ISA-S37.3-1982 (R1995)

Approved September 29, 1995

Standard

Specifications and Tests for Strain Gage Pressure Transducers

ISA-S37.3 — Specifications and Tests for Strain Gage Pressure Transducers

ISBN 0-87664-378-0

Copyright © 1995 by the Instrument Society of America. All rights reserved. Printed in the United States of America. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), without the prior written permission of the publisher.

ISA 67 Alexander Drive P.O. Box 12277 Research Triangle Park, North Carolina 27709

Preface

This preface, as well as all footnotes and annexes, is included for informational purposes and is not part of ISA-S37.3.

This standard has been prepared as a part of the service of ISA, the international society for measurement and control, toward a goal of uniformity in the field of instrumentation. To be of real value, this document should not be static but should be subject to periodic review. Toward this end, the Society welcomes all comments and criticisms and asks that they be addressed to the Secretary, Standards and Practices Board; ISA; 67 Alexander Drive; P.O. Box 12277; Research Triangle Park, NC 27709; Telephone: (919) 549-8411; Fax: (919) 549-8288; E-mail: standards@isa.org.

The ISA Standards and Practices Department is aware of the growing need for attention to the metric system of units in general, and the International System of Units (SI) in particular, in the preparation of instrumentation standards, recommended practices, and technical reports. The Department is further aware of the benefits to USA users of ISA standards of incorporating suitable references to the SI (and the metric system) in their business and professional dealings with other countries. Toward this end, this Department will endeavor to introduce SI and acceptable metric units in all new and revised standards to the greatest extent possible. *The Metric Practice Guide*, which has been published by the Institute of Electrical and Electronics Engineers as ANSI/IEEE Std. 268-1992, and future revisions, will be the reference guide for definitions, symbols, abbreviations, and conversion factors.

It is the policy of ISA to encourage and welcome the participation of all concerned individuals and interests in the development of ISA standards, recommended practices, and technical reports. Participation in the ISA standards-making process by an individual in no way constitutes endorsement by the employer of that individual, of ISA, or of any of the standards which ISA develops.

The development of this Standard was initiated as the result of a survey conducted by the Survey Committee on Transducers for Aero-Space Testing (8A-RP37) in December 1960. In addition to the strong need for improved and uniform transducer nomenclature and specification terminology, many of the people surveyed also indicated the need for standardization of performance characteristic specifications, test methods, and electrical requirements for certain classes of transducers used in Aero-Space Testing. Accordingly, five subcommittees were established initially, each to deal with one of these classes of transducers. Subcommittee 8A-RP37.3 (Subcommittee on Strain Gage Pressure Transducers, "SCOSGAPT") was organized on May 1, 1961, to prepare a Recommended Practice for strain gage pressure transducers. Six successive drafts were prepared and submitted for review and comments to a large number of people active in aerospace industries and sciences in which strain gage pressure transducers are used. The final document, ISA-RP37.3 (Guide for Specifications and Tests for Strain Gage Pressure Transducers for Aero-Space Testing), was published by ISA in April 1964. It was revised in 1970 and approved as ANSI Standard MC 6.2 in October 1975.

This Standard was prepared under the direction of Paul S. Lederer (Chairman S37.3) by members of SP37 by updating and expanding the previous version of the document and by obtaining extensive reviews of drafts of the Standard by representatives of transducer users and manufacturers as well as agencies of the U.S. Government. The reviewers were selected from a broad cross-section of all industries and sciences in which transducers are applied for measuring purposes.

This Standard is intended as a guide for technical personnel at user facilities as well as by manufacturers' technical and sales personnel whose duties include specifying, calibrating, testing, or showing performance characteristics of potentiometric pressure transducers. By basing users' specifications as well as technical advertising and reference literature on this Standard, or by referencing portions thereof, as applicable, a clear understanding of the users' needs or of the transducers' performance capabilities, and of the methods used for evaluating or proving performance, will be provided. Adhering to the specification outline, terminology and procedures shown will not only result in simple, but also complete specifications; it will also reduce design time, procurement lead time, and labor, as well as material costs. Of major importance will be the reduction of qualification tests resulting from use of a commonly accepted test procedures and uniform data presentation.

The following individuals served on the 1975 SP37.3 Subcommittee:

NAME

COMPANY

P. S. Lederer, Chairman J. F. Arbogast D. M. Keast D. L. Limbacher H. E. Lockery W. R. Myers National Bureau of Standards Hercules Powder Company Bolt, Beranek and Newman Aerojet-General Baldwin-Lima-Hamilton Consolidated Electrodynamics

The following individuals served on the ISA Committee SP37, who reaffirmed ISA-S37.3 in 1995:

NAME

COMPANY

E. Icayan, Chairman J. Weiss	Westinghouse Hanford Co. Electric Power Research Institute
P. Bliss, Deceased	Consultant
M. Brigham	The Supply System
D. Hayes	LA Dept. Water & Power
М. Корр	Validyne Corp.
C. Landis	Weed Fiber Optics
J. Miller	Rosemount Inc.
A. Mobley	3M Co.
J. Mock	Consultant
D. Norton	McDermott Energy Svces Inc.
H. Norton	Consultant
M. Tavares	Boeing Defense & Space Group
R. Whittier	Endevco
J. Wilson	Consultant

This standard was reaffirmed by the ISA Standards and Practices Board on September 29, 1995.

NAME

M. Zielinski

M. Widmeyer, Vice President	
H. Baumann	
D. Bishop	
P. Brett	
W. Calder III	
H. Dammeyer	
R. Dieck	
H. Hopkins	
A. Iverson	
K. Lindner	
T. McAvinew	
A. McCauley, Jr.	
G. McFarland	
J. Mock	
E. Montgomery	
D. Rapley	
R. Reimer	
R. Webb	
W. Weidman	
J. Weiss	
J. Whetstone	
C. Williams	
G. Wood	

COMPANY

Washington Public Power Supply System H. D. Baumann & Associates, Inc. Chevron USA Production Company Honeywell, Inc. Foxboro Company Phoenix Industries, Inc. Pratt & Whitney Utility Products of Arizona Lyondell Petrochemical Company Endress + Hauser GmbH + Company Metro Wastewater Reclamation District Chagrin Valley Controls, Inc. Honeywell Industrial Automation and Controls Consultant Fluor Daniel, Inc. **Rapley Engineering Services** Allen-Bradley Company Pacific Gas & Electric Company Consultant Electric Power Research Institute National Institute of Standards & Technology Eastman Kodak Company Graeme Wood Consulting Fisher-Rosemount

Contents

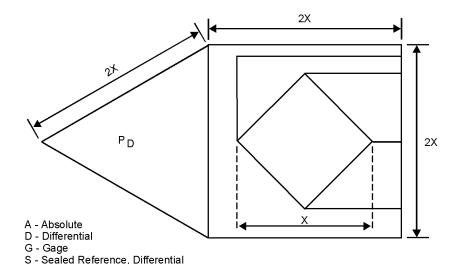
1	Scope	9
2	Purpose	9
3	Drawing symbol	9
4	Specifications	10
	 4.1 Design characteristics	15
	4.4 Tabulated characteristics versus test requirements	
5	ndividual acceptance tests and calibrations	22
	5.1 Basic equipment necessary to perform individual acceptance tests and calibration of strain gage transducers	22
	5.2 Calibration and test procedures	24
6	Qualification test procedures	27
7	 6.1 Initial performance tests 6.2 Weight test 6.3 Dead volume test 6.4 Volume change test 6.5 Mounting test 6.6 Dynamic response test 6.7 Temperature tests 6.8 Acceleration test 6.9 Vibration test 6.10 Life test 6.11 Effects of other environments 6.12 Storage life test 6.13 Burst pressure test 	27 27 27 27 28 29 29 30 30 30 30 30
	nex A — References	
	ures	
	 Strain Gage Pressure Transducer Individual Acceptance Tests & Calibrations 	32
	 Strain Gage Pressure Transducer Environmental Test Record 	
	- Dynamic Response Tests of Strain Gage Pressure Transducer	
	 – Dynamic Response Tests of Strain Gage Pressure Transducer – Strain Gage Pressure Transducer Dynamic Response Tests (Sinusoidal Method) 	
5	- Strain Gage Pressure Transducer Acceleration/Vibration Test Record	36
6	- Transducer Test Report Strain Gage Transducer Summary of Results	37

1 Scope

1.1 This Standard covers strain gage pressure transducers, but primarily those used in measurement systems.

1.2 Included among the specific versions of strain gage pressure transducers to which this Standard is applicable are the following:

Absolute Pressure Transducers Differential Pressure Transducers Gage Pressure Transducers Sealed Reference Pressure Transducers


2 Purpose

This Standard establishes the following for strain gage pressure transducers.

- 2.1 Uniform minimum specifications for design and performance characteristics
- **2.2** Uniform acceptance and qualification test methods, including calibration techniques
- 2.3 Uniform presentation of minimum test data
- 2.4 A drawing symbol for use in electrical schematics (See note in Section 3.)

3 Drawing symbol

The drawing symbol for measuring a transducer is a square of dimensions 2x by 2x, with an added equilateral triangle, the base of which is the left side of the square. The triangle symbolizes the sensing element. The letter "P" in the triangle designates "pressure" and the subscripts denote the second modifier.

The strain gage is symbolized by a small square, with diagonals x by x, centered in the large square. The diagonals of the small square are drawn perpendicular to the sides of the large squares. Lines from each apex of the small square projected to the right side of the large square represent the electrical leads.

NOTE — This symbol is not ANSI approved at this time. It has been submitted to the ANSI Y 32 Committee on Graphic Symbols for their consideration and approval.

4 Specifications

Terminology used in this document is defined in ISA-S37.1. An *asterisk* appears beside terms defined in S37.1. A double asterisk appears beside additional terms considered applicable to strain gage pressure transducers that are defined in 4.3 of this document.

4.1 Design characteristics

4.1.1 Required mechanical design characteristics

The following mechanical design characteristics shall be listed.

4.1.1.1 Type of pressure sensed

- a) Absolute Pressure*
- b) Differential Pressure, Unidirectional*
- c) Differential Pressure, Bidirectional*
- d) Differential Pressure, Sealed Reference**
- e) Gage Pressure*

^{*}Defined in ISA-S37.1

^{**}Defined in 4.3

NOTES

- At present, no provision is made by the SI system of units for abbreviations following the pressure units to indicate the type of pressure, as is done in the U.S. customary system of units; e.g., psia for absolute pressure in psi. In the interim it is recommended that for the SI system, the type of pressure be indicated in this manner: "... An absolute pressure of _____Pa." "... A differential pressure range of ______ kPa," etc.
- 2. For differential pressure transducers, the allowable range of reference pressures shall be listed; e.g., "0 to 1MPa" or "0 to 100 psi."

4.1.1.2 Measured fluids*

The fluids in contact with pressure port(s) shall be listed; e.g., nitric acid, liquid oxygen. Requirements for and limitations on the *isolating element* (if used) shall be listed.

4.1.1.3 Materials in contact with the measured fluid

The materials in contact with the measured fluid shall be listed.

NOTE — For differential pressure transducers, materials in both ports must be considered.

4.1.1.4 Configuration and dimensions

The outline drawing shall show the configuration with dimensions in millimeters (inches). Unless pressure and electrical connections are specified (reference 4.1.1.5 and 4.1.3.4), the outline shall include limiting maximum dimensions for these connections.

4.1.1.5 Pressure connection

The pressure connection(s) shall be indicated on the outline drawing. For threaded fittings, specify: Applicable Military or Industry standards or nominal size, number of threads per millimeter (threads per inch), thread series, and thread class. For hose tube fitting, specify tube size.

4.1.1.6 Mountings and mounting dimensions

Unless the pressure connection serves as a mounting, the outline drawing shall indicate the method of mounting with hole size, centers, and other pertinent dimensions in millimeters (inches), including thread specifications for threaded holes, if used.

4.1.1.7 Mounting effects

The maximum mounting force or torque shall be specified if it will tend to affect transducer performance (reference 4.2.28).

4.1.1.8 Mass

The mass of the transducer shall be specified in grams (ounces).

*Defined in ISA-S37.1

4.1.1.9 Case sealing

If case sealing is necessary, the mechanism and materials used for sealing should be described. The same requirement applies to the electrical connector. The resistance of the sealing materials to cleaning solvents and commonly used measured fluids should be stated.

4.1.1.10 Identification

The following characteristics shall be permanently inscribed on the outside of the transducer case or on a suitable nameplate permanently attached to the case.

- a) Nomenclature of transducer (according to ISA-S37.1, Section 3)
- b) Name of Manufacturer, (Part number to reflect one controlled configuration), and Serial Number
- c) Range* in Pa (psi) and designation of type of pressure (See 4.1.1.1.)

Maximum excitation*

d) Identification of Measured and Reference Ports* (for differential pressure transducers)

Reference Pressure Range* (for differential pressure transducers)

- e) Identification of Electrical Connections
- f) Schematic of Electrical Connections
- g) Nominal Bridge Resistance
- h) Inscription of the following characteristics is optional:
 - 1) Sensitivity
 - 2) Customer Specification or Part Number, or Both
 - 3) Type of Electrical Connector (if applicable)
 - 4) Maximum Excitation
 - 5) Maximum Reference Pressure
 - 6) Maximum and Minimum Operating Temperature

4.1.1.11 Maximum and minimum operating and fluid temperature*

The maximum and minimum temperature of fluids or environments that can be applied to the transducer and that will not cause permanent calibration shift shall be listed.

4.1.2 Supplemental mechanical design characteristics

Listing of the following mechanical design characteristics is optional.

^{*}Defined in ISA-S37.1

4.1.2.1 Case material

4.1.2.2 Pressure sensing element

- a) Diaphragm, flat or corrugated
- b) Capsule
- c) Bellows
- d) Straight Tube
- e) Bourdon Tube, plain, spiral, helical, or twisted
- f) Liquid-Filled Configuration (Liquid shall be specified.)

4.1.2.3 Type of strain gage used

- a) Metallic; bonded or unbonded, wire or foil, deposited thin film
- b) Semiconductor; bonded, unbonded, or diffused

4.1.2.4 Location of strain gage

- a) Mounted directly on pressure sensing element
- b) Mounted on auxiliary member, and activated by pressure sensing element

4.1.2.5 Number of active strain gage elements

- a) One
- b) Two-arm Bridge
- c) Four-arm Bridge

4.1.2.6 Dead volume*

For non-flush mounted transducers, the dead volume shall be given in cubic millimeters (cubic inches). For differential pressure transducers, the volume of both cavities should be listed.

4.1.2.7 Volume change due to full scale pressure

The change in volume of the sensing element due to application of full scale pressure shall be given in cubic millimeters (cubic inches).

4.1.3 Basic electrical design characteristics

The following electrical design characteristics shall be listed. They are applicable at "room conditions" according to the definition given in ISA-S37.1.

4.1.3.1 Excitation *

Expressed as "	volts dc" or "	volts rms at	Hz."	(Preferred values
are 5, 10, 20, and	28 volts) or "	mA dc" or "	_ mA rms at	Hz."

4.1.3.2 Maximum excitation *

Expressed as " ______ volts dc" or " ______ volts rms at ______ Hz" or " ______ mA dc" or " ______ mA rms at ______Hz."

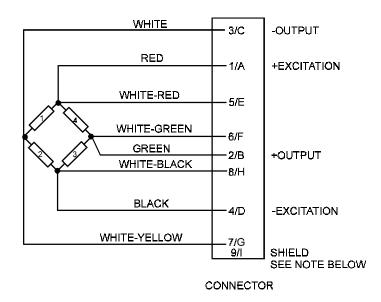
4.1.3.3 Input impedance*

Expressed as " ______ ± _____ ohms at ______ ± _____ Hz." If impedance is resistive, indicate this.

NOTE — Output "open-circuit" for this measurement.

4.1.3.4 Output Impedance*

Expressed as " ______ ± _____ohms at _____ ± _____ Hz." If impedance is resistive, indicate this.


NOTE — If excitation terminals are "short-circuit" for this measurement, this should be indicated.

4.1.3.5 Load impedance*

Performance characteristics values apply only for load impedance values of ______ ohms, minimum or ______ ± _____ ohms.

4.1.3.6 Electrical connections

Whether the electrical termination is by means of a connector or a cable, the pin designations or wire color code shall conform to the following transducer wiring standard promulgated by the Western Regional Strain Gage Committee, as approved September 18, 1957, and revised May 6, 1960.

*Defined in ISA-S37.1

NOTES

- 1) The output polarities indicated on the above wiring diagram apply when an increasing absolute pressure is applied to the pressure port (sensing end) of an absolute pressure transducer. For differential and gage pressure transducers, the indicated polarities apply when the absolute pressure at measurand port is greater than the absolute pressure at the reference pressure port.
- 2) The measurand (pressure) port of differential pressure transducers shall be marked "+" or optionally "high" or "meas.," while the reference (pressure) port shall be marked "-" or optionally "low" or "ref."
- 3) The bridge elements shall be arranged so that functions producing positive output will cause increasing resistance in arms 1 and 3 of the bridge.
- 4) For shielded transducers, pins 5, 7, and 9 shall be shield terminals for 4, 6, and 8 wire systems respectively.
- 5) Position of any internal compensation network should be indicated.

4.1.3.7 Insulation resistance*

Expressed as " ______ megohms at ______ volts dc between all terminals in parallel and the transducer case, at a temperature of ______ ± _____°C(°F)."

4.1.4 Supplemental electrical design characteristics

Listing of the following electrical design characteristic is optional.

4.1.4.1 Shunt calibration resistor

Expressed as " ______ ohms for _____% of full scale output." See 4.3.

NOTE — The terminals across which this resistor is to be placed shall be specified, if the resistor is used.

4.2 Performance characteristics

The pertinent performance characteristics of strain gage pressure transducers should be tabulated in the order shown. Unless otherwise specified, they apply at "room conditions" as defined in ISA-S37.1; Temperature: $25 \pm 10^{\circ}$ C (77 $\pm 18^{\circ}$ F); Relative Humidity: 90% maximum; Barometric Pressure: 73 \pm 7 cm of Hg (29 \pm 3 inches of Hg) and after an adequate warm-up period (see 4.2.13).

Terminology used here is defined in either ISA-S37.1 or 4.3 of this document. An asterisk appears beside the paragraph number of those terms defined in S37.1.

4.2.1 Range*

Usually expressed as " _____ to ____ Pa (psia, psig)" or " ± ____ Pa (psid)" or "zero to _____ Pa (psid.)"

NOTE — Equivalent pressure units in the SI system are expressed in Pascals.

^{*}Defined in S37.1

1 psi = 6894.8 Pa 10kPa = 1.4504 psi

4.2.2 End points*

Expressed as " ______ ± _____ mV and _____ ± ____ mV at _____ volts (milliamps) excitation."

4.2.3 Full-scale output *

Expressed as "______ ± _____mV per volt (milliamp) excitation into specified load impedance" or " ______ ± _____mV at ______ volts (milliamp) excitation into specified load impedance."

NOTE — If 4.2.2 and 4.2.3 are used to specify performance characteristics, the tolerance in 4.2.3 may be omitted.

Alternately, the following may be specified (4.2.3 - 4.2.6):

Full-scale output is expressed with tolerance (see 4.2.3 note).

4.2.4 Zero measurand output*

Expressed as "_____ ± ____ mV."

4.2.5 Zero shift*

Expressed as "±_____% of full scale output over a period of _____ minutes (hours, days, etc.)"

4.2.6 Sensitivity shift*

Expressed as "± _____% over a period of _____ minutes (hours, days, etc.)"

4.2.7 Linearity*

Expressed as "_____ linearity within ± ____% of full scale output."

NOTE — The type of linearity specified shall be one of the types defined in ISA-S37.1; namely, end point, independent, least squares, terminal, or theoretical slope.

4.2.8 Hysteresis*

Expressed as " ______ % of full scale output." Alternately, 4.2.7 and 4.2.8 may be combined as follows.

4.2.9 Hysteresis and Linearity

Expressed as "combined hysteresis and _____ linearity within ± _____% of full scale output."

NOTE — The type of linearity shall be stated.

^{*}Defined in ISA-S37.1

4.2.10 Repeatability*

Expressed as "within ______% of full scale output over a period of ______ minutes (hours, days, months)." Alternately, 4.2.7, 4.2.8, and 4.2.10 may be combined as follows.

4.2.11 Static error band*

Expressed as "± _____% of full scale output as referred to ______."

NOTE — The type of reference line or curve shall be stated. When an end point line is specified, the tolerances for the end points should be stated separately. When a "best straight" or terminal line or theoretical slope is specified, the static error band should also include the zero measurand output, zero shift, and sensitivity shift.

4.2.12 Creep*

Expressed as "_____ minutes for subsequent shifts in output not to exceed _____% of full scale output."

4.2.13 Warm-up period*

Expressed as "_____ minutes for subsequent shifts in sensitivity and zero balance not to exceed _____% of full scale output."

4.2.14 Reference pressure effect*

Expressed as "change in zero balance not to exceed _____% of full scale for a reference pressure change of _____ Pa (psi). Sensitivity change shall not exceed _____% of full scale for a reference pressure change of _____ Pa (psi)." Alternately expressed as "operation at reference pressures from _____ Pa (psia) to _____ Pa (psia) not to cause output readings that will exceed the specified error band."

4.2.15 Frequency response* (amplitude)

Expressed as "within ± _____% from zero to _____ Hz."

NOTE — Frequency response should be referred to a frequency within the specified frequency range, preferably zero, and to a specific measurand value. Mounting conditions and measured fluid should be specified.

4.2.16 Phase shift

Expressed as either "phase shift linear within ± _____% from zero to _____ Hz, reaching _____ degrees at _____ Hz" or "phase shift less than _____ degrees between zero and _____ Hz."

Alternately 4.2.15 and 4.2.16 may be replaced by the following.

4.2.17 Resonant frequency*

Expressed in "hertz" or "kilohertz."

NOTE — If a number of resonances exist, all frequencies should be listed. The lowest resonance frequency must be listed.

*Defined in ISA-S37.1

4.2.18 Damping ratio*

Expressed as " _____% of critical damping."

NOTE — For any other than a second order single-degree-of-freedom system, damping ratio is not defined; and ringing period, rise time, and overshoot should be stated.

4.2.19 Ringing period*

Expressed as " _____ milliseconds."

4.2.20 Overshoot*

Expressed as " _____% of applied pressure."

For transducers with relatively high damping and little overshoot, 4.2.17, 4.2.18, 4.2.19, and 4.2.20 may be replaced by 4.2.21.

4.2.21 Rise time*

Expressed as " ______ milliseconds (microseconds) for response to rise from 10% to 90% for an applied pressure step function of ______ Pa (psi)."

NOTE — Existing test equipment generates ramp functions rather than step functions. Care must be taken to ensure that the rise time of the generated ramp function is one-third or less of the anticipated rise time of the transducer under test.

4.2.22 Proof pressure*

Expressed as "application of _____% of full scale for _____minutes will not cause changes in transducer performance beyond the specified tolerances."

4.2.23 Burst pressure rating*

Expressed as " _____ Pa (psia, psig) (or psid) applied _____ times for a period of _____ minutes each to _____." (Sensing element or case; specify.)

4.2.24 Operating temperature range

Expressed, as "temperatures from _____°C(°F) to _____°C(°F) will not cause thermal sensitivity shift of more than _____% or thermal zero shift of more than _____% of full scale."

Or, alternately, the following may be specified.

4.2.25 Thermal sensitivity shift*

Expressed as "_____% per °C(°F) temperature change over a temperature range from _____°C(°F) to ______ °C(°F)."

4.2.26 Thermal zero shift*

Expressed as " _____% of full scale output per °C(°F) temperature change over a temperature range from _____°C(°F) to _____°C(°F)."

Alternately, 4.2.24, 4.2.25, or 4.2.26 may be specified by the following.

*Defined in ISA-S37.1

4.2.27 Temperature error*

Expressed as "_____% full scale output at _____ Pa (psi) for a temperature change from _____°C(°F) to ______°C(°F)."

4.2.28 Temperature error band*

Expressed as "within \pm _____% of full scale output from the straight line establishing static error band, over temperature range from _____°C(°F) to _____°C(°F)."

4.2.29 Temperature gradient error*

Expressed as "less than ± _____% of full scale output during a period of ______ minutes while subjected to a step function temperature change from ______°C(°F) to _____°C(°F), applied to ______ (specify particular part) of the transducer."

4.2.30 Acceleration error*

Expressed as "less than ± _____% of full scale output per g along _____ axis at steady acceleration level of _____ g."

NOTE — The error should be listed for each of the three axes or for the axis with the largest error.

Alternately 4.2.30 may be replaced by 4.2.31.

4.2.31 Acceleration error band*

Expressed as "within ± _____% of full scale output for steady accelerations up to _____ g along _____ axis." See 4.2.30 note.

4.2.32 Vibration error*

Expressed as "less than ± _____% of full scale output per g along ______ axis at vibration level of ______ g peak over a frequency range from ______ Hz to ______ Hz."

NOTE — The error should be listed either for each of the three axes or for the axis with the largest error.

Alternately 4.2.32 may be replaced by 4.2.33.

4.2.33 Vibration error band*

Expressed as "within ± _____% of full scale output for vibration level of ______ g peak over a frequency range from _____ Hz to _____ Hz along _____ axis." See 4.2.32 note.

4.2.34 Life, cycling*

Expressed as " ______ full scale output pressure cycles (applied at a rate of ______ Hz) over which the transducer shall operate without change in characteristics beyond their specified tolerances."

^{*}Defined in ISA-S37.1

4.2.35 Mounting error*

Expressed as "within ± _____% of full scale output," or, "within the static error band," under specified conditions of mounting force or torque.

4.2.36 Other environmental conditions

Other pertinent environmental conditions that shall not change transducer performance beyond specified limits should be listed; examples follow:

- a) Shock Triaxial
- b) High-Level Acoustic Excitation
- c) Humidity
- d) Salt Atmosphere
- e) Nuclear Radiation
- f) Magnetic Fields
- g) Solar (or other) Heat Radiation
- h) Sand and Dust
- i) Altitude
- j) Temperature Shock

4.2.37 Storage life

Expressed as "Transducer can be exposed to Specified Environmental Storage Condition for _____days (months, years) without changing the following performance characteristics

beyond their specified tolerances."

NOTE — Environmental storage conditions shall be described in detail. Pertinent performance characteristics (examples: sensitivity, zero shift) shall be specified.

4.3 Additional terminology

4.3.1 phase shift: the amount of time by which the output of a transducer lags a sinusoidally varying measurand.

NOTE — Expressed as fraction of a cycle of the frequency, usually in degrees.

4.3.2 sealed reference differential pressure transducer: transducer which measures pressure difference between unknown pressure and pressure of fluid in an integral sealed reference chamber.

4.3.3 shunt calibration resistor: a shunt resistor which, when placed across a specified element of the electrical circuit of the transducer, will electrically simulate a specified percentage of the transducer full scale output at room conditions.

^{*}Defined in ISA-S37.1

4.4 Tabulated characteristics versus test requirements

This table is intended for use as a quick reference for design and performance characteristics and for tests of their proper verification as contained in this Standard.

		Design	Characteristic	Verified	During
Characteristic	Paragraph	Basic	Supplemental	Individual Acceptance Test	Qualification Test
Type of Pressure Sensed	4.1.1.1	x		No Test	Special Test
Measured Fluids	4.1.1.2	x			
Materials in Contact with Measured Fluid	4.1.1.3		x		Special Test
Configuration, Dimensions,	4.1.1.4				-
Mounting Pressure	through	х		5.2.1	
Connection	4.1.1.6			_	
Mounting Force or Torque	4.1.1.7	x			6.5
Weight	4.1.1.8	х			6.2
Case Sealing	4.1.1.9	x			5.2.1
Identification	4.1.1.10	x		5.2.1	-
Case Material	4.1.2.1			_	5.2.1
Pressure Sensing Element	4.1.2.2		x		-
Type of Strain Gage Used	4.1.2.3				5.2.1
Location of Strain Gage	4.1.2.4		x		5.2.1
Number of Active Strain Gage Elements	4.1.2.5		x		0.2.1
Dead Volume	4.1.2.6		x		6.3
Volume Change Due to Full Scale Pressure	4.1.2.7		x		6.4
Maximum and Minimum Operation	7.1.2.7		~		0.4
and Fluid Temperature	4.1.1.11	x	x		
Excitation	4.1.3.1	x	~	5.2.6	
Input Impedance	4.1.3.3	x		5.2.11	
Output Impedance	4.1.3.4	x		5.2.11	
Load Impedance	4.1.3.5	~		0.2.11	
Electrical Connections	4.1.3.6	x		5.2.10	
Insulation Resistance	4.1.3.7	^		0.2.10	
Shunt Calibration Resistor	4.1.4.1	x	5.2.4	5.2.5	6.7
Churc Calibration (Colston	7.1.7.1	~	0.2.4	(partially)	0.7
Range	4.2.1	x		(partially) 5.2.3	
End Point	4.2.2	x		5.2.3	
Full-Scale Output	4.2.3	x		5.2.3	
Zero Measurand Output	4.2.4	x		5.2.3	
Zero Shift	4.2.5	x		5.2.4	
Sensitivity Shift	4.2.6	x		5.2.4	
Linearity	4.2.0	x		5.2.3	
Hysteresis	4.2.8	x		5.2.3	
Hysteresis and Linearity	4.2.8	x		5.2.3	
Repeatability	4.2.9	x		5.2.3	
Static Error Band	4.2.10	x		5.2.3	6.2
Creep	4.2.11	x		5.2.5	0.2
Warm-up Period	4.2.12	^		0.2.0	5.2.6
Reference Pressure Error	4.2.13			5.2.7, 5.2.8	5.2.0
Frequency Response (Amplitude)	4.2.14			5.2.1, 5.2.0	6.6
Phase Shift	4.2.15				6.6
i nase shint					6.6
Poconant Fraguancy					
Resonant Frequency Damping Ratio	4.2.17 4.2.18	x x			6.6

		Design	Characteristic	Verified	During
Characteristic	Paragraph	Basic	Supplemental	Individual Acceptance Test	Qualification Test
Overshoot	4.2.20	x			6.6
Rise Time	4.2.21	х		5.2.9	
Proof Pressure	4.2.22	х			6.13
Burst Pressure Rating	4.2.23	х			6.7
Operating Temperature Range	4.2.24	х			6.7
Thermal Sensitivity Shift	4.2.25	х			6.7
Thermal Zero Shift	4.2.26	х			6.7
Temperature Error	4.2.27				
Temperature Error Band	4.2.28	х			6.7
Temperature Gradient Error	4.2.29				
Acceleration Error	4.2.30				6.8
Acceleration Error Band	4.2.31				6.8
Vibration Error	4.2.32	х			6.9
Vibration Error Band	4.2.33	х			6.9
Cycling Life	4.2.34				6.10
Mounting Error	4.2.35				6.5
Other Environmental Conditions	4.2.36				6.11
Storage Life	4.2.37				6.12

5 Individual acceptance tests and calibrations

5.1 Basic equipment necessary to perform individual acceptance tests and calibration of strain gage pressure transducers

The basic equipment for acceptance tests and calibrations consists of a source of pressure, a source of electrical excitation for the strain gages, and a device which measures the electrical output of the transducer. The combined errors or uncertainties of the calibration system comprising these three components should be sufficiently smaller than the permissible tolerance of the transducer performance characteristic under evaluation to result in meaningful values. (Department of Defense practice commonly uses a four-to-one ratio in calibration hierarchy.) The traceability to national standards for this measuring system should be well known.

5.1.1 Source of pressure

A pressure medium similar to the one which the transducer is intended to measure should be used for testing. The accuracy of the pressure source should be at least five times greater than the permissible tolerance of the transducer performance characteristic under evaluation. The range of the instrument supplying or monitoring the calibration pressure should be selected to provide the necessary accuracy to 125 percent of the full scale range of the transducer.

The source of calibration pressure may be either continuously variable over the range of the instrument or may be provided in discrete steps as long as the steps can be programmed in such a manner that the transition from one pressure to the next during calibration is accomplished without creating a hysteresis error in the measurement due to overshoot.

EXAMPLES OF PRESSURE SOURCES / MONITORING EQUIPMENT

MERCURY MANOMETER (Pressure Indicating Device)

Typical ranges

100 kPa (about 30 in. Hg)Accuracy $\pm 0.02\%$ Full Scale200 kPa (about 60 in. Hg)Accuracy $\pm 0.02\%$ Full Scale340 kPa (about 100 in. Hg)Accuracy $\pm 0.01\%$ Full Scale

AIR PISTON (Pressure Source)

Typical ranges

About 2 to 10 kPa (0.3 to 1.5 psi) About 10 to 350 kPa (1.5 to 50 psi) About 100 kPa to 1 MPa (15 to 150 psi) About 100 kPa to 3.5 MPa (1 to 500 psi) Accuracy \pm 0.15% of Reading Accuracy \pm 0.015% of Reading Accuracy \pm 0.025% of Reading Accuracy \pm 0.025% of Reading

PRECISION DIAL GAGE (Pressure Indicating Device)

Typical ranges

NOTE — Pressure indicating devices generally require a supply of dry gas; e.g., dehumidified air, or nitrogen, or helium, required for reasons of safety.

OIL PISTON GAGE (Pressure Source)

Typical ranges

About 40 kPa to 30 MPa (6 to 4000 psi)Accuracy $\pm 0.01\%$ of ReadingAbout 400 kPa to 300 MPa (60 to 40,000 psi)Accuracy $\pm 0.01\%$ of ReadingAbout 14 MPa to 700 MPa
(2000 to 100,000 psi)Error in Piston Area Less Than $\pm 0.009\%$ About 30 MPa to 1400 MPa
(4000 to 200,000 psi)Error in Piston Area Less Than $\pm 0.012\%$

5.1.2 Stable source of excitation of accurately known amplitude

Commonly used sources of dc excitation are chemical batteries such as dry cells and storage batteries, or line-powered, electronically regulated, power supplies. A stable, low distortion, audio oscillator may be used to furnish ac excitation.

5.1.3 Read-out instrument

Examples of suitable devices are as follows.

MANUALLY BALANCED POTENTIOMETER

Typical ranges

0 to 0.01111 volt, \pm (0.008% of reading + 0.5 microvolt) 0 to 0.1111 volt, \pm (0.006% of reading + 1 microvolt) 0 to 1.111 volt, \pm (0.004% of reading + 10 microvolts) 0 to 11.11 volts, \pm (0.006% of reading + 100 microvolts)

SELF-BALANCING POTENTIOMETER

Typical ranges

0 to 6 millivolts, limit of error \pm 0.3% 0 to 100 millivolts, limit of error \pm 0.3%

DIGITAL ELECTRONIC VOLTMETER/RATIO METER

Typical accuracy

± 0.01% of reading + 1 digit (4 digits display)
± 0.005% of reading + 1 digit (5 digits display)

AC RMS DIFFERENTIAL METER

Typical accuracy

± 0.05% 10 Hz to 50 kHz ± 0.1% Hz to 10 kHz

NOTE — The input impedance of the readout instrument must comply with the value of load impedance specified. Unless otherwise stated, adjustments and compensation of the transducer apply with the specified load impedance across the output terminals.

5.2 Calibration and test procedures

Results obtained during the calibration and test procedures should be recorded on data sheets like the sample data sheet in Section 7. These procedures shall be performed under "room conditions" as defined in ISA-S37.1 unless otherwise indicated.

NOTE — The defining paragraph under Design Characteristics (4.1) and Performance Characteristics (4.2) is listed beside each of the parameters sought in the following paragraphs.

5.2.1 The transducer shall be inspected visually for mechanical defects, poor finish, and improper identification markings. The electrical connector shall also be inspected.

5.2.2 The transducer shall be connected to the pressure source and secured with the recommended force or torque. The excitation source and readout instrument shall also be connected to the transducer and turned on. Adequate warm-up time for test equipment shall be allowed before tests are conducted. The pressure source, connecting tubing, and transducer system shall have passed a prior test for leaks, which would cause calibration errors.

5.2.3 Two or more complete calibration cycles shall be run consecutively. At least eleven data points shall be obtained per cycle using both ascending and descending directions. Excitation amplitude shall be monitored as required. (Time duration of calibration cycle to be stated.)

From the data obtained during these tests, the following characteristics should be determined:

a)	End points	4.2.2
b)	Full-scale output	4.2.3
c)	Zero measured output	4.2.4
d)	Linearity	4.2.7
e)	Hysteresis	4.2.8
f)	Hysteresis and linearity	4.2.9
g)	Repeatability	4.2.10
h)	Static error band	4.2.11

5.2.4 Repeated calibration cycles over a specified period of time should establish the following characteristics for this period of time:

a)	Zero shift	4.2.5
b)	Sensitivity shift	4.2.6

NOTE — These tests may be abbreviated cycles with fewer data points than required in 5.2.3.

5.2.5 Application of full scale pressure to the transducer during a specified short period of time and measurement of changes in output at constant excitation during this time should establish

a) Creep 4.2.12

NOTE — Rate of change of pressure should be as high as possible without resonant excitation of transducer.

5.2.6 By measuring zero balance and sensitivity over a period of time (one hour should suffice), starting with the application of excitation to the transducer, the following characteristic should be determined:

a) Warm-up period 4.2.13

NOTE — It is desirable to test for these effects separately establishing the warm-up change of zero balance first.

5.2.7 From the application of the same pressure to both sides of the transducer sensing element over a range of pressures up to the maximum expected reference pressure and subsequent calibration cycles, the following should be established:

a) Reference pressure effect (zero measurand output) 4.2.14

NOTE — This test does not apply to absolute or fixed reference pressure transducers.

5.2.8 Application of the maximum expected reference pressure, only to the low port of a differential pressure transducer, and a pressure equal to the sum of the maximum expected reference pressure and the full scale pressure to the high port shall establish

a) Reference pressure effect (sensitivity) 4.2.14

NOTE — Reference pressure effect on zero balance must be taken into account.

5.2.9 After application of the specified proof pressure a specified number of times, and in the specified direction for differential pressure transducers, at least one complete calibration cycle shall be performed to establish that the performance characteristics of the transducer are still within specifications.

a) Proof pressure 4.2.22

5.2.10 Measure the insulation resistance between all terminals, or leads connected in parallel, and the case of the transducer, with a megohm meter or similar acceptable device, using a potential of 50 volts dc, unless otherwise specified. The temperature at which the insulation resistance is measured shall be specified.

a) Insul	ation resistance	4.1.3.7
----------	------------------	---------

5.2.11 A wheatstone bridge (for dc) or impedance bridge shall be used to measure

a)	Input impedance	4.1.3.3
b)	Output impedance	4.1.3.4

6 Qualification test procedures

Qualification tests shall be performed as applicable using the test forms for Section 7 as required. Upon completion of all testing, the form of Figure 6 shall be used to summarize all testing.

6.1 Initial performance tests (Figure 1)

Following a thorough inspection of the transducers, the tests and procedures of Section 5 shall be run to establish reference performance during increasing (and decreasing) steps of 0, 20, 40, 60, 80, and 100 percent of range as a minimum (percent of span for bidirectional transducers).

6.2 Weight test

The transducer shall be weighed on an appropriate balance or scale. The following shall be established:

a) Weight 4.1.1.8

6.3 Dead volume test (Figure 6)

The pressure cavity shall be filled (both cavities for a differential transducer) with a measurable, non-corrosive fluid (under a vacuum if necessary), and the contents poured into a graduate. The following shall be established:

a) Dead volume 4.1.2.6

6.4 Volume change test (Figure 6)

A fluid pressure system shall be connected to the transducer, a parallel pressure gage, and a graduated reservoir. (Provisions shall be made for isolating the transducer when filled.) The pressure system shall be evacuated and filled with fluid, the valve to the transducer closed, the valve opened and the following shall be determined:

a) Volume change due to full scale pressure 4.1.2.7

6.5 Mounting test

The mounting of the actual installation shall be duplicated as closely as possible following specific instructions and one calibration run performed. The following shall be established:

- a) Mounting error 4.2.35
- b) Mounting force or torque 4.1.1.7

6.6 Dynamic response test

The dynamic response characteristics of pressure transducers may be established either with transient-stimulation devices, or with sinusoidal pressure generators.

6.6.1 Transient excitation method

A positive step-function of pressure may be generated in gases with a shock-tube or a quickopening valve. A hydraulic quick-opening valve is used to generate a positive pressure step function in a liquid medium. A burst diaphragm generator produces a negative pressure step in a gas medium. In all cases, the rise time of the generated step function shall be sufficiently short to shock-excite all resonances in the transducer under test. It shall also be one-third or less of the anticipated rise time of the transducer under test.

Since the tubing used to mechanically connect the transducer to the test setup will drastically affect the dynamic characteristics, it is recommended that the shortest possible tubing be installed, and that its length and diameter be stated along with the test results. Alternately the tubing used shall duplicate as closely as possible the actual installation, if this condition were specified instead of the characteristics of the transducer alone.

By applying step functions of pressure at room conditions within the full scale range of the transducer, and analyzing the electronic or electro-optical recording of the transducer output, the following can be determined: (see appropriate notes).

a)	Frequency response amplitude	4.2.15
b)	Phase shift	4.2.16
c)	Resonant frequency	4.2.17
d)	Damping ratio	4.2.18
e)	Ringing period	4.2.19
f)	Overshoot	4.2.20
g)	Rise time	4.2.21

6.6.2 Sinusoidal stimulation method

Generators are now available that produce sinusoidal pressures in liquids or gases. They are generally limited to frequencies below several kilohertz and peak dynamic pressures below 10 MPa (roughly 1500 psi). These devices operate either on a piston-phone principle (such as the system used for the calibration of microphones) or by modulating fluid flow through an orifice (as exemplified by a siren).

By applying a sinusoidal pressure waveform of varying frequency and of constant and specified amplitude, the following can be obtained directly:

- a) Frequency response (amplitude) 4.2.15
- b) Phase shift 4.2.16

If within the frequency range covered, the following can be established from the frequency response:

- a) Resonant frequency or resonances 4.2.17
- b) Damping ratio 4.2.18

6.7 Temperature tests

6.7.1 Steady state temperature test

The transducer shall be placed in a suitable temperature chamber. After allowing adequate stabilization time at a specified temperature, one or more calibration cycles shall be performed. This procedure shall be repeated at an adequate number of temperatures within the operating temperature range of the transducer, but at least at upper and lower limits of the operating temperature range. These tests should establish the following characteristics:

a) Thermal sensitivity shift	4.2.25
b) Thermal zero shift	4.2.26
c) Temperature error	4.2.27
d) Temperature error band	4.2.28
These tests will also establish	
a) Operating temperature range	4.2.24

6.7.2 Thermal Transient Test

For a flush-mounted pressure transducer, only the sensing end of the transducer is inserted rapidly from "room conditions" into a measurand fluid, which is maintained at a specified temperature above or below "room conditions." And at "room" pressure the output shall be observed over a specified period of time starting from the moment of insertion.

For a cavity-type pressure transducer, fluid at a specified temperature above or below "room conditions" may be applied rapidly through the pressure port to the sensing element. The output shall be observed over the specified period of time.

NOTE — The type of fluid shall be specified.

These tests should establish

a) Temperature gradient error 4.2.29

6.8 Acceleration test

Place the transducer on a centrifuge, apply specified acceleration along specified axes and measure changes in output. The following should be established:

- a) Acceleration error 4.2.30
- b) Alternately, acceleration error band 4.2.31

6.9 Vibration test

Vibrate the transducer along specified axes at desired acceleration amplitudes, and over the specified frequency range with an electromagnetic or hydraulic shaker, and observe or record the transducer output by means of oscilloscopes or high speed recorders. The following should be established:

- a) Vibration error 4.2.32
- b) Alternately, vibration error band 4.2.33

6.10 Life test

After applying the specified number of full range excursions of measurand, at least one complete calibration cycle shall be performed to establish minimum value of

a) Cycling life 4.2.34

6.11 Effects of other environments

Expose transducer to other specified environmental conditions followed in each case by at least one complete calibration cycle to test ability of transducer to perform satisfactorily after each exposure (see 4.2.36).

NOTE — In some cases, calibrations may be performed while transducer is subjected to the environment.

6.12 Storage life test

After storing the transducer under specified conditions (temperature, humidity, etc.) for the specified period of time, at least one complete calibration cycle shall be performed to establish

a) Storage life 4.2.37

6.13 Burst pressure test

The transducer shall be connected to a suitable test setup with adequate protection for equipment and personnel. The pressure shall be increased to the specified number of times and durations. The following shall be established:

a) Burst pressure rating 4.2.23

NOTE — If specified, burst pressure may also be applied to the inside of the case by first puncturing the sensing element.

7 Test report forms

7.1 The test report forms listed are recommended for use during the testing of strain gage pressure transducers.

7.2 When using the forms, all pertinent information shall be inserted in its proper place. On some forms, blank space has been provided for additional tests. Where the test is prolonged, more than one form may be required.

7.3 Individual acceptance tests and calibrations (Figure 1) used during acceptance testing of Section 5 may also be used for initial performance tests of 6.1.

Vendor's	Part No.		OTD 4 B 1				Customer's Part No.						
Test Faci	ility			GAGE PRES IAL ACCEP		NSDUCER TS & CALIBI	RATIONS	Serial No.					
Tempera	t Conditions ature n	°C (°F)		nctional Test		Proc alibration	of Cycle	Vendor Range					
	У'							To Pa (psi)					
2. Electr 3. Calibi	ration and P	mpedance	ohr e Test at	V at .	mpedance_	hz Excitation	ms, Ins Re	ectr. Conn 🗆 es M minute					
Pressure	Theoretical	Output (mV		Output (mV		Overload		nV) - Run 3	Maximum E	rror (mV)			
Pa (psi)	Output (mV)	Test Time: Increase	Minutes Decrease	Test Time: Increase	Minutes Decrease	Output (mV)	Test Tim Increase	e: Minutes Decrease	+ _	_			
						 편 							
						applicat							
_ <u>Proof</u> _ Rev.			not applicable					not app	licable				
STATIC EF	ROR BANI	D: +	_%,	% F:	SO (Allowed	: ±	%F	SO),					
				Referred t	00								
	LINE	EARITY: +	,=	%FSO	(Allowed:					. Linearity			
HYSTERE	SIS:	% FSO (Allowed:	% I	FSO) REPE	ATABILITY:		% FSO (Allowe	:d:	%FSO)			
ZERO-ME	ASURAND	OUTPUT:	%FSO	(Allowed		%FSO) CRI	EEP:	% FSO ove (Allowed		inutes %FSO)			
		% FSO ov	•	(nu	imber)	(1	units)	(Allowed		%FSO)			
		% ov	·	(nu	mber)		units)	(Allowed		%FSO			
		_ and T (Run 2):						•PSI PT (after Run 2):	%	, ,			
∆P Only: I	REFERENĆ	E PRESSUR	E (during Ru			Test) : r Proof Press				les			
△ P Only: F	REVERSE /	∆P (after Pro	of Pressure _		-				mV)				
		Equipment	t Used:				Defects n	oted or Comments					
BY: Note:				DATE:		Approvei	D 89Y:						

Figure 1 — Strain Gage Pressure Transducer Individual Acceptance Tests & Calibrations

a) Environmental test record (Figure 2) used to record temperature, maximum temperature, life and other environmental tests.

VENDO	R'S PART N	O .		TEST F	TEST FACILITY											CUSTOMER'S PART NO.									
VENDO	R			STR/	AIN G	AGE	PRE	ESS	URE	E TR	ANS	SDL	ICE	R	-	SE	RIA	AL N	10.						
REPOR	T NO.				ENVIF		//FN		TE	STE	PEC	ORI	n			CL	JST	ΟМ	ER						
TYPE O	F TEST															RANGE TO Pa (psl)									
at	volts Hz, mA	3		Before During —		Тур	e of E	nviror	nment							Level									
	imeM	inutes		After	For tem	peratur	e tests	tests, temperature measured at																	
Pressure	Theoretical	m	√ (Rur	n 1)	1) mV (Rur					0	verloa	id			mV (Run	3)				Ma×	iximum Error mV			
Pa(psl)	(mV)	Increase		Decrease	Decrease Increase				is e		mV		Ir	oreas	e		Decr	ease			+			_	
			_				_															_			
																			_						
			_				_												_			_			
			_				_												_			_			_
			+				╞															_			_
			_				_															_			\neg
			_				_												_			_			_
	(Pos. Proof)		+				╞															_			_
	(Neg. Proof)																								
Error Band	Error Band: +% %FSO (Referred To %FSO																								
	sure %													Ins.	,		же:								
	ess. Transduce														Resistance: megohms At Vdc o Shift: %FSO										
Neg. Proof	Pressure	%Rated	Range	e for	Minut	es								Sens	sitivity	Shif	ft:							%	
Ref. Press.	, Run 2 :			Pa(psia)																				
Comments					-	⁵ Г	-	-		<u> </u>			_		_										
					-	4										╡									_
					-	2	+	+	_			\dashv	-	\dashv	+	+					_			-	
					-	+1										╡									_
						-1	+	+	+			\dashv	-	-	+	+					_		-	-	_
						2																			_
					-	4	+	+				\dashv	-	_	+	+					_			_	
					-	₅ L				1															
					- L																				
Testeo	1 By						_ D	ate Te	st Sta	rted:						_ Da	ate To	est F	inish	ed:					
Аррго	Approved By: Title:						_ A	ргоч	ed By:	Title	r:														

Figure 2 — Strain Gage Pressure Transducer Environmental Test Record

 b) Dynamic response tests (Figure 3 or Figure 4) used for recording test results of frequency response, resonant frequencies, damping ratio and ringing period. (Note—use 3 or 4 as applicable.)

Transducer Type	!		DYNAM	IC RESPO	ONSE	TESTS	;	Purcha	ase Order No.			
Range				OF N GAGE I				Serial I	No.			
Vendor & Model	No.			RANSDU	JUER			Part No	D.			
1. Visual Inspectio Mechanical:		Finish:		Namepl	late:			Conne	ections:			
2. Electrical: Input Impedanc	Load Imped	ance ohms.	Output Impedan	_ohms	ohms. Insulation Resistance							
					Hz atvolts							
4. Dynamic Respo Step Function 0 Mounting Locat	Generator :		Shock Tube	, Dry Air :								
		al Pressure	Shock	Step		Pronou	nced Resonanc	es, Hz	Ringing			
Shock No.	Hi	Low	Velocity	Pressure	,				Period Rise Time			
ATTACH OSCILLOSCOPE PHOTOGRAPHS OF TRANSDUCER RESPONSES												
icale					cale							
Amplitude Scale.	SH	OCK 1			Amplitude Scale			SHOCK 3	6			
Ampl					Ampl							
	Tin	ne Scale						Time Scal	le			
Scale					Scale							
Amplitude Scale.	SH	OCK 2			Amplitude Scale			SHOCK 4	ı			
Amp					Amp							
	Tin	ne Scale						Time Scal	le			
BY:				I								

VENDO	ENDOR'S PART NO. TEST FACILIT										_ITY									CUSTOMER'S PART NO.						
VENDOF	२				╞	6-			- 40		DEG	2011	DE -		NSE		ED	_	SE	RIAI	NO).				
REPOR	T NO.				+	3						SPO						_	CL	ISTO	MEI	R				
TYPE O	F TES	г			-	RANGE																				
							(SINUSOIDAL METHOD)								To(Pa) psi											
Amb	ient Conc	litions: Te	mperati	ure			°c	C([°] F);∣	Pressi	ure			CI	n Hg;					_ Hum	nidity_				_%		
	amic Res																									
		lts or ma)													ance _										ohms	
		nerator_ figuration											iest F	iuia												
		ansducer																								
		ture				Qı													⊃a(psi)						
		essure																		,						
	³⁰ Г																									
	F	_		-	_																					
	- F	_	$ \vdash $	_																					0	
	L																									
žH																										
	20																								20	
	- F		╞─┼	-	_	_																				
	- F	_	\vdash	_	_																				40	
ρ̈́	L																									
G																										ES
RRI	10																								60	Ц. Ш.
	F		+																							ы
2	+5	_	\vdash	-	_							_													80	z
کر ا	L		\square																							F
ISN																										SH
PO	0																								100	SE
SES	F																									PHASE SHIFT IN DEGREES
۲. ۲	-5		+	\rightarrow	_	_																			120	
FREQUENCY RESPONSE, % REFERRED TO	L		$ \square$																							
on	-10																								140	
-RE	10																								140	
-																										
	F		+	-	_																				160	
		_	\vdash																							
	_20 L																								180	'n
	-20 - 0			200	00			40	000			60	100			80	00			10,	000			12,00		,
	(Stat	ic)														Frequ	ency,	Hz								

Figure 4 — Strain Gage Pressure Transducer Dynamic Response Tests (Sinusoidal Method)

c) Acceleration/vibration test record (Figure 5) used to record acceleration and vibration test results.

VENDOF	R'S PART NO. TEST FACILITY									CUSTOMER'S PART NO					
VENDOF	2				ST		GAGE	PRE	SSUR		SERIAL NO	D .			
REPORT	ſ NO.					A.C		DAT		BRATION	CUSTOME	R			
TYPE OF	TEST					A			ECORI		RANGE		_ Pa (psi)		
SKETCH OF	TRANSE	DUCEF	SHOWIN	IG AXIS O	RIENT	ATION:									
							ACC	ELE	RATION	I TEST					
AXIS	+X		-x	+Y		_Y	+Z		_Z	Pressure Level Used:		Pa(psi)_			
Output Before Accel. mV Applied Accel. (G)										Max. Accel. Error: + Pre-Accel. Static Error Band: + Accel. Error Band: +	, - , - ,		%FSO		
Output Dur- ing Accel. mV										(Allowed Accel. Error Band ±					
Accel. Error mV										Tested By:					
Excitation		∨(m A) AT		Hz	, Losd Imp	edance		_ohms				(Test Engineer)		
Comments										Date: A Witnessed By:					
										Witnessed By:					
							VIBF	RATIC	ON TES	T					
AXIS		х			Y			z							
Pressure Level Used			Pa(psi)			Pa(psi)		F	Pa(psi)	Max. Vib. Error: + Pre-Vib. Static Error Band: +					
Output Before Vib.		mV			mV			mV		Vib. Error Band: +					
	Fr eq . (Hz)	E Pol.	Err o r mV	Freq. (Hz)	E Pol.	Err o r mV	Fr eq . (Hz)	Pol.	∃rr o r mV	(Allowed Vib. Error Band :	+		%FSO)		
										Tested By:			(Technician)		
													(Test Engineer)		
										Date: A	opproved By:				
Vibration										Witnessed By:			()		
Error										Witnessed By:			()		
										EXCITATION	_ V(mA) at		Hz		
										LOAD IMPEDANCE			ЭНМЅ		
										COMMENTS					

Figure 5 — Strain Gage Pressure Transducer Acceleration/Vibration Test Record

d) Test summary (Figure 6) used to compile the results of all testing.

VENDOR'S PART NO.	TEST FACILITY						CUSTON	/IER'S PART	NO.				
VENDOR	-						SERIAL	NO.					
REPORT NO.	TRANSE	UCER T	EST RE	PORT	r		CUSTOMER						
TYPE OF TEST	STRAIN GAGE	EPRES	R	RANGE TO Pa(psi)									
	SUMMAR	SUMMARY OF RESULTS:							Error Error Band				
Test	Tested Per Proced. No. or Test Waived Per	Par,No.	Pass	Error	Electr.	Fail Mech.	See Comments	-% FSO					
Initial P.T. (Performance Test)													
Weight								·	·				
Dead Volume									Cu				
Vol. Change over Press. Range									_Cu				
Mounting													
Frequency Response								Flat (+%):	ToHz				
Phase Shift								deg. deg.	at Hz at Hz				
Resonant Frequencies								Hz Hz	Hz Hz				
Overshoot													
Time Constant								msec	.,%Ovs.				
Low Temp°C(°F)													
P.T. After Low Temp.													
High Temp. +C(°F)													
Add'l. Temp°C(°F)													
P.T. After High Temp.													
g Vibration													
P.T. Afterg Vibration													
Acceleration													
P.T. After Accel.													
Thermal Gradient Error													
Life													
Burst Pressure													
Tested By:			Date Test §	Started:			Date	Test Finished: _					
Approved By:			Approved By:										

Figure 6 — Transducer Test Report Strain Gage Transducer Summary of Results

Annex A — References

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

B88.1-1971	A Guide for the Dynamic Calibra ASME August, 1972.	ation of Pressure Transducers,
Z210.1	Standard Metric Practice Guide February, 1976.	, ASTM (E 380-76)
Available from:	ANSI 11 West 42nd Street New York, NY 10036	Tel. (212) 642-4900

ISA

ISA-S37.1-1982	Electrical Transducer Nomenclature and Terminology
ISA-S37.6-1982 (R 1995)	Specifications and Tests of Potentiometric Pressure Transducers

ISA Transducer Compendium, 2nd Edition, Part I, "Pressure, Flow and Level," Plenum Press, New York, 1969.

Available from:	ISA	
	67 Alexander Drive	
	P.O. Box 12277	
	Research Triangle Park, NC 27707	Tel. (919) 990-9200

MISCELLANEOUS

Beckwith, T. G. and Buck, N. L., *Mechanical Measurements*, Addison-Wesley, 1961.

Cross, J. L., *Reduction of Data for Piston Gage Pressure Measurements*, National Bureau of Standards Monograph #65, June, 1963.

Lederer, P. S., *Methods for Performance-Testing of Electromechanical Pressure Transducers*, National Bureau of Standards Technical Note #411, February, 1967.

MIL-E-5272C (ASG), Environmental Testing, Aircraft Electronic Equipment, General Specification for.

MIL-E-5400C (ASG), Environmental Testing, Aeronautical and Associated Equipment, General Specification for.

MIL-STD-810, Environmental Test Methods for Aerospace and Ground Equipment.

Neubert, H. K. P., Instrument Transducers, Oxford, at the Clarendon Press, 1963.

Norton, H. N., Transducers for Electronic Measuring Systems, Prentice-Hall, 1969.

PMC 20.1-1973, Process Measurement and Control Terminology, August, 1973.

Schweppe, J. L., et al., *Methods for the Dynamic Calibration of Pressure Transducers*, National Bureau of Standards monograph #67, December, 1963.

Transducer Wiring Standard for Resistance Strain Gage Systems, Western Regional Strain Gage Committee, Los Angeles, California, May, 1960.

Developing and promulgating technically sound consensus standards, recommended practices, and technical reports is one of ISA's primary goals. To achieve this goal the Standards and Practices Department relies on the technical expertise and efforts of volunteer committee members, chairmen, and reviewers.

ISA is an American National Standards Institute (ANSI) accredited organization. ISA administers United States Technical Advisory Groups (USTAGs) and provides secretariat support for International Electrotechnical Commission (IEC) and International Organization for Standardization (ISO) committees that develop process measurement and control standards. To obtain additional information on the Society's standards program, please write:

> ISA Attn: Standards Department 67 Alexander Drive P.O. Box 12277 Research Triangle Park, NC 27709

> > ISBN: 0-87664-378-0