
ANSI/ISA-S72.02-1993

Approved March 24, 1994
American National Standard
Manufacturing Message

Specification:

Companion Standard for Process

Control

Identical to ISO/IEC 9506-6

Copyright ¤ 1994 by the Instrument Society of America. All rights reserved. Printed in the United
States of America. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), without the prior written permission of the publisher.

ISA
67 Alexander Drive
P.O. Box 12277
Research Triangle Park, North Carolina 27709

ANSI/ISA-S72.02, Manufacturing Message Specification: Companion Standard for Process
Control

ISBN: 1-55617-519-1

 Preface

This preface is included for information purposes and is not part of ISA S72.02.

This standard has been prepared as part of the service of ISA, the international society for
measurement and control, toward a goal of uniformity in the field of instrumentation. To be of real
value, this document should not be static, but should be subject to periodic review. Toward this
end, the Society welcomes all comments and criticisms, and asks that they be addressed to the
Secretary, Standards and Practices Board, ISA, 67 Alexander Drive, P. O. Box 12277, Research
Triangle Park, NC 27709, Telephone (919) 990 9227, Fax (919) 549 8288,
e-mail: standards@isa.org.

The ISA Standards and Practices Department is aware of the growing need for attention to the
metric system of units in general, and the International System of Units (SI) in particular, in the
preparation of instrumentation standards. The Department is further aware of the benefits to USA
users of ISA Standards of incorporating suitable references to the SI (and the metric system) in
their business and professional dealings with other countries. Toward this end, this Department
will endeavor to introduce SI-acceptable metric units in all new and revised standards to the
greatest extent possible. The Metric Practice Guide, which has been published by the Institute of
Electrical and Electronic Engineers as ANSI/IEEE Std. 268 1982, and future revisions will be the
reference guide for definitions, symbols, abbreviations, and conversion factors.

It is the policy of ISA to encourage and welcome the participation of all concerned individuals and
interests in the development of ISA standards. Participation in the ISA standards making
process by an individual in no way constitutes endorsement by the employer of that individual, of
the Instrument Society of America, or of any of the standards that ISA develops.

This standard has been developed in cooperation with IEC SC65C/WG1, "Message data format
for information transferred on process and control data highways." The ISA committee and IEC
working group held concurrent meetings and have harmonized the developing drafts throughout
the standards process.

The following people served as members of ISA Subcommittee SP72.02:

NAME COMPANY

C. Williams, Chairman Eastman Kodak Company
C. Gross, Managing Director Dow Chemical Company

The following people served as members of ISA Committee SP72:

NAME COMPANY

C. Williams, Chairman Eastman Kodak Company
C. Gross, Managing Director Dow Chemical Company
F. Allegrezza Moore Products Company
ANSI/ISA-S72.02-1993 3

NAME COMPANY

*J. Barat Digital Equipment Company
D. Barber Rust International Corporation
P. Brett Honeywell, Inc.

*H. Burns Fisher Controls International, Inc.
A. Capel Comgate Engineering, Ltd.
R. Caro Arthur D. Little, Inc.
R. Crowder SHIP STAR Associates, Inc.
U. Dobrich Siemens AG
H. Falk Systems Integ. Specialist Company
B. Featherstone ABB Industrial Automation
W. Genter PCMT ATC B

*P. Goria Honeywell SSDC
M. Hagar Texas Instruments, Inc.
R. Harold Samborn Steketee Otis & Evan
R. Hatcher Amoco Oil Company
S. Heatley NIST
P. Heyliger Rhone Poulenc, Inc.
W. Hodson Leeds & Northrup
W. Hullsiek EMA, Inc.
M. Huras IBM Corporation

*R. Knipp E I du Pont
*K. Krivoshein Fisher Controls International, Inc.
*Y. Kumeda Yamatake Honeywell Company, Ltd.
*C. Langford E I du Pont
N. Laurance Ford Motor Company
T. Lehner AEG

*R. Lyskowski Digital Equipment Corporation
W. Maxwell Lower Colorado River Authority
R. Mergen Lubrizol Corporation

*N. J.Miller Digital Equipment Corporation
N. T. Miller Rosemount, Inc.
D. Modell MPI
A. Mukherji EPRI M&D Center
L. Neitzel Computer Technology Associates
J. Nelson Measure
M. Newman Cornell University
T. Ogowa Yokogawa Electric Company
K. Oress Lubrizol Corporation
J. Pattison British Coal

*M. Patz Softing GmbH
M. Pelley Allen Bradley Company
R. Rammler Powell Process System
R. Rupp BRL
R. Sawyer Foxboro Company
K. Schug CTA, Inc.
E. Skabowski Chevron USA
J. Slavinsky Federal Office for Standards & Measure
G. Stevens Modicon, Inc.

*One vote per company
4 ANSI/ISA-S72.02-1993

NAME COMPANY

D. Sweeton Commsoft
C. Terrell Tennessee Eastman Company
N. Tobol Ronan Engineering

*V. Von Rein Softing GmbH
T. Williams Purdue University
G. Workman General Motors Corporation

This standard was approved for publication by the ISA Standards and Practices Board in
December, 1993.

NAME COMPANY

W. Weidman, Vice President Gilbert Commonwealth, Inc.
H. Baumann H.D. Baumann & Associates, Ltd.
C. Gross Dow Chemical Company
H. Hopkins Utility Products of Arizona
A. Iverson Lyondell Petrochemical Company
K. Lindner Endress + Hauser GmbH + Company
G. McFarland ABB Power Plant Controls
E. Montgomery Fluor Daniel, Inc.
E. Nesvig ERDCO Engineering Corporation
R. Prescott Moore Products Company
D. Rapley Rapley Engineering Services
R. Reimer Allen Bradley Company
J. Rennie Factory Mutual Research Corporation
R. Webb Pacific Gas & Electric Company
J. Weiss Electric Power Research Institute
J. Whetstone National Institute of Standards and Technology
M. Widmeyer The Supply System
C. Williams Eastman Kodak Company
M. Zielinski Rosemount, Inc.

**D. Bishop Chevron USA Production Company
**P. Bliss Consultant
**W. Calder, III Consultant
**B. Christensen Consultant
**L. Combs Retired/Consultant
**N. Conger Consultant
**T. Harrison FAMU/FSU College of Engineering
**R. Jones Consultant
**R. Keller Consultant
**O. Lovett, Jr. Consultant
**E. Magison Honeywell, Inc.
**R. Marvin Roy G. Marvin Company
**A. McCauley, Jr. Chagrin Valley Controls, Inc.
**W. Miller Retired/Consultant
**J. Mock Bechtel

*One vote per company
**Directors Emeriti
ANSI/ISA-S72.02-1993 5

**G. Platt Retired/Consultant

NAME COMPANY

**C. Reimann National Institute of Standards & Technology
**K. Whitman ABB Combustion Engineering
**J. Williams Consultant

**Directors Emeriti
6 ANSI/ISA-S72.02-1993

 Contents

Foreword .. 9

Introduction .. 11

1 Scope .. 13

2 Normative References ... 14

3 Definitions .. 15

3.1 Reference model definitions ... 15
3.2 Definitions unique to this part of ISO/IEC 9506 .. 15

4 Abbreviations ... 16

5 Application description ... 17

5.1 Process control models .. 17
5.2 Process control functions ... 19
5.3 Application Models ... 21

6 Process control context mapp ing .. 23

6.1 Mapping the process control model to the VMD ... 23
6.2 Definition of process control objects that map to Domains ... 23
6.3 Definition of process control objects that map to Program Invocations 23
6.4 Process control requirements that affect other MMS objects 24
6.5 Definitions of new MMS abstract objects .. 26
6.6 Parameter conformance ... 28

7 Services .. 28

7.1 Use of ACSE services .. 28
7.2 Use of MMS services .. 29
7.3 Definition and use of process control specific services .. 44
7.4 The Initiate Service and Protocol .. 89
7.5 Generalized protocol extensions .. 93
7.6 End of module .. 96

8 Standardized objects ... 96

9 Conformance .. 96

9.1 Conformance classes ... 97
9.2 PICS Part One: Implementation information ... 103
9.3 PICS part Two: Service CBBs .. 103
9.4 PICS Part Three: Parameter CBBs .. 104
9.5 PICS Part Four: Local implementation values .. 104
ANSI/ISA-S72.02-1993 7

Annexes

A — Application Association model (Normative) ... 105
B — Block concepts (Informative) .. 107
C — Use of this part of ISO/IEC 9506 for batch processing. (Informative) 113
D — Block symbol definitions (Informative) ... 115

Figures

1 — Classes of communications.. 12
2 — Interaction in a peer to peer environment... 17
3 — An example hardware configuration... 18

Tables

1 — DefineEventCondition parameter extensions .. 31
2 — GetEventConditionAttributes parameter extensions.. 32
3 — AlterEventConditionMonitoring parameter extensions... 34
4 — DefineEventEnrollment parameter extensions .. 36
5 — GetEventEnrollmentAttributes parameter extensions.. 37
6 — AlterEventEnrollment parameter extensions ... 38
7 — EventNotification parameter extension .. 39
8 — Control Element Parameter ... 44
9 — Interaction of Unit Control primitives.. 47
10 — InitiateUnitControlLoad service.. 47
11 — UnitControlLoadSegment service .. 49
12 — UnitControlUpload service ... 51
13 — StartUnitControl service... 55
14 — StopUnitControl service ... 57
15 — CreateUnitControl service.. 59
16 — AddToUnitControl service.. 61
17 — RemoveFromUnitControl service... 63
18 — GetUnitControlAttributes service ... 64
19 — LoadUnitControlFromFile service .. 66
20 — StoreUnitControlToFile service.. 68
21 — DeleteUnitControl service .. 70
22 — DefineEventConditionList service .. 72
23 — DeleteEventConditionList service .. 75
24 — AddEventConditionListReference service ... 77
25 — RemoveEventConditionListReference service .. 80
26 — GetEventConditionListAttributes service ... 82
27 — ReportEventConditionListStatus service ... 84
28 — AlterEventConditionListMonitoring service .. 87
29 — Init Request Detail parameter .. 89
30 — Init Response Detail parameter ... 91
31 — Conformance classes .. 97
32 — Service requirements for conformance classes... 98
33 — Parameter requirements for conformance classes .. 102
34 — Additional service CBBs .. 103
35 — Additional parameter CBBs ... 104
36 — Application objects and MMS objects in Process Control and

Programmable Controllers... 112
8 ANSI/ISA-S72.02-1993

Industrial Automation Systems —

Manufacturing Message Specification —

Part 6: Comparison Standard for Process Control

 Foreword

This part of ISO/IEC 9506 was developed by IEC/TC 65C and circulated to the IEC national
bodies for approval. It presents new material not previously covered by other standards. Annex A
is normative; Annexes B, C and D are informative. This is one of several standards intended as a
companion to ISO/IEC 9506, Manufacturing Message Specification (MMS). This part of this
Standard deals with control systems as found in the process industries. This part of this Standard
should be used when process control systems are connected to a network employing the MMS
services and protocol. Together with MMS and its other companion standards, this part of this
Standard will enable the networking of different classes of programmable devices on the factory
floor.
ANSI/ISA-S72.02-1993 9

 Introduction

General

This document is a part of a standard developed to facilitate the interconnection of information
processing systems. It is positioned within the application layer of the Open Systems
Interconnection environment as an application service element (ASE) with respect to other
related standards by the basic reference model for open systems interconnection (ISO 7498)

The aim of open systems interconnection is to allow, with a minimum of technical agreement
outside the interconnection standards, the interconnection of information processing systems:

a) From different manufacturers

b) Under different managements

c) Of different levels of complexity

d) Of different evolutionary implementations

This part of ISO/IEC 9506 is concerned with the communications and interworking of
programmable devices of industrial process control systems utilized in the process industries.

Purpose

The purpose of this part of ISO/IEC 9506 is to augment the use of the Manufacturing Message
Specification, ISO/IEC 9506 1 and ISO/IEC 9506 2, for process control applications

This part of ISO/IEC 9506 is a companion standard to the Manufacturing Message Specification
(MMS). It also uses and references the Association Control Service Element Definition (ISO
8649) whose provisions it assumes in order to accomplish the aims of the Manufacturing
Message Specification. In the Process Control Environment, three forms of communication are
recognized; these classes are depicted in Figure 1 and described as follows:

Class A - Communications between a computer and a process control system
(PCS), or communications between a computer and a distributed process control
system (DCS). The computer performs "higher level" functions which are not part
of the PCS or DCS functionality. These functions may include supervisory control,
production control and management, remote diagnosis, expert system advice, or
any combination of these or other functions not contained within the specific PCS
or DCS employed to serve the application. Communications within a DCS may be
proprietary to the manufacturer of the DCS, in which case a gateway is required at
the DCS to provide communications services and protocols in conformance with
this part of ISO/IEC 9506. The gateway functions may reside within a special de-
vice at the DCS or may share a DCS device with other functionality. Communica-
tions with a gateway may be used to connect PCS systems, or DCS systems, or
both where necessary.

Class B - Communications between the component devices of the DCS. The DCS
is composed of devices from multiple manufacturers, and communications be-
ANSI/ISA-S72.02-1993 11

tween devices take place using the services and protocol specified by this part of
ISO/IEC 9506.

Class C - Communications between a PCS or a DCS and field devices including
sensors, actuators and field multiplexers, as well as communication between field
devices.

The application description in Clause 5 of this part of ISO/IEC 9506 focuses primarily on Class A
communications. The description may be partially applicable to Class B communications.
Interworking of systems conforming to this part of ISO/IEC 9506 and systems supporting Class C
communications may be the subject of other standardization efforts, e.g., the International
Fieldbus work.

Figure 1 — Classes of communications

This part of ISO/IEC 9506 emphasizes communications in support of supervisory monitoring and
control, or class A communications. Specific features of this communication include, but are not
limited to:

a) Peer to peer communications between computers of various implementations, used for
production control and management, and various process control systems

b) Access to control and monitoring Blocks and their attributes for the purpose of achieving
improved control

c) Peer to peer communication with other equipment used in the process control
application, such as programmable controllers

CLASS A

HOST
COMPUTERS

DCS OR
PCS
SYSTEMS

FIELD
DEVICES

CLASS A

CLASS A CLASS BCLASS B

CLASS C CLASS C
12 ANSI/ISA-S72.02-1993

Industrial automation systems —

Manufacturing Message Specification —

Part 6: Companion Standard for Process Control

1 Scope

This part of ISO/IEC 9506 describes the use of the Manufacturing Message Specification in the
Process Control Environment in terms of:

a) The interaction requirements of process control applications

b) A set of abstract models defining the interaction between process control applications

c) The externally visible functionality of implementations conforming to this part of ISO/
IEC 9506 in the form of procedural requirements associated with the execution of service
requests

d) Objects required to be externally visible at implementations conforming to this part of
ISO/IEC 9506, in order to support the interactions of process control applications

e) Conformance requirements to this part of ISO/IEC 9506, which include minimum
requirements or simple applications as described in Clause 5

This part of ISO/IEC 9506 specifies requirements for the server role, except where specifically
noted otherwise.

This part of ISO/IEC 9506 is for use between a supervisory computer and any type of
programmable equipment used in process control, including programmable controllers. In
addition, it may be used between two instances of programmable equipment.

This part of ISO/IEC 9506 is a companion standard to the Manufacturing Message Specification,
ISO/IEC 9506 1 and ISO/IEC 9506 2, designed to support messaging communications to and
from programmable devices in an integrated process control application environment. This
environment is referred to in this part of ISO/IEC 9506 as the Process Control Environment.

This part of ISO/IEC 9506 specifies a particular mapping of the Process Control Environment
onto the Virtual Manufacturing Device (VMD) model and describes the use of the Manufacturing
Message Specification services within this environment. This part of ISO/IEC 9506 specifies
additions to the services of the Manufacturing Message Specification to support the
requirements of the Process Control Environment and specifies additional protocol to support
these services.
ANSI/ISA-S72.02-1993 13

2 Normative References

The following standards contain provisions which, through reference in this text, constitute
provisions of this part of ISO/IEC 9506. At the time of publication, the editions indicated were
valid. All standards are subject to revision, and parties to agreements based on this part of ISO/
IEC 9506 are encouraged to investigate the possibility of applying the most recent editions of the
standards listed below. Members of IEC and ISO maintain registers of currently valid
International Standards.

ISO 646:1983 Information Processing - ISO 7 bit Coded Character Set for
Information Interchange

ISO 7498 1:1984 Information processing systems - Open systems
Interconnection Basic Reference Model

ISO TR/8509:1987 Information processing systems - Open systems
interconnection Service Conventions

ISO 8824:1987 Information processing systems - Open systems
interconnection Specification of Abstract Syntax Notation One
(ASN.1)

ISO 8649:1988 Information processing systems - Open systems
interconnection Service definition for the Association Control
Service Element

ISO 8649/AM 1:1990 Information processing systems - Open systems
interconnection Service definition for the Association Control
Service Element, Amendment 1 covering authentication during
association establishment

ISO 8650:1988 Information processing systems - Open systems
interconnection Protocol Specification for the Association
Control Service Element

ISO 8650/AM 1:1990 Information processing systems - Open systems
interconnection Protocol Specification for the Association
Control Service Element, Amendment 1 covering
authentication during association establishment

ISO/IEC 9506 1:1990 Industrial automation systems - Manufacturing message
specification Service definition

ISO/IEC 9506 2:1990 Industrial automation systems - Manufacturing message
specification Protocol specification
14 ANSI/ISA-S72.02-1993

3 Definitions

For the purposes of this part of ISO/IEC 9506, the definitions in the following subclauses apply.

3.1 Reference model definitions

Clause 3 of ISO/IEC 9506 1 and ISO/IEC 9506 2 list a number of terms defined in ISO 7498, in
ISO TR 8509, and in ISO 8824 as well as its own definitions. These definitions are included in
this part of ISO/IEC 9506 by reference.

3.2 Definitions unique to this part of ISO/IEC 9506

For the purpose of this part of ISO/IEC 9506, the following definitions also apply:

3.2.1 batch control computer: A computer used to monitor and control the execution of a
product that is manufactured in discrete batches.

3.2.2 cascade structure: A control structure in which the output variable of one controller is
the reference variable for one or more secondary control loops.

3.2.3 configuration: The result of customizing a general control system for a particular physical
location, application, class of application, or any combination thereof.

3.2.4 control, feedback: Control in which a measured variable is compared to its desired value
to produce an actuating error signal that is acted upon in such a way as to reduce the magnitude
of the error.

3.2.5 control loop: The collection of I/O equipment, algorithms and other hardware and
software modules used to implement feedback control.

3.2.6 control, supervisory: Control in which the control loops operate independently subject to
intermittent corrective action, e.g., set point changes from an external source.

3.2.7 control system: A system in which deliberate guidance or manipulation is used to
achieve a prescribed value of a variable.

3.2.8 controller: A device that operates automatically to regulate a controlled variable.

3.2.9 controller, PID: A controller that produces proportional plus integral (reset) plus
derivative (rate) control.

3.2.10 device: An apparatus for performing a prescribed function.

3.2.11 element: A component of a device or system.

3.2.12 hardware: Physical equipment directly involved in performing industrial process
measuring and controlling functions.

3.2.13 historian: A system whose function is to archive records of the actions taken within the
process control system.
ANSI/ISA-S72.02-1993 15

3.2.14 linking device: A device which provides a gateway function between two dissimilar
networks, e.g., between the backbone and the control network, or between the backbone and the
Fieldbus.

3.2.15 loop controller: A controller which operates a control loop.

3.2.16 multiloop controller: A controller which operates more than one control loop.

3.2.17 operator's console: A system for the monitoring or operation of a process or both. An
operator's console includes the Operator Station object of ISO/IEC 9506 1. It is usually capable
of colour graphic displays with live updating data.

3.2.18 parameter: A quantity or property treated as a constant but which may sometimes vary
or be adjusted.

3.2.19 process: Physical or chemical change of matter or conversion of energy, e.g., change in
pressure, temperature, speed, electrical potential, etc.

3.2.20 process control: The regulation or manipulation of variables influencing the conduct of
a process in such a way as to obtain a product of desired quality and quantity in an efficient
manner.

3.2.21 process monitoring application: An application that may provide any of the following
functions: observe process trends, initiate actions for process optimization, involve the use of
expert system technology.

3.2.22 reflexive action: See reflexive processing.

3.2.23 reflexive processing: Action taken without consultation with an operator or supervisory
computer, usually conditioned on the occurrence of specified condition or event.

3.2.24 regulatory control: A synonym for feedback control. (See 3.2.4.)

3.2.25 signal conditioning; The act of operating on a signal to make it useful to the device
which will utilize the signal. Examples include noise suppression and inversion.

3.2.26 signal inversion: A process in signal conditioning in which the sign of the signal (+, -)
is "inverted" to the other sign.

4 Abbreviations

CBB Conformance Building Block

DCS Distributed Process Control System

MMS Manufacturing Message Specification

PDU Protocol Data Unit

PICS Proforma Implementation Conformance Statement

PID Proportional Integral Derivative

PC Programmable Controller

PCS Process Control System

VMD Virtual Manufacturing Device
16 ANSI/ISA-S72.02-1993

5 Application description

The interactions between applications in the Process Control Environment take place between
communicating peers in support of the exchange of control information or monitoring information
or both. During the lifetime of any instance of an application association, a real system may adopt
the client role or the server role or both. This part of ISO/IEC 9506 places no restrictions on the
behaviour of a client, other than the implied requirement that the system acting in the client role
be capable of issuing appropriate requests and receiving appropriate responses. In very simple
environments, a single application association may suffice between two communicating peers. In
more complex environments, there may be a necessity for more than one application association.

5.1 Process control models

5.1.1 Process manufacturing communication models

5.1.1.1 Peer to peer communication model

Figure 2 illustrates peer to peer communication which may be applied between a cooperating
client and server in the Process Control Environment for the purpose of optimizing behaviour in a
control system. This model may be applied to communications between a batch control
application and a monitoring and control device or between a process monitoring application and
a large, distributed process control system, where the distributed process control system is
treated as a single device containing numerous monitoring and control elements. This model may
be used between two distributed process control systems, each treated as a single device, and
may also be applied to interactions between elements of a distributed process control system or
between control elements distributed on a control communications highway.

Figure 2 — Interaction in a peer to peer environment

APPLICATION A

Interacts with

APPLICATION B

PLATFORM APLATFORM A

COMMUNICATION NETWORK

PLATFORM B
ANSI/ISA-S72.02-1993 17

5.1.1.2 Multi-tiered example:

Figure 3 shows an example of a hardware configuration which integrates a distributed process
control system with one or more host computers. The distributed process control system's
internal network is represented by the lower horizontal line, and its component elements are
shown as boxes attached to the internal network. The elements shown are representative of
those commonly found in distributed control systems, and include analog and digital input/output
controllers, single and multiloop controllers, a programmable controller (PC), batch control
computers, a historian, operator workstations and a device (linking device) which performs a
linking (potentially a gateway) function between the distributed process control system's internal
network and the supervisory network. The supervisory network is represented by the upper
horizontal line, and the host computers are attached to the supervisory network.

In this example, a Production Control application operating on a host computer may be used to
download batch recipes and retrieve batch product data. The host computer may also
communicate with the operator's consoles to setup displays or give operator instructions. The
host computer or operator's console may also recall the data from the historian. In this case, the
historian may act as a client when collecting data from controllers and as a server when providing
data for the host computer or the operator's console. Where application circumstances warrant,
some equipment may be provided with connections to both the control network and the
supervisory network. One example of such an architecture might include a historian and an
operator's console, which may rely on the control network for data acquisition, and may
additionally rely on the supervisory network for communications of a supervisory nature.

Figure 3 — An example hardware configuration

HOST

COMPUTERS

Operator
workstation

Operator
workstation

Linking
Device

Batch control
computer Historian

Loop
Controller

Digital I/O
Controller

Analog I/O
Controller

Multiloop
Controller PLC
18 ANSI/ISA-S72.02-1993

5.2 Process control functions

5.2.1 Support for regulatory control

5.2.1.1 General

In the Process Control Environment, regulatory control is conceptually accomplished through the
utilization of Blocks, such as signal conditioning, mathematical conversions, X Y
characterizations and Proportional Integral Derivative (PID) control loops. Blocks represent real
instances of functions in a real process control system.

Simple functions may be combined to form complex functions by connecting the output of one
Block to the input of another Block. Each Block has associated with it a set of Block parameters
which represent the inputs, outputs, and internal state variables required by the function.

5.2.1.2 Protection

Blocks are subject to alteration during operation of the process control system. This alteration
may take the form of tuning block parameters for optimal operation. It is a requirement that Blocks
be protected against unauthorized modification; in order to accomplish this, it is necessary that
the identity and privilege of the requester be determined before a Block is modified.

5.2.1.3 Groups of Blocks

Since, in general, there will be a large number of Block instances employed in a typical process
control system, it is a requirement that there be an efficient way of handling groups of Blocks.
This includes facilities for downloading and uploading Blocks, starting and stopping groups of
Blocks, and otherwise dealing with them in groups.

5.2.2 Management of events and alarms

5.2.2.1 General

There is a functional requirement to continuously monitor processes under control and identify as
"process events" the occurrence of certain conditions related to the state of the process under
control. Management of a process event implies an ability to communicate the occurrence of the
process event to a remote application. There is a functional requirement for the creation of a
"notification request," either by or on behalf of a communicating peer, which will result in the
creation and transmission of a notification message to the communicating peer containing
information about the transition into the specified condition and process state.

When the occurrence of an event is communicated, there is a functional requirement to allow
inclusion of textual strings, or identifying numbers, in the message communicating the
occurrence. Depending on application considerations, the content of the string or identifying
number may be identical for each reported occurrence, or different for each reported occurrence.
This information is referred to as "display enhancements."

NOTE — Provision has been included for both numbers and text strings due to the require-
ment to be able to display the string directly on an operator's console or to use the number
to index into an array containing multiple strings in different languages.

Under certain circumstances determined by an application or a configuration process, the
response to a process event may include "reflexive actions" which are executed as autonomous
actions, as a direct result of detection of the process event. A requirement exists to communicate
the results of the reflexive action to communicating peers which have a desire to be aware of the
results. As an efficiency move, the results of reflexive actions are communicated with the report
ANSI/ISA-S72.02-1993 19

of the occurrence of a process event. The creation of a notification request will be used to specify
a request for reflexive processing.

Example:

1 - A reflexive action may be a simple act, such as the starting of a Program Invocation, which may lead to
several complex actions managed by the system.

Example:

2 - A reflexive action may be an action which must be taken in the interests of personal safety or safety to
equipment. The dumping of the contents of a quench tank into an exothermic chemical reaction which is
running away constitutes another example.

When process events require acknowledgement by a remote entity, whether a human operator or
a supervisory application, the event is termed an "alarm" and there is a functional requirement for
related alarm management techniques such as display, recording, and acknowledgement.

5.2.2.2 Event and alarm groupings

In certain process control applications, there is a functional requirement for a capability to group
process events into "Process Event Groups," for purposes of status inquiry and alarm
management. In most cases, such groups are associated with a unit of equipment or plant, or in
some cases represent a grouping of groups, or an instance of a hierarchical relationship of
groups. It is a functional requirement that the hierarchical relationships between groups be
preserved, while allowing changes of groups at lower levels in the hierarchy to be reflected in
higher level groups.

Example:

The addition of a temperature sensor to a feedwater pump group should be automatically included when
the points in the boiler support groups are requested.

An additional function requirement is a capability to dynamically override the priority of individual
events in process event groups.

NOTE — This capability has utility during process start up and shutdown, as well as facility
maintenance, where groups of event and alarm conditions are managed in correspondence
to units of affected plant. Priority of individual events is described in ISO 9506 1.

5.2.2.3 Alarm suppression

During maintenance periods, process start up, or abnormal shutdown, there is a functional
requirement to suppress notifications of process events which are reporting conditions known to
be abnormal. There is a functional requirement for a capability to perform event and alarm
suppression on groups of process events, corresponding to affected units of plant, or equipment.
When conditions are stable, an additional functional requirement exists to return event and alarm
reporting to normal.

5.2.3 Support for b atch manufact uring

In many process industries applications, production occurs in "batches," i.e., aggregations of
large quantities of material to be made into final products. Typically, one computer, the "batch
control computer," will contain the master plan for this batch manufacture, and the process will be
carried out under the control of one or more process control computers. In dealing with the
interactions between the batch control computer and the process control computers, we can
identify five types of requirements.
20 ANSI/ISA-S72.02-1993

5.2.3.1 Determination of the status of a batch process

The batch control computer needs to be able to determine the status of the batch process or the
status of the components of the batch process as sensed at the process control computer.

5.2.3.2 Control of a b atch process

The batch control computer needs to be able to control the batch process by changing the state
of the control applications operating in the process control computer.

5.2.3.3 Alteration of the control of a b atch process

In some cases, it may be necessary for a human operator present at the process control
computer to assume control of the process. There is a need for an orderly way for the batch
control computer to relinquish control in such circumstances.

5.2.3.4 Direct communication with a human operator

In some cases, it may be necessary for the batch control computer to display information to a
human operator present at the process control computer to solicit his input.

5.2.3.5 Synchronization and coordination

The batch control computer may need to coordinate the use of resources with other processes in
the Process Control Environment. Such resources may be a common source of supply of raw
materials or a shared device such as an error logging printer.

5.2.4 Support for creation and retrieval of historical records

There is a functional requirement for the retention of information related to a particular process or
processes. The information should be available in chronological order when retrieved.
Information typically stored in "historical records" includes time stamped records of process
events, time stamped records of process variables of interest, either recorded in conjunction with
records of process events or independently, and comments entered by a human operator.

5.2.5 Support for process control system configuration and management

A functional requirement exists for the transfer of configuration data from a host computer into an
unconfigured as well as into an operational process control system; conversely, a functional
requirement exists for a capability to retrieve configuration data for off system storage following
debugging. Configuration data includes, but is not limited to, program code, data tables, and code
patches.

5.3 Application Models

5.3.1 Block

The Block conceptually represents an installed instance of a control or monitoring function in a
process control system. The basic functional aspects of a Block necessary for prescribing
communication behaviour are described here. Further information about Blocks and their use in
the Process Industry may be found in Annex B.

Example:

Blocks may be utilized to perform signal conditioning, mathematical or complex monitoring, and control
functions.
ANSI/ISA-S72.02-1993 21

Model: Block

Key Attribute: Block Tag

Attribute: InService (TRUE, FALSE)

Attribute: Algorithm reference

Attribute: Mode State

Attribute: List of Block Parameters

5.3.1.1 Block Tag

This attribute is the name of the Block. It is unique throughout the process control system. It is
assigned by the end user or configuration manager of the process control system.

5.3.1.2 InService

This attribute indicates whether (true) or not (false) the Block is actively operating.

5.3.1.3 Algorithm Reference

This attribute contains a reference to the function algorithm. There is a reference for each Block
in a real control system; however, use of a common algorithm for multiple Blocks is not precluded
so long as individual references from each Block are maintained.

5.3.1.4 Mode State

This attribute governs the operation of the Block and the protection of its elements. Further
information can be found in Annex B.

5.3.1.5 List of Block Parameters

This attribute is the list of Block parameters which represents the inputs, outputs, and internal
state variables of the Block.

5.3.2 Algorithm

The Algorithm object represents the algorithm used by a Block instance to transform its inputs
into its outputs. It is a separate object to reflect the fact that many Block instances may share a
common algorithm.

Object: Algorithm

Key Attribute: Algorithm Name

Attribute: Algorithm content

5.3.2.1 Algorithm Name

This attribute is the name associated with the algorithm.

5.3.2.2 Algorithm content

This attribute represents the substance of the algorithm, the program or rules by which the output
is determined based on the input, and the internal state.
22 ANSI/ISA-S72.02-1993

6 Process control context mapping

This clause prescribes how the facilities of MMS shall be used to satisfy the communication
requirements of the Process Control Environment described in the previous clause. This clause
also relates the models of process control systems to the abstract model of the Virtual
Manufacturing Device (VMD) described in ISO/IEC 9506 1.

6.1 Mapping the process control model to the VMD

Each device of a process control system that offers Class A communication capabilities as a
server shall be mapped onto at least one VMD.

Example:

A programmable controller engaged in a process control application may consist of a single VMD. A large
distributed process control system, when viewed through a gateway from a production control computer,
may also consist of a single VMD. A distributed process control system, when viewed from an internal
element of the control system, such as an operator's console, may contain multiple VMDs with at least one
VMD representing each station connected to the distributed process control system. A large distributed
process control system with multiple connections to the supervisory network from the system gateway, the
historian, and operator's console may appear, from the supervisory network, as multiple VMDs.

6.2 Definition of process control objects that map to Domains

6.2.1 The Block object

The Block object shall map to a Domain and to a Program Invocation bound to this Domain. The
Domain shall contain Domain specific Named Variable objects that shall represent the inputs,
outputs, and internal state parameters of the Block. The Mode State attribute of the Block shall
also be represented as a Named Variable object of the Domain. If the syntax of the Block Tag is
compatible with the syntax of an Identifier (see 7.6.2 of ISO/IEC 9506 2), the name of the Domain
shall be the same as the Block Tag. If the syntax of the Block Tag is not compatible with Identifier
syntax, there are no requirements on the Domain name. However, Annex B.4 provides guidance
on a recommended method for deriving a Domain name from the Block Tag.

6.2.2 The Algorithm object

The Algorithm object shall map to a Domain. The Domain name shall be the name of the
Algorithm.

6.3 Definition of process control objects that map to Program Invocations

6.3.1 The Block object

The Block object shall map to a Domain and to a Program Invocation bound to this Domain. If the
syntax of the Block Tag is compatible with the syntax of an Identifier (see 7.6.2 of ISO/IEC 9506
2), the name of the Program Invocation shall be the same as the Block Tag. If the syntax of the
Block Tag is not compatible with Identifier syntax, there are no requirements on the Program
ANSI/ISA-S72.02-1993 23

Invocation name. However, Annex B.4 provides guidance on a recommended method for deriving
a Program Invocation name from the Block Tag.

The Program Invocation representing the Block will normally have two Domains bound to it, one
whose name is the same as the Program Invocation supports the Named Variables that
represent the inputs, outputs, internal state variables, and Mode State of the Block. The other
Domain, which may be sharable, represents the algorithm for the Block execution. Depending on
the nature of the Block, there may be additional Domains bound to the Program Invocation. In
some cases, the entire Block may be represented by a single Domain bound to a Program
Invocation.

The state of the Program Invocation is used in this model to represent the InService attribute of
the Block. When the Program Invocation is in the IDLE or STOPPED state, the InService attribute
is FALSE. When the Program Invocation is in the RUNNING state, the InService attribute is
TRUE.

6.4 Process control requirements that affect other MMS objects

6.4.1 Extensions to the Event Condition object

The Event Condition object in Clause 15 of ISO/IEC 9506 1 is extended by the following
attributes:

Object: Event Condition

All MMS defined attributes

Attribute: Display Enhancement Class (TEXT, NUMBER, UNDEFINED)

Constraint: Display Enhancement Class = TEXT

Attribute: Display Enhancement (String)

Constraint: Display Enhancement Class = NUMBER

Attribute: Display Enhancement (Integer)

Attribute: Group Priority Override

Attribute: List of referencing Event Condition List references

6.4.1.1 Display Enhancement Class

This attribute identifies the type of the Display Enhancement attribute of the Event Condition
object. If the value of this attribute is TEXT, the Display Enhancement is of type character string.
If the value of this attribute is NUMBER, the Display Enhancement is of type integer. If the value
of this attribute is UNDEFINED, the Display Enhancement attribute is not present.

6.4.1.2 Display Enhancement

This attribute is used to contain information useful in preparing operator displays at the MMS
user receiving notification of the event. The type of this attribute is either character string or
integer, depending on the value of the Display Enhancement Class attribute.
24 ANSI/ISA-S72.02-1993

6.4.1.3 Group Priority Override

This attribute shall contain a value that is either UNDEFINED or an integer value between zero
(0) and one hundred twenty-seven (127). Zero shall represent the highest priority and one
hundred twenty-seven shall represent the lowest priority. If the value of this attribute is defined, it
shall represent an override priority value that shall be utilized by the VMD in place of the value
contained in the Priority attribute. If the value of the Group Priority Override attribute is
UNDEFINED, the VMD shall utilize the value of the Priority attribute in determining the
importance of the Event Condition object. When an Event Condition object is created using the
Define Event Condition service, the value of this attribute shall be initialized to UNDEFINED.

Example:

Consider the case in which an Event Condition object's priority is modified using a service operating on an
Event Condition List, and then individually altered using the AlterEventConditionMonitoring service, and
then modified again at the group priority level using a service operating on an Event Condition List.
Following the first change, the Group Priority Override attribute has changed and takes precedence over
the Priority attribute. The Priority attribute has not changed, but is not considered since there is a group
override in effect. The Priority attribute does change following the Priority change, but is still not considered
until the group override is removed.

The Group Priority Override attribute imposes an absolute override, whether the value is higher
or lower than the value of the Priority attribute.

This attribute need not be implemented if Event Condition List objects are not supported.

6.4.1.4 List of referenc ing Event Condition List references

This attribute shall contain a list of references to Event Condition List objects that reference the
specific Event Condition object. The Event Condition List object is defined in of this part of ISO/
IEC 9506. When an Event Condition object is created using the DefineEventCondition service,
the value of this attribute shall be initialized to an empty list.

This attribute need not be implemented if Event Condition List objects are not supported.

6.4.2 Extensions to Event Enrollment objects

The Event Enrollment object in described in Clause 15 of ISO/IEC 9506 1 is extended as follows:

Object: Event Enrollment

All MMS defined attributes

Attribute: Display Enhancement Class (TEXT, NUMBER, UNDEFINED)

Constraint: Display Enhancement Class = TEXT

Attribute: Display Enhancement (String)

Constraint: Display Enhancement Class = NUMBER

Attribute: Display Enhancement (Integer)

6.4.2.1 Display Enhancement Class

This attribute identifies the type of the Display Enhancement attribute of the Event Enrollment
object. If the value of this attribute is TEXT, the Display Enhancement is of type character string.
If the value of this attribute is NUMBER, the Display Enhancement is of type integer. If the value
of this attribute is UNDEFINED, the Display Enhancement attribute is not present.
ANSI/ISA-S72.02-1993 25

6.4.2.2 Display Enhancement

This attribute is used to contain information useful in preparing operator displays at the MMS
user receiving notification of the event. The type of this attribute is either character string or
integer, depending on the value of the Display Enhancement Class attribute.

6.5 Definitions of new MMS abstract objects

6.5.1 Event Condition List object

The Event Condition List object shall be used to reference groups of Event Condition objects that
are required to be operated on as groups. Support of the RECL (See 6.6.3) CBB indicates
support for Event Condition Lists that may refer to other Event Condition Lists. If this CBB is not
supported, the list may contain only references to Event Conditions.

Object: Event Condition List

Key Attribute: Event Condition List name

Attribute: MMS Deletable

Attribute: List of Event Condition references

Attribute: List of Event Condition List references

Attribute: List of referencing Event Condition List references

6.5.1.1 Event Condition List name

This attribute, of type Object Name, shall be the name by which the Event Condition List is
identified. An Event Condition List name may have VMD, Domain specific, or AA specific scope.

6.5.1.2 MMS deletable

This attribute, of type Boolean, shall indicate whether (true) or not (false). This object may be
deleted through the use of the service defined in 7.3.15 of this part of ISO/IEC 9506.

6.5.1.3 List of Event Condition r eferences

This attribute shall contain a list of references to Event Condition objects. The scope of services
operating on the Event Condition List object shall include objects in both the List of Event
Condition references attribute and the List of Event Condition List references attribute.

Because of visibility constraints, if the Event Condition List name has VMD specific or Domain
specific scope, this attribute shall contain references only to Event Condition objects which have
VMD specific or Domain specific scope. If the Event Condition List name attribute has AA specific
scope, this attribute may reference Event Condition objects of any scope.

6.5.1.4 List of Event Condition List r eferences

This attribute shall contain a list of references to Event Condition List objects that are
hierarchically subordinate to this Event Condition List object. It shall not be permissible for this
attribute, nor for this attribute in subordinate Event Condition List objects, to contain circular
references. The scope of services operating on the Event Condition List object shall include
objects included in both the List of Event Condition references attribute and the List of Event
Condition List references attribute. The List of Event Condition List references attribute shall be
present only if the RECL CBB has been negotiated.
26 ANSI/ISA-S72.02-1993

Because of visibility constraints, if the Event Condition List name has VMD specific or Domain
specific scope, this attribute shall contain references only to Event Condition List objects which
have VMD specific or Domain specific scope. If the Event Condition List name attribute has AA
specific scope, this attribute may reference Event Condition List objects of any scope.

6.5.1.5 List of referenc ing Event Condition List references

This attribute shall contain a list of references to other Event Condition List objects that reference
this specific Event Condition List object. If there are no references to this Event Condition List
object, the value of this attribute shall be an empty list. This attribute shall be present only if the
RECL CBB has been negotiated.

NOTE — This attribute is necessary to fully describe the service procedures that operate
on the Event Condition List object. This attribute is not visible nor modifiable via the services
provided in this part of ISO/IEC 9506.

6.5.2 Unit Control object

The Unit Control object shall represent a collection of MMS objects representing groups of
Domains and/or Program Invocations that may be loaded and managed as a collective unit.
Downloads and uploads may be performed on a Unit Control object to efficiently transmit the
information representing multiple Domains to and from a process control system in one or more
download or upload sequences. While introduced to satisfy the requirement of manipulating
groups of Blocks, the Unit Control object may be used to manipulate groups of Domains and/or
Program Invocations. Services that operate on the Unit Control object are described in 7.3.1
through 7.3.13.

NOTE – The Unit Control object may be utilized to minimize the number of PDU's necessary to download
large numbers of Domains or to create large numbers of Program Invocations. Rules concerning the
applicability of grouping of these objects is outside the scope of this part of ISO/IEC 9506.

Object: Unit Control

Key Attribute: Unit Control Name

Attribute: MMS Deletable (TRUE, FALSE)

Attribute: List of Domain references

Attribute: List of Program Invocation references

6.5.2.1 Unit Control Name

This attribute shall uniquely identify the Unit Control object at the VMD. The name scope of the
Unit Control object shall be VMD specific.

6.5.2.2 MMS Deletable

This attribute shall indicate whether (true) or not (false) the Unit Control object may be deleted
using the DeleteUnitControl service.

6.5.2.3 List of Domain references

This attribute shall identify the Domain objects that are constituents of the Unit Control object and
that may be affected by operations on the Unit Control object.

6.5.2.4 List of Program Invocation references

This attribute shall identify the Program Invocation objects that are constituents of the Unit
Control object and may be affected by operations on the Unit Control object.
ANSI/ISA-S72.02-1993 27

6.6 Parameter conformance

This part of ISO/IEC 9506 introduces three new parameter conformance building blocks (CBB's)
in the system specification.

6.6.1 DES

The DES parameter conformance building block shall establish the validity of the text form of the
display enhancement parameter, whenever it occurs in a request or indication in a service table.

If DES is supported, the parameter is valid. Otherwise, the parameter is invalid. If DES is not
supported, a request specifying this parameter shall constitute a protocol error.

If DES is supported, DEI shall not be supported.

6.6.2 DEI

The DEI parameter conformance building block shall establish the validity of the numeric form of
the display enhancement parameter, whenever it occurs in a request or indication in a service
table.

If DEI is supported, the parameter is valid. Otherwise, the parameter is invalid. If DEI is not
supported, a request specifying this parameter shall constitute a protocol error.

If DEI is supported, DES shall not be supported.

6.6.3 RECL

The RECL parameter conformance building block shall establish the validity of the List of Event
Condition List parameter, whenever it occurs in a service table.

If RECL is supported, this parameter is valid. Otherwise, the parameter is invalid. A request or
response specifying this parameter shall constitute a protocol error. If RECL is not supported, a
request which, if honoured, would require a response specifying this parameter shall result in a
service error specifying error class equal to ACCESS and error code equal to OBJECT ACCESS
UNSUPPORTED.

7 Services

7.1 Use of ACSE services

In order to support certain MMS operations that affect the state of the process control system,
the MMS server shall require that the MMS client has provided the AP title in the A ASSOCIATE
service and further that the MMS client has specified the Authentication functional unit of ACSE
and provided proper values of Privilege Classification and Privilege Identifier as part of the
Authentication Value of the A ASSOCIATE service. These values shall become values of the
corresponding attributes of the Application Association object (See Annex A). If the MMS client
has not supplied such values, the corresponding attributes shall be set to a value of UNDEFINED
or the MMS server may, at its option, refuse establishment of the association.
28 ANSI/ISA-S72.02-1993

For the purpose of providing a syntax definition for the Authentication mechanism, this part of
ISO/IEC 9506 assigns the ASN.1 object identifier value and the associated ASN.1 module for the
external choice of Authentication value.

ISO 9506 Authentication { iso standard 9506 part(6)

authentication(3) }

DEFINITIONS ::= BEGIN

Authentication syntax ::= SEQUENCE {

user VisibleString,

password OCTET STRING OPTIONAL,

privilege classification INTEGER OPTIONAL

}

END

7.2 Use of MMS services

This subclause specifies the use of services and protocol defined in ISO/IEC 9506 1 and ISO/
IEC 9506 2, extensions to some of those services, and protocol to support the extensions.

7.2.1 Process application context name

For the purpose of being able to use an application that only contains the ACSE and MMS as
ASEs, this part of ISO/IEC 9506 uses the object identifier value and the object descriptor value
defined in 17.12 of ISO/IEC 9506 2.

7.2.2 Process control abstract syntax definition

This part of ISO/IEC 9506 assigns the ASN.1 object identifier value

{iso standard 9506 part (6) mms process syntax version(1)}

to the abstract syntax defined in this clause.

7.2.3 Process control specific ASN.1 module definition

The MMS services and protocol were developed to be used by a wide range of manufacturing
devices. This section defines the process control services and protocol for those elements
identified as requiring companion standard definition in MMS. These definitions should be used
when the abstract syntax defined in this part of ISO/IEC 9506 is negotiated.

All ASN.1 definitions provided in this part of ISO/IEC 9506 are part of the ASN.1 Module "ISO
9506 MMS PROCESS 1." The beginning and closing statements indicating that each ASN.1
definition provided is a part of this module is omitted in order to make reading of the document
easier. Each ASN.1 definition provided implicitly contains the statement:

ISO 9506 MMS PROCESS 1 {iso standard 9506 part(6) mms-process-module-
version1(2)}

DEFINITIONS ::= BEGIN
ANSI/ISA-S72.02-1993 29

at the beginning of the definition and contains the keyword "END" at the end of the definition.

NOTE — ISO 9506 MMS PROCESS 1 represents version number 1 of the MMS (ISO 9506)
Companion Standard for Process Control.

Many of the terms and abbreviations used in this clause use the terminology of MMS service and
protocol descriptions (See Clause 5 of ISO/IEC 9506 1 and Clause 5 of ISO/IEC 9506 2). In
particular, refer to Clause 5 of ISO/IEC 9506 1 for general rules on how to interpret the service
tables in this part of ISO/IEC 9506.

IMPORTS MMSpdu,

ParameterSupportOptions,

ServiceSupportOptions,

Integer16,

StatusResponse,

Identifier,

ObjectName,

ProgramInvocationState,

FileName,

ApplicationReference,

Priority,

EventTime,

EC State

FROM MMS General Module 1

{iso standard 9506 part(2) mms-general-module-version1(2)};

7.2.4 VMD support services

7.2.4.1 GetNameList service extens ions

The GetNameList service shall be extended to include the Event Condition List object and the
Unit Control object.

7.2.4.1.1 CS Object Class service parameter

This parameter, of type integer, shall identify the Event Condition List object and the Unit Control
object. The value zero (0) shall represent the Event Condition List object, and the value one (1)
shall represent the Unit Control object.

7.2.4.1.2 Protocol extensions

The abstract syntax of the CsAdditionalObjectClasses parameter shall be specified as follows:

CsAdditionalObjectClasses ::= IMPLICIT INTEGER {

eventConditionList (0),

unitControl (1)

}

30 ANSI/ISA-S72.02-1993

7.2.5 Event management services

This subclause specifies the extension of the Event Management services.

7.2.5.1 DefineEventCondition service

This subclause specifies the extension of the DefineEventCondition service.

7.2.5.1.1 Parameter extensions

The DefineEventCondition service shall be extended to include specification of the value of the
Display Enhancement attribute of the Event Condition object. The structure of the
DefineEventCondition parameter extensions is specified in Table 1.

Table 1 — DefineEventCondition parameter extensions

7.2.5.1.1.1 Display Enhancement

Selection of this parameter indicates that the Display Enhancement attribute of the Event
Condition shall be altered by this service. If this parameter is selected, one of the following
parameters shall appear.

7.2.5.1.1.1.1 Display Enhancement string

This parameter, of type character string, is the string form of the Display Enhancement
parameter. This selection may be made only if the DES CBB has been negotiated.

7.2.5.1.1.1.2 Display Enhancement index

This parameter, of type integer, is the numeric form of the Display Enhancement parameter. This
selection may be made only if the DEI CBB has been negotiated.

7.2.5.1.1.1.3 No Enhancement

This parameter, of type NULL, specifies that no Display Enhancement is present. This parameter
shall be selected if neither DES nor DEI has been negotiated.

7.2.5.1.1.2 Service procedure extens ions

The service procedure of 15.2.2 of ISO/IEC 9506 1 shall be performed. If the Display
Enhancement string has been selected, the value of the Display Enhancement Class attribute of
the Event Condition shall be TEXT and the Display Enhancement attribute shall be set to the
value of the Display Enhancement string parameter. If the Display Enhancement index is
selected, the Display Enhancement Class attribute of the Event Condition shall be NUMBER and
the Display Enhancement attribute shall be set to the value of the Display Enhancement index
parameter. Otherwise the Display Enhancement Class attribute shall be set to UNDEFINED.

7.2.5.1.1.3 Protocol extens ions

The extensions to the DefineEventCondition service argument shall be the CS
DefineEventCondition Request.

Parameter name Req Ind Rsp Cnf CBB

Display Enhancement M M(=)

Display Enhancement string S S(=) DES

Display Enhancement index S S(=) DEI

No Enhancement S S(=)
ANSI/ISA-S72.02-1993 31

CS DefineEventCondition Request ::= [0] Choice {

enhancementString [0] IMPLICIT VisibleString,

enhancementIndex [1] IMPLICIT INTEGER,

noEnhancement NULL

}

NOTE — As a result of the way in which Confirmed RequestPDU is specified in ISO/IEC
9506 2, a NULL specified as a Companion Standard extension is not transmitted. The effect
is as though the parameter were not included in the protocol. Specification of the NULL is
required at the service interface, however.

7.2.5.2 DeleteEventCondition service extensions

The service procedure of the DeleteEventCondition service shall be extended to include a
verification that the value of the List of referencing Event Condition List references attribute of the
specified Event Condition object is equal to an empty list. The verification shall be performed
prior to performing the procedure specified in ISO/IEC 9506 1. If the value of this attribute is not
equal to an empty list, the specified Event Condition object shall be counted as a Candidate Not
Deleted, the Event Condition shall not be deleted, and a Response(-) shall be returned.

7.2.5.3 GetEventConditionAttributes service

This subclause specifies the extension of the GetEventConditionAttributes service.

7.2.5.3.1 Parameter extensions

The GetEventConditionAttributes service response shall be extended to include the Group
Priority Override parameter, the List of referencing Event Condition Lists parameter and the
Display Enhancement parameter. The structure of the GetEventConditionAttributes parameter
extensions is specified in Table 2.

Table 2 — GetEventConditionAttributes parameter extensions

7.2.5.3.2 Group priority override

This parameter, of type integer, shall contain the value of the Group Priority Override attribute of
the Event Condition object.

Parameter name Req Ind Rsp Cnf CBB

Group Priority Override C C (=)

List of referencing Event Condition Lists C C (=)

Display Enhancement M M (=)

Display Enhancement string S S (=)

Display Enhancement index S S (=)

No Enhancement S S (=)
32 ANSI/ISA-S72.02-1993

7.2.5.3.3 List of referencing Event Condition Lists

This parameter shall contain a list of names, derived from the contents of the List of referencing
Event Condition List references attribute of the specified Event Condition object. Each name shall
be equal to the value of the name attribute of a referencing Event Condition List object.

7.2.5.3.4 Display Enhancement

This parameter indicates the value of the Display Enhancement Class attribute of the Event
Condition object. Depending on its value, one of the following parameters shall be selected.

7.2.5.3.4.0.1 Display Enhancement string

This parameter, of type character string, is the string form of the Display Enhancement
parameter.

7.2.5.3.4.0.2 Display Enhancement index

This parameter, of type integer, is the numeric form of the Display Enhancement parameter.

7.2.5.3.4.0.3 No Enhancement

This parameter, of type NULL, specifies that no Display Enhancement is present.

7.2.5.3.5 Service procedure extens ions

The service procedure of 15.4.2 of ISO/IEC 9506 1 shall be performed. If the Display
Enhancement Class attribute of the Event Condition has the value TEXT, the Display
Enhancement string parameter shall be selected. If the Display Enhancement Class attribute has
the value NUMBER, the Display Enhancement index shall be selected. If the Display
Enhancement Class attribute has the value UNDEFINED, the No Enhancement parameter shall
be selected.

The service procedure of the GetEventConditionAttributes service shall be extended to include
the value of the Group Priority Override attribute of the Event Condition object as the Group
Priority Override parameter and the value of the List of referencing Event Condition List
references attribute as the value of the List of referencing Event Condition Lists parameter. These
parameters shall only appear if and only if one or more of the services for Event Condition List
objects are supported. The value of the Display Enhancement attribute of the Event Condition
object shall be included as the Display Enhancement parameter.

7.2.5.3.6 Protocol extensions

The extensions to the GetEventConditionAttributes service response protocol shall be the CS
GetEventConditionAttributes Response.

CS GetEventConditionAttributes Response ::= CHOICE {

supplied SEQUENCE {

groupPriorityOverride [0] CHOICE {

priority [0] IMPLICIT Priority,

undefined [1] IMPLICIT NULL

} OPTIONAL,

listOfEventConditionList [1] IMPLICIT SEQUENCE OF ObjectName
OPTIONAL,

displayEnhancement [2] CHOICE {
ANSI/ISA-S72.02-1993 33

enhancementString [0] IMPLICIT VisibleString,

enhancementIndex [1] IMPLICIT INTEGER,

noEnhancement [2] IMPLICIT NULL

} },

default NULL

}

The default choice shall be chosen if and only if the groupPriorityOverride is not transmitted, the
listOfEventConditionList field is not transmitted, and the noEnhancement choice is selected for
the display Enhancement field.

7.2.5.3.7 GroupPriorityOverride

The priority choice shall be selected when the value of the Group Priority Override parameter of
the GetEventConditionAttributes service response is not equal to UNDEFINED; otherwise, the
undefined choice shall be selected.

7.2.5.3.8 Display Enhancement

If the value of the Display Enhancement Class attribute of the Event Condition object is equal to
TEXT, the enhancementString choice shall be selected. If the value of the Display Enhancement
Class attribute of the Event Condition object is equal to NUMBER, the enhancementIndex choice
shall be selected. Otherwise the noEnhancement choice shall be selected.

7.2.5.4 AlterEventConditionMonitoring service

This subclause specifies the extensions to the AlterEventConditionMonitoring service.

7.2.5.4.1 Parameter extensions

The AlterEventConditionMonitoring service shall be extended to include specification of the value
of the Display Enhancement attribute of the Event Condition object. The structure of the
AlterEventConditionMonitoring parameter extensions is specified in Table 3.

Table 3 — AlterEventConditionMonitoring parameter extensions

7.2.5.4.1.1 Display Enhancement

Selection of this parameter indicates that the Display Enhancement attribute of the Event
Condition shall be altered by this service. If this parameter is selected, one of the following
parameters shall appear.

Parameter name Req Ind Rsp Cnf CBB

Display Enhancement S S(=)

Display Enhancement string S S(=) DES

Display Enhancement index S S(=) DEI

No Enhancement S S(=)

Unchanged Display S S(=)
34 ANSI/ISA-S72.02-1993

7.2.5.4.1.1.1 Display Enhancement string

This parameter, of type character string, is the string form of the Display Enhancement
parameter. This selection may be made only if the DES CBB has been negotiated.

7.2.5.4.1.1.2 Display Enhancement index

This parameter, of type integer, is the numeric form of the Display Enhancement parameter. This
selection may be made only if the DEI CBB has been negotiated.

7.2.5.4.1.1.3 No Enhancement

This parameter, of type NULL, specifies that no Display Enhancement is present. This parameter
shall be selected if neither DES nor DEI has been negotiated.

7.2.5.4.1.2 Unchanged Display

If this parameter is selected, the Display Enhancement attribute of the Event Condition shall not
be changed from its present value.

7.2.5.4.2 Service procedure extens ions

If the Display Enhancement selection is made, the value of the Display Enhancement attribute of
the Event Condition object shall be altered. If the Display Enhancement string is selected, the
Display Enhancement Class attribute of the Event Condition shall be set to TEXT and the Display
Enhancement attribute shall be set to the value of the Display Enhancement string parameter. If
the Display Enhancement index is selected, the Display Enhancement Class attribute of the
Event Condition shall be set to NUMBER and the Display Enhancement attribute shall be set to
the value of the Display Enhancement index parameter. Otherwise, the Display Enhancement
Class shall be set to UNDEFINED.

7.2.5.4.3 Protocol extensions

The extension to the AlterEventConditionMonitoring service argument shall be the CS
AlterEventConditionMonitoring Request.

CS AlterEventConditionMonitoring Request ::= SEQUENCE {

changeDisplay CHOICE {

enhancementString [0] IMPLICIT VisibleString,

enhancementIndex [1] IMPLICIT INTEGER,

noEnhancement [2] NULL

} OPTIONAL }

The choice of Display Enhancement for Display Option shall be indicated by the inclusion of the
changeDisplay field in the PDU. If Unchanged Display is chosen, the changeDisplay field shall
not occur.

7.2.5.5 DefineEventEnrollment service

This subclause specifies the extensions to the DefineEventEnrollment service.
ANSI/ISA-S72.02-1993 35

7.2.5.5.1 Parameter extensions

The DefineEventEnrollment service shall be extended to include specification of the Display
Enhancement attribute of the Event Enrollment object. The structure of the
DefineEventEnrollment parameter extensions is specified in Table 4.

Table 4 — DefineEventEnrollment parameter extensions

7.2.5.5.1.1 Display Enhancement

The value of this parameter indicates the type of Display Enhancement desired. Depending on its
value, one of the following parameters shall be selected.

7.2.5.5.1.1.1 Display Enhancement string

This parameter, of type character string, is the string form of the Display Enhancement
parameter. This selection may be made only if the DES CBB has been negotiated.

7.2.5.5.1.1.2 Display Enhancement index

This parameter, of type integer, is the numeric form of the Display Enhancement parameter. This
selection may be made only if the DEI CBB has been negotiated.

7.2.5.5.1.1.3 No Enhancement

This parameter, of type NULL, specifies that no Display Enhancement is present. This parameter
shall be selected if neither DES nor DEI has been negotiated.

7.2.5.5.2 Service procedure extens ions

The service procedure of 15.12.2 of ISO/IEC 9506 1 shall be performed. If the Display
Enhancement string has been selected, the value of the Display Enhancement Class attribute of
the Event Enrollment shall be TEXT and the Display Enhancement attribute shall be set to the
value of the Display Enhancement string parameter. If the Display Enhancement index is
selected, the Display Enhancement Class attribute of the Event Enrollment shall be NUMBER
and the Display Enhancement attribute shall be set to the value of the Display Enhancement
index parameter. Otherwise the Display Enhancement Class attribute shall be set to
UNDEFINED.

7.2.5.5.3 Protocol extensions

The extensions to the DefineEventEnrollment service argument shall be the CS
DefineEventEnrollment Request.

CS DefineEventEnrollment Request ::= [0] Choice {

enhancementString [0] IMPLICIT VisibleString,

enhancementIndex [1] IMPLICIT INTEGER,

noEnhancement NULL

}

Parameter name Req Ind Rsp Cnf CBB

Display Enhancement M M(=)

Display Enhancement string S S(=) DES

Display Enhancement index S S(=) DEI

No Enhancement S S(=)
36 ANSI/ISA-S72.02-1993

NOTE — As a result of the way in which Confirmed RequestPDU is specified in ISO/IEC
9506 2, a NULL specified as a Companion Standard extension is not transmitted. The effect
is as though the parameter were not included in the protocol. Specification of the NULL is
required at the service interface, however.

7.2.5.6 GetEventEnrollmentAttributes service

This subclause specifies the extension of the GetEventEnrollmentAttributes service.

7.2.5.6.1 Parameter extensions

The GetEventEnrollmentAttributes service response shall be extended to include the Display
Enhancement parameter. The structure of the GetEventEnrollmentAttributes parameter
extensions is specified in Table 5.

Table 5 — GetEventEnrollmentAttributes parameter extensions

7.2.5.6.1.1 Display Enhancement

The value of this parameter indicates the type of Display Enhancement desired. Depending on its
value, one of the following parameters shall be selected.

7.2.5.6.1.1.1 Display Enhancement string

This parameter, of type character string, is the string form of the Display Enhancement
parameter.

7.2.5.6.1.1.2 Display Enhancement index

This parameter, of type integer, is the numeric form of the Display Enhancement parameter.

7.2.5.6.1.1.3 No Enhancement

This parameter, of type NULL, specifies that no Display Enhancement is present.

7.2.5.6.2 Service procedure extens ions

The service procedure of 15.14.2 of ISO/IEC 9506 1 shall be performed. If the Display
Enhancement Class attribute of the Event Enrollment has the value TEXT, the Display
Enhancement string parameter shall be selected. If the Display Enhancement Class attribute has
the value NUMBER, the Display Enhancement index shall be selected. If the Display
Enhancement Class attribute has the value UNDEFINED, the No Enhancement parameter shall
be selected.

7.2.5.6.3 Protocol extensions

The extensions to the GetEventEnrollmentAttributes service response protocol shall be the CS
GetEventEnrollmentAttributes Response.

Parameter name Req Ind Rsp Cnf CBB

Display Enhancement M M(=)

Display Enhancement string S S(=)

Display Enhancement index S S(=)

No Enhancement S S(=)
ANSI/ISA-S72.02-1993 37

CS GetEventEnrollmentAttributes Response ::= [0] Choice {

enhancementString [0] IMPLICIT VisibleString,

enhancementIndex [1] IMPLICIT INTEGER,

noEnhancement NULL

}

NOTE — As a result of the way in which Confirmed ResponsePDU is specified in ISO/IEC
9506 2, a NULL specified as a Companion Standard extension is not transmitted. The effect
is as though the parameter were not included in the protocol. Specification of the NULL is
required at the service interface, however.

7.2.5.7 AlterEventEnrollment service

This subclause specifies the extension of the AlterEventEnrollment service.

7.2.5.7.1 Parameter extensions

The AlterEventEnrollment service shall be extended to include specification of the Display
Enhancement attribute of the Event Enrollment object. The structure of the AlterEventEnrollment
parameter extensions is specified in Table 6.

Table 6 — AlterEventEnrollment parameter extensions

7.2.5.7.1.1 Display Enhancement

Selection of this parameter indicates that the Display Enhancement attribute of the Event
Condition shall be altered by this service. If this parameter is selected, one of the following
parameters shall appear.

7.2.5.7.1.1.1 Display Enhancement string

This parameter, of type character string, is the string form of the Display Enhancement
parameter. This selection may be made only if the DES CBB has been negotiated.

7.2.5.7.1.1.2 Display Enhancement index

This parameter, of type integer, is the numeric form of the Display Enhancement parameter. This
selection may be made only if the DEI CBB has been negotiated.

7.2.5.7.1.1.3 No Enhancement

This parameter, of type NULL, specifies that no Display Enhancement is present. This parameter
shall be selected if neither DES nor DEI has been negotiated.

Parameter name Req Ind Rsp Cnf CBB

Display Enhancement S S(=)

Display Enhancement string S S(=) DES

Display Enhancement index S S(=) DEI

No Enhancement S S(=)

Unchanged Display S S(=)
38 ANSI/ISA-S72.02-1993

7.2.5.7.1.2 Unchanged Display

If the parameter is selected, the Display Enhancement attribute of the Event Enrollment shall not
be changed from its present value.

7.2.5.7.2 Service procedure extens ions

If the Display Enhancement selection is made, the value of the Display Enhancement attribute of
the Event Enrollment object shall be altered. If the Display Enhancement string is selected, the
Display Enhancement Class attribute of the Event Enrollment shall be set to TEXT and the
Display Enhancement attribute shall be set to the value of the Display Enhancement string
parameter. If the Display Enhancement index is selected, the Display Enhancement Class
attribute of the Event Enrollment shall be set to NUMBER and the Display Enhancement attribute
shall be set to the value of the Display Enhancement index parameter. Otherwise, the Display
Enhancement Class shall be set to UNDEFINED.

7.2.5.7.3 Protocol extensions

The extension to the AlterEventEnrollment service argument shall be the CS
AlterEventEnrollment Request.

CS AlterEventEnrollment Request ::= SEQUENCE {

changeDisplay CHOICE {

enhancementString [0] IMPLICIT VisibleString,

enhancementIndex [1] IMPLICIT INTEGER,

noEnhancement [2] NULL

} OPTIONAL }

The choice of Display Enhancement for Display Option shall be indicated by the inclusion of the
changeDisplay field in the PDU. If Unchanged Display is chosen, the changeDisplay field shall
not occur.

7.2.5.8 EventNotification service

This subclause specifies the extensions to the EventNotification service.

7.2.5.8.1 Parameter extensions

The EventNotification service shall be extended to include specification of the Display
Enhancement attribute of the Event Condition object. The structure of the EventNotification
parameter extensions is specified in Table 7.

Table 7 — EventNotification parameter extension

Parameter name Req Ind Rsp Cnf CBB

Display Enhancement M M(=)

Display Enhancement string S S(=) DES

Display Enhancement index S S(=) DEI

No Enhancement S S(=)
ANSI/ISA-S72.02-1993 39

7.2.5.8.1.1 Display Enhancement

The value of this parameter indicates the type of Display Enhancement desired. Depending on its
value, one of the following parameters shall be selected.

7.2.5.8.1.1.1 Display Enhancement string

This parameter, of type character string, is the string form of the Display Enhancement
parameter. This selection may be made only if the DES CBB has been negotiated.

7.2.5.8.1.1.2 Display Enhancement index

This parameter, of type integer, is the numeric form of the Display Enhancement parameter. This
selection may be made only if the DEI CBB has been negotiated.

7.2.5.8.1.1.3 No Enhancement

This parameter, of type NULL, specifies that no Display Enhancement is present. This parameter
shall be selected if neither DES nor DEI has been negotiated.

7.2.5.8.2 Service procedure extens ions

The service procedure of 15.17.2 of ISO/IEC 9506 1 shall be performed, including the value of
the Display Enhancement parameter in the response PDU. If the value of the Display
Enhancement Class attribute of the Event Enrollment object referenced in the Event Condition
request is not equal to UNDEFINED, the value of the Display Enhancement parameter shall be
derived from the value of the Display Enhancement attribute of the Event Enrollment object.
Otherwise, the value of the Display Enhancement parameter shall be derived from the value of
the Display enhancement attribute of the Event Condition object referenced in the Event
Notification request.

7.2.5.8.3 Protocol extensions

The extensions to the EventNotification service argument shall be the CS EventNotification.

CS EventNotification ::= [0] Choice {

enhancementString [0] IMPLICIT VisibleString,

enhancementIndex [1] IMPLICIT INTEGER,

noEnhancement NULL

}

NOTE — As a result of the way in which Unconfirmed PDU is specified in ISO/IEC 9506
2, a NULL specified as a Companion Standard extension is not transmitted. The effect is
as though the parameter were not included in the protocol. Specification of the NULL is
required at the service interface, however.

7.2.5.9 Event Condition Additional Detail

The Additional Detail parameter that is used in the Get Alarm Summary service and in the Get
Alarm Enrollment Summary service is specified to be the Display Enhancement parameter
defined in 6.4.1.1. The value of this parameter shall be derived from the attributes of the Event
Condition object being referenced in the respective service response.
40 ANSI/ISA-S72.02-1993

7.2.5.9.1 Additional Detail protocol

This part of ISO/IEC 9506 defines the EN Additional Detail production as follows:

EN Additional Detail ::= [0] Choice {

enhancementString [0] IMPLICIT VisibleString,

enhancementIndex [1] IMPLICIT INTEGER,

noEnhancement NULL

}

7.2.6 Other productions

The following productions, required for the MMS General Module and representing Companion
Standard Extensions to the MMS services, are not used in the Process Control Companion
Standard and are set equal to NULL.

CS Status Request ::= NULL

CS Input Request ::= NULL

CS Output Request ::= NULL

CS InitiateDownloadSequence Request ::= NULL

CS DownloadSegment Request ::= NULL

CS TerminateDownloadSequence Request ::= NULL

CS InitiateUploadSequence Request ::= NULL

CS UploadSegment Request ::= NULL

CS TerminateUploadSequence Request ::= NULL

CS RequestDomainDownload Request ::= NULL

CS RequestDomainUpload Request ::= NULL

CS LoadDomainContent Request ::= NULL

CS StoreDomainContent Request ::= NULL

CS DeleteDomain Request ::= NULL

CS GetDomainAttributes Request ::= NULL

CS CreateProgramInvocation Request ::= NULL

CS DeleteProgramInvocation Request ::= NULL

CS Start Request ::= NULL

CS Stop Request ::= NULL

CS Reset Request ::= NULL

CS Resume Request ::= NULL

CS Kill Request ::= NULL

CS GetProgramInvocationAttributes Request ::= NULL

CS DeleteEventCondition Request ::= NULL
ANSI/ISA-S72.02-1993 41

CS GetEventConditionAttributes Request ::= NULL

CS ReportEventConditionStatus Request ::= NULL

CS TriggerEvent Request ::= NULL

CS DefineEventAction Request ::= NULL

CS DeleteEventAction Request ::= NULL

CS GetEventActionAttributes Request ::= NULL

CS ReportEventActionStatus Request ::= NULL

CS DeleteEventEnrollment Request ::= NULL

CS ReportEventEnrollmentStatus Request ::= NULL

CS GetEventEnrollmentAttributes Request ::= NULL

CS AcknowledgeEventNotification Request ::= NULL

CS GetAlarmSummary Request ::= NULL

CS GetAlarmEnrollmentSummary Request ::= NULL

CS ReadJournal Request ::= NULL

CS WriteJournal Request ::= NULL

CS InitializeJournal Request ::= NULL

CS ReportJournalStatus Request ::= NULL

CS CreateJournal Request ::= NULL

CS DeleteJournal Request ::= NULL

CS GetCapabilityList Request ::= NULL

CS Status Response ::= NULL

CS Input Response ::= NULL

CS Output Response ::= NULL

CS InitiateDownloadSequence Response ::= NULL

CS DownloadSegment Response ::= NULL

CS TerminateDownloadSequence Response ::= NULL

CS InitiateUploadSequence Response ::= NULL

CS UploadSegment Response ::= NULL

CS TerminateUploadSequence Response ::= NULL

CS RequestDomainDownload Response ::= NULL

CS RequestDomainUpload Response ::= NULL

CS LoadDomainContent Response ::= NULL

CS StoreDomainContent Response ::= NULL

CS DeleteDomain Response ::= NULL

CS CreateProgramInvocation Response ::= NULL

CS DeleteProgramInvocation Response ::= NULL
42 ANSI/ISA-S72.02-1993

CS Start Response ::= NULL

CS Stop Response ::= NULL

CS Resume Response ::= NULL

CS Reset Response ::= NULL

CS Kill Response ::= NULL

CS DefineEventCondition Response ::= NULL

CS DeleteEventCondition Response ::= NULL

CS GetEventConditionAttributes Response ::= NULL

CS ReportEventConditionStatus Response ::= NULL

CS AlterEventConditionMonitoring Response ::= NULL

CS TriggerEvent Response ::= NULL

CS DefineEventAction Response ::= NULL

CS DeleteEventAction Response ::= NULL

CS GetEventActionAttributes Response ::= NULL

CS ReportEventActionStatus Response ::= NULL

CS DefineEventEnrollment Response ::= NULL

CS DeleteEventEnrollment Response ::= NULL

CS AlterEventEnrollment Response ::= NULL

CS ReportEventEnrollmentStatus Response ::= NULL

CS AcknowledgeEventNotification Response ::= NULL

CS GetAlarmSummary Response ::= NULL

CS GetAlarmEnrollmentSummary Response ::= NULL

CS ReadJournal Response ::= NULL

CS WriteJournal Response ::= NULL

CS InitializeJournal Response ::= NULL

CS ReportJournalStatus Response ::= NULL

CS CreateJournal Response ::= NULL

CS DeleteJournal Response ::= NULL

CS GetCapabilityList Response ::= NULL

CS UnsolicitedStatus ::= NULL

AdditionalService Error ::= NULL

AdditionalUnconfirmedService ::= NULL

EE Additional Detail ::= NULL

JOU Additional Detail ::= NULL

CS GetNameList Request ::= NULL

CS GetNameList Response ::= NULL
ANSI/ISA-S72.02-1993 43

7.3 Definition and use of process control specific services

7.3.1 Control Element

The Control Element is a complex parameter used in several services to describe a single
element of a Unit Control object.

7.3.1.1 Structure

The structure of the Control Element parameter is shown in Table 8.

Table 8 — Control Element Parameter

7.3.1.1.1 Begin Domain Definition

Selection of this parameter shall indicate that a new Domain is about to be defined. If selected,
the following parameters shall appear.

7.3.1.1.1.1 Domain Name

This parameter, of type Identifier, shall identify the Domain to be processed.

7.3.1.1.1.2 List of Capabilities

This parameter, of type list of character string, shall identify the capabilities associated with this
Domain.

Parameter name Rsp Cnf

Begin Domain Definition S S(=)

Domain Name M M(=)

List of Capabilities M M(=)

Sharable M M(=)

Load Data M M(=)

Continue Domain Definition S S(=)

Domain Name M M(=)

Load Data M M(=)

End Domain Definition S S(=)

Domain Name M M(=)

Program Invocation Definition S S(=)

Program Invocation Name M M(=)

List of Domains M M(=)

Reusable M M(=)

Monitor U U(=)

Monitor Type C C(=)

Program Invocation State C C(=)
44 ANSI/ISA-S72.02-1993

7.3.1.1.1.3 Shareable

This parameter, of type boolean, shall indicate if true that the Domain is shareable, as defined in
10.8.1.1.3 of ISO/IEC 9506 1.

7.3.1.1.1.4 Load Data

This parameter shall be the initial (or the total) content of the Domain.

7.3.1.1.2 Continue Domain Definition

Selection of this parameter shall indicate that a Domain identified in a previous Control Element
is about to have more data associated with it. If selected, the following parameters shall appear.

7.3.1.1.2.1 Domain Name

This parameter, of type Identifier, shall identify the Domain to be processed.

7.3.1.1.2.2 Load Data

This parameter shall be the (partial) content of the Domain.

7.3.1.1.3 End Domain Definition

Selection of this parameter shall indicate that a Domain identified in a previous Control Element
is now complete. If selected, the following parameter shall appear.

7.3.1.1.3.1 Domain Name

This parameter, of type Identifier, shall identify the Domain to be processed.

7.3.1.1.4 Program Invocation Definition

Selection of this parameter shall indicate that a Program Invocation definition follows. If selected,
the following parameters shall appear.

7.3.1.1.4.1 Program Invocation Name

This parameter, of type Identifier, shall indicate the Program Invocation to be defined.

7.3.1.1.4.2 List of Domains

This parameter, of type list of Identifier, shall indicate the Domains that are bound to the Program
Invocation.

7.3.1.1.4.3 Reusable

This parameter, of type boolean, shall be utilized as specified in 11.2.1.1.3 of ISO/IEC 9506 1.

7.3.1.1.4.4 Monitor

This parameter, of type boolean, shall be utilized as specified in 11.2.1.1.4 of ISO/IEC 9506 1.

7.3.1.1.4.4.1 Monitor Type

This parameter, of type boolean, shall be present if and only if the value of the Monitor parameter
is true. The use of this parameter is defined in 11.2.1.1.4.1 of ISO/IEC 9506 1.

7.3.1.1.4.5 Program Invocation State

This parameter, of type integer, shall indicate, if present, the state of the Program Invocation.
When used with UnitControlLoad service, it shall indicate the state in which the Program
Invocation shall be placed. When used with the UnitControlUpload service, it shall indicate the
actual state of the Program Invocation.
ANSI/ISA-S72.02-1993 45

7.3.1.2 Protocol

ControlElement ::= CHOICE {

beginDomainDef [0] SEQUENCE {

domainName [1] IMPLICIT Identifier,

capabilities [2] IMPLICIT SEQUENCE OF VisibleString,

sharable [3] IMPLICIT BOOLEAN,

loadData [4] LoadData OPTIONAL

},

continueDomainDef [1] SEQUENCE {

domainName [1] IMPLICIT Identifier,

loadData [3] LoadData

},

endDomainDef [2] IMPLICIT Identifier,

piDefinition [3] IMPLICIT SEQUENCE {

piName [0] IMPLICIT Identifier,

listOfDomains [1] IMPLICIT SEQUENCE OF Identifier,

reusable [2] IMPLICIT BOOLEAN DEFAULT TRUE,

monitorType [3] IMPLICIT BOOLEAN OPTIONAL,

pIState [4] IMPLICIT ProgramInvocationState OPTIONAL

}

}

LoadData ::= CHOICE {

non coded [0] IMPLICIT OCTET STRING,

coded EXTERNAL

}

7.3.1.2.1 Monitor

The abstract syntax of the Monitor parameter of the control element parameter shall be inferred
from the presence or absence of the monitorType field. If the monitorType field is present, it shall
indicate that the Monitor parameter is true. The value of the monitorType field shall indicate the
value of the Monitor Type parameter of the service request as specified in 11.2.1.1.4 of ISO/IEC
9506 1.

7.3.2 InitiateUnitControlLoad service

The InitiateUnitControlLoad service may be used by a client to request a VMD to create a Unit
Control object and prepare it for loading. The loading process uses two confirmed MMS services
46 ANSI/ISA-S72.02-1993

such that the MMS server requests elements of the contents of the Unit Control object. Table 9
shows the sequence of the service primitives.

Table 9 — Interaction of Unit Control primitives

7.3.2.1 Structure

The structure of the component service primitives of the InitiateUnitControlLoad service is shown
in Table 10.

Table 10 — InitiateUnitControlLoad service

7.3.2.1.1 Argument

This parameter shall convey the parameters of the InitiateUnitControlLoad service request.

7.3.2.1.1.1 Unit Control Name

This parameter, of type Identifier, shall specify the name of the Unit Control object.

7.3.2.1.2 Result(+)

The Result(+) parameter shall indicate that the service request has succeeded.

MMS Client MMS Server

InitiateUnitControlLoad.req -->

<-- UnitControlLoadSegment.req

UnitControlLoadSegment.rsp -->

... ...

<-- UnitControlLoadSegment.req

UnitControlLoadSegment.rsp -->

<-- InitiateUnitControlLoad.rsp

Parameter name Req Ind Rsp Cnf CBB

Argument M M(=)

Unit Control Name M M(=)

Result (+) S S(=)

Result (–) S S(=)

Error Type M M(=)

Initiate Unit Control Error M M(=)

Domain Name S S(=)

Program Invocation Name S S(=)
ANSI/ISA-S72.02-1993 47

7.3.2.1.3 Result(-)

The Result(-) parameter shall indicate that the service request has failed. The Error Type
parameter, which is defined in detail in Clause 17 of ISO/IEC 9506 1, shall provide the reason for
failure.

7.3.2.1.3.1 Domain Name

This parameter shall indicate the Domain that was being created when the error was detected.
Either this parameter or the Program Invocation Name parameter shall be selected.

7.3.2.1.3.2 Program Invocation Name

This parameter shall indicate the Program Invocation that was being created when the error was
detected. Either this parameter or the Domain Name parameter shall be selected.

7.3.2.2 Service procedure

If a Unit Control object of the specified name already exists, the MMS server shall return a
Result(-). Otherwise, the MMS server shall then issue one or more UnitControlLoadSegment
requests, as appropriate, until it receives a response in which the More Follows parameter is set
false. It shall perform the service procedure prescribed for that service. If, during the processing
of the information contained in the response to the UnitControlLoadSegment service request, it
detects an error either in creating a Domain or a Program Invocation, it shall halt the loading
process and return a Result(-) indicating the Domain or Program Invocation for which loading
was in progress when the error occurred.

If no error occurs in the processing of the UnitControlLoadSegment services, it shall create a Unit
Control object with the name specified in the request argument, and initialize its attributes to
reference the Domains and Program Invocations created in the loading process. It shall then
return a Result(+).

7.3.2.3 InitiateUnitControlLoad protocol

The abstract syntax of the initiateUCLoad choice of the AdditionalService Request and the
AdditionalService Response is specified by the InitiateUnitControlLoad Request and the
InitiateUnitControlLoad Response respectively. The abstract syntax of the initiateUCLoad choice
of the AdditionalService Error is specified by the InitiateUnitControl Error. These types are
specified below and described in the paragraphs that follow. Subclause 5.5 of ISO/IEC 9506 2
describes the derivation of all parameters for which explicit derivations are not provided in this
clause.

InitiateUnitControlLoad Request ::= Identifier Unit Control Name

InitiateUnitControlLoad Response ::= NULL

InitiateUnitControl Error ::= CHOICE {

domain [0] IMPLICIT Identifier,

programInvocation [1] IMPLICIT Identifier

}

48 ANSI/ISA-S72.02-1993

7.3.2.3.1 InitiateUnitControlLoad Request

The abstract syntax of the initiateUCLoad choice of the AdditionalService Request type shall be
the InitiateUnitControlLoad Request.

7.3.2.3.2 InitiateUnitControlLoad Response

The abstract syntax of the initiateUCLoad choice of the AdditionalService Response type shall
be the InitiateUnitControlLoad Response.

7.3.2.3.3 InitiateUnitControlLoad Error

The abstract syntax of the initiateUCLoad choice of the AdditionalService Error type shall be the
InitiateUnitControlLoad Error.

7.3.3 UnitControlLoadSegment service

The UnitControlLoadSegment service is used by an MMS server to obtain load data elements
from the MMS client.

7.3.3.1 Structure

The structure of the component service primitives is shown in Table 11.

Table 11 — UnitControlLoadSegment service

7.3.3.1.1 Argument

This parameter shall convey the parameters of the UnitControlLoadSegment service request.

7.3.3.1.1.1 Unit Control Name

This parameter, of type Identifier, shall identify the Unit Control object in the VMD that is to be
loaded.

7.3.3.1.2 Result(+)

The Result(+) parameter shall indicate that the service has succeeded. If success is indicated,
the following parameters shall appear.

Parameter name Req Ind Rsp Cnf CBB

Argument M M(=)

Unit Control Name M M(=)

Result (+) S S(=)

List of Control Elements M M(=)

More Follows M M(=)

Result (–) S S(=)

Error Type M M(=)
ANSI/ISA-S72.02-1993 49

7.3.3.1.2.1 List of Control Elements

This parameter shall contain the information necessary to construct the constituent Domains and
Program Invocations of the Unit Control object. The presence of the Program Invocation State
parameter of each Control Element shall be a user option.

7.3.3.1.2.2 More Follows

This boolean parameter shall indicate whether (true) or not (false) more UnitControlSegment
service requests are needed to complete the construction of the Unit Control object.

7.3.3.1.3 Result(-)

The Result(-) parameter shall indicate that the service request has failed. The Error Type
parameter, which is defined in detail in Clause 17 of ISO/IEC 9506 1, shall provide the reason for
failure.

7.3.3.2 Service procedure

The MMS server shall issue a UnitControlLoadSegment request specifying the name of the Unit
Control object to be loaded. Upon receipt of the response, the MMS server shall process each of
the control elements in the response in sequence.

For each item in the List of Control Elements the MMS server shall:

a) If the Control Element specifies the beginning of a Domain Definition, the MMS server
shall verify that no Domain of that name exists in the VMD. It shall then create the
Domain, using the List of Capabilities parameter provided, and place it in the loading
state. If the Load Data parameter is provided, it shall then begin the loading process,
using the load data.

b) If the Control Element specifies the continuation of a Domain Definition, the MMS server
shall verify that the Domain exists and is in the LOADING state. It shall then continue
the loading process, using the Load Data parameter provided.

c) If the Control Element specifies the end of a Domain Definition, the MMS server shall
verify that the Domain exists and that it is in the LOADING state. It shall then place the
Domain in the READY state.

d) If the Control Element specifies a Program Invocation definition, the MMS server shall
verify that all the Domains in the List of Domains parameter exist and that they are in
the READY state or that they are in the IN USE state and their sharable attribute is
TRUE. It shall then create the named Program Invocation, linking it to the indicated
Domains. It shall place each of the Domains in the IN USE state. If the Program
Invocation State parameter is present, the MMS server shall place the Program
Invocation in the state indicated by this parameter; otherwise, it shall place the Program
Invocation in IDLE state.

NOTE — If the association is lost during the course of a sequence of UnitControlLoadSeg-
ment services such that a Domain is in an intermediate state, the provisions of 10.1.4.1 of
ISO/IEC 9506 1 apply. Also note the restrictions that 8.3.2 of ISO/IEC 9506 2 places on
the use of the Conclude service.

7.3.3.3 UnitControlLoadSegment protocol

The abstract syntax of the uCLoad choice of the AdditionalService Request and the
AdditionalService Response is specified by the UnitControlLoadSegment Request and the
UnitControlLoadSegment Response respectively. These types are specified below and described
50 ANSI/ISA-S72.02-1993

in the paragraphs that follow. Subclause 5.5 of ISO/IEC 9506 2 describes the derivation of all
parameters for which explicit derivations are not provided in this clause.

UnitControlLoadSegment Request ::= Identifier -- Unit Control Name

UnitControlLoadSegment Response ::= SEQUENCE {

controlElements [0] IMPLICIT SEQUENCE OF ControlElement,

moreFollows [1] IMPLICIT BOOLEAN DEFAULT TRUE

}

7.3.3.3.1 UnitControlLoadSegment Request

The abstract syntax of the uCLoad choice of the AdditionalService Request type shall be the
UnitControlLoadSegment Request.

7.3.3.3.2 UnitControlLoadSegment Response

The abstract syntax of the uCLoad choice of the AdditionalService Response type shall be the
UnitControlLoadSegment Response.

7.3.4 UnitControlUpload service

The UnitControlUpload service is used by an MMS client to obtain load data elements from the
MMS server. This service may have to be invoked several times to obtain a complete upload of
the Unit Control object.

7.3.4.1 Structure

The structure of the component service primitives is shown in Table 12.

Table 12 — UnitControlUpload service

Parameter name Req Ind Rsp Cnf CBB

Argument M M(=)

Unit Control Name M M(=)

Continue After U U(=)

Domain Name S S(=)

Upload ID S S(=)

Program Invocation S S(=)

Result (+) S S(=)

List of Control Elements M M(=)

Next Element C C(=)

Domain Name S S(=)

Upload ID S S(=)

Program Invocation S S(=)

Result (–) S S(=)

Error Type M M(=)
ANSI/ISA-S72.02-1993 51

7.3.4.1.1 Argument

This parameter shall convey the parameters of the UnitControlUpload service request.

7.3.4.1.1.1 Unit Control Name

This parameter, of type Identifier, shall identify the Unit Control object in the VMD that is to be
uploaded.

7.3.4.1.1.2 Continue After

This optional parameter shall indicate where in the list of constituents of the Unit Control object to
begin the next Control Element. If this parameter is not present, the upload shall begin at the
beginning of the Unit Control object. If this parameter is present, one of the following parameters
shall be selected.

7.3.4.1.1.2.1 Domain Name

This parameter, of type Identifier, shall indicate the next Domain that is to be uploaded.

7.3.4.1.1.2.2 Upload ID

This parameter, of type integer, shall indicate the upload state machine currently open for some
Domain upload that is to be continued.

7.3.4.1.1.2.3 Program Invocation

This parameter, of type Identifier, shall indicate the next Program Invocation whose definition is to
be uploaded.

7.3.4.1.2 Result(+)

The Result(+) parameter shall indicate that the service has succeeded. If success is indicated,
the following parameters shall appear.

7.3.4.1.2.1 List of Control Elements

This parameter shall contain the information necessary to construct the constituent Domains and
Program Invocations of the Unit Control object. The Program Invocation State parameter shall be
included in each Program Invocation definition within a Control Element, and its value shall be set
corresponding to the actual state of the Program Invocation.

7.3.4.1.2.2 Next Element

This optional parameter shall indicate, if present, the first element not transmitted in this list of
Control Elements that should be the next element to be transmitted if another UnitControlUpload
request is received. If this parameter is absent, this shall indicate that uploading of the Unit
Control object is complete with this PDU. If this parameter is present, one of the following
parameters shall be selected.

7.3.4.1.2.2.1 Domain Name

This parameter, of type Identifier, shall indicate the next Domain that is to be uploaded.

7.3.4.1.2.2.2 Upload ID

This parameter, of type integer, shall indicate the upload state machine currently open for some
Domain upload that is to be continued.
52 ANSI/ISA-S72.02-1993

7.3.4.1.2.2.3 Program Invocation

This parameter, of type Identifier, shall indicate the next Program Invocation whose definition is to
be uploaded.

7.3.4.1.3 Result(–)

The Result(–) parameter shall indicate that the service request has failed. The Error Type
parameter, which is defined in detail in Clause 17 of ISO/IEC 9506 1, shall provide the reason for
failure.

7.3.4.2 Service procedure

For the purposes of responding to the UnitControlUpload service request, the MMS server shall
maintain the constituents of a Unit Control object in an ordered list. An ordering of Domain
Names based on the collating sequence of ISO 646 followed by a similar ordering of Program
Invocations is suggested but not required. This part of ISO/IEC 9506 requires only that the
ordering algorithm used be unambiguous and be such that any Program Invocation appear later
in the ordering than any Domains on which it depends.

The MMS client may issue a UnitControlUpload request indicating a position in this ordering by
identifying the next Domain to be uploaded, the Domain whose upload is partially complete, or
the next Program Invocation definition to be uploaded. If the MMS client does not specify any
such element, the upload is to start from the beginning of the ordering.

The MMS server shall verify the consistency of the List of Domain references attribute and the
List of Program Invocation references attribute of the Unit Control object. If any objects so
referenced do not exist, the MMS server shall amend the respective list.

The MMS server shall provide definitions for each constituent element of the Unit Control object
in order, determined by its ordering algorithm. For each Domain in the Unit Control object, the
MMS server shall create an Upload State Machine (See 10.1.4.2 of ISO/IEC 9506 1) and
transmit all or part of the Domain content. The determination of the necessity of segmentation
and the size of the segments shall be a local matter. For each Program Invocation in the Unit
Control object, the MMS server shall transmit a Program Invocation definition record.

If, for any reason, the entire content of the Unit Control object cannot be contained within a single
PDU, the MMS server shall provide an indication of the next element in the order that has not yet
been transmitted.

a) If the next element to be transmitted is a Domain, the MMS server shall indicate the
name of this Domain.

b) If a Domain content has been partially transmitted and more content of that Domain
remains to be transmitted, the MMS server shall indicate the identify of the Upload State
Machine currently active.

c) If the next element to be transmitted is a Program Invocation, the MMS server shall
indicate the name of this Program Invocation.

If the present transmission exhausts the Unit Control object, that is it transmits the last element
on the list, the MMS server shall omit the Next Element parameter.

7.3.4.3 UnitControlUpload protocol

The abstract syntax of the uCUpload choice of the AdditionalService Request and the
AdditionalService Response is specified by the UnitControlUpload Request and the
UnitControlUpload Response respectively. These types are specified below and described in the
ANSI/ISA-S72.02-1993 53

paragraphs that follow. Subclause 5.5 of ISO/IEC 9506 2 describes the derivation of all
parameters for which explicit derivations are not provided in this clause.

UnitControlUpload Request ::= SEQUENCE {

unitControlName [0] IMPLICIT Identifier, - - Unit Control Name

continueAfter CHOICE {

domain [1] IMPLICIT Identifier,

ulsmID [2] IMPLICIT INTEGER,

programInvocation [3] IMPLICIT Identifier

} OPTIONAL

}

UnitControlUpload Response ::= SEQUENCE {

controlElements [0] IMPLICIT SEQUENCE OF ControlElement,

nextElement CHOICE {

domain [1] IMPLICIT Identifier,

ulsmID [2] IMPLICIT INTEGER,

programInvocation [3] IMPLICIT Identifier

} OPTIONAL

}

7.3.4.3.1 UnitControlUpload Request
The abstract syntax of the uCUpload choice of the AdditionalService Request type shall be the
UnitControlUpload Request.

7.3.4.3.2 UnitControlUpload Response

The abstract syntax of the uCUpload choice of the AdditionalService Response type shall be the
UnitControlUpload Response.

7.3.5 StartUnitControl service

This service allows the MMS client to place all the constituent Program Invocations of a Unit
Control object into the RUNNING state.

7.3.5.1 Structure

The structure of the component service primitives is shown in Table 13.
54 ANSI/ISA-S72.02-1993

Table 13 — StartUnitControl service

7.3.5.1.1 Argument

This parameter conveys the parameters of the StartUnitControl service.

7.3.5.1.1.1 Unit Control Name

This parameter, of type Identifier, shall identify the Unit Control object whose constituent Program
Invocations are to be started.

7.3.5.1.1.2 Execution Argument

This parameter may be used to pass an information to the Program Invocations which are to be
started.

7.3.5.1.2 Result(+)

The Result(+) parameter shall indicate that the service has succeeded.

7.3.5.1.3 Result(-)

The Result(-) parameter shall indicate that the service request has failed. The Error Type
parameter, which is defined in detail in Clause 17 of ISO/IEC 9506 1, shall provide the reason for
failure.

7.3.5.1.3.1 Start Unit Control Error

This parameter shall be included in the Result(-) if the failure was due to the failure of the derived
Start procedure on a specific Program Invocation. If this parameter is included, the following
fields shall also appear.

7.3.5.1.3.1.1 Program Invocation Name

This parameter shall indicate the name of the Program Invocation whose Start service failed.

7.3.5.1.3.2 Program Invocation State

This parameter shall indicate the resulting state of the Program Invocation whose Start service
has failed. Following an unsuccessful Start service, the Program Invocation shall be returned to
its previous state, if possible, or it shall be placed in the UNRUNNABLE state.

Parameter name Req Ind Rsp Cnf CBB

Argument M M(=)

Unit Control Name M M(=)

Execution Argument U U(=)

Result(+) S S(=)

Result(–) S S(=)

Error Type M M(=)

Start Unit Control Error C C(=)

Program Invocation Name M M(=)

Program Invocation State M M(=)
ANSI/ISA-S72.02-1993 55

7.3.5.2 Service procedure

The MMS server shall:

a) For each entry on the List of Program Invocation references attribute of the Unit Control
object, verify that the Program Invocation exists. If a Program Invocation does not exist,
remove its reference from the List of Program Invocation references attribute.

b) For each entry on the List of Program Invocation references attribute of the Unit Control
object, place the Program Invocation in the RUNNING state. This shall be done as
follows:

1) If the Program Invocation is already in the RUNNING, STARTING, or RESUMING
state, do nothing.

2) If the Program Invocation is in the IDLE or RESETTING state, perform a Start service
procedure (See 11.4.2 of ISO/IEC 9506 1).

3) If the Program Invocation is in the STOPPED or STOPPING state, perform a Resume
procedure (See 11.6.2 of ISO/IEC 9506 1).

4) If the Program Invocation is in the UNRUNNABLE state, return a Result(-) with a
Start Unit Control Error parameter indicating the failed Program Invocation and its
state.

5) If any Start procedure on a constituent Program Invocation fails, return a Result(-)
with a Start Unit Control Error parameter indicating the failed Program Invocation
and its state.

c) Return a Result(+).

7.3.5.3 StartUnitControl protocol

The abstract syntax of the startUC choice of the AdditionalService Request and the
AdditionalService Response is specified by the StartUnitControl Request and the
StartUnitControl Response respectively. These types are specified below and described in the
paragraphs that follow. Subclause 5.5 of ISO/IEC 9506 2 describes the derivation of all
parameters for which explicit derivations are not provided in this clause.

StartUnitControl Request ::= SEQUENCE {

unitControlName [0] IMPLICIT Identifier, -- Unit Control Name

executionArgument CHOICE {

simpleString [1] IMPLICIT VisibleString,

encodedString EXTERNAL

} OPTIONAL

}

StartUnitControl Response ::= NULL

StartUnitControl Error ::= SEQUENCE {

programInvocationName [0] IMPLICIT Identifier,

programInvocationState [1] IMPLICIT ProgramInvocationState

}

56 ANSI/ISA-S72.02-1993

7.3.5.3.1 StartUnitControl Request

The abstract syntax of the startUC choice of the AdditionalService Request type shall be the
StartUnitControl Request.

7.3.5.3.2 StartUnitControl Response

The abstract syntax of the startUC choice of the AdditionalService Response type shall be the
StartUnitControl Response.

7.3.5.3.3 StartUnitControl Error

The abstract syntax of the startUC choice of the AdditionalService Error type shall be the
StartUnitControl Error, which shall be Program Invocation Name sub-parameter and the Program
Invocation State sub-parameter, respectively, of the Result(-) parameter of the
StartUnitControl.response primitive and shall appear as the Program Invocation Name sub-
parameter and the Program Invocation State sub-parameter, respectively, of the
StartUnitControl.confirm primitive, if issued.

7.3.6 StopUnitControl service

This service allows the MMS client to place all the constituent Program Invocations of a Unit
Control object into the STOPPED state.

7.3.6.1 Structure

The structure of the component service primitives is shown in Table 14.

Table 14 — StopUnitControl service

7.3.6.1.1 Argument

This parameter shall convey the parameter of the StopUnitControl service.

7.3.6.1.1.1 Unit Control Name

This parameter, of type Identifier, shall identify the Unit Control object whose constituent Program
Invocations are to be stopped.

7.3.6.1.2 Result(+)

The Result(+) parameter shall indicate that the service has succeeded.

Parameter name Req Ind Rsp Cnf CBB

Argument M M(=)

Unit Control Name M M(=)

Result(+) S S(=)

Result(–) S S(=)

Error Type M M(=)

Stop Unit Control Error C C(=)

 Program Invocation Name M M(=)

 Program Invocation State M M(=)
ANSI/ISA-S72.02-1993 57

7.3.6.1.3 Result(-)

The Result(-) parameter shall indicate that the service request has failed. The Error Type
parameter, which is defined in detail in Clause 17 of ISO/IEC 9506 1, shall provide the reason for
failure.

7.3.6.1.3.1 Stop Unit Control Error

This parameter shall be included in the Result(-) if the failure was due to the failure of the derived
Stop procedure on a specific Program Invocation. If this parameter is included, the following
fields shall also appear.

7.3.6.1.3.1.1 Program Invocation Name

This parameter shall indicate the name of the Program Invocation whose Stop service failed.

7.3.6.1.3.1.2 Program Invocation S tate

This parameter shall indicate the resulting state of the Program invocation whose Stop service
has failed. Following an unsuccessful Stop service, the Program Invocation shall be returned to
its previous state if possible, or it shall be placed in the UNRUNNABLE state.

7.3.6.2 Service procedure

The MMS server shall:

a) For each entry on the List of Program Invocation references attribute of the Unit Control
object, verify that the Program Invocation exists. If this condition is not satisfied, remove
the reference to the Program Invocation from the List of Program Invocation references
attribute.

b) For each entry on the List of Program Invocation references attribute of the Unit Control
object, place each Program Invocation that is in the RUNNING state into the STOPPED
state. This shall be done as follows:

1) If the Program Invocation is already in the STOPPED, STOPPING, IDLE,
RESETTING, or UNRUNNABLE state, do nothing.

2) If the Program Invocation is in the RUNNING or STARTING state, perform a Stop
procedure (See 11.6.3 of ISO/IEC 9506 1).

3) If any Stop procedure on a constituent Program Invocation fails, return a Result(-)
with a Stop Unit Control Error parameter indicating the failed Program Invocation
and its state.

c) Return a Result(+).

7.3.6.3 StopUnitControl protocol

The abstract syntax of the stopUC choice of the AdditionalService Request and the
AdditionalService Response is specified by the StopUnitControl Request and the
StopUnitControl Response respectively. These types are specified below and described in the
paragraphs that follow. Subclause 5.5 of ISO/IEC 9506 2 describes the derivation of all
parameters for which explicit derivations are not provided in this clause.
58 ANSI/ISA-S72.02-1993

StopUnitControl Request ::= Identifier -- Unit Control Name

StopUnitControl Response ::= NULL

StopUnitControl Error ::= SEQUENCE {

programInvocationName [0] IMPLICIT Identifier,

programInvocationState [1] IMPLICIT ProgramInvocationState

}

7.3.6.3.1 StopUnitControl Request

The abstract syntax of the stopUC choice of the AdditionalService Request type shall be the
StopUnitControl Request.

7.3.6.3.2 StopUnitControl Response

The abstract syntax of the stopUC choice of the AdditionalService Response type shall be the
StopUnitControl Response.

7.3.6.3.3 StopUnitControl Error

The abstract syntax of the stopUC choice of the AdditionalService Error shall be the
StopUnitControl Error, which shall be Program Invocation Name sub parameter and the Program
Invocation State sub parameter, respectively, of the Result(-) parameter of the
StopControlUnit.response primitive and shall appear as the Program Invocation Name sub
parameter and the Program Invocation State sub parameter, respectively, of the
StopUnitControl.confirm primitive, if issued.

7.3.7 CreateUnitControl service

The CreateUnitControl service is used by an MMS client to create a new Unit Control object with
a specified set of Domains and/or Program Invocations.

7.3.7.1 Structure

The structure of the component service primitives is shown in Table 15.

Table 15 — CreateUnitControl service

Parameter name Req Ind Rsp Cnf CBB

Argument M M(=)

Unit Control Name M M(=)

List of Domains M M(=)

List of Program Invocations M M(=)

Result(+) S S(=)

Result(–) S S(=)

Error Type M M(=)
ANSI/ISA-S72.02-1993 59

7.3.7.1.1 Argument

This parameter shall convey the parameters of the CreateUnitControl service request.

7.3.7.1.1.1 Unit Control Name

This parameter, of type Identifier, is the name that shall be assigned to the newly created Unit
Control object.

7.3.7.1.1.2 List of Domains

This parameter, of type list of Identifier, shall specify zero or more Domains that are to be
referenced by the List of Domains attribute of the Unit Control object.

7.3.7.1.1.3 List of Program Invocations

This parameter, of type list of Identifier, shall specify zero or more Program Invocations that are to
be referenced by the List of Program Invocations attribute of the Unit Control object.

7.3.7.1.2 Result(+)

The Result(+) parameter shall indicate that the service has succeeded.

7.3.7.1.3 Result(-)

The Result(-) parameter shall indicate that the service request has failed. The Error Type
parameter, which is defined in detail in Clause 17 of ISO/IEC 9506 1, shall provide the reason for
failure.

7.3.7.2 Service procedure

The MMS server shall:

a) Create a Unit Control object and assign it the specified name.

b) For each element of the List of Domains parameter (if any), add a reference to that
Domain to the List of Domains attribute of the Unit Control object.

c) For each element of the List of Program Invocations parameter (if any), add a reference
to that Program Invocation to the List of Program Invocations attribute of the Unit Control
object.

d) Return a Result(+)

7.3.7.3 CreateUnitControl protocol

The abstract syntax of the createUC choice of the AdditionalService Request and the
AdditionalService Response is specified by the CreateUnitControl Request and the
CreateUnitControl Response respectively. These types are specified below and described in the
paragraphs that follow. Subclause 5.5 of ISO/IEC 9506 2 describes the derivation of all
parameters for which explicit derivations are not provided in this clause.

CreateUnitControl Request ::= SEQUENCE {

unitControl [0] IMPLICIT Identifier, - - Unit Control Name

domains [1] IMPLICIT SEQUENCE OF Identifier,

programInvocations [2] IMPLICIT SEQUENCE OF Identifier

}

CreateUnitControl Response ::= NULL
60 ANSI/ISA-S72.02-1993

7.3.7.3.1 CreateUnitControl Request

The abstract syntax of the createUC choice of the AdditionalService Request type shall be the
CreateUnitControl Request.

7.3.7.3.2 CreateUnitControl Response

The abstract syntax of the createUC choice of the AdditionalService Response type shall be the
CreateUnitControl Response.

7.3.8 AddToUnitControl service

The AddToUnitControl service is used by an MMS client to add Domains and/or Program
Invocations to the Unit Control object.

7.3.8.1 Structure

The structure of the component service primitives is shown in Table 16.

Table 16 — AddToUnitControl service

7.3.8.1.1 Argument

This parameter shall convey the parameters of the AddToUnitControl service request.

7.3.8.1.1.1 Unit Control Name

This parameter, of type Identifier, shall identify the Unit Control object in the VMD whose list of
constituents is to be altered.

7.3.8.1.1.2 List of Domains

This parameter, of type list of Identifier, shall specify zero or more Domains that are to be added
to the List of Domains attribute of the Unit Control object.

7.3.8.1.1.3 List of Program Invocations

This parameter, of type list of Identifier, shall specify zero or more Program Invocations that are to
be added to List of Program Invocations attribute of the Unit Control object.

7.3.8.1.2 Result(+)

The Result(+) parameter shall indicate that the service has succeeded.

Parameter name Req Ind Rsp Cnf CBB

Argument M M(=)

Unit Control Name M M(=)

List of Domains M M(=)

List of Program Invocations M M(=)

Result(+) S S(=)

Result(–) S S(=)

Error Type M M(=)
ANSI/ISA-S72.02-1993 61

7.3.8.1.3 Result(–)

The Result(–) parameter shall indicate that the service request has failed. The Error Type
parameter, which is defined in detail in Clause 17 of ISO/IEC 9506 1, shall provide the reason for
failure.

7.3.8.2 Service procedure

The MMS server shall:

a) For each element of the List of Domains parameter (if any), add a reference to that
Domain to the List of Domains attribute of the Unit Control object.

b) For each element of the List of Program Invocations parameter (if any), add a reference
to that Program Invocation to the List of Program Invocations attribute of the Unit Control
object.

c) Return a Result(+)

7.3.8.3 AddToUnitControl protocol

The abstract syntax of the addToUC choice of the AdditionalService Request and the
AdditionalService Response is specified by the AddToUnitControl Request and the
AddToUnitControl Response respectively. These types are specified below and described in the
paragraphs that follow. Clause 5.5 of ISO/IEC 9506 2 describes the derivation of all parameters
for which explicit derivations are not provided in this clause.

AddToUnitControl Request ::= SEQUENCE {

unitControl [0] IMPLICIT Identifier, - - Unit Control Name

domains [1] IMPLICIT SEQUENCE OF Identifier,

programInvocations [2] IMPLICIT SEQUENCE OF Identifier

}

AddToUnitControl Response ::= NULL

7.3.8.3.1 AddToUnitControl Request

The abstract syntax of the addToUC choice of the AdditionalService Request type shall be the
AddToUnitControl Request.

7.3.8.3.2 AddToUnitControl Response

The abstract syntax of the addToUC choice of the AdditionalService Response type shall be the
AddToUnitControl Response.

7.3.9 RemoveFromUnitControl service

The RemoveFromUnitControl service is used by an MMS client to remove Domains, or Program
Invocations, or both from the Unit Control object.

7.3.9.1 Structure

The structure of the component service primitives is shown in Table 17.
62 ANSI/ISA-S72.02-1993

Table 17 — RemoveFromUnitControl service

7.3.9.1.1 Argument

This parameter shall convey the parameters of the RemoveFromUnitControl service request.

7.3.9.1.1.1 Unit Control Name

This parameter, of type Identifier, shall identify the Unit Control object in the VMD whose list of
constituents is to be altered.

7.3.9.1.1.2 List of Domains

This parameter, of type list of Identifier, shall specify zero or more Domains that are to be
removed from the List of Domains reference attribute of the Unit Control object.

7.3.9.1.1.3 List of Program Invocations

This parameter, of type list of Identifier, shall specify zero or more Program Invocations that are to
be removed from the List of Program Invocations reference attribute of the Unit Control object.

7.3.9.1.2 Result(+)

The Result(+) parameter shall indicate that the service has succeeded.

7.3.9.1.3 Result(-)

The Result(-) parameter shall indicate that the service request has failed. The Error Type
parameter, which is defined in detail in Clause 17 of ISO/IEC 9506 1, shall provide the reason for
failure.

7.3.9.2 Service procedure

The MMS server shall:

a) For each element of the List of Domains parameter (if any), remove the reference to
that Domain from the List of Domains reference attribute of the Unit Control object.

b) For each element of the List of Program Invocations parameter (if any), remove the
reference to that Program Invocation from the List of Program Invocation references
attribute of the Unit Control object.

c) Return a Result(+)

Parameter name Req Ind Rsp Cnf CBB

Argument M M(=)

Unit Control Name M M(=)

List of Domains M M(=)

List of Program Invocations M M(=)

Result(+) S S(=)

Result(-) S S(=)

Error Type M M(=)
ANSI/ISA-S72.02-1993 63

7.3.9.3 RemoveFromUnitControl protocol

The abstract syntax of the removeFromUC choice of the AdditionalService Request and the
AdditionalService Response is specified by the RemoveFromUnitControl Request and the
RemoveFromUnitControl Response respectively. These types are specified below and described
in the paragraphs that follow. Subclause 5.5 of ISO/IEC 9506 2 describes the derivation of all
parameters for which explicit derivations are not provided in this clause.

RemoveFromUnitControl Request ::= SEQUENCE {

unitControl [0] IMPLICIT Identifier, -- Unit Control Name

domains [1] IMPLICIT SEQUENCE OF Identifier,

programInvocations [2] IMPLICIT SEQUENCE OF Identifier

}

RemoveFromUnitControl Response ::= NULL

7.3.9.3.1 RemoveFromUnitControl Request

The abstract syntax of the removeFromUC choice of the AdditionalService Request type shall be
the RemoveFromUnitControl Request.

7.3.9.3.2 RemoveFromUnitControl Response

The abstract syntax of the removeFromUC choice of the AdditionalService Response type shall
be the RemoveFromUnitControl Response.

7.3.10 GetUnitControlAttributes service

This service allows the MMS client to get the list of constituent Domains and Program
Invocations of a Unit Control object.

7.3.10.1 Structure

The structure of the component service primitives is shown in Table 18.

Table 18 — GetUnitControlAttributes service

7.3.10.1.1 Argument

This parameter shall convey the parameter of the GetUnitControlAttributes service request.

Parameter name Req Ind Rsp Cnf CBB

Argument M M(=)

Unit Control Name M M(=)

Result(+) S S(=)

List of Domains M M(=)

List of Program Invocations M M(=)

Result(-) S S(=)

Error Type M M(=)
64 ANSI/ISA-S72.02-1993

7.3.10.1.1.1 Unit Control Name

This parameter, of type Identifier, shall identify the Unit Control object for which the attributes are
to be obtained.

7.3.10.1.2 Result(+)

The Result(+) parameter shall indicate that the service has succeeded. If success is indicated,
the following parameters shall appear.

7.3.10.1.2.1 List of Domains

This parameter, of type list of Identifier, shall specify the names of the Domains that are
constituents of the Unit Control object.

7.3.10.1.2.2 List of Program Invocations

This parameter, of type list of Identifier, shall specify the names of the Program Invocations that
are constituents of the Unit Control object.

7.3.10.1.3 Result(-)

The Result(-) parameter shall indicate that the service request has failed. The Error Type
parameter, which is defined in detail in Clause 17 of ISO/IEC 9506 1, shall provide the reason for
failure.

7.3.10.2 Service procedure

The MMS server shall:

a) For each entry in the List of Program Invocation references attribute of the Unit Control
object, verify that the Program Invocation exists. If the Program Invocation does not
exist, remove its reference from the List of Program Invocation references attribute of
the Unit Control object.

b) For each entry in the List of Domain references attribute of the Unit Control object, verify
that the Domain exists. If the Domain does not exist, remove its reference from the List
of Domain references attribute of the Unit Control object.

c) Return a Result(+) with the list of names of the Domains and Program Invocations as
specified in the List of Domains attribute and List of Program Invocations attribute of the
Unit Control object.

NOTE — Following the model of Unit Control object given in this part of ISO/IEC 9506, it
is possible that the list of constituents of a Unit Control object may become inconsistent
with the actual set of Domains and Program Invocations, e.g., following the explicit deletion
of a Domain. The service procedure of this section is intended to re-establish consistency
for this Unit Control object prior to completion of the service. A real implementation may
choose to maintain consistency at all times by employing a set of inverse references in
each Domain and Program Invocation. However, this is not required. An alternate imple-
mentation technique could be to implement the references within the Unit Control object
by name, reestablishing consistency only when required.

7.3.10.3 GetUnitControlAttributes protocol

The abstract syntax of the getUCAttributes choice of the AdditionalService Request and the
AdditionalService Response is specified by the GetUnitControlAttributes Request and the
GetUnitControlAttributes Response respectively. These types are specified below and described
in the paragraphs that follow. Subclause 5.5 of ISO/IEC 9506 2 describes the derivation of all
parameters for which explicit derivations are not provided in this clause.
ANSI/ISA-S72.02-1993 65

GetUnitControlAttributes Request ::= Identifier -- Unit Control Name

GetUnitControlAttributes Response ::= SEQUENCE {

domains [0] IMPLICIT SEQUENCE OF Identifier,

programInvocations [1] IMPLICIT SEQUENCE OF Identifier

}

7.3.10.3.1 GetUnitControlAttributes Request

The abstract syntax of the getUCAttributes choice of the AdditionalService Request type shall be
the GetUnitControlAttributes Request.

7.3.10.3.2 GetUnitControlAttributes Response

The abstract syntax of the getUCAttributes choice of the AdditionalService Response type shall
be the GetUnitControlAttributes Response.

7.3.11 LoadUnitControlFromFile service

The LoadUnitControlFromFile service may be used by a MMS client to request a MMS server to
create a Unit Control object and load the Unit Control object using information available locally or
from a third party.

7.3.11.1 Structure

The Structure of the component service primitives is shown in Table 19.

Table 19 — LoadUnitControlFromFile service

7.3.11.1.1 Argument

This parameter shall convey the parameters of the LoadUnitControlFromFile service request.

7.3.11.1.1.1 Unit Control Name

This parameter shall specify the name of the Unit Control object at the VMD to be loaded.

Parameter name Req Ind Rsp Cnf CBB

Argument M M(=)

Unit Control Name M M(=)

File Name M M(=)

Third Party U U(=) TPY

Result(+) S S(=)

Result(-) S S(=)

Error Type M M(=)

Initiate Unit Control Error M M(=)

Domain Name S S(=)

Program Invocation Name S S(=)
66 ANSI/ISA-S72.02-1993

7.3.11.1.1.2 File Name

This parameter, of type FileName, shall specify the name of the file containing the information to
be loaded.

7.3.11.1.1.3 Third Party

This parameter, of type ApplicationReference, shall specify the application reference of the
Application Process through which the named file may be accessed. Support of processing for
this parameter is an implementation option that shall be implemented if support for the TPY
parameter conformance building block is claimed. If it is implemented, its use is a user option. If
this parameter is absent, the MMS server shall attempt to access the requested file directly.

7.3.11.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result
does not supply service specific parameters.

7.3.11.1.3 Result (-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter,
which is defined in detail in Clause 17 of ISO/IEC 9506 1, shall provide the reason for failure.

7.3.11.1.3.1 Domain Name

This parameter shall indicate the Domain that was being created when the error was detected.
Either this parameter or the Program Invocation Name parameter may be present, but not both.

7.3.11.1.3.2 Program Invocation Name

This parameter shall indicate the Program Invocation that was being created when the error was
detected. Either this parameter or the Domain Name parameter may be present, but not both.

7.3.11.2 Service procedure

The VMD shall verify that the Unit Control object of the specified name does not exist. If a third
party is specified, establish an association with that application if none exists; thereafter take
appropriate action to cause the named Unit Control object to be loaded. If no third party is
specified, perform the necessary steps to obtain the file through local means and load it into the
specified Unit Control object. If the loading is successful, return a Result(+); otherwise return a
Result(-) indicating in the Initiate Unit Control Error parameter the reason for failure.

7.3.11.3 LoadUnitControlFromFile protocol

The abstract syntax of the loadUCFromFile choice of the ConfirmedService Request and
ConfirmedService Response is specified by the LoadUnitControlFromFile Request and
LoadUnitControlFromFile Response specified below and described in the paragraphs that follow.
Subclause 5.5 of ISO/IEC 9506 2 describes the derivation of all parameters for which explicit
derivations are not provided in this clause.

LoadUnitControlFromFile Request ::= SEQUENCE {

unitControlName [0] IMPLICIT Identifier,

fileName [1] IMPLICIT FileName,

thirdParty [2] IMPLICIT ApplicationReference
OPTIONAL

}

LoadUnitControlFromFile Response ::= NULL
ANSI/ISA-S72.02-1993 67

LoadUnitControlFromFile Error ::= CHOICE {

none [0] IMPLICIT NULL,

domain [1] IMPLICIT Identifier,

programInvocation [2] IMPLICIT Identifier

}

7.3.11.3.1 LoadUnitControlFromFile Request

The abstract syntax of the loadUCFromFile choice of the AdditionalService Request type shall be
the LoadUnitControlFromFile Request.

7.3.11.3.2 LoadUnitControlFromFile Response

The abstract syntax of the loadUCFromFile choice of the AdditionalService Response type shall
be the LoadUnitControlFromFile Response.

7.3.11.3.3 LoadUnitControlFromFile Error

The abstract syntax of the loadUCFromFile choice of the AdditionalService Error type shall be
the LoadUnitControlFromFile Error.

7.3.12 StoreUnitControlToFile service

The StoreUnitControlToFile service may be used by a MMS client to request a MMS server to
store the Domains and Program Invocations of a Unit Control object either at a third party site or
locally.

7.3.12.1 Structure

The structure of the component service primitives is shown in Table 20.

Table 20 — StoreUnitControlToFile service

7.3.12.1.1 Argument

This parameter shall convey the parameters of the StoreUnitControlToFile service request.

Parameter name Req Ind Rsp Cnf CBB

Argument M M(=)

Unit Control Name M M(=)

File Name M M(=)

Third Party U U(=) TPY

Result(+) S S(=)

Result(-) S S(=)

Error Type M M(=)
68 ANSI/ISA-S72.02-1993

7.3.12.1.1.1 Unit Control Name

This parameter shall specify the name of the Unit Control object at the VMD for which the content
is to be stored.

7.3.12.1.1.2 File Name

This parameter, of type FileName, shall specify the name of the file to which the information is to
be stored.

7.3.12.1.1.3 Third Party

This optional parameter, of type ApplicationReference, shall specify the application reference of
the Application Process on which the file store resides that is to receive the contents of the
specified Unit Control object. Support of processing for this parameter is an implementation
option that shall be implemented if support for the TPY parameter conformance building block is
claimed. If it is implemented, its use is a user option. If this parameter is absent, the MMS server
shall attempt to store the content of the Unit Control object directly in the specified file.

7.3.12.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result
does not supply service specific parameters.

7.3.12.1.3 Result (-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter,
which is defined in detail in Clause 17 of ISO/IEC 9506 1, shall provide the reason for failure.

7.3.12.2 Service procedure

The MMS server shall verify that the Unit Control object of the specified name exists. If the third
party parameter has been provided, the MMS server shall establish an association with that
application if none exists; thereafter it shall take appropriate action to cause the named Unit
Control object to be stored at the third party site. If no third party is specified, the MMS server
shall perform the necessary steps to store the Unit Control object in the file specified through
local means. If the process is successful, return a Result(+); otherwise return a Result(-).

7.3.12.3 StoreUnitControlToFile protocol

The abstract syntax of the storeUCToFile choice of the ConfirmedServiceRequest and
ConfirmedServiceResponse is specified by the StoreUnitControlToFile Request and
StoreUnitControlToFile Response specified below and described in the paragraphs that follow.
Subclause 5.5 of ISO/IEC 9506 2 describes the derivation of all parameters for which explicit
derivations are not provided in this clause.

StoreUnitControlToFile Request ::= SEQUENCE {

unitControlName [0] IMPLICIT Identifier,

fileName [1] IMPLICIT FileName,

thirdParty [2] IMPLICIT ApplicationReference
OPTIONAL

}

StoreUnitControlToFile Response ::= NULL
ANSI/ISA-S72.02-1993 69

7.3.12.3.1 StoreUnitControlToFile Request

The abstract syntax of the storeUCToFile choice of the AdditionalService Request type shall be
the StoreUnitControlToFile Request.

7.3.12.3.2 StoreUnitControlToFile Response

The abstract syntax of the storeUCToFile choice of the AdditionalService Response type shall be
the StoreUnitControlToFile Response.

7.3.13 DeleteUnitControl service

This service allows the MMS client to delete the Unit Control object and all its constituent
elements.

7.3.13.1 Structure

The structure of the component service primitives is shown in Table 21.

Table 21 — DeleteUnitControl service

7.3.13.1.1 Argument

This parameter conveys the parameter of DeleteUnitControl service.

7.3.13.1.1.1 Unit Control Name

This parameter, of type Identifier, shall identify the Unit Control object that is to be deleted with its
constituent elements.

7.3.13.1.2 Result(+)

The Result(+) parameter shall indicate that the service has succeeded.

7.3.13.1.3 Result(-)

The Result(-) parameter shall indicate that the service request has failed. The Error Type
parameter, which is defined in detail in Clause 17 of ISO/IEC 9506 1, shall provide the reason for
failure.

Parameter name Req Ind Rsp Cnf CBB

Argument M M(=)

Unit Control Name M M(=)

Result (+) S S(=)

Result (-) S S(=)

Error Type M M(=)

Delete Unit Control Error M M(=)

Domain Name S S(=)

Program Invocation Name S S(=)
70 ANSI/ISA-S72.02-1993

7.3.13.1.3.1 Domain Name

This parameter shall indicate the Domain whose deletion was being attempted when the error
was detected. Either this parameter or the Program Invocation Name parameter shall be
selected.

7.3.13.1.3.2 Program Invocation Name

This parameter shall indicate the Program Invocation whose deletion was being attempted when
the error was detected. Either this parameter or the Domain Name parameter shall be selected.

7.3.13.2 Service procedure

The MMS server shall:

a) For each entry in the List of Program Invocation references attribute of the Unit Control
object:

1) Verify that the Program Invocation exists. If the Program Invocation does not exist,
remove its reference from the List of Program Invocation references attribute of the
Unit Control object and skip the remainder of this step for this entry.

2) Verify that the Program Invocation is not in the RUNNING state. If this condition is
not satisfied, return a Result(-) and skip the remainder of the procedure.

3) Perform a DeleteProgramInvocation service procedure as specified in 11.3.2 of ISO/
IEC 9506 1 and remove the reference to this Program Invocation from the List of
Program Invocation references attribute of the Unit Control object.

b) For each entry in the List of Domain references attribute of the Unit Control object:

1) Verify that the Domain exists. If the Domain does not exist, remove its reference from
the List of Domain references attribute of the Unit Control object and skip the
remainder of this step for this entry.

2) Verify that the Domain is not in the IN USE state. If this condition is not satisfied,
return a Result(-) and skip the remainder of the procedure.

3) Perform a DeleteDomain service procedure as specified in 10.12.2 of ISO/IEC 9506
1 and remove the reference to this Domain from the List of Domain references
attribute of the Unit Control object.

c) Delete the Unit Control object from the VMD.

d) Return a Result(+).

If the procedure returns a Result(-), the Unit Control object may have had some of its Domains
and Program Invocations deleted. In this case, the Delete Unit Control Error parameter shall
indicate the Domain or Program Invocation on which the procedure stopped, and the current
contents of the Unit Control object shall indicate the Domains and Program Invocations that still
remain on the Unit Control object.

NOTE — Following the model of Unit Control object given in this part of ISO/IEC 9506, it
is possible that the list of constituents of a Unit Control object may become inconsistent
with the actual set of Domains and Program Invocations, e.g., following the explicit deletion
of a Domain. The service procedure of this section is intended to re-establish consistency
for this Unit Control object prior to completion of the service. A real implementation may
choose to maintain consistency at all times by employing a set of inverse references in
each Domain and Program Invocation. However, this is not required. An alternate imple-
mentation technique could be to implement the references within the Unit Control object
by name, re-establishing consistency only when required.
ANSI/ISA-S72.02-1993 71

7.3.13.3 DeleteUnitControl protocol

The abstract syntax of the deleteUC choice of the AdditionalService Request and the
AdditionalService Response is specified by the DeleteUnitControl Request and the
DeleteUnitControl Response respectively. These types are specified below and described in the
paragraphs that follow. Subclause 5.5 of ISO/IEC 9506 2 describes the derivation of all
parameters for which explicit derivations are not provided in this clause.

DeleteUnitControl Request ::= Identifier -- Unit Control Name

DeleteUnitControl Response ::= NULL

DeleteUnitControl Error ::= CHOICE {

domain [0] IMPLICIT Identifier,

programInvocation [1] IMPLICIT Identifier

}

7.3.13.3.1 DeleteUnitControl Request

The abstract syntax of the deleteUC choice of the AdditionalService Request type shall be the
DeleteUnitControl Request.

7.3.13.3.2 DeleteUnitControl Response

The abstract syntax of the deleteUC choice of the AdditionalService Response type shall be the
DeleteUnitControl Response.

7.3.13.3.3 DeleteUnitControl Error

The abstract syntax of the deleteUC choice of the AdditionalService Error type shall be the
DeleteUnitControl Error.

7.3.14 DefineEventConditionList service

The DefineEventConditionList service shall be used to cause the creation of an Event Condition
List object at the VMD.

7.3.14.1 Structure

The structure of the component service primitives is shown in Table 22.

Table 22 — DefineEventConditionList service

Parameter name Req Ind Rsp Cnf CBB

Argument M M(=)

Event Condition List name M M(=)

List of Event Condition names M M(=)

List of Event Condition List names C C(=) RECL

Result(+) S S(=)

Result(-) S S(=)

Error type M M(=)

Object in error C C(=)
72 ANSI/ISA-S72.02-1993

7.3.14.1.1 Argument

This parameter shall convey the parameters of the DefineEventConditionList service request.

7.3.14.1.1.1 Event Condition List name

This parameter, of type Object Name, shall specify the name of the Event Condition List object
that is to be created at the VMD.

7.3.14.1.1.2 List of Event Condition names

This parameter shall contain a list of name attributes of Event Condition objects that shall be
included in the specified Event Condition List. This list shall not be empty if RECL has not been
negotiated. If there are no Event Condition names in this service request, this parameter shall be
an empty list. If the scope of the Event Condition List name parameter is VMD specific or Domain
specific, this parameter shall not contain an Event Condition name whose scope is AA specific.

7.3.14.1.1.3 List of Event Condition List names

This parameter shall contain a list of name attributes of Event Condition List objects that shall be
included, by reference to each included object, in the Event Condition List. This parameter shall
not be present if the RECL CBB has not been negotiated. If RECL has been negotiated but there
are no Event Condition List names in this service request, this parameter shall be an empty list. If
the scope of the Event Condition List name parameter is VMD specific or Domain specific, this
parameter shall not contain an Event Condition List name whose scope is AA specific.

7.3.14.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result
shall return no service specific parameters.

7.3.14.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter,
which is defined in Clause 17 of ISO/IEC 9506 1, shall provide the reason for failure. In addition,
the following parameter may appear.

7.3.14.1.3.1 Object in error

This parameter, of type Object Name, shall be present when the error concerns the nonexistence
or inconsistency of an Event Condition object specified in the List of Event Condition names
parameter, or an Event Condition List object specified in the List of Event Condition List names
parameter. It shall provide the name of the object determined in error at the VMD. This parameter
shall not be present when the failure of this service is not due to the nonexistence or
inconsistency of an Event Condition object or a Event Condition List object.

7.3.14.2 Service procedure

The VMD shall verify that no other Event Condition List objects exist at the VMD with a name
equal to the value of the Event Condition List name parameter.

 If one of the Event Condition objects specified in the List of Event Condition names parameter is
determined to not exist at the VMD, or if one of the Event Condition List objects specified in the
List of Event Condition List names parameter is determined not to exist at the VMD, the VMD
shall issue the Result(-) service primitive with an Error Class of ACCESS, Error Code of OBJECT
NON EXISTENT, and the Object in error parameter

If the scope of the Event Condition List name parameter is VMD specific or Domain specific, and
the scope of the name of any of the Event Condition in the List of Event Condition names
parameter or of any of the List of Event Condition List names parameter is AA specific, the VMD
ANSI/ISA-S72.02-1993 73

shall issue a Result(-) service primitive with an Error Class of DEFINITION, Error Code of
OBJECT ATTRIBUTE INCONSISTENT, and the Object in error parameter.

If the requested definition is acceptable, a new Event Condition List object shall be created and
initialized as below. This object shall then become part of the state of the association over which
the requested definition was received, of the VMD or of a Domain of the VMD, depending on the
scope of the Event Condition List name parameter.

If the List of Event Condition names parameter has been provided, for every Event Condition
Object specified in the List of Event Condition names parameter, the VMD shall place a reference
to the newly created Event Condition List object in the Event Condition object's List of referencing
Event Condition List references attribute.

If the List of Event Condition List names parameter has been provided, for every Event Condition
List object specified in the List of Event Condition List names parameter, the VMD shall place a
reference to the newly created Event Condition List object in the referenced Event Condition List
object's List of referencing Event Condition List references attribute.

Finally, a Result(+) shall be issued, indicating that the Event Condition List object was created
and references updated.

The initial value for the attributes of the Event Condition List object are specified below:

a) Event Condition List name - Initialized to the value of the Event Condition List name
parameter.

b) MMS Deletable - Initialized to true.

c) List of Event Condition references - Initialized to refer to the Event Condition objects
specified by the value of the List of Event Condition names parameter.

d) List of Event Condition List references - Initialized to refer to the Event Condition List
objects specified by the value of the List of Event Condition List names parameter.

e) List of referencing Event Condition List references - Initialized to an empty list.

7.3.14.3 DefineEventConditionList protocol

The abstract syntax of the defineECL choice of the ConfirmedService Request and
ConfirmedService Response is specified below and described in the paragraphs that follow.
Subclause 5.5 of ISO/IEC 9506 2 describes the derivation of all parameters for which explicit
derivations are not provided in this clause.

DefineEventConditionList Request ::= SEQUENCE {

eventConditionListName [0] ObjectName,

listOfEventConditionName [1] IMPLICIT SEQUENCE OF ObjectName,

listOfEventConditionListName [2] IMPLICIT SEQUENCE OF ObjectName
OPTIONAL

 -- shall appear if an only if RECL has been negotiated.

}

DefineEventConditionList Response ::= NULL

DefineEventConditionList Error ::= ObjectName
74 ANSI/ISA-S72.02-1993

7.3.14.3.1 DefineEventConditionList Request

The abstract syntax of the defineECL choice of the ConfirmedService Request type shall be the
DefineEventConditionList Request.

7.3.14.3.2 DefineEventConditionList Response

The abstract syntax of the defineECL choice of the ConfirmedService Response type shall be
the DefineEventConditionList Response.

7.3.14.3.3 DefineEventConditionList Error

The abstract syntax of the defineECL choice of the AdditionalService Error shall be the
DefineEventConditionList Error, which shall be the Object in error parameter of the Result()
parameter of the DefineEventConditionList.response primitive, and shall appear as the Object in
error parameter of the DefineEventConditionList.confirm primitive, if issued.

7.3.15 DeleteEventConditionList service

The DeleteEventConditionList service shall be used to cause the deletion of an Event Condition
List object at the VMD.

7.3.15.1 Structure

The structure of the component service primitives is shown in Table 23.

Table 23 — DeleteEventConditionList service

7.3.15.1.1 Argument

This parameter shall convey the parameters of the DeleteEventConditionList service request.

7.3.15.1.1.1 Event Condition List name

This parameter, of type Object Name, shall specify the name of the Event Condition List object
that is to be deleted at the VMD.

7.3.15.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result
shall return no service specific parameters.

7.3.15.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter,
which is defined in Clause 17 of ISO/IEC 9506 1, shall provide the reason for failure.

Parameter name Req Ind Rsp Cnf CBB

Argument M M(=)

Event Condition List name M M(=)

Result(+) S S(=)

Result(-) S S(=)

Error type M M(=)
ANSI/ISA-S72.02-1993 75

7.3.15.2 Service procedure

If the request is acceptable, the VMD shall ensure that the value of the List of referencing Event
Condition List references attribute of the specified Event Condition List object is equal to an
empty list. If the value of this attribute is not equal to an empty list, the service request shall fail
and a Result(-) shall be returned.

The VMD shall delete the reference to the specified Event Condition List object, contained in the
List of referencing Event Condition List references attribute, from all other Event Condition List
objects identified by the value of the List of Event Condition List references attribute.

The VMD shall delete references to the specified Event Condition List object, contained in the
List of referencing Event Condition List references attribute, from Event Condition objects
specified in and referenced by the value of the specified Event Condition List's List of Event
Condition references attribute.

The VMD shall delete the specified Event Condition List object, and a Result(+) shall be returned.

7.3.15.3 DeleteEventConditionList protocol

The abstract syntax of the deleteECL choice of the ConfirmedService Request and
ConfirmedService Response is specified below and described in the paragraphs that follow.
Subclause 5.5 of ISO/IEC 9506 2 describes the derivation of all parameters for which explicit
derivations are not provided in this clause.

DeleteEventConditionList Request ::= ObjectName --
EventConditionListName

DeleteEventConditionList Response ::= NULL

7.3.15.3.1 DeleteEventConditionList Request

The abstract syntax of the deleteECL choice of the ConfirmedService Request type shall be the
DeleteEventConditionList Request.

7.3.15.3.2 DeleteEventConditionList Response

The abstract syntax of the deleteECL choice of the ConfirmedService Response type shall be
the DeleteEventConditionList Response.

7.3.16 AddEventConditionListReference service

The AddEventConditionListReference service shall be used to cause the addition of Event
Condition object references, or Event Condition List object references, or both to a Event
Condition List object at the VMD.

7.3.16.1 Structure

The structure of the component service primitives is shown in Table 24.
76 ANSI/ISA-S72.02-1993

Table 24 — AddEventConditionListReference service

7.3.16.1.1 Argument

This parameter shall convey the parameters of the AddEventConditionListReference service
request.

7.3.16.1.1.1 Event Condition List name

This parameter, of type Object Name, shall specify the name of the Event Condition List object
that is to be modified at the VMD.

7.3.16.1.1.2 List of Event Condition names

This parameter shall contain a list of name attributes of Event Condition objects that shall be
added to the specified Event Condition List. This list shall not be empty if RECL has not been
negotiated. If there are no Event Condition names in this service request, this parameter shall be
an empty list. If the scope of the Event Condition List name parameter is VMD specific or Domain
specific, this parameter shall not contain an Event Condition name whose scope is AA specific.

7.3.16.1.1.3 List of Event Condition List names

This parameter shall contain a list of name attributes of Event Condition List objects that shall be
added to the Event Condition List. This parameter shall not be present if the RECL CBB has not
been negotiated. If RECL has been negotiated but there are no Event Condition List names in
this service request, this parameter shall be an empty list. If the scope of the Event Condition List
name parameter is VMD specific or Domain specific, this parameter shall not contain an Event
Condition List name whose scope is AA specific.

7.3.16.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result
shall return no service specific parameters.

7.3.16.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter,
which is defined in Clause 17 of ISO/IEC 9506 1, shall provide the reason for failure. In addition,
the following parameter may appear.

Parameter name Req Ind Rsp Cnf CBB

Argument M M(=)

Event Condition List name M M(=)

List of Event Condition names M M(=)

List of Event Condition List names C C(=) RECL

Result(+) S S(=)

Result(-) S S(=)

Error type M M(=)

Object in error C C(=)
ANSI/ISA-S72.02-1993 77

7.3.16.1.3.1 Object in error

This parameter, of type Object Name, shall be present when the error concerns the non-
existence or attribute inconsistency of an Event Condition object specified in the List of Event
Condition names parameter, or an Event Condition List object specified in the List of Event
Condition List names parameter. It shall provide the name of the object determined that caused
the error at the VMD. This parameter shall not be present when the failure of this service is not
due to the nonexistence or inconsistency of an Event Condition object or an Event Condition List
object.

7.3.16.2 Service procedure

The VMD shall determine that the Event Condition List object specified by the Event Condition
List name parameter exists at the VMD. If the specified Event Condition List object is determined
to not exist, the Result(-) service primitive shall be issued with Error Class ACCESS and Error
Code OBJECT NON EXISTENT.

If it is determined that one of the Event Condition objects specified in the List of Event Condition
names parameter does not exist, or if it is determined that one of the Event Condition List objects
specified in the List of Event Condition List names parameter does not exist, the Result(-) service
primitive shall be issued with Error Class ACCESS, Error Code OBJECT NON EXISTENT, and
the Object in error parameter.

If the scope of the Event Condition List name parameter is VMD specific or Domain specific, and
the scope of the name of any of the Event Condition in the List of Event Condition names
parameter or of any of the List of Event Condition List names parameter is AA specific, the VMD
shall issue a Result(-) service primitive with an Error Class of DEFINITION, Error Code of
OBJECT ATTRIBUTE INCONSISTENT, and the Object in error parameter.

If the request is acceptable, and if the List of Event Condition names parameter has been
provided, for every Event Condition Object specified in the List of Event Condition names
parameter, the VMD shall:

a) Verify that the Event Condition object is not already referenced in this Event Condition
List; if it is referenced, skip the remainder of this step for this Event Condition.

b) Place a reference to the specified Event Condition List object in the Event Condition
object's List of referencing Event Condition List references attribute.

c) Add the identified Event Condition object reference to the specified Event Condition List
object's List of Event Condition references attribute.

If the request is acceptable, and if the List of Event Condition List names parameter has been
provided, for every Event Condition List object specified in the List of Event Condition List names
parameter, the VMD shall:

a) Verify that the Event Condition List object is not already referenced in this Event Condition
List; if it is referenced, skip the remainder of this step for this Event Condition List.

b) Place a reference to the specified Event Condition List object in the referenced Event
Condition List object's List of referencing Event Condition List references attribute.

c) Add the identified Event Condition List object reference to the specified Event Condition
List object's List of Event Condition List references attribute.

Finally, a Result(+) shall be issued, indicating that the Event Condition List object was modified
and references updated.
78 ANSI/ISA-S72.02-1993

7.3.16.3 AddEventConditionListR eference protocol

The abstract syntax of the addECLReference choice of the ConfirmedService Request and
ConfirmedService Response is specified below and described in the paragraphs that follow.
Subclause 5.5 of ISO/IEC 9506 2 describes the derivation of all parameters for which explicit
derivations are not provided in this clause.

AddEventConditionListReference Request ::= SEQUENCE {

eventConditionListName [0] ObjectName,

listOfEventConditionName [1] IMPLICIT SEQUENCE OF ObjectName,

listOfEventConditionListName [2] IMPLICIT SEQUENCE OF ObjectName
OPTIONAL

 -- shall appear if and only if RECL has been negotiated

}

AddEventConditionListReference Response ::= NULL

AddEventConditionListReference Error ::= ObjectName

7.3.16.3.1 AddEventConditionListR eference Request

The abstract syntax of the addECLReference choice of the ConfirmedService Request type shall
be the AddEventConditionListReference Request.

7.3.16.3.2 AddEventConditionListR eference Res ponse

The abstract syntax of the addECLReference choice of the ConfirmedService Response type
shall be the AddEventConditionListReference Response.

7.3.16.3.3 AddEventConditionListR eference Error

The abstract syntax of the addECLReference choice of the AdditionalService Error shall be the
AddEventConditionListReference Error, which shall be the Object in error parameter of the
Result(-) parameter of the AddEventConditionListReference.response primitive, and shall appear
as the Object in error parameter of the AddEventConditionListReference.confirm primitive, if
issued.

7.3.17 RemoveEventConditionListReference service

The RemoveEventConditionListReference service shall be used to cause the removal of Event
Condition object references, or removal of Event Condition List references, or both, from a
specified Event Condition List object at the VMD.

7.3.17.1 Structure

The structure of the component service primitives is shown in Table 25.
ANSI/ISA-S72.02-1993 79

Table 25 — RemoveEventConditionListReference service

7.3.17.1.1 Argument

This parameter shall convey the parameters of the RemoveEventConditionListReference service
request.

7.3.17.1.1.1 Event Condition List name

This parameter, of type Object Name, shall specify the name of the Event Condition List object
that is to be modified at the VMD.

7.3.17.1.1.2 List of Event Condition names

This parameter shall contain a list of name attributes of Event Condition objects that shall be
removed from the specified Event Condition List. This list shall not be empty if RECL has not
been negotiated. If there are no Event Condition names in this service request, this parameter
shall be an empty list.

7.3.17.1.1.3 List of Event Condition List names

This parameter shall contain a list of name attributes of Event Condition List objects that shall be
removed from the Event Condition List. This parameter shall not be present if the RECL CBB has
not been negotiated. If RECL has been negotiated but there are no Event Condition List names in
this service request, this parameter shall be an empty list.

7.3.17.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result
shall return no service specific parameters.

7.3.17.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter,
which is defined in Clause 17 of ISO/IEC 9506 1, shall provide the reason for failure. In addition,
the following parameter may appear.

7.3.17.1.3.1 Object in error

This parameter, of type Object Name, shall indicate the Event Condition object specified in the
List of Event Condition names parameter, or the Event Condition List object specified in the List

Parameter name Req Ind Rsp Cnf CBB

Argument M M(=)

Event Condition List name M M(=)

List of Event Condition names M M(=)

List of Event Condition List names C C(=) RECL

Result(+) S S(=)

Result(-) S S(=)

Error type M M(=)

Object in error C C(=)
80 ANSI/ISA-S72.02-1993

of Event Condition List names parameter, which caused the error. This error indicates that either
(1) the specified object does not exist, or (2) that it is not referenced by the List of Event Condition
reference or List of Event Condition List reference attribute of the Event Condition List object
specified by the Event Condition List Name parameter.

7.3.17.2 Service procedure

The VMD shall determine that the Event Condition List object specified by the Event Condition
List name parameter exists at the VMD. If the specified Event Condition List object is determined
to not exist, the Result(-) service primitive shall be issued with Error Class ACCESS and Error
Code OBJECT NON EXISTENT.

If it is determined that one of the Event Condition objects specified in the List of Event Condition
names parameter does not exist, or if it is determined that one of the Event Condition List objects
specified in the List of Event Condition List names parameter does not exist, the Result() service
primitive shall be issued with Error Class ACCESS, Error Code OBJECT NON EXISTENT, and
the Object in error parameter.

If it is determined that one of the Event Condition objects specified in the List of Event Condition
names parameter is not referenced by the List of Event Condition reference attributeof the Event
Condition List object, or if it is determined that one of the Event Condition List objects specified in
the List of Event Condition List names parameter is not reference by the List of Event Condition
List reference attribute of the Event Condition List object, the Result(-) service primitive shall be
issued with Error Class ACCESS, Error Code OBJECT NON EXISTENT, and the Object in error
parameter.

If the request is acceptable, and if the List of Event Condition names parameter has been
provided, for every Event Condition Object specified in the List of Event Condition names
parameter, the VMD shall remove the reference to the specified Event Condition List object in the
Event Condition object's List of referencing Event Condition List references attribute. The VMD
shall remove the reference to each identified Event Condition object from the specified Event
Condition List object's List of Event Condition references attribute.

If the List of Event Condition List names parameter has been provided, for every Event Condition
List object specified in the List of Event Condition List names parameter, the VMD shall remove
the reference to the specified Event Condition List object in the Event Condition List object's List
of referencing Event Condition List references attribute. The VMD shall remove the reference to
each identified Event Condition List object from the specified Event Condition List object's List of
Event Condition List references attribute.

7.3.17.3 RemoveEventConditionListReference protocol

The abstract syntax of the removeECLReference choice of the ConfirmedService Request and
ConfirmedService Response is specified below and described in the paragraphs that follow.
Subclause 5.5 of part 2 of ISO 9506 describes the derivation of all parameters for which explicit
derivations are not provided in this clause.

RemoveEventConditionListReference Request ::= SEQUENCE {

eventConditionListName [0] ObjectName,

listOfEventConditionName [1] IMPLICIT SEQUENCE OF ObjectName,

listOfEventConditionListName [2] IMPLICIT SEQUENCE OF ObjectName
OPTIONAL

 -- shall appear if and only if RECL has been negotiated
ANSI/ISA-S72.02-1993 81

}

RemoveEventConditionListReference Response ::= NULL

RemoveEventConditionListReference Error ::= CHOICE {

eventCondition [0] ObjectName,

eventConditionList [1] ObjectName

}

7.3.17.3.1 RemoveEventConditionListReference Request

The abstract syntax of the removeECLReference choice of the ConfirmedService Request type
shall be the RemoveEventConditionListReference Request.

7.3.17.3.2 RemoveEventConditionListReference Response

The abstract syntax of the removeECLReference choice of the ConfirmedService Response type
shall be the RemoveEventConditionListReference Response.

7.3.17.3.3 RemoveEventConditionListReference Error

The abstract syntax of the removeECLReference choice of the AdditionalService Error shall be
the RemoveEventConditionListReference Error, which shall be the Object in error parameter of
the Result(-) parameter of the RemoveEventConditionListReference.response primitive, and
shall appear as the Object in error parameter of the
RemoveEventConditionListReference.confirm primitive, if issued.

7.3.18 GetEventConditionListAttributes service

The GetEventConditionListAttributes service shall be used to determine the attribute values of a
specified Event Condition List object at the VMD.

7.3.18.1 Structure

The structure of the component service primitives is shown in Table 26.

Table 26 — GetEventConditionListAttributes service

Parameter name Req Ind Rsp Cnf CBB

Argument M M(=)

Event Condition List name M M(=)

Result(+) S S(=)

List of Event Condition names M M(=)

List of Event Condition List names C C(=) RECL

Result(-) S S(=)

Error type M M(=)
82 ANSI/ISA-S72.02-1993

7.3.18.1.1 Argument

This parameter shall convey the parameters of the GetEventConditionListAttributes service
request.

7.3.18.1.1.1 Event Condition List name

This parameter, of type Object Name, shall specify the name of the Event Condition List object at
the VMD from which the attribute values are to be obtained.

7.3.18.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result
shall return the List of Event Condition names and the List of Event Condition List names
parameters.

7.3.18.1.2.1 List of Event Condition names

This parameter shall contain a list of name attributes of Event Condition objects that have been
derived from the List of Event Condition references attribute of the specified Event Condition List
object. This list shall not be empty if RECL has not been negotiated. If there are no Event
Condition names in this service request, this parameter shall be an empty list.

7.3.18.1.2.2 List of Event Condition List names

This parameter shall contain a list of name attributes of Event Condition List objects that have
been derived from the List of Event Condition List references attribute of the specified Event
Condition List object. This parameter shall not be present if the RECL CBB has not been
negotiated. If RECL has been negotiated, but there are no Event Condition List names in this
service request, this parameter shall be an empty list.

7.3.18.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter,
which is defined in Clause 17 of ISO/IEC 9506 1, shall provide the reason for failure.

7.3.18.2 Service procedure

The VMD shall determine that the Event Condition List object specified by the Event Condition
List Name parameter exists at the VMD. If the specified Event Condition List object is determined
to not exist, the Result(-) service primitive shall be issued with Error Class ACCESS and Error
Code OBJECT NON EXISTENT.

If the request is acceptable, the VMD shall obtain the values of the name attributes of the
referenced Event Condition objects and Event Condition List objects, place them in the values of
the List of Event Condition names parameter and List of Event Condition List names parameter
respectively, and return the Result(+).

7.3.18.3 GetEventConditionListAttributes protocol

The abstract syntax of the getECLAttributes choice of the ConfirmedService Request and
ConfirmedService Response is specified below and described in the paragraphs that follow.
Subclause 5.5 of ISO/IEC 9506 2 describes the derivation of all parameters for which explicit
derivations are not provided in this clause.
ANSI/ISA-S72.02-1993 83

GetEventConditionListAttributes Request ::= ObjectName - -
eventConditionListName

GetEventConditionListAttributes Response ::= SEQUENCE {

listOfEventConditionName [1] IMPLICIT SEQUENCE OF ObjectName,

listOfEventConditionListName [2] IMPLICIT SEQUENCE OF ObjectName
OPTIONAL

 -- shall appear if and only if RECL has been negotiated

}

7.3.18.3.1 GetEventConditionListAttributes Request

The abstract syntax of the getECLAttributes choice of the ConfirmedService Request type shall
be the GetEventConditionListAttributes Request.

7.3.18.3.2 GetEventConditionListAttributes Response

The abstract syntax of the getECLAttributes choice of the ConfirmedService Response type shall
be the GetEventConditionListAttributes Response.

7.3.19 ReportEventConditionListStatus service

The ReportEventConditionListStatus service is used to convey the status of a Event Condition
List.

7.3.19.1 Structure:

The structure of the component service primitives is shown in Table 27.

Table 27 — ReportEventConditionListStatus service

Parameter name Req Ind Rsp Cnf CBB

Argument M M(=)

Event Condition List name M M(=)

Continue After U U(=)

Result(+) S S(=)

List of Event Condition Status M M(=)

Current State M M(=)

Number of Event Enrollments M M(=)

Enabled C C(=)

Time of Last Transition To Active C C(=)

Time of Last Transition To Idle C C(=)

More Follows C C(=)

Result(-) S S(=)

Error Type M M(=)
84 ANSI/ISA-S72.02-1993

7.3.19.1.1 Argument

This parameter shall convey the parameter of the ReportEventConditionListStatus service
request.

7.3.19.1.1.1 Event Condition List name

This parameter, of type Object Name. shall contain the name of the Event Condition List from
which the status report is requested.

7.3.19.1.1.2 Continue After

This parameter, of type Object Name, indicates that the requesting MMS user requests the list of
Event Condition Status returned by the responding MMS user to begin with an Event Condition
object other than the first object in the list. The collating sequence specified by ISO 646 shall be
used by the responding MMS user to determine the Event Condition object in the specified list to
start after.

7.3.19.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. When success is
indicated the following parameters are returned in the response primitive.

7.3.19.1.2.1 List of Event Condition Status

This parameter, of type Object Name, shall contain zero of more entries describing the status of
Event Condition objects hierarchically related to the Event Condition List object.

7.3.19.1.2.1.1 Current State

This parameter, of type EC State, shall contain the value of the Event Condition object's State
attribute.

7.3.19.1.2.1.2 Number of Event Enrollments

This parameter, of type integer, shall contain the count of the number of entries in the Event
Condition object's List of Event Enrollment references attribute.

7.3.19.1.2.1.3 Enabled

This parameter, of type boolean, shall convey the contents of the Enabled attribute of the Event
Condition object, for a monitored Event Condition object. If the Event Condition Class attribute
contains the value NETWORK TRIGGERED, this parameter shall be omitted.

7.3.19.1.2.1.4 Time Of Last Transition To Active

If the Event Condition object is monitored and has a Time Of Last Transition To Active attribute
value not equal to UNDEFINED, this parameter shall contain the current value of the Time 0f Last
Transition To Active attribute. Otherwise, this parameter shall be omitted.

7.3.19.1.2.1.5 Time Of Last Transition To Idle

If the Event Condition object is monitored and has a Time Of Last Transition To Idle attribute with
value not equal to UNDEFINED, this parameter shall contain the current value of the Time of Last
Transition To Idle attribute. Otherwise, this parameter shall be omitted.

7.3.19.1.2.2 More Follows

This parameter, of type boolean, shall indicate whether additional
ReportEventConditionListStatus requests are necessary to retrieve more of the requested
information. If true, more requests are necessary (if the requesting MMS user wishes to retrieve
ANSI/ISA-S72.02-1993 85

more data). If false, then either the List of Event Condition Status contains the last status in the
list, or the List of Event Condition Status is empty. The More Follows parameter shall be false
when the List of Event Condition Status parameter is empty.

7.3.19.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter,
which is defined in detail in Clause 17 of part 1 of ISO/IEC 9506, shall provide the reason for
failure.

7.3.19.1.4 Service Procedure

The MMS server shall construct a list of Event Condition objects, either directly referenced by the
named Event Condition List object, or (if RECL has been negotiated) through indirect references
of Event Condition List objects referenced by the named Event Condition List object. The MMS
server shall order this list using the collating sequence of ISO 646 on the name attributes of the
Event Condition objects. It shall return the status information for as many of these Event
Condition objects as it can accommodate in a single response, beginning either at the beginning
of the list if the Continue After parameter has not been specified, or beginning at or immediately
following the Event Condition object specified by the Continue After parameter.

7.3.19.1.5 ReportEventConditionListStatus protocol

The abstract syntax of the reportECLStatus choice of the ConfirmedService Request and
ConfirmedService Response is specified below and described in the paragraphs that follow.
Subclause 5.5 of part 2 of ISO/IEC 9506 describes the derivation of all parameters for which
explicit derivations are not provided in this clause.

ReportEventConditionListStatus Request ::= SEQUENCE {

eventConditionListName [0] ObjectName - - Event Condition
List Name,

continueAfter [1] IMPLICIT Identifier OPTIONAL

}

ReportEventConditionListStatus Response ::= SEQUENCE {

listOfEventConditionStatus [1] IMPLICIT SEQUENCE OF
EventConditionStatus,

moreFollows [2] IMPLICIT BOOLEAN DEFAULT TRUE

}

EventConditionStatus ::= SEQUENCE {

eventConditionName [0] ObjectName,

currentState [1] IMPLICIT EC State,

numberOfEventEnrollments [2] IMPLICIT Unsigned32,

‘ enabled [3] IMPLICIT BOOLEAN OPTIONAL,

‘ timeOfLastTransitionToActive [4] EventTime OPTIONAL,

timeOfLastTransitionToIdle [5] EventTime OPTIONAL

}

86 ANSI/ISA-S72.02-1993

7.3.19.1.5.1 ReportEventConditionListStatus Request

The abstract syntax of the reportECLStatus choice of the ConfirmedService Request type shall
be the ReportEventConditionListStatus Request.

7.3.19.1.5.2 ReportEventConditionListStatus Response

The abstract syntax of the reportECLStatus choice of the ConfirmedService Response type shall
be the ReportEventConditionListStatus Response.

7.3.20 AlterEventConditionListMonitoring service

The AlterEventConditionListMonitoring service shall be used to alter the value of attributes of
Event Condition objects referenced by a Event Condition List object at the VMD. Attributes
subject to modification by this service include the Enabled attribute and the Group Priority
Override attribute.

7.3.20.1 Structure

The structure of the component service primitives is shown in Table 28.

Table 28 — AlterEventConditionListMonitoring service

7.3.20.1.1 Argument

This parameter shall convey the parameters of the AlterEventConditionListMonitoring service
request.

7.3.20.1.1.1 Event Condition List name

This parameter, of type Object Name, shall specify the name of the Event Condition List object at
the VMD for which attribute values are to be altered.

7.3.20.1.1.2 Enabled

This optional parameter, of type boolean, shall be the replacement value for the contents of the
Enabled attribute of all Event Condition objects directly or indirectly referenced by the Event
Condition List object. Either this parameter, or the Priority change parameter, or both, shall be
provided.

Parameter name Req Ind Rsp Cnf CBB

Argument M M(=)

Event Condition List name M M(=)

Enabled U U(=)

Priority change U U(=)

Priority value S S(=)

Priority reset S S(=)

Result(+) S S(=)

Result(-) S S(=)

Error type M M(=)
ANSI/ISA-S72.02-1993 87

7.3.20.1.1.3 Priority change

This optional parameter shall alter the Group Priority Override attribute of the referenced Event
Condition objects. Either this parameter, or the Enabled parameter, or both shall be provided. If
this parameter is provided, either the Priority value parameter or the Priority restore parameter
shall be provided.

7.3.20.1.1.3.1 Priority value

This parameter, of type integer, shall constitute a replacement value for the value of the Group
Priority Override attribute of all referenced Event Condition objects.

7.3.20.1.1.3.2 Priority reset

This parameter, of type NULL, shall indicate that the value of the Group Priority Override attribute
shall be reset to UNDEFINED.

7.3.20.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result
shall return no service specific parameters.

7.3.20.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter,
which is defined in Clause 17 of ISO/IEC 9506 1, shall provide the reason for failure.

7.3.20.2 Service procedure

The VMD shall determine that the Event Condition List object specified by the Event Condition
List name parameter exists at the VMD. If the specified Event Condition List object is determined
to not exist, the Result(-) service primitive shall be issued with Error Class ACCESS and Error
Code OBJECT NON EXISTENT.

If the request is acceptable, for every Event Condition object referenced by the value of the
specified Event Condition List object's List of Event Condition references attribute, and for every
Event Condition object indirectly referenced through the value of the List of Event Condition List
references attribute, the VMD shall:

a) If the Enabled parameter has been provided, the value of the Enabled attribute shall be
set equal to the value of the Enabled parameter.

b) If the Priority change parameter has been provided the VMD shall:

1) If the Priority value has been provided, replace the value of the Group Priority Override
attribute with the value provided in the Priority Value parameter.

2) If the Priority reset parameter has been provided, change the value of the Group
Priority Override attribute to UNDEFINED.

c) Finally, the Result(+) shall be returned.

7.3.20.3 AlterEventConditionListMonitoring protocol

The abstract syntax of the alterECLMonitoring choice of the ConfirmedServiceRequest and
ConfirmedServiceResponse is specified below and described in the paragraphs that follow.
Subclause 5.5 of ISO/IEC 9506 2 describes the derivation of all parameters for which explicit
derivations are not provided in this clause.
88 ANSI/ISA-S72.02-1993

AlterEventConditionListMonitoring Request ::= SEQUENCE {

eventConditionListName [0] ObjectName,

enabled [1] IMPLICIT BOOLEAN DEFAULT FALSE,

priorityChange [2] CHOICE {

priorityValue [0] IMPLICIT INTEGER,

priorityReset [1] IMPLICIT NULL

} OPTIONAL

}

AlterEventConditionListMonitoring Response ::= NULL

7.3.20.3.1 AlterEventConditionListMonitoring Request

The abstract syntax of the alterECLMonitoring choice of the ConfirmedService Request type
shall be the AlterEventConditionListMonitoring Request.

7.3.20.3.2 AlterEventConditionListMonitoring Response

The abstract syntax of the alterECLMonitoring choice of the ConfirmedService Response type
shall be the AlterEventConditionListMonitoring Response.

7.4 The Initiate Service and Protocol

This subclause specifies the process control specific use of the Initiate service and protocol.

7.4.1 Init Request Detail parameter

MMS provides for a Init Request Detail parameter to be defined by companion standards. The
structure of the Init Request Detail parameter is shown in Table 29.

Table 29 — Init Request Detail parameter

The Init Request Detail shall contain additional parameters relating to communication in the
presentation context derived from the abstract syntax defined in this part of ISO/IEC 9506. The
component parameters are specified as follows:

7.4.1.1 Proposed Version Number

This parameter, of type integer, shall contain a number that represents a minor version number of
this part of ISO/IEC 9506. This number is the proposed minor version number which will be used

Parameter name Req Ind

Proposed Version Number M M(=)

Proposed Parameter CBB M M(=)

Services Supported Calling M M(=)

Additional Services Supported Calling M M(=)

Additional CBB Supported Calling M M(=)
ANSI/ISA-S72.02-1993 89

in the presentation context derived from the abstract syntax defined in this part of ISO/IEC 9506
for this instance of communication. Proposal of a number greater than one indicates support for
all minor versions between one and the number proposed.

NOTE — Major revisions of this part of ISO/IEC 9506 are reflected through the definition
and registration of distinct abstract syntaxes (see Clause 5 of ISO/IEC 9506 2). Minor
revisions are reflected in the minor version number parameter. Minor versions of this part
of ISO/IEC 9506 at the same major revision level are compatible with versions of this part
of ISO/IEC 9506 with smaller minor version numbers.

The value of this parameter may be reduced by the MMS provider if it cannot support the
requested value. The value in the indication primitive shall be less than or equal to the value in
the request primitive, but not less than one.

7.4.1.2 Proposed Parameter CBB

This parameter is specified in 8.2.3.2 of ISO/IEC 9506 1.

7.4.1.3 Services Supported Calling

This parameter is specified in 8.2.3.3 of ISO/IEC 9506 1.

7.4.1.4 Additional Services Supported Calling

This parameter, of type bitstring, shall specify support by the Calling MMS user of a set of
additional services that are defined by this part of ISO/IEC 9506 for use in the presentation
context derived from the abstract syntax defined in this part of ISO/IEC 9506 on the application
association.

The value of the parameter in the indication primitive shall specify the intersection of the set of
additional services supported by the Calling MMS user and the set of services supported by the
MMS provider.

The assignment of a service to an individual bit of the bitstring type is specified in 7.4.3. A value
of one in the assigned bit shall indicate support for the corresponding service. A value of zero
shall indicate nonsupport. Any additional bits shall be ignored.

Support for confirmed services shall be defined as the ability to receive a request indication and
properly execute the service procedure defined for the responder role.

If a confirmed service is supported, then a reject PDU shall not be issued on receipt of a request
for that service, except for a protocol error. If a confirmed service is not supported, then a reject
PDU shall be issued on receipt of a request for that service with a reject code of
"UNRECOGNIZED SERVICE."

7.4.1.5 Additional CBB Supported Calling

This parameter, of type bitstring, shall specify support by the Calling MMS user of a set of
additional parameter CBBs that are defined by this part of ISO/IEC 9506 for use in the
presentation context derived from the abstract syntax defined in this part of ISO/IEC 9506 on the
application association.

The value of the parameter in the indication primitive shall specify the intersection of the set of
additional CBBs supported by the Calling MMS user and the set of CBBs supported by the MMS
provider.

The definition of additional CBBs in this part of ISO/IEC 9506 are specified in 6.6. The
assignment of a CBB to an individual bit of the bitstring type is specified in 7.4.3. A value of one
in the assigned bit shall indicate support for the corresponding CBB. A value of zero shall indicate
nonsupport. Any additional bits shall be ignored.
90 ANSI/ISA-S72.02-1993

7.4.2 Init Response Detail Parameter

MMS provides for a Init Response Detail parameter to be defined by companion standards. The
structure of the Init Response Detail parameter is shown in Table 30.

Table 30 — Init Response Detail parameter

The Init Response Detail parameter shall contain parameters relating to communication in the
presentation context derived from the abstract syntax defined in this part of ISO/IEC 9506. The
component parameters are specified as follows:

7.4.2.1 Negotiated Version Number

This parameter, of type integer, shall contain a number that represents a minor version number of
this part of ISO/IEC 9506. This number is the minor version number of this part of ISO/IEC 9506
that will be used in the presentation context derived from the abstract syntax defined in this part
of ISO/IEC 9506 for this instance of communication. This number shall be less than or equal to
the Proposed Version Number parameter in the request primitive. It shall not be reduced to less
than one.

NOTE — Major revisions of this part of ISO/IEC 9506 are reflected through the definition
and registration of distinct abstract syntaxes (See clause 5 of ISO/IEC 9506 2). Minor
revisions are reflected in the minor version number parameter. Minor versions of this part
of ISO/IEC 9506 at the same major revision level are compatible with versions of this part
of ISO/IEC 9506 with smaller minor version numbers.

7.4.2.2 Negotiated Parameter CBB

This parameter is specified in 8.2.4.2 of ISO/IEC 9506 1.

7.4.2.3 Services Supported Called

This parameter is specified in 8.2.4.3 of ISO/IEC 9506 1.

7.4.2.4 Additional Services Supported Called

This parameter, of type bitstring, shall specify support by the Called MMS user of a set of
additional services that are defined in this part of ISO/IEC 9506 for use in the presentation
context derived from the abstract syntax defined in this part of ISO/IEC 9506 on the application
association.

The value of the parameter in the indication primitive shall specify the intersection of the set of
additional services supported by the Called MMS user and the set of additional services
supported by the MMS provider.

The assignment of a service to an individual bit of the bitstring type is specified in 7.4.3. A value
of one in the assigned bit shall indicate support for the corresponding service. A value of zero
shall indicate nonsupport. Any additional bits shall be ignored.

Parameter name Req Ind

Negotiated Version Number M M(=)

Negotiated Parameter CBB M M(=)

Services Supported Called M M(=)

Additional Services Supported Called M M(=)

Additional CBB Supported Called M M(=)
ANSI/ISA-S72.02-1993 91

Support for confirmed services shall be defined as the ability to receive a request indication and
properly execute the service procedure defined for the responder role.

If a confirmed service is supported, then a Reject PDU shall not be issued on receipt of a request
for that service, except for a protocol error. If a confirmed service is not supported, then a Reject
PDU shall be issued on receipt of a request for that service with a reject code of
"UNRECOGNIZED SERVICE."

7.4.2.5 Additional CBB Supported Called

This parameter, of type bitstring, shall specify support by the Called MMS user of a set of
additional parameter CBBs that are defined in this part of ISO/IEC 9506 for use in the
presentation context derived from the abstract syntax defined in this part of ISO/IEC 9506 on the
application association.

The value of the parameter in the indication primitive shall specify the intersection of the set of
additional CBBs supported by the Called MMS user and the set of additional CBBs supported by
the MMS provider.

The assignment of a CBB to an individual bit of the bitstring type is specified in 7.4.3. A value of
one in the assigned bit shall indicate support for the corresponding CBB. A value of zero shall
indicate nonsupport. Any additional bits shall be ignored. Additional CBBs are defined in this part
of ISO/IEC 9506 in 6.6.

7.4.3 Initiate protocol

The abstract syntax of the Init Request Detail and Init Response Detail parameters shall be
specified by the InitRequestDetail and InitResponseDetail types respectively. These types are
specified below and described in the paragraphs that follow. Subclause 5.5 of ISO/IEC 9506 2
describes the derivation of all parameters for which explicit derivations are not provided in this
subclause.

InitRequestDetail ::= SEQUENCE {

proposedVersionNumber [0] IMPLICIT Integer16,

proposedParameterCBB [1] IMPLICIT ParameterSupport
Options,

servicesSupportedCalling [2] IMPLICIT ServiceSupportOptions,

additionalSupportedCalling [3] IMPLICIT AdditionalSupport
Options,

additionalCbbSupportedCalling [4] IMPLICIT AdditionalCbbOptions,

privilegeClassIdentityCalling [5] IMPLICIT VisibleString

}

InitResponseDetail ::= SEQUENCE {

negotiatedVersionNumber [0] IMPLICIT Integer16,

negotiatedParameterCBB [1] IMPLICIT ParameterSupport
Options,

servicesSupportedCalled [2] IMPLICIT ServiceSupportOptions,

additionalSupportedCalled [3] IMPLICIT AdditionalSupport
Options,
92 ANSI/ISA-S72.02-1993

additionalCbbSupportedCalled [4] IMPLICIT AdditionalCbbOptions,

privilegeClassIdentityCalled [5] IMPLICIT VisibleString

}

AdditionalSupportOptions ::= BITSTRING {

-- Bits 0 - 3 are reserved

initiateUnitControlLoad (4),

unitControlLoadSegment (5),

unitControlUpload (6),

startUnitControl (7),

stopUnitControl (8),

createUnitControl (9),

addToUnitControl (10),

removeFromUnitControl (11),

getUnitControlAttributes (12),

loadUnitControlFromFile (13),

storeUnitControlToFile (14),

deleteUnitControl (15),

defineEventConditionList (16),

deleteEventConditionList (17),

addEventConditionListReference (18),

removeEventConditionListReference (19),

getEventConditionListAttributes (20),

reportEventConditionListStatus (21),

alterEventConditionListMonitoring (22)

}

AdditionalCbbOptions ::= BITSTRING {

DES (0),

DEI (1),

RECL (2)

}

7.5 Generalized protocol extensions

The abstract syntax of ISO/IEC 9506 2 shall, in addition to the extensions specified above, be
extended as specified below in order to accommodate the PDU extensions required in support of
new services and errors defined in this clause.
ANSI/ISA-S72.02-1993 93

7.5.1 ConfirmedService Request extens ions

The AdditionalService Request choice of the ConfirmedService Request shall be defined as
specified below:

AdditionalService Request ::= CHOICE {

initiateUCLoad [4] IMPLICIT InitiateUnitControlLoad Request,

uCLoad [5] IMPLICIT UnitControlLoadSegment Request,

uCUpload [6] IMPLICIT UnitControlUpload Request,

startUC [7] IMPLICIT StartUnitControl Request,

stopUC [8] IMPLICIT StopUnitControl Request,

createUC [9] IMPLICIT CreateUnitControl Request,

addToUC [10] IMPLICIT AddToUnitControl Request,

removeFromUC [11] IMPLICIT RemoveFromUnitControl Request,

getUCAttributes [12] IMPLICIT GetUnitControlAttributes Request,

loadUCFromFile [13] IMPLICIT LoadUnitControlFromFile Request,

storeUCToFile [14] IMPLICIT StoreUnitControlToFile Request,

deleteUC [15] IMPLICIT DeleteUnitControl Request,

defineECL [16] IMPLICIT DefineEventConditionList Request,

deleteECL [17] IMPLICIT DeleteEventConditionList Request,

addECLReference [18] IMPLICIT AddEventConditionListReference
Request,

removeECLReference [19] IMPLICIT RemoveEventConditionListReference
Request,

getECLAttributes [20] IMPLICIT GetEventConditionListAttributes
Request,

reportECLStatus [21] IMPLICIT ReportEventConditionListStatus
Request,

alterECLMonitoring [22] IMPLICIT AlterEventConditionListMonitoring
Request

}

7.5.2 ConfirmedService Response extensions

The ConfirmedService Response choice of the ConfirmedService Response shall be defined as
specified below:

AdditionalService Response ::= CHOICE {

initiateUCLoad [4] IMPLICIT InitiateUnitControlLoad Response,

uCLoad [5] IMPLICIT UnitControlLoadSegment Response,
94 ANSI/ISA-S72.02-1993

uCUpload [6] IMPLICIT UnitControlUpload Response,

startUC [7] IMPLICIT StartUnitControl Response,

stopUC [8] IMPLICIT StopUnitControl Response,

createUC [9] IMPLICIT CreateUnitControl Response,

addToUC [10] IMPLICIT AddToUnitControl Response,

removeFromUC [11] IMPLICIT RemoveFromUnitControl Response,

getUCAttributes [12] IMPLICIT GetUnitControlAttributes Response,

loadUCFromFile [13] IMPLICIT LoadUnitControlFromFile Response,

storeUCToFile [14] IMPLICIT StoreUnitControlToFile Response,

deleteUC [15] IMPLICIT DeleteUnitControl Response,

defineECL [16] IMPLICIT DefineEventConditionList Response,

deleteECL [17] IMPLICIT DeleteEventConditionList Response,

addECLReference [18] IMPLICIT AddEventConditionListReference
Response,

removeECLReference [19] IMPLICIT RemoveEventConditionListReference
Response,

getECLAttributes [20] IMPLICIT GetEventConditionListAttributes
Response,

reportECLStatus [21] IMPLICIT ReportEventConditionListStatus
Response,

alterECLMonitoring [22] IMPLICIT AlterEventConditionListMonitoring
Response

}

7.5.3 Service specific error extensions

The additionalService choice of the serviceSpecificInformation choice of the errorClass
component of Service Error shall be defined as specified below:

AdditionalService Error ::= CHOICE {

defineEcl [0] DefineEventConditionList Error,

addECLReference [1] AddEventConditionListReference Error,

removeECLReference [2] RemoveEventConditionListReference Error,

initiateUC [3] InitiateUnitControl Error,

startUC [4] IMPLICIT StartUnitControl Error,

stopUC [5] IMPLICIT StopUnitControl Error,

deleteUC [6] IMPLICIT DeleteUnitControl Error,

loadUCFromFile [7] IMPLICIT LoadUnitControlFromFile Error

}

ANSI/ISA-S72.02-1993 95

7.6 End of module

The following END statement closes the module.

END

8 Standardized objects

There are no standardized objects specified by this part of ISO/IEC 9506. Recommendations for
Variable names are specified in annex .

9 Conformance

Conformance to requirements of this Standard shall be at the level of support, or nonsupport, of
individual services, service parameters, and service procedures extended by this part of ISO/IEC
9506. Conforming implementations shall report in the PICS which services and service options
are supported.
96 ANSI/ISA-S72.02-1993

9.1 Conformance classes

9.1.1 Definition of conformance classes

The following conformance classes are defined for this part of ISO/IEC 9056. An overview of the
conformance classes is provided by Table 31.

Table 31 — Conformance classes

NOTE — These conformance classes are established to be compatible with similar classes
in other companion standards.

9.1.2 Services required for conformance classes

The required services for each conformance class are given in Table 32. Services are grouped
by the relevant clause of ISO/IEC 9506 1 or by Clause 7 of this part of ISO/IEC 9506.

An "S" in the table indicates that a conforming system shall support this service as a server. An
"X" indicates that a conforming system shall support this service as both a client and as a server.

Conformance
Class

Process Control
Functions

1 Data Acquisition
Parametric Control

2 Program Management

3 Unsolicited Data Acquisition
Interlocked Control

4 Configured Data Acquisition
Alarming

Semaphore

5 Remote MMS Object
Instantiation

6 Historian
ANSI/ISA-S72.02-1993 97

Table 32 — Service requirements for conformance classes

Service Class 1 2 3 4 5 6

Initiate S S X X X S

Conclude S S X X X S

Abort S S S S S S

Cancel S S

Reject S S S S S S

Status S S X X X S

UnsolicitedStatus X X X

GetNameList S S S S S

Identify S S S S S S

Rename

GetCapabilityList

InitiateDownloadSequence S S S S

DownloadSegment S S S S

TerminateDownloadSequence S S S S

InitiateUploadSequence S S S S

UploadSegment S S S S

TerminateUploadSequence S S S S

RequestDomainDownload

RequestDomainUpload

LoadDomainContent

StoreDomainContent

DeleteDomain S S S S

GetDomainAttributes S S S S

CreateProgramInvocation S S S S

DeleteProgramInvocation S S S S

Start S S S S

Stop S S S S

Resume S S S S

Reset S S S S

Kill

GetProgramInvocationAttributes S S S S
98 ANSI/ISA-S72.02-1993

Table 32 cont. — Service requirements for conformance classes

Service Class 1 2 3 4 5 6

Read S S X X X

Write S S X X X

InformationReport X X X

GetVariableAccessAttributes S S S

DefineNamedVariable S

DefineScatteredAccess

GetScatteredAccessAttributes

DeleteVariableAccess S

DefineNamedVariableList S

GetNamedVariableListAttributes S

DeleteNamedVariableList S

DefineNamedType

GetNamedTypeAttributes

DeleteNamedType

TakeControl S S

RelinquishControl S S

DefineSemaphore S

DeleteSemaphore S

ReportSemaphoreStatus S S

ReportPoolSemaphoreStatus

ReportSemaphoreEntryStatus S S

AttachToSemaphore

Input

Output
ANSI/ISA-S72.02-1993 99

Table 32 cont. — Service requirements for conformance classes

Service Class 1 2 3 4 5 6

DefineEventCondition S

DeleteEventCondition S

GetEventConditionAttributes S

ReportEventConditionStatus S S

AlterEventConditionMonitoring S S

TriggerEvent

DefineEventAction S

DeleteEventAction S

GetEventActionAttributes S

ReportEventActionStatus S S

DefineEventEnrollment S

DeleteEventEnrollment S

GetEventEnrollmentAttributes S

ReportEventEnrollmentStatus S S

AlterEventEnrollment S

EventNotification S S

AcknowledgeEventNotification S S

GetAlarmSummary S S

GetAlarmEnrollmentSummary

AttachToEventCondition

ReadJournal S

WriteJournal S

InitializeJournal S

ReportJournalStatus S

CreateJournal

DeleteJournal

ObtainFile

DataExchange X X X

GetDataExchangeAttributes X X X
100 ANSI/ISA-S72.02-1993

Table 32 cont. — Service requirements for conformance classes

Service Class 1 2 3 4 5 6

InitiateUnitControlLoad

UnitControlLoadSegment

UnitControlUpload

StartUnitControl

StopUnitControl

CreateUnitControl

AddToUnitControl

RemoveFromUnitControl

GetUnitControlAttributes

LoadUnitControlFromFile

StoreUnitControlToFile

DeleteUnitControl

DefineEventConditionList

DeleteEventConditionList

AddEventConditionListReference

RemoveEventConditionListReference

GetEventConditionListAttributes

ReportEventConditionListStatus

AlterEventConditionListMonitoring
ANSI/ISA-S72.02-1993 101

9.1.3 Parameter CBBs required for conformance classes

The required parameter CBBs for each conformance class are given in Table 33. Parameter
CBBs are defined in ISO/IEC 9506 1 or in Clause 7 of this part of ISO/IEC 9506.

An "X" indicates that a conforming system shall support this parameter CBB. For the NEST
parameter, the minimum acceptable value for a conforming system is shown.

Table 33 — Parameter requirements for conformance classes

Parameter CBB Class 1 2 3 4 5 6

STR1 X X X

STR2 X X X

VNAM X X X X X

VADR

VALT X X

VSCA

TPY

VLIS

REAL

AKEC

CEI

DES

DEI

RECL

NEST 0 0 1 1 1 0
102 ANSI/ISA-S72.02-1993

9.2 PICS Part One: Implementation information

The provisions of Subclause 18.2 of ISO/IEC 9506 2 shall apply without alteration. A conforming
implementation shall complete the PICS part one of ISO/IEC 9506 2.

9.3 PICS part Two: Service CBBs

The provisions of Subclause 18.3 of ISO/IEC 9506 2 shall apply without alteration. A conforming
implementation shall complete the PICS part two of ISO/IEC 9506 2. In addition, Table 34 shall
be completed to provide additional PICS information relevant to this part of ISO/IEC 9506.

Table 34 — Additional service CBBs

Additional Service Conformance
Building Blocks

 Server, Client, or
Both

InitiateUnitControlLoad

UnitControlLoadSegment

UnitControlUpload

StartUnitControl

StopUnitControl

CreateUnitControl

AddToUnitControl

RemoveFromUnitControl

GetUnitControlAttributes

LoadUnitControlFromFile

StoreUnitControlToFile

DeleteUnitControl

DefineEventConditionList

DeleteEventConditionList

AddEventConditionListReference

RemoveEventConditionListReference

GetEventConditionListAttributes

ReportEventConditionListStatus

AlterEventConditionListMonitoring
ANSI/ISA-S72.02-1993 103

9.4 PICS Part Three: Parameter CBBs

The provisions of Subclause 18.4 of ISO/IEC 9506 2 shall apply without alteration. A conforming
implementation shall complete the PICS part three of ISO/IEC 9506 2. In addition, a conforming
implementation shall complete Table 35 to indicate support for additional parameter CBBs.

Table 35 — Additional parameter CBBs

9.5 PICS Part Four: Local implementation values

The provisions of Subclause 18.5 of ISO/IEC 9506 2 shall apply without alteration. A conforming
implementation shall complete the PICS part four of ISO/IEC 9506 2.

Additional Parameter Conformance
Building Blocks

Supported

DES

DEI

RECL
104 ANSI/ISA-S72.02-1993

Annex A — Application Association model (Normative)

A.1 General

This annex specifies the structure of the Application Association object to be found in MMS. It is
included as an annex until such time as ISO/IEC 9506 1 is amended to include this model.

The object model of the VMD in ISO/IEC 9506 1 is extended to include a List of Application
Association references.

A.2 Application Association

The Application Association identifies a specific instance of communication of the VMD with an
MMS client.

Object: Application Association

Key Attribute: Application Association Identifier

Attribute: AP title of MMS Client

Attribute: Authentication Unit employed (TRUE, FALSE)

Constraint: Authentication Unit employed = TRUE

Attribute: Authentication Value

Attribute: Other ACSE parameters

Attribute: List of AA Specific named objects

Attribute: List of Transaction Objects

A.2.1 Application Association Identifier

This attribute identifies the application association. Since this attribute is never communicated, its
form is a local matter.

A.2.2 AP title of MMS Client

This attribute, which is derived from the parameters of the A ASSOCIATE service, identifies the
MMS client present on this association.

A.2.3 Authentication Unit employed

This attribute indicates whether (true) or not (false) the authentication unit of the ACSE was used
in establishing this association. If this attribute is true, the following attribute also appears.
ANSI/ISA-S72.02-1993 105

A.2.4 Authentication Value

This attribute is the value of the Authentication Value parameter of the A ASSOCIATE service as
presented by the MMS Client.

A.2.5 Other ACSE parameters

This attribute contains the values of the other parameters of the A ASSOCIATE service as
presented by the MMS Client.

A.2.6 List of AA Specific named objects

This attribute contains a list of all the named objects within the VMD that are declared to have AA
specific scope and identify this Application Association.

A.2.7 List of Transaction Objects

This attribute contains a list of all the transaction objects in process on this association. This
attribute has been moved from the VMD to the Application Association.
106 ANSI/ISA-S72.02-1993

Annex B — Block concepts (Informative)

This annex defines blocks in process control systems for use in this part of ISO/IEC 9506, and
compares and contrasts this usage to the usage of function blocks in programmable controllers.

B.1 Definition

A block is an instance of one or more functions, where a function is a primitive monitoring or
control operation that cannot be further decomposed, and represents an element that may be
used in an application for monitoring, or control, or both.

Example:
An example of a function is signal inversion. A second example is a square root extractor.

Each instance represents a unique entity within a control system that implements one or more
functions. Functions may be described and categorized by function type.

B.2 Block classification

Blocks are classified as primitive or complex, depending on the number of functions implemented
in the block. A primitive block has a single function, while a complex block has at least two
functions. The terms "little block" and "big block" are sometimes applied to primitive and complex
blocks. Some complex blocks may contain many functions.

Example:
A PID block may have several functions, such as signal conditioning, limiting, and alarming in addition to
the PID function.

B.3 Block attributes

Each block, regardless of complexity, has attributes of input parameters, the block function or
algorithm type, and output parameters. In complex blocks containing several functions, additional
attributes of state and status parameters also exist. Taken together, the block parameters
constitute the block database.

Example:
The signal inversion block has an input parameter of the signal to be inverted, an algorithm or function type
that performs the inversion, and an output parameter of the inverted signal. A more complex block, such as
a PID block, may contain several input parameters, several output parameters, and several state and
status parameters.

Block input and output parameters may be simple, in which only the parameter value is provided,
or may be structured, in which the parameter value is provided along with status and consistency
information.
ANSI/ISA-S72.02-1993 107

B.4 Block identification

Each block in a control system has an assigned name, or "tag," that is used for access purposes.
The tag provides a way to identify a particular block, and represents an access path to the
attributes of the block. Tag names are generally unique within a manufacturing facility.

If the use of the alphabet for block identification is consistent with the constraints of the Identifier
type (see 7.6.2 of ISO/IEC 9506 2), the Domain and Program Invocation associated with the
block should use the same name. However, often block names contain characters other than
those specified in 7.6.2 of ISO/IEC 9506 2. In addition, sometimes block names begin with a digit,
which is forbidden for Identifiers. In those cases, the following rules may be applied to develop an
appropriate name for the Domain and Program Invocation from the block name.

a) Replace "-" with "_" (i.e., replace hyphens with underscores).

b) Replace "/" with "$".

c) If the first character is a digit, precede it with "$".

B.5 Block structures

Although there may be several input, output, and state/status parameters, there is not a nesting
structure or mechanism defined that permits access to a block within a block. Functions internal
to the block, such as limiting and alarming in the PID example, are treated as elements of the
total function of the block, and all block attributes are treated as attributes of the (outermost)
block. Each tag name identifies a single block, with a single (possibly complex) function.

NOTE — While it is possible and desirable to define complex functions in terms of a group
of simple functions, once installed in a control system it seems simpler to deal with functions
grouped into a single block as a single complex function.

B.6 Block installation

Blocks are installed into a control system through the process of configuration. Blocks are
programmed with their execution instructions, sometimes using a language that is based on
blocks such as the IEC Function Block programming language, and loaded into a control system.
Once installed, blocks exist in the control system until they are explicitly removed or deleted.

B.7 Block security

Because blocks are potentially subject to control from more than one source, such as a system
operator and a batch program, blocks are equipped with a mechanism to distinguish between
and select from multiple control sources, and to ensure allocation of primary control to a single
source. Certain pre-emption mechanisms are also required. The mechanism fulfilling this
requirement is the Mode/State parameter.
108 ANSI/ISA-S72.02-1993

B.8 Mode and State concepts

Modes and states are used to control and describe the operation of blocks that are capable of
executing different phases of the overall algorithm.

Example:
A PID block is typically capable of allowing the output to be directly set by the operator or to set the output
based on the value of the inputs and the execution of the algorithm.

NOTE — In real process control systems, the precise definition of what constitutes a mode,
versus what constitutes a state, varies from implementation to implementation. This annex
is intended to span the scope of those aspects of block operation that are attributed to both
modes and states, without drawing a specific distinction.

The descriptions of mode and state concepts that follow represent the principles on which modes
and states are based. Not all blocks will necessarily implement all possible modes and states, nor
support all of the following concepts. Actual mode and state schemes in use will vary from control
system to control system.

B.8.1 Controlling entity

While blocks are essentially autonomous, in that they derive outputs from inputs whenever they
execute, they remain fundamentally subject to commands from a higher level entity, termed the
controlling entity, which may adjust inputs, outputs, or otherwise affect the block mode or state.

Example:
Examples of controlling entities include system operators, other blocks in a cascade structure, batch
programs, supervisory computers, and expert systems.

B.8.2 Pre-emption

Pre-emption represents the ability of one controlling entity to forcibly wrest control of a block from
another controlling entity.

Example:
An operator may conclude that a batch program is operating erratically and may place those blocks in
control of hazardous processes into a safe, operator controlled mode, or state.

When pre emption occurs, control privilege is assumed by the entity exercising pre-emption. The
pre-empted entity is no longer involved with block control unless listed as a participant in the
priority of fallback scheme, described in B.8.5. Pre-emption privilege is not affected when pre-
emption occurs, but may be modified through a service request that includes a requested change
to pre-emption privilege. An act of pre-emption may additionally include concurrent changes to
other aspects of a block's mode state.

B.8.3 Control privilege

Control privilege designates the entity currently in control of the block. The holder of control
privilege holds a right to alter the mode state of the block. The holder of pre-emption privilege
also holds this right. The holder of control privilege also holds the exclusive right to alter the
values of input and output parameters at the block when the effect of such alteration is to cause a
change in the behaviour of the block.

Example:
When a block is operating in a mode state where the output value is under direct control of a specific
operator, the operator is considered to hold control privilege and holds the exclusive right to alter the value
of the output parameter.
ANSI/ISA-S72.02-1993 109

Changes to block parameters that do not cause a discernable change in block behaviour are
permitted at any time, subject to the privilege of the entity requesting the change.

Certain aspects of control privilege may be delegated to another entity without releasing overall
control privilege.

B.8.4 Delegated privilege

The controlling entity may choose to delegate privilege for an aspect of the block's control to
another controlling entity. Such delegation does not remove the ultimate authority of the
controlling entity with control privilege, but temporarily allows one or more additional controlling
entities to adjust certain aspects of the block's mode or state.

Example:
Privilege may be delegated for purposes of tuning, alarming, or other block optimization.

If a block with delegated privilege has its control privilege pre-empted by another controlling
entity, the delegated privileges remain. Delegated privileges are held until revoked by the entity
holding control privilege.

B.8.5 Priority of fallback

Priority of fallback indicates the order in which control privilege will be assumed in the event that
the controlling entity with control privilege fails. Priority of fallback does not apply to delegated
privilege.

Example:
A batch program terminates abnormally. Control may revert, based on the priority of fallback, to a specific
operator console.

B.8.6 Block function

Block function is a way of describing and specifying the behaviour of a block that is capable of
exhibiting multiple behaviours over time.

Example:
PID blocks typically allow, under certain conditions, the output to be set directly, or the output to be derived
by an algorithm that uses a setpoint as an input parameter, or other behaviours necessary for fully
functioned control.

B.8.7 Activation

Active-Inactive describes whether (active) or not (inactive) the block function is actively operating.
An inactive block reverts to a safe mode state.

B.8.8 Parameter source selectors

Parameter source selectors are analogous to switches. They are sometimes used at block input
and output parameters to select a source of derivation for those parameter values.

Example:
An input source selector on a PID block setpoint parameter could select between the operator, a
supervisory computer, a batch program, or a primary block utilized in a cascade structure. An output
source selector on a PID block output parameter could select between the block algorithm, the block
setpoint, and a supervisory computer.

An implication of the presence of parameter source selectors is the behaviour of updates to
parameters from remote sources such as supervisory computers or operators. Updates to
110 ANSI/ISA-S72.02-1993

parameters will in general succeed, since an update involves writing a variable, but the effect of
the update may or may not be seen depending on the mode state of the block.

Example:
An update to the setpoint of a block that is in a mode state where the output is under direct control of a
supervisory computer will succeed in updating the setpoint parameter variable, but the effect at the block
will not be discernable until the block is placed into a mode state in which the value of the setpoint
parameter becomes significant.

NOTE — A logical view of a possible implementation of this scheme is that of an input array
for each parameter on which a source selector is provided. An update of the "parameter"
from a remote source such as an operator or a remote computer is directed to the appro-
priate location of the array based on the classification of the remote entity. At each execution,
the block "reads" the correct input parameter based on the current mode state. In this logical
view, reports of the current value of any block parameter do not use the input array, but
read from the actual value in use at the time the report is requested.

B.8.9 Status

The concepts detailed in B.8.1 through B.8.8 may be utilized to command a specific block, or,
through the use of a status reporting mechanism, to report the values set by the most recent
command. The block status, when reported, also contains other information about the block and
about recent actions affecting the block.

B.8.9.1 Initialization

Under certain conditions, including determination of "bad" signal at the setpoint, a block may
temporarily force itself into an initialization mode state, in which the block logically executes
backwards. In this mode state, the setpoint value is determined by calculating backwards from
the output value. Existence in this mode state is not lasting, but may be detectable through status
reports.

B.8.9.2 Windup

When the output of a block has reached its maximum or minimum and further changes to the
setpoint will have no effect on the output of the block, the block is said to be "wound up." Windup
can occur in both the high and low directions and may be reported when block status is reported.

B.8.9.3 Operator pre-empted

In certain application categories it is important to know if control of a block was assumed by an
operator by using pre-emption. This condition may be reported as this status parameter.

Example:
In pharmaceutical manufacturing, it is a requirement to determine if an operator assumed control from a
batch program.
ANSI/ISA-S72.02-1993 111

B.9 Comparison with usage in Programmable Controllers

Table 36 illustrates comparisons and contrasts between application and MMS objects as utilized
in process control and in programmable controllers.

Table 36 — Application objects and MMS objects in Process Control and
Programmable Controllers

MMS object Programmable
Controller Object

Process Control
Object

Domain Function Type

Domain Function Block Type

Domain Program Type Block Algorithm

Domain, Program
Invocation

Program Instance Block

Domain Global Variables

VMD-specific MMS
Named Variables

Access Path to Global
Variables

Domain-Specific MMS
Named Variables

Access Path to
Program formal
parameters and
program global
variables

Block Parameters

Domain, Controlling
Program Invocation,
Unit Control

Configuration Set of Blocks

Unit Control,
Controlling Program
Invocation

 Set of Blocks
(pre-configured)

Domain, Unit Control,
Controlled Program
Invocation

Resource Set of Blocks
112 ANSI/ISA-S72.02-1993

Annex C — Use of this part of ISO/IEC 9506 for batch processing.
(Informative)

NOTE — Terminology used in this annex is based on draft 2 of ISA dS88, available from ISA, 67
Alexander Drive, PO Box 12277, Research Triangle Park, NC 27709 USA. Later drafts may become
available following publication of this part of ISO/IEC 9506.

This informative annex suggests how this part of ISO/IEC 9506 could be utilized in support of
batch processing.

C.1 Relationship to Process Industries Reference model

Draft 2 of ISA dS88 provides a Process Industries Reference model. This part of ISO/IEC 9506 is
believed to be applicable for communications at the Unit level described in this model and above.
Below the Unit level, communications are envisioned as utilizing the Fieldbus. Future Linking
Devices may someday provide a transparent path for communications between devices utilizing
this part of ISO/IEC 9506 and the Fieldbus.

C.2 Recipe management

Control and working recipes may be treated as Domain content. As such, they may be
downloaded and uploaded as needed to manage their development and installation in a working
control system. The degree of granularity in terms of how Domains are utilized is an application
issue. For example, recipes may be completely contained within a Domain or may be split into
multiple Domains. For products that are made in different units using the same recipe, it may
make sense to store a generalized recipe in one Domain and the unit descriptors in another
domain.

C.3 Batch management

Executing batches (with their accompanying procedures operations, phases, control steps, and
control instructions) may be treated as Blocks. Procedures may thus incorporate the features
provided by Domain and Program Invocation objects and may additionally contain a mode/state.
Recipes may be loaded as Domains and linked using the Program Invocation component of the
Block object.

C.4 Historical records

Historical records may be treated as MMS journals. If the capabilities of the MMS journal are
insufficient, Event Notifications may be sent directly to a higher level device that performs the
logging directly.
ANSI/ISA-S72.02-1993 113

C.5 Alarm notifications

Alarm notifications may be performed as MMS Event Notifications.

C.6 Batch End reports

Batch End reports may be triggered by the Event Condition associated with the completion of a
Program Invocation. The Batch End report is probably best treated as a file and transmitted by
means other than this part of ISO/IEC 9506.

C.7 Shared use resources

Where resources are shared and must be coordinated via communication services, MMS
semaphores may be utilized.
114 ANSI/ISA-S72.02-1993

Annex D — Block symbol definitions (Informative)

NOTE — It is recognized that standardization of specific block types is a necessary step towards
a desirable goal of standardization of certain application functions. Additional work is required to
attain this goal. Towards this end, the work contained in this annex has been extracted from the
body of the text in order to better position it to move to a possible future IEC document that defines
and standardizes blocks, block parameter types, and block types.

This annex specifies certain aspects of blocks. Specifically, certain parameters are specified that
may be utilized to construct blocks with aspects of functionality defined by these parameters.
Extension of the specified block types and functionality are possible through the use of additional
block parameters specified in this annex or through the use of additional block parameters not
specified in this annex and for which there is not duplication of functionality with block parameters
specified in this annex.

The presence of a parameter in a block type implies that the functionality of the block parameter
is included in the block. Extension of block parameter lists beyond those specified in this annex
are optional.

To be included in the following list, a block parameter was considered to have met the following
criteria:

a) The block parameter is commonly available in current process control systems.

b) The block parameter is commonly used by user software.

c) The block parameter is unambiguously defined.
ANSI/ISA-S72.02-1993 115

D.1 Domain specific Named Variables

D.1.1 C_ACTION

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_ACTION" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = boolean

Attribute: Access Method

Semantic: Controller Action. Indicates the control action of the controller. When TRUE, an
increased set point causes an increased output. When FALSE, an increase in the
Process Variable causes an increase in controller output.

D.1.2 C_AGELIM

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_AGELIM" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = floating point

{format width 32, exponent width 8}

Attribute: Access Method

Semantic: Age Limit. Period of time in seconds to elapse before age limit bit is set in the
QUAL parameter, when a Process Variable has not been measured.
116 ANSI/ISA-S72.02-1993

D.1.3 C_ALMDB

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_ALMDB" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = floating point

{format width 32, exponent width 8}

Attribute: Access Method

Semantic: The amount above or below the limit that the Process Variable must travel before
the alarm clears.

Example:
A Process Variable that has become greater than C_PVHITP will stay in alarm until the variable drops to
C_PVHITP less the dead band.

D.1.4 C_ALMST

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_ALMST" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = bit string 8

Attribute: Access Method

Semantic: Alarm Status variable. Defined as a bit string, with each bit representing (TRUE)
the presence or (FALSE) the absence of an alarm. Defined values for the bit string
are:

DEVHI (0),

DEVLO (1),

HIGH (2),

LOW (3),

HIGH HIGH (4),

LOW LOW (5),

RATE + (6),

RATE - (7)
ANSI/ISA-S72.02-1993 117

D.1.5 C_AOUTPUT

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_AOUTPUT" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = floating point

{format width 32, exponent width 8}

Attribute: Access Method

Semantic: Analog output of a block or control entity. Expressed in percent of span.

D.1.6 C_APV

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_APV" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = floating point

{format width 32, exponent width 8}

Attribute: Access Method

Semantic: An analog process variable. The measured process value in implied engineering
units.

D.1.7 C_ASP

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_ASP" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = floating point

{format width 32, exponent width 8}

Attribute: Access Method

Semantic: Set Point. Desired value of the process variable in engineering units.

118 ANSI/ISA-S72.02-1993

D.1.8 C_BIAS

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID,

itemID "C_BIAS" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = floating point

{format width 32, exponent width 8}

Attribute: Access Method

Semantic: Controller Bias. Quantity added to the calculated set point input after the ratio has
been applied.

D.1.9 C_CGAIN

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_CGAIN" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = floating point

{format width 32, exponent width 8}

Attribute: Access Method

Semantic: Controller gain.

D.1.10 C_CRATE

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_CRATE" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = floating point

{format width 32, exponent width 8}

Attribute: Access Method

Semantic: Controller rate time in minutes.
ANSI/ISA-S72.02-1993 119

D.1.11 C_CRESET

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_CRESET" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = floating point

{format width 32, exponent width 8}

Attribute: Access Method

Semantic: Controller reset time. Controller reset time in repeats per minute. A repeat is the
error signal resulting from a steady state offset between C_APV and C_ASP.

D.1.12 C_DESC

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_DESC" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = visible string 32

Attribute: Access Method

Semantic: Textual Block description.

D.1.13 C_DEVHIAP

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_DEVHIAP" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = floating point

{format width 32, exponent width 8}

Attribute: Access Method

Semantic: Deviation High Alarm Point. A process event is generated when C_APV becomes
greater than C_ASP by the specified amount. The corresponding boolean
variable representing the event condition is set to true.
120 ANSI/ISA-S72.02-1993

D.1.14 C_DEVLOAP

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_DEVLOAP" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = floating point

{format width 32, exponent width 8}

Attribute: Access Method

Semantic: Deviation Low Alarm Point. A process event is generated when C_APV becomes
less than C_ASP by the specified amount. The corresponding boolean variable
representing the event condition is set to true.

D.1.15 C_DOUTPUT

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_DOUTPUT" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = boolean

Attribute: Access Method

Semantic: Digital output of a block. Expressed in boolean terms (TRUE, FALSE).

D.1.16 C_DPV

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_DPV" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = boolean

Attribute: Access Method

Semantic: A digital process variable. The measured process value in boolean terms (TRUE,
FALSE).
ANSI/ISA-S72.02-1993 121

D.1.17 C_DSP

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_DSP" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = boolean

Attribute: Access Method

Semantic: Digital Set Point.

D.1.18 C_EDESC

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_EDESC" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = visible string 127

Attribute: Access Method

Semantic: Extended Text Description. This parameter may be used to describe the more
important internal features of the block that are not covered by standard parameter
names, such as sensor type and controller type.
122 ANSI/ISA-S72.02-1993

D.1.19 C_FBCLASS

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_FBCLASS" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = integer 8

Attribute: Access Method

Semantic: Block Class Identification. Specific values for this parameter may be specified in
conjunction with standardized block types.

Analog Measurement 0,

Digital Measurement 1,

Symbolic Measurement 2,

Analog Output 3,

Digital Output 4,

Symbolic Output 5,

Regulatory 6,

Alarm 7,

Limit 8

D.1.20 C_IPV

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_IPV" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = integer 8

Attribute: Access Method

Semantic: An integer process variable. The measured process variable in counts.
ANSI/ISA-S72.02-1993 123

D.1.21 C_ISP

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_ISP" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = integer 8

Attribute: Access Method

Semantic: An integer set point. Desired value in counts.

D.1.22 C_LMSTAT

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_LMSTAT" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = bit string 8

Attribute: Access Method

Semantic: Limit Status. Current status information that indicates that the set point or output is
currently being limited.

SP HI (0),

SP LO (1),

OUT HI (2),

OUT LO (3),

SPRTLIM (4),

SPARE (5),

SPARE (6),

SPARE (7)

SP HI - indicates that the set point is limited in the high direction.

SP LO - indicates that the set point is limited in the low direction.

OP HI - indicates that the output is limited in the high direction.

OP LO - indicates that the output is limited in the low direction.

SPRTLIM - indicates that the rate of change of the set point is currently being rate limited.

SPARE - Reserved for future use.
124 ANSI/ISA-S72.02-1993

D.1.23 C_MODE

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_MODE" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = octet string 128

Attribute: Access Method

Semantic: Block Mode structure. The variable implementing the mode state attribute of the
Block

D.1.24 C_OBIAS

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_OBIAS" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = floating point

{format width 32, exponent width 8}

Attribute: Access Method

Semantic: Output Bias. A bias value added to the controller output after the block calculation.
Expressed in terms of percent of output.
ANSI/ISA-S72.02-1993 125

D.1.25 C_OPHILM

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_OPHILM" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = floating point

{format width 32, exponent width 8}

Attribute: Access Method

Semantic: Output high limit. Within a controller, the output is limited or clamped so as to not
exceed a specified point. This limit is applied internally by the controller for
restriction of internally generated changes. Expressed in terms of percent of
output.

D.1.26 C_OPLOLM

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_OPLOLM" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = floating point

{ format width 32, exponent width 8}

Attribute: Access Method

Semantic: Output low limit. Within a controller, the output is limited or clamped so as to not
exceed a specified point. This limit is applied internally by the controller for
restriction of internally generated changes. Expressed in terms of percent of
output.
126 ANSI/ISA-S72.02-1993

D.1.27 C_PERIOD

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_PERIOD" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = floating point

{format width 32, exponent width 8}

Attribute: Access Method

Semantic: Scanning period. Defines the time, in seconds, between execution/scans of the
Block.

D.1.28 C_PROCTIM

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_PROCTIM" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = binary time TRUE

Attribute: Access Method

Semantic: Time the process variable was last measured (C_APV, C_DPV, or C_SPV).

D.1.29 C_PVHHAP

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_PVHHAP" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = floating point

{format width 32, exponent width 8}

Attribute: Access Method

Semantic: Analog process variable high high alarm point. When an analog process variable
exceeds this value, the corresponding boolean variable representing the event
condition is set to true.
ANSI/ISA-S72.02-1993 127

D.1.30 C_PVHIAP

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_PVHIAP" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = floating point

{format width 32, exponent width 8}

Attribute: Access Method

Semantic: Analog process variable high alarm point. When an analog process variable
exceeds this value, the corresponding boolean variable representing the event
condition is set to true.

D.1.31 C_PVLLAP

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_PVLLAP" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = floating point

{format width 32, exponent width 8}

Attribute: Access Method

Semantic: Analog process variable low low alarm point. When an analog process variable is
lower than this value, the corresponding boolean variable representing the event
condition is set to true.
128 ANSI/ISA-S72.02-1993

D.1.32 C_PVLOAP

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_PVLOAP" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = floating point

{format width 32, exponent width 8}

Attribute: Access Method

Semantic: Analog process variable low alarm point. When an analog process variable is
lower than this value, the corresponding boolean variable representing the event
condition is set to true.

D.1.33 C_PVRCNAP

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_PVRCNAP" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = floating point

{format width 32, exponent width 8}

Attribute: Access Method

Semantic: Negative Rate of Change point. Applied to the process variable, this causes the
corresponding boolean variable representing the event condition to be set if the
process variable changes by more than the specified rate. Expressed as a
negative rate of increase in engineering units per second. The dead band does
not apply to this alarm point.

ANSI/ISA-S72.02-1993 129

D.1.34 C_PVRCPAP

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_PVRCPAP" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = floating point

{format width 32, exponent width 8}

Attribute: Access Method

Semantic: Positive Rate of Change point. Applied to the process variable, this causes the
corresponding boolean variable representing the event condition to be set if the
process variable changes by more than the specified rate. Expressed as a positive
rate of increase in engineering units per second. The dead band does not apply to
this alarm point.
130 ANSI/ISA-S72.02-1993

D.1.35 C_QUAL

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_QUAL" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = bit string 16

Attribute: Access Method

Semantic: Quality of the process variable.

out of range (0),

default value (1),

inaccurate/uncalibrated (2),

manually entered (3),

test mode/maintenance (4),

no data (5),

hardware error (6),

undefined error (7),

not executing (8),

age exceeded (9),

spare (10),

spare (11),

spare (12),

spare (13),

spare (14),

spare (15)

out of range The value is beyond normal sensor range.

default value The value supplied is the default. The actual value itself is
unavailable.

inaccurate/uncalibrated The sensor or analog to digital conversion requires
calibration. The value may not be accurate.

manually entered The operator or engineer has entered the value.

test mode/maint The block is being calibrated, tested, or otherwise maintained.

no data No data is available for the block. This occurs at similar times
to "default value" but when no default value is defined for the
block.

hardware error The hardware associated with the device hosting the block
has failed. For example: fuse blown, scanner relays failed.

undefined error There is a problem with the value that is not defined above.
ANSI/ISA-S72.02-1993 131

not executing The block is not executing.

age exceeded Process variable may no longer be accurate due to time since
last measurement.

D.1.36 C_RANGHI

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_RANGHI" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = floating point

{format width 32, exponent width 8}

Attribute: Access Method

Semantic: Range High. 100% engineering units value associated with the analog process
variable. This value defines the normal operating range of the analog process
variable.

D.1.37 C_RANGLO

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_RANGLO" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = floating point

{format width 32, exponent width 8}

Attribute: Access Method

Semantic: Range Low. 0% engineering units value associated with the analog process
variable. This value defines the normal operating range of the analog process
variable.
132 ANSI/ISA-S72.02-1993

D.1.38 C_RATEG

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_RATEG" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = floating point

{format width 32, exponent width 8}

Attribute: Access Method

Semantic: Controller rate gain. The gain, dimensionless, for the rate term in a PID controller.

D.1.39 C_RATIO

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_RATIO" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = floating point

{format width 32, exponent width 8}

Attribute: Access Method

Semantic: Controller Ratio. Scale factor applied to the calculated set point input of the
controller.

D.1.40 C_RPDELTA

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_RPDELTA" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = floating point

{format width 32, exponent width 8}

Attribute: Access Method

Semantic: Reporting Delta in Engineering Units. Change in Process Variable required to
initiate a new value being sent.
ANSI/ISA-S72.02-1993 133

D.1.41 C_SOUTPUT

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_SOUTPUT" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = visible string 16

Attribute: Access Method

Semantic: Symbolic output statement. The required state expressed in symbolic terms
(OPEN, CLOSED, STOPPED).

D.1.42 C_SPHILM

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_SPHILM" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = floating point

{format width 32, exponent width 8}

Attribute: Access Method

Semantic: Set point high limit. Within a controller, the set point is limited or clamped so as to
not exceed the specified point. This limit is applied internally by the controller for
restriction of changes generated internally.
134 ANSI/ISA-S72.02-1993

D.1.43 C_SPLOLM

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_SPLOLM" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = floating point

{format width 32, exponent width 8}

Attribute: Access Method

Semantic: Set point low limit. Within a controller, the set point is limited or clamped so as to
not be set below a specified point. This limit is applied internally by the controller
for restriction of changes generated internally.

D.1.44 C_SPRTLM

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_SPRTLM" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = floating point

{format width 32, exponent width 8}

Attribute: Access Method

Semantic: Set point rate limit. Within a controller, the set point rate of movement is limited or
clamped so as to not exceed a specified rate of change. Expressed in engineering
units per second. This limit is applied internally by the controller for restriction of
changes generated internally.

D.1.45 C_SPV

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_SPV" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = visible string 16

Attribute: Access Method

Semantic: A symbolic process variable. The measured process value, in an explicit textual
format (ON, OFF STARTED, RUNNING, etc.).
ANSI/ISA-S72.02-1993 135

D.1.46 C_SSP

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_SSP" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = visible string 16

Attribute: Access Method

Semantic: Symbolic Set Point. Desired value of the process variable in words. (EXAMPLES:
ON, OFF STARTED, CLOSED).

D.1.47 C_TARGET

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_TARGET" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = floating point

{format width 32, exponent width 8}

Attribute: Access Method

Semantic: Target set point. This parameter may be used when a new set point is desired, but
a step change to it is undesirable. When TARGET is changed, the server ramps
the set point towards the target value at an internally configured rate.

D.1.48 C_TMAX

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_TMAX" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = floating point

{format width 32, exponent width 8}

Attribute: Access Method

Semantic: Maximum Time without report. Maximum amount of elapsed time in seconds for
the process variable to go unreported when the process variable change has not
exceeded C_RPDELTA.
136 ANSI/ISA-S72.02-1993

D.1.49 C_UNITS

Object:Named Variable

Key Attribute: Variable Name = domain specific {

domainID ,

itemID "C_UNITS" }

Attribute: MMS Deletable = FALSE

Attribute: Type Description = visible string 8

Attribute: Access Method

Semantic: Engineering units. Engineering units associated with an analog process variable,
for example, meters/second or degrees Celsius. If the engineering units are not
available, the value is all blanks.
ANSI/ISA-S72.02-1993 137

Developing and promulgating technically sound consensus standards,
recommended practices, and technical reports is one of ISA's primary
goals. To achieve this goal the Standards and Practices Department
relies on the technical expertise and efforts of volunteer commi ttee
members, chairmen, and reviewers.

ISA is an American National Standards Institute (ANSI) accredited
organization. ISA administers United States Technical Advisory
Groups (USTAGs) and provides secretariat support for International
Electrotechnical Commission (IEC) and International Organization for
Standardization (ISO) committees that develop process measurement
and control standards. To obtain additional information on the
Society's standards program, please write:

ISA
Attn: Standards Department
67 Alexander Drive
P.O. Box 12277
Research Triangle Park, NC 27709

ISBN: 1-55617-519-1

	Return to Start

