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Abstract  
 
A new approach for the design of Sliding Mode Controllers based on a first-order-plus-deadtime model 
of the process is developed. This approach results in a fixed structure controller with a set of tuning 
equations as a function of the characteristic parameters of the model. The controller performance is 
judged by simulations on two nonlinear chemical processes.  
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1. Introduction 
 
 
Sliding Mode Control (SMC) is a robust and simple procedure to synthesize controllers for linear and 
nonlinear processes. To develop a Sliding Mode Controller, SMCr, knowledge of the process model relating 
the controlled variable, XBCB(t), to the manipulated variable, U(t), is necessary. However, there are two 
problems with the use of a model as far as chemical processes are concerned. First, the development of a 
complete model is difficult due mainly to the complexity of the process itself, and to the lack of knowledge of 
some process parameters. Second, most process models relating the controlled and the manipulated variables 
are of higher-order. Generally, the SMC procedure produces a complex controller, which could contain four 
or more parameters resulting in a difficult tuning job. Therefore, the use of the traditional procedures of SMC 
presents disadvantages in their application to chemical processes. 
  
An efficient alternative modeling method for process control is the use of empirical models, which use low 
order linear models with deadtime. Most times, first-order-plus deadtime (FOPDT) models are adequate for 
process control analysis and design. But, these reduced order models present uncertainties arising from 
imperfect knowledge of the model, and the process nonlinear effects contribute to performance degradation 
of the controllers. Conventional controllers, such as PID, Lead-Lag or Smith Predictors, are sometimes not 
sufficiently versatile to compensate for these effects. Thus, a SMCr could be designed to control nonlinear 
systems with the assumption that the robustness of the controller will compensate for modeling errors arising 
from the linearization of the nonlinear model of the process.  
 
The aim of this paper is to design a SMCr based on a first-order-plus-deadtime (FOPDT) model of the actual 
process. The overall idea is to develop a general SMCr, which can be used for self-regulating chemical 
processes. The parameters of the model, process gain, K, process time constant, τ , and process deadtime, tB0 B, 
are used to obtain the initial estimates of the tuning terms in the SMCr.B 

 
This article is organized as follows. Section 2 briefly presents the process model. Section 3, presents some 
basic concepts of the SMC method. Section 4 shows the procedure to design a SMCr using the FOPDT 
model. Tuning equations for the controller are also given in this section. In Section 5 the simulation of the 
SMCr for two nonlinear chemical processes is presented. Section 6 concludes the paper. 
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2. Process Model 
 
 
The process reaction curve, Figure 1, is an often-used method for identifying dynamic models [1]. It is simple 
to perform, and provides adequate models for many applications.  The curve is obtained by introducing a step 
change in the output from the controller and recording the transmitter output. 
 
 

[Figure 1] 
 
From the process curve shown in the figure, and the procedure presented in the reference, the numerical 
values of the terms in the FOPDT model given in Eq. 1 are obtained 
 

1)(
)( 0

+
=

−

s
Ke

sU
sX st

τ
                                                                                                                 (1) 

 
where X(s) is the Laplace transform of the controlled variable, the transmitter output, and U(s) is the Laplace 
transform of the manipulated variable, the controller output.  Both X(s) and U(s) are deviation variables.  In 
this paper we use the unit of X(s) as fraction of the transmitter output, fraction TO; the unit of U(s) is fraction 
of the controller output, fraction CO. K, tB0B and τ were previously defined. 
                                                                        

 
3.  Basic Concepts about Sliding Mode Control 
 
 
Sliding Mode Control is a technique derived from Variable Structure Control (VSC) which was originally 
studied by [2]. The controller designed using the SMC method is particularly appealing due to its ability to 
deal with nonlinear systems and time-varying systems [3-5]. The robustness to the uncertainties becomes an 
important aspect in designing any control system. 
 
The idea behind SMC is to define a surface along which the process can slide to its desired final value; Figure 
2 depicts the SMC objective. The structure of the controller is intentionally altered as its state crosses the 
surface in accordance with a prescribed control law. Thus, the first step in SMC is to define the sliding 
surface S(t). S(t) is chosen to represent a desired global behavior, for instance stability and tracking 
performance; The S(t) selected in this work, presented by [4], is an integral-differential equation acting on the 
tracking-error expression 
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where  e(t) is the tracking error, that is, the difference between the reference value or set point, R(t), and the 
output measurement, X(t), or e(t) = R(t) - X(t). λ is a tuning parameter, which helps to define S (t); This term 
is selected by the designer, and determines the performance of the system on the sliding surface, n  is the 
system order 

  
[Figure 2] 

 
 The objective of control is to ensure that the controlled variable be equal to its reference value at all times, 
meaning that e (t) and its derivatives must be zero. Once the reference value is reached, Eq. 2 indicates that S 
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(t) reaches a constant value.  To maintain S (t) at this constant value, meaning that e (t) is zero at all times; it 
is desired to make 
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Once the sliding surface has been selected, attention must be turned to design of the control law that drives 
the controlled variable to its reference value and satisfies Eq. 3. The SMC control law, U (t), consists of two 
additive parts; a continuous part, U BCB (t), and a discontinuous part, U BD B (t), [6]. That is 
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The continuous part is given by  
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where  f (X (t), R(t)) is a function of the controlled variable, and the reference value. 
 
The discontinuous part, U BD B (t), incorporates a nonlinear element that includes the switching element of the 
control law. This part of the controller is discontinuous across the sliding surface. 
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where KBD B is the tuning parameter responsible for the reaching mode. δ is a tuning parameter used to reduce 
the chattering problem. Chattering is a high-frequency oscillation around the desired equilibrium point. It is 
undesirable in practice, because it involves high control activity and also can excite high-frequency dynamics 
ignored in the modeling of the system [3, 4, 6]. 
 
In summary, the control law usually results in a fast motion to bring the state onto the sliding surface, and a 
slower motion to proceed until a desired state is reached. 
 

 
4. SMCr Synthesis from an FOPDT Model of the Process  
 
This section presents the development of a general SMCr, for self-regulating processes, using a first-order-
plus-deadtime  (FOPDT) process model. The FOPDT model is an approximation to the actual higher-order 
model. The development of this controller significantly simplifies the application of sliding mode control 
theory to chemical processes. 
 
The literature reviewed does not reveal a simple and practical method to apply SMC to process with dead 
time [7-9]. In this chapter, a SMCr structure based on the FOPDT model of the actual process is designed. 
Thus, the first step is to propose a way to handle the deadtime term 
 
The deadtime can be approximated in two different ways. A first-order Taylor series approximation to the 
deadtime term produces 
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The above approximation can also be written as a  first-order Padé Approximation  



 
 

 
 

4

 

st.
st.

e st

0

0

501
501

0

+
−

≅−                                                                                                             (8) 

 
Figure 3 shows a comparison among the deadtime term and the first-order Taylor series and Padé 
Approximations. The figure shows that the Padé Approximation works very well  between 0 and 1 but 
beyond the approximation brakes down. On other hand, the Taylor series approximation improves as tB0 B 
increases. 
   
 [Figure 3] 
 
 
In [10] is shown that the first-order Taylor approximation or the Padé approximation can be considered as 
good approximations for the deadtime term for chemical processes.  
 
The next section shows the development of a SMCr using both approximations. 
 
 
4.1  SMCr Development Based on a First-Order Taylor Series Approximation 
 
In this section a SMCr is developed based on the first-order Taylor series expansion.  Additionally, a rule to 
choose the tuning parameters will also be presented. 
 
Substituting Eq. 7 into Eq. 1 produces 
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In differential equation form 
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and since this is a second-order differential equation, n = 2, from Eq. 2 S (t) becomes 
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From Eq. 3 
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Substituting the definition of the error, e(t) = R(t) - X(t), into the first two terms of the above equation gives 
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Solving for the highest derivative from Eq. 10, substituting it into the Eq. 13, and solving for U(t) provides 
the continuous part of the controller 
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This procedure, involving Eqs. 11, and 13, to obtain the expression for the continuous part of the controller is 
known in the SMC theory as the equivalent control procedure [2]. 
 
In [11] is shown that the derivatives of the reference value can be discarded, without any effect on the control 
performance, resulting in a simpler controller. Thus,  
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U BCB(t)  can be simplified by letting, 
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It has been shown that this choice for λ B1B is the best for the continuous part of the controller [11].  
 
To assure that the sliding surfaces behaves as a critical or overdamped system, λ B0B should be 
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Then, the complete SMCr can be represented as follows 
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with  
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Equations 18a and 18b constitute the controller equations to be used. These equations present advantages 
from process control point of view, first they have a fixed structure depending on the λ’s parameters and the 
characteristic parameters of the FOPDT model, and second the action of the controller is considered in the 
sliding surface equation, by including the term sign(K), in Eq. 18b. Note, that sign(K) only depends on the 
static gain, therefore it never switches. From an industrial application perspective, Eq. 18b represents a PID 
algorithm [12]. 
 
To complete the SMCr, it is necessary to have a set of tuning equations. For the tuning equations as  first 
estimates, using the Nelder-Mead searching algorithm [13], the following equations were obtained [11].  
 
• For the continuous part of the controller and the sliding surface   
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• For the discontinuous part of the controller 
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Eqs. 19c and 19d are used when the signals from the transmitter and controller are in fractions (0 to 1).  
Sometimes, the control systems work in percentages that is, the signals are in % (0 to 100) of range.  In these 
cases the values of KD  andδ  are multiplied by 100.  
 
 
4.2 SMCr development based on the Padé Approximation 
 
This section contains the development of the control law when the deadtime term of the FOPDT process 
model is approximated by the Padé approximation, Eq.  8. The procedure followed in this section is similar to 
that one presented in the previous part. Substituting  Eq. 8 into Eq. 1, gives 
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Using a similar procedure as shown above, the continuous part of the controller, Uc(s), is 
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Eq. (21) has a pole (+2/tB0B) on the right side of the complex plane.  Thus, the continuous part of the controller 
contains an unstable term.  
 
Eq. (20) represents a nonminimun phase system. Hence, the equivalent control procedure applied directly 
over this kind of systems produce unstable controllers. An approach to solve the previous problem, and that 
permit the use of SMC to nonminimun phase processes is presented in [10]. 
 
In summary, up to now, the synthesis of a SMCr has been shown from the linearization of a nonlinear 
chemical process. The linear model representing the nonlinear chemical process is an FOPDT model. The 
characteristic parameters of the FOPDT model also are used in the tuning equations 
 
Thus, from the previous results, the controller equation to be used is that obtained from the Taylor Series 
Approximation. The next part illustrates the controller performance. 
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5. Simulation Results 
 
This section simulates the control performance of the SMCr designed and given in Eqs. 18a and 18b.  The 
first process, a mixing tank, compares the performance of the SMCr with respect to a PID controller.  The 
second process, a chemical reactor, presents further performance characteristics. 
 
5.1 Mixing Tank 
 
Consider the  mixing tank  shown in Figure 4. The tank receives two streams, a hot stream, W B1B (t), and a cold 
stream, W B2 B(t).  The outlet temperature is measured at a point 125 ft downstream from the tank. The following 
assumptions are accepted 
•The liquid volume in the tank is considered constant 
•The tank contents are well mixed 
•The tank and the pipe are well insulated. 
The temperature transmitter is calibrated for a range of 100P

o
PF to 200 P

o
PF.  Table 1 shows the steady-state 

conditions and other operating information. 
 

[Figure 4] 
 

The following equations constitute the process model 
 
•Energy balance around mixing tank 
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•Pipe delay between the tank and the sensor location 
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•Transportation lag or delay time 
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•Temperature Transmitter 
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• Valve position 
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•Valve equation 
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•Sliding Mode Controller (SMCr)  
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U(t)= U (t)+U (t)c D                                                                                                        (28) 
 
where  
WB1 B (t) = mass flow of hot stream, lb/min  
WB2 B (t) = mass flow of cold stream, lb/min 
Cp = liquid heat capacity at constant pressure, Btu/lb-°F  
Cv = liquid heat capacity at constant volume, Btu/lb-°F 
T B1B (t) = hot flow temperature, °F 
T B2 B(t) = cold flow temperature, °F 
T B3B (t) = liquid temperature in the mixing tank, °F  
T B4B (t) = equal to TB3 B(t) delayed by tBoB, °F 
tBo B = deadtime or transportation lag, min 
ρ = density of the mixing tank contents, lbm/ftP

3 

V = liquid volume, ftP

3 

TO (t) = transmitter output signal on a scale from 0 to 1  
VBp B (t) = valve position, from 0 (valve closed) to 1 (valve open) 
m (t) = fraction of controller output, from 0 to 1  
B CVL  = Bvalve flow coefficient, gpm/psiP

1/2 

G Bf  = Bspecific gravity, dimensionless 
∆ Pv = pressure drop across the valve, psi  
τ BT = Btime constant of the temperature sensor, min  
τ BVp = Btime constant of the actuator, min 
A = pipe cross section, ftP

2
P  

L = pipe length, ft 
B B 

Table 1. Design parameters and steady-state values 
 

Variable Value Variable Value 
W B1B  250.00 lb/min V 15 ftP

3
P
 

W B2B  191.17 lb/min TO   0.5 
Cp B1B B B 0.8 Btu/lb-°F Vp  0.478 
Cp B2B  1.0 Btu/lb-°F 

B CVL
B

 12 gpm / psiP

1/2
P
 

Cp B3B, Cv B3B 0.9 Btu/lb-°F ∆ Pv  16 psi 
Set point 150 °F τ BT B  0.5 min 

TB1B 250 °F τ Bvp B 
    0.4 min  

TB2B 50 °F A  0.2006 ftP

2
P
 

TB3B 150 °F L  125 ft 
ρ 62.4 lb / ftP

3
P
 m  0.478 CO 

 
Following the procedure, presented in Section 2, to obtain the parameters of the FOPDT model yields: K = - 
0.78 fraction TO/fraction CO, τ = 2.32 min., and tB0 B= 2.97 min. Using these values the tuning parameters for 
the SMCr are 
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The tuning parameters for the PI controller are 50.KC −=  and τ I = 2 32. min , using the tuning formulas 
for Dahlin synthesis, which produce smoother responses than Ziegler-Nichols tuning equations, working 
better for process with deadtime [1]. Note that the comparison is done using the initial tuning parameters for 
both controllers, to show the good performance obtained for the SMCr initial tuning equations, but they can 
be adjusted, fine tuning, until acceptable control performance be obtained. 
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Please note that the controller equations, Eqs. 18a and 18b, were developed using deviation variables. The 
following changes the “deviation variables” in the controller to “actual variables” 

mm(t))t(U  -  =   

   TOTO(t) - )t(X  =  
and                                                     e (t) =  R(t) - TO(t) 
 
where m(t) is the controller output, in fraction CO, TO(t) is the transmitter output, in fraction, and R(t) is the 
reference value, or set point, fraction TO.  The overbars indicate steady-state values. 
 
Since the process gain is negative, sign (K) is negative, the controller equation to be used is 
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Figure 5 shows the response of the temperature, T t4 ( ) , when the flow of hot water changes from 250 lb/min 
to 200 lb/min, then to 175 lb/min, to 150 lb/min, and finally to 125 lb/min. The curves clearly show that as 
the operating conditions change, the performance of the PID controller degrades, while that of the SMCr 
maintains its performance and stability.  In this case, as the flow of hot water decreases, with a corresponding 
decrease in cold water, the deadtime between the tank and the sensor increases.  This increase in deadtime 
certainly adversely affects the performance of the PID controller.  To recover stability, new tunings are 
required for the PI controller while none are required for the SMCr.   
 
 

[Figure 5] 
 

In spite of the controller was synthesized using a Taylor approximation and the tuning equations, Eqs. 19a to 
19d, are empirical, the proposed method can be successfully used in processes with a deadtime to time 
constant ratio larger than one. In our experience, they can be applied for  tB0B/τ  around of  3.   

 
 

5.2 Chemical Reactor 
 
The reactor shown in Fig. 6 is a continuous stirred tank where the exothermic reaction A → B takes place. To 
remove the heat of reaction the reactor is surrounded by a jacket through which a cooling liquid flows. 
 
 

[Figure 6] 
The following assumptions are accepted 
• heat losses from the jacket to the surroundings are negligible 
• densities and heat capacities of the reactants and products are both equal and constant 
• the heat of reaction is constant. 
• level of liquid in the reactor tank is constant; that is, the flow out is equal to the flow in. 
• the reactor and the jacket are perfectly mixed. 
The temperature controller is calibrated for a range of 80 P

o
PC to 100 P

o
PC.  Table 2 shows the steady-state and 

other operating information. 
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The following equations constitute the process model. 
• Mole Balance on reactant A 
 

( ))t(kC)t(C)t(C
V

)t(F
dt

)t(dC
AAAi

A 2−−=                                                                      (29) 

• Energy balance on reactor contents 
 

( ) ( )(t)T c-T(t)
C pV

UA
C p
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dT(t) R2
A ρρ
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• Energy Balance on jacket 
 

( ) ( )(t)T ci-(t)T cV c
(t)Fc(tT c-T(t)

C pccV c
UA=

dt
(t)dTc −

ρ
                                                (31)  

• Reaction rate coefficient  

)T(R
E

eokk 273+
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• Temperature transmitter 
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T 20
80 

τ
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• Sliding Mode Controller (SMCr)  
 

(t)U+(t)U=U(t) DC                                                                                                        (34)  
• Equal percentage control valve (Air to close) 

 α m(t)-
CmaxF=(t)CF                                                                                                 (35)  

 
where 
CBA B(t) = concentration of the reactant in the reactor, kgmole / mP

3
P
 

CBAiB (t) = concentration of the reactant in the feed, kgmole / mP

3
P
 

T (t)   = temperature in the reactor, P

o
PC  

T BiB (t)  = temperature of the feed, P

o
PC 

T Bc B (t)   = jacket temperature, P

o
PC 

T Bci B(t)  = coolant inlet temperature, P

o
PC 

TO (t)  = transmitter signal on a scale from 0 to 1(fraction TO) 
F (t)  = process feed rate, mP

3
P/sec  

V   = reactor volume, mP

3 

k  = reaction rate coefficient, mP

3
P / kgmole-sec 

∆H BR B = heat of reaction, assumed constant, J/kgmole 
ρ = density of the reactor contents, kgmole/mP

3
P
 

CBp B = heat capacity of the reactants and products, J/ kgmole- P

o
PC 

U = overall heat-transfer coefficient, J /sec-mP

2
P- P

o
PC 

A = heat transfer area, mP

2 

Vc = the jacket volume, mP

3
P
 

ρ BCB = density of the coolant, kg/mP

3
P
 

CBpc B  = specific heat of the coolant, J/kg- P

o
PC 

FBc B(t) =B coolantB rate, mP

3
P/sec 

τ BTB  = time constant of the temperature sensor, sec. 
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U (t) = SMCr output signal on a scale from 0 to 1 (fraction CO) 
FBC max B = maximum flow through the control valve, mP

3
P/sec 

α =  valve rangeability parameter 
kB0 B  =  Arrhenius frequency parameter, mP

3
P/sec-kgmole 

E = activation energy of the reaction, J/kgmole 
R = ideal gas law constant, 8314.39 J/kgmole-K 
m (t) = valve position on a scale from 0 to 1 
 
Figure 7 shows the open loop response of the reactor; from this figure process parameters, are:  K = 1.6 
fraction TO/fraction CO; τ = 13.0 min.; tB0 B= 3.0 min. For this process, because the process gain is positive, the 
SMCr is 
 

δ
λ

τ
τ

+|)t(S|
)t(SK+e(t)+)TO-(TO(t)

t
1

K
tm=m(t) D

⎥
⎦

⎤
⎢
⎣

⎡
+ 0

0

0                                                (18a) 

 
with 

dt)t(e)t(e
dt

)t(dTO)t(S
t

∫++−=
0

01 λλ                                                                          (18b) 

 
[Figure 7] 

 
With the values of K, τ, and tB0, Bthe continuous part of the SMCr can be tuned using the λ expressions, Eqs. 
19a and 19b, 

min-  0.410= 1λ1  

min-  0.042 210 =λ  
 
And, from  Eqs. 19c and 19d 
 
KBD B = 0.96 fraction CO 
δ = 0.76 fraction TO/min 

 
Table 2. Design parameters and steady-state values 

 
Variable Value Variable Value 

CBA B  1.133 kgmole/mP

3
P
 V Bc B 1.82 mP

3
P
 

CBaiB  2.88 kgmole/mP

3
P
 F (t) 0.45 mP

3
P/min 

T B B 88 P

o
PC F BC maxB  1.2 mP

3
P/sec 

TBiB  66 P

o
PC CBPc B  4184 J/kg- P

 o
PC 

TBciB 27 P

o
PC α 50 

Set point 88 P

o
PC τ BT B  0.33 min 

∆H BRB 
-9.6eP

7
P J/kgmole K BoB 0.0744 mP

3
P/sec-kgmole  

CBPB 1.815eP

5
P J/kgmole- P

o
PC E  1.182e P

7
P J/kgmole 

U 3550.0 J/sec-mP

2
P- P

 o
PC TBc B  50.5 P

o
PC 

ρ Bc B 
1000 kg/mP

3
P
 

 
m  0.254 fraction CO 

        A                5.4 mP

2
P
          V            7.08 mP

3
P
 

         ρ         19.2 kgmoles/mP

3
P 

P

       
P
 

 
 
Figure 8 shows the system response when a +10% change in inlet flow occurs.  The figure shows that, 
because the temperature of the inlet flow is cooler than the temperature in the reactor, the reactor temperature 
first decreases somewhat. However, after a short while the temperature in the reactor increases since more 
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reactant is added to the reactor. 
 

[Figure 8] 
 

Figure 8 shows the control performance when the modeling error between the real process and the FOPDT 
model is small. However, the model is never perfect. [14] considers that modeling error of 25% in its 
parameters as "reasonable error.”  Let us consider two cases. The first case is for -10% model error and the 
second one is for 100% in model error. The second case could be considered as "unreasonable error,” but our 
intent is to judge the controller. The error used is the same in every parameter, that is, the same  -10% error in 
K, τ and tB0B. 
 
Figure 9 shows the open loop responses for the actual process and for the model with a -10% and 100% error. 

[Figure 9] 
 
Figures 10 and 11 show the process response when the inlet flow changes by 10% and the modeling error 
used is -10% and 100% respectively. A comparison of Figs. 8 and 6, when no error in the model is present 
shows little difference in the process response. Fig. 9 shows that with 100% error in the model, the control 
performance degrades somewhat. The most significant difference is that it takes longer to return the process 
to the set point. However, even with such a large error in the model, the control is still stable. 
 

[Figure 10] 
 

[Figure 11] 
 

6. Conclusions 
 
This paper has shown the synthesis of a sliding mode controller based on an FOPDT model of the actual 
process. The controller obtained is of fixed structure.  A set of equations obtains the first estimates for the 
tuning parameters.  The examples presented indicate that the SMCr performance is stable and quite 
satisfactory in spite of nonlinearities over a wide range of operating conditions. The relations given in Eqs.19 
provided a good starting set of tunings. 

  
           The controller law, Eqs. 18a and 18b should be rather easy to implement in any computer system (DCS)[12].  
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Figure 1.  Process Reaction Curve 
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Figure 2. Graphical interpretation of  SMC  
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Figure 3. Comparison among e -x (1), Taylor (2) and Padé (3) approximations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 

Figure 4. Mixing tank 
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Figure 5. Temperature response under SMCr and PID controller 
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Figure 6. Scheme of Continuous Stirred Tank Reactor 
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Figure 7.  Process reaction curve for reactor 
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Figure 8. System responses for 10% in inlet flow 
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Figure 9. Effect of modeling error. 
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Figure 10. System responses for 10% change in inlet flow 

                              for -10% error in modeling 
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Figure 11. System responses for  10% change in inlet flow  

                                for 100% error in modeling 
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