq. 8,
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Therefore,
o 1= 2s1n,3(12+ sin ) and o' +1= 21 +sinp) (10)
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Application of Generalized HB criterion
The generalized HB criterion may be written as

___01(;603 ={m%§+s}° (11)

where ¢_is the unconfined compressive strength of the
intact material and m, s and a are the material parameters
associated with the HB criterion. Therefore,

G'=g—g.'§=1+ma(m%+s)a_l (12)
From eq. 2,
o3
o _0 (m7+s)
0.7 7" 2+ ma(mc%f + s)a -1 43
ﬁ a
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Combining egs. 11 and 12,

' ma
=1+ 0y — O3\a-Va) (15)
[“=)
Substituting in eq. 15 from eq. 6,
c=1+—-ma__ (16)
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Figure 1. Graphical representation of stress conditions at failure.
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Figure 2. Aid I for failure envelope computation.

With the help of eqgs. 7, 8 and 9, eq. 16 may be written as

T _(ma 1 - sin B\(1%5) (cos
6;—(_)(1 )( sin B ( 2 an
From egs. 6, 9 and 11,
251:—=cosﬁ(m%§+s)a (18)

In eq. 18, ¢, may be eliminated with the help of eq. 5.
On using egs. 7 9 and 10, the final result appears as
follows:

cos

1+sin ﬂ) * sr
Eliminating -Z- A from eq. 19 by using eq. 18 and on

2ai—cosﬁ[m(———i (19)

simplification, the followmg expression is obtained:
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m
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The zero of the right hand side of eq. 20 occurs when

sinf = 1.0 or -a. The sets of eqs. 13 and 14 or eqs. 17 and

20 give the required failure envelope. The latter set is in

terms of angle p which is termed the instantaneous friction

angle (Hoek, 1983). The failure envelope may also be
presented in a compact form as follows:

2aic=ﬁ‘_?flf_.(m%+s)° 1)
a

For the particular case of a = 0.5, the eqs. 17, 20 and 21
may be presented as

(22)

sﬁ_—(cotﬁ cos f)
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g-m. (81 2p+2sinﬁ)-—(31—'g+%) (23)
e

Egs. 22 and 23 were also derived by Ucar (1986), al-
though a longer procedure was used in which solution of a
differential equation was also involved.

Computation Procedure

The solution procedure of failure envelope than be-
comes:

Step I: For the given value of = ,m, s and a, solve eq. 20
for f.

Step II: Compute value of the factor cos B =
(1 + 812
Step III: Use eq. 21 to obtain -£ YA
The eq. 13 may also be wntten as
(0’1 ~ 0'3)
UC
0y — O3y )(GT_I‘)
G,

[

O3

A

o% = (25)

2+ma-(

Eq 25 may also be used for computation of o/ o, to be
used in step I above. To facilitate computations with the
above failure envelope, two computation aids are given in
Figures 2 and 3. The curves in these figures do not show any
significant variation for various values of @ between 0.5 and
0.6; therefore, they may be valid for all values of a in this
range. Figure 2 is derived by recasting eq. 20 as follows:
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Figure 3. Aid 2 for failure envelope computation.
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lilustrative Computations

The theory presented in the previous sections was used
to prepare sample illustrations of Figures 4 and 5, in which
the failure envelope and variation friction angle are pre-
sented for extreme values of m, s and a. It was shown by
Hoek (1983) that large values of m, of the order of 15-25,
give a steeply inclined Mohr envelope and high instanta-
neous friction angle at low effective stress levels. These
characteristics correspond to brittle behavior of igneous
and metamorphic rocks such as andesite, gneiss and gran-
ite. The lower m values, of the order of 3-7, give a lower
instantaneous friction angle, and tend to be associated
with more ductile carbonate rocks such as limestone and
dolomite. The parameter s is unity for intact rock and
implies a finite tensile strength. The minimum value of s
=0 applies to a heavily jointed or broken rockmass. Insuch
cases, the tensile strength is zero and the rockmass has
zero cohesive strength when the effective normal stress is
zero. Figures 4 and 5 may be examined in light of this
information.

It is seen in Figure 4 that for m = 25, the envelope for ¢
= 0.6 lies considerably above that for a =0.5, suggesting a
more brittle behavior. The curves for s = 0 lie a little below
the corresponding s = 1 curves but otherwise these curves
are close to each other. The envelopes behave differently
for smaller values of m. A change in the value of s from
unity to zero has a more pronounced effect on the failure
envelope than it did in the case of larger values of m. Also,
the difference in envelopes for a = 0.5 and 0.6 is significant
at higher values of effective normal stress and s = 1.0.
When s = 0, the two envelopes are practically identical.

Figure 5 shows that a change in the value of a from 0.5
to 0.6 enhances the friction angle, which becomes more
pronounced for higher effective normal stress. The curves
for s = 0 lie above the corresponding curves for s = 1. These
curves differ more significantly for smaller values of effec-
tive normal stress. For higher values of m, the region of
significant difference is narrow (0 to 0.1), while for smaller
values of m, this region is considerably larger (0 to 0.6).
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This appears reasonable because larger values of m apply
to brittle rocks, and smaller values to ductile rocks. Some
of these findings may be substantiated as follows. Let ¢ be
the effective friction angle and i the effective roughness.
These are related as follows:

t=otan(9+1i) 27

Eq. 27 applies to the shear resistance of non-planar rock
joints and predicts an increase in the instantaneous fric-
tion angle. In the case of sands, the angle i denotes the
average angle of deviation of particle displacements from
the direction of the applied shear stress. Inthe case of rock
joints, i is related to the geometry of the asperities. The
value ofi reduces at high normal stress, as asperities would
tend to shear off (Barton 1976). This feature is clearly
visible in Figure 5.

At extremely low normal stress, Barton and Choubey

(1977) have measured the instantaneous friction angle in

excess of 88°. Barton (1976) has also discussed the possi-
bility of having a vertical tangent at or close to the shear
stress axis (zero normal stress), particularly so for all
mating surfaces when there is measurable non-planarity
(i.e. JRC > 5). Therefore, a theoretical calculation of g =
90.0 at ¢ = 0 (Fig. 5) for 6 = 0 appears reasonable. These
arguments may also be valid in the case of rockmass,
particularly during the initial stages of loading when the
elastic stress distribution is also valid.

Numerical Examples

Ucar (1986) has given three examples which are resolved
subsequently to illustrate the use of Figures 2 and 3.

Example 1. Granite rockmass of good quality. Slightly
weathered with joint spacing of 2 m.

Blocky seamy, folded and faulted. This rock description
in conjunction with the table of constants given by Hoek
(1996) gives the following: m = 2.5, s = 0.004;, a = 0.5. Let
o/o, =2.0.

Therefore, % . (mg— + s)(l'a) =3.58
From Figure 2, f =15° and from Figure 3,

cos 8

(1—:@ =0.785
g

From eq. 21, o.l =0.878
(4

Example 2. Amphibolite of very poor quality, highly
jointed and weathered with joint spacingless than 50 mm.
With this rock description and the table of constants given
by Hoek (1996), m = 0.025, s = 0, a=0.5, and let 6/ 0, = 1.0.

2 (1-a) _
m'(m%'f's) e =80.0

From the inset table of Figure 2, = 0.8° and

cos B
(14255

Therefore, eq. 21 gives - = 0.247
C

Example 3. Gneiss of poor quality with numerous
weathered joints at 50- to 100-mm spacing. With this rock
description and the table of constants given by Hoek
(1996),

m=0.13,5s=10%, a =0.5. Let 0/g,=5.0.

From the inset table of Figure 2, B = 2.33° and
cos 8

m =0.961
a

From eq. 21, 7/0, = 0.3874.
These results were also obtained by Ucar (1986).
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Figure 4. Failure envelopes for sample material parameter values.
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Figure 5. Instantaneous friction angle for sample material parameter values.
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Applications

Aapplications of the above shear envelope in the compu-
tation of the slip line field around circular openings in a
jointed Hoek-Brown medium (Kumar 1997) have been
shown. The critical height of a drained slope in a Hoek-
Brown medium containing a planar discontinuity (Kumar
1998) has also been computed. In both these applications,
an iterative computational scheme has been developed to
account for the nonlinear nature of the shear envelope.
This scheme is not needed in the use of the Mohr-Coulomb
criterion because its shear envelope is linear.

Concluding Remarks

The shear envelope for a generalized form of HB criterion
is derived from which the information of available pub-
lished literature can be obtained as a particular case.. The
behavior of the shear envelope for typical values of material
parameters is studied and examined in the light of the
published information. It is found that by changing the
value of parameter a in eq. 11, which is the main feature of
the generalized HB criterion, both the shear envelope and
the friction angle change. This change can easily be quan-
tified from the theory presented in this paper.
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