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 Preface

This Preface, as well as all footnotes and annexes, is included for informational purposes and is 
not part of ISA-TR67.04.14.

This Technical Report has been prepared as part of the service of ISA, the international society 
for measurement and control, toward a goal of uniformity in the field of instrumentation.  To be of 
real value, this document should not be static but should be subject to periodic review.  Toward 
this end, the Society welcomes all comments and criticisms and asks that they be addressed to 
the Secretary, Standards and Practices Board; ISA; 67 Alexander Drive; P. O. Box 12277; 
Research Triangle Park, NC  27709; Telephone (919) 549-8411; Fax (919) 549-8288; E-mail: 
standards@isa.org.

The ISA Standards and Practices Department is aware of the growing need for attention to the 
metric system of units in general, and the International System of Units (SI) in particular, in the 
preparation of instrumentation standards, recommended practices, and technical reports.  The 
Department is further aware of the benefits to USA users of ISA standards of incorporating 
suitable references to the SI (and the metric system) in their business and professional dealings 
with other countries.  Toward this end, this Department will endeavor to introduce SI-acceptable 
metric units in all new and revised standards to the greatest extent possible.  Standard for Use of 
the International System of Units (SI): The Modern Metric System, published by the American 
Society for Testing & Materials as IEEE/ASTM SI 10-97, and future revisions, will be the 
reference guide for definitions, symbols, abbreviations, and conversion factors.

It is the policy of ISA to encourage and welcome the participation of all concerned individuals and 
interests in the development of ISA standards, recommended practices, and technical reports.  
Participation in the ISA standards-making process by an individual in no way constitutes 
endorsement by the employer of that individual, of ISA, or of any of the standards, recommended 
practices, and technical reports that ISA develops.

CAUTION—THE USE OF THIS STANDARD, RECOMMENDED PRACTICE, OR 
TECHNICAL REPORT MAY INVOLVE HAZARDOUS MATERIALS, OPERATIONS OR 
EQUIPMENT.  THE STANDARD, RECOMMENDED PRACTICE, OR TECHNICAL 
REPORT CANNOT ANTICIPATE ALL POSSIBLE APPLICATIONS OR ADDRESS 
ALL POSSIBLE SAFETY ISSUES ASSOCIATED WITH USE IN HAZARDOUS 
CONDITIONS.

THE USER OF THIS STANDARD, RECOMMENDED PRACTICE, OR TECHNICAL 
REPORT MUST EXERCISE SOUND PROFESSIONAL JUDGMENT CONCERNING 
ITS USE AND APPLICABILITY UNDER THE USER’S PARTICULAR 
CIRCUMSTANCES.  THE USER MUST ALSO CONSIDER THE APPLICABILITY OF 
ANY GOVERNMENTAL REGULATORY LIMITATIONS AND ESTABLISHED SAFETY 
AND HEALTH PRACTICES BEFORE IMPLEMENTING THIS STANDARD, 
RECOMMENDED PRACTICE, OR TECHNICAL REPORT.

ADDITIONALLY, IMPLEMENTATION OF THE STANDARD, RECOMMENDED 
PRACTICE, OR TECHNICAL REPORT MAY REQUIRE USE OF TECHNIQUES, 
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PROCESSES, OR MATERIALS COVERED BY PATENT RIGHTS.  ISA TAKES NO 
POSITION ON THE EXISTENCE OR VALIDITY OF ANY PATENT RIGHTS WHICH 
MAY BE INVOLVED IN IMPLEMENTING THE STANDARD, RECOMMENDED 
PRACTICE, OR TECHNICAL REPORT.  ISA WILL NOT BE RESPONSIBLE FOR 
IDENTIFYING ALL PATENTS THAT MAY REQUIRE A LICENSE BEFORE 
IMPLEMENTATION OF THE STANDARD, RECOMMENDED PRACTICE, OR 
TECHNICAL REPORT OR FOR INVESTIGATING THE VALIDITY OR SCOPE OF 
ANY PATENTS BROUGHT TO ITS ATTENTION.  THE USER SHOULD CAREFULLY 
INVESTIGATE RELEVANT PATENTS BEFORE USING THE STANDARD, 
RECOMMENDED PRACTICE, OR TECHNICAL REPORT FOR THE USER’S 
INTENDED APPLICATION.
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 Foreword

In the preparation of an earlier version of ANSI/ISA-S67.04-Part I-1994 it was determined that a 
need existed to provide additional guidance with regard to methods for implementing the 
requirements of the Standard.  In order to address this need, Standard Subcommittee SP67.15 
formed in 1988 (later incorporated into SP67.04) and prepared a Recommended Practice, ISA-
RP67.04-Part II-1994.  It was the intent of the SP67.04 that the Recommended Practice's scope 
be consistent with the Standard's scope.  The Recommended Practice represents guidelines and 
examples of methods for implementing ANSI/ISA-S67.04, Part I, in order to facilitate the 
performance of instrument uncertainty calculations and setpoint determination for safety-related 
instrument setpoints in nuclear power plants.

The Recommended Practice provides guidance for the implementation of ANSI/ISA-S67.04,
Part I, in the following areas:

a) Alternate methods to calculate total channel uncertainty

b) Common assumptions and practices in instrument uncertainty calculations

c) Equations for estimating uncertainties for commonly used analog and digital modules

d) Methods to determine the impact of commonly encountered effects of instrument 
uncertainty

e) Application of instrument channel uncertainty in setpoint determination

f) Sources and interpretation of data for uncertainty calculations

g) Discussion of the interfaces between setpoint determination and plant operating and 
calibration procedures and accident analysis

h) Documentation requirements

i) Computer simulation uncertainties

However, the Recommended Practice could not adequately cover all of the topics related to 
setpoint uncertainties without becoming too voluminous a document.  This Technical Report is 
one in a series that supplements the Recommended Practice and the Standard.

In addition, the Committee agreed that the topics discussed in this report were outside the scope 
of the Standard; therefore, this Technical Report provides more information concerning the 
principles and appropriate usage of the Monte Carlo (MC) technique for combination of 
uncertainties as an alternative to the common Square Root Sum of Squares (SRSS) approach.

The MC technique was first devised in response to the difficult problem of evaluating nuclear 
shielding effectiveness in the early years of nuclear reactor design evolution.  The problem arose 
in evaluating the shielding effectiveness given a source spectrum of radiation species and 
8 ISA-TR67.04.14-1998



energies. The number of interactions possible and the resulting angular dispersion within the 
shielding material further complicated the analytical assessment of effectiveness.  In order to 
make the solution manageable, it was decided to follow individual particles on their passage 
through the shielding.  The particles that successfully passed through the shielding and that 
possessed energy within a specific energy band were counted.  This analytical process was 
repeated for a large number of particles with the specified species and energy source 
distributions, so as to allow a simulation result for shielding effectiveness in which one could be 
confident.  

A number of basic principles underlying the technique should thus become apparent.  First, in 
order to get a reliable result, a large number of particles have to be simulated; the number of 
simulations can be considered comparable to a sample size.  In a statistical analysis, the larger 
the sample, the greater the confidence in the result.  Second, the distribution of input sample 
species and their associated energies must be realistic in order to assure that the results are 
valid.

 Abstract

This Technical Report supplements ANSI/ISA-S67.04, Part I, and ISA-RP67.04, Part II, in the 
area of Monte Carlo (MC) uncertainty combination techniques for use as an alternate uncertainty 
combination method.  The report presents the MC uncertainty combination technique for use as 
one possible alternate for the Square Root Sum of Squares (SRSS) technique.

 Key Words

Error Determination, Instrument Setpoints, Instrumentation, Monte Carlo, Setpoint Calculation, 
Simulation, Standards, Stratified Sampling, Uncertainty, and Uncertainty Determination.
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 1  Scope

This Technical Report provides guidance on recognizing the conditions under which Monte Carlo 
(MC) techniques should be considered both in safety and nonsafety-related applications and 
begins with the basic principles underlying MC techniques.  Section 5 addresses the question, 
"When should the methodology be used?"  The application sequence and the results 
interpretation are then discussed and, finally, available tools are identified.  Annex B illustrates 
the application of the methodology with sample instrument uncertainty evaluation problems.

 2  Purpose

The purpose of this Technical Report is to supplement the information provided in 
ANSI/ISA-S67.04-Part I-1994 and ISA-RP67.04-Part II-1994 for the performance of instrument 
uncertainty calculation and instrument setpoint determination.  Specifically, the topic addressed 
in this Technical Report is the use of Monte Carlo (MC) techniques as an alternate technique for 
uncertainty combination in setpoint calculations.  The purpose of this technical paper is to 
develop the basis for assessing the need for MC, applying MC methodology, and interpreting 
results of an MC uncertainty analysis.  This paper will address both single module and instrument 
channel simulation applications. 

 3  Definition

pseudo random numbers:  Sequences of numbers that are generated by a software program to 
simulate true random numbers.  In very large numbers of generated pseudo random numbers, 
the randomness may be violated by repetitions.

 4  Basic principles underlying the MC methodology

The following is an illustrative example of the underlying principles involved in an MC simulation. 
There are two new instrument suppliers in the market that claim to have extremely accurate 
products; supplier "A" supplies temperature sensors, and supplier "B" supplies transmitters.  Both 
suppliers have produced large quantities of their respective products in the past.  An 
instrumentation and control engineer would like to use the new temperature sensor and the new 
transmitter in an instrument channel, but the engineer does not have access to the data from the 
respective suppliers to support their accuracy claims (an assumption in this illustrative example).
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The engineer is concerned about using the new instruments without a test of the suppliers' 
claims and also would like an assessment of how the instruments will work together in an 
instrument channel, so that a setpoint uncertainty analysis can be conducted.  Assume that the 
engineer has access to a large sample of each instrument type and time to experiment with them 
on a test bench.

With the availability of time and access to the instruments, the engineer can do a simple 
experiment.  First, the engineer randomly chooses one sensor and one transmitter from the large 
supplies of each, makes the appropriate electrical connections, and measures the output signal, 
given that each sensor is put in a constant temperature bath.  The measurement of the indicated 
temperature can then be compared with the actual temperature of the bath to generate a 
difference measurement.  If this process is repeated for hundreds of sets of instruments chosen 
in a similar manner, the resulting difference measurements can be plotted in histogram form.  
The plot might look like Figure 1, where the x-axis spans the range of the difference 
measurement values, and the y-axis spans the range of the number of times each difference 
value was observed ("Delta T").
14 ISA-TR67.04.14-1998



Figure 1  Typical anticipated output of an experimental evaluation of resultant  

uncertainty in "Delta T"

Consider why the evaluation process described was utilized.  The instruments were chosen at 
random to eliminate (1) any slow variability in the manufacturing process that might have 
manifested itself in sensors at the top of the packing box, having a better accuracy than those at 
the bottom of the packing box, and (2) any variability that might have occurred in the production 
of the transmitters.  The random selection will remove any systematic effects that might be 
present.

The plot shown in Figure 1 is an approximation to an uncertainty distribution of the resultant error 
to be associated with the instrument channel output temperature signal.  The engineer can use 
the plot to determine the upper 95 percent probability limit on the indicated temperature by 
finding the value of the temperature difference measurement (indicated temperature minus the 
actual temperature), which is the upper bound on 95 percent of the observed differences (see 
Figure 1).  This theoretical experiment illustrates the principles upon which the MC technique is 
based.

Mean
Value

95%
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Output Signal
Probability
Distribution

Output
Signal
"Delta-T"
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The above experiment is seldom performed in practice, and limited data is used to determine 
accuracy and other statistical characteristics such as drift.  Yet this experimental process can be 
readily duplicated in a computer program with just a few more bits of information.  It should be 
noted that no mention was made in this experiment concerning the uncertainty distributions 
associated with either the sensor or the transmitter.  It was unnecessary because the actual 
instruments used in the experiment had the inherent manufacturing and component uncertainties 
built into their response.  The overall uncertainty distribution associated with the sensor or the 
transmitter might have been Gaussian (also called Normal), Uniform, or Triangular.  It did not 
matter since it was taken care of in the experiment.  On the other hand, when an MC computer 
program or other combination technique is used to simulate this type of experiment, it is critical to 
know and utilize the appropriate uncertainty distribution for each element of the instrument 
channel.

Consider the same evaluation process, assuming that an MC-based computer code simulation 
will be used to determine the uncertainty distribution of the instrument channel output 
temperature signal.  Once this distribution has been established, the resulting upper 95 percent 
limit associated with the distribution can be readily determined.

In the simulation to be performed, the inherent uncertainty associated with the sensor and the 
transmitter, respectively, must be known or estimated (see ISA-dTR67.04.10 Reference).  Let us 
assume that the sensor and the transmitter suppliers have data sheets for their products that list 
a "reference accuracy" value.  Typically, the reference accuracy is assumed to be a two sigma 
value (sigma is the symbol for the standard deviation); i.e., the nominal indicated reading, plus or 
minus this two sigma value, yields a band of indicated temperatures that should encompass the 
true temperature reading 95 percent of the time.  There are actually two assumptions here: the 
first is that the reference accuracy is a two sigma value, and the second is that the associated 
uncertainty distribution is Gaussian.  Given these assumptions, how is the expected output 
response of the sensor and the transmitter simulated so that each resulting uncertainty 
distribution has the correct attributes; i.e., mean, standard deviation, and Gaussian "shape"?

4.1  The simulation of the uncertainty distribution associated with the sensor and the transmitter 
utilizes the following sequence.

Standard uncertainty distributions have an associated mathematical formula relating the 
probability that values in the distribution will lie below a given limit value.  For example, the 
temperature sensor population will yield a range of indicated temperatures for a given, fixed bath 
temperature.  Given a temperature difference between the actual and the indicated temperature 
of say +3°F, the probability that the observed difference is less than +3°F can be found by the 
following formula (where the upper limit “b” would be +3 degrees and the lower limit would be 
zero, and “x” would be a value of the temperature measured).  The formula is called the 
Cumulative Distribution Function (CDF).  The CDF will be different for each uncertainty 
distribution.  For a Gaussian distribution with a mean of "µ" and a standard deviation of "σ", the 
CDF formula is given in Equation 1.

(Eq.1) 
p (x <  b) =   (1 / ((2 )   e -  

(x - )

2
  dx

1

2
2

2 -

 b
π σ µ

σ
) ) ( )

∞∫
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The inverse of this equation can be solved by inputting a value of "p" and solving for the 
corresponding "b" value.  (See the graphical representation of this process in Figure 2.)  In order 
to generate a Gaussian distribution of say 100 "b" values that have the correct mean and 
standard deviation (µ,σ), 100 values of "p" are generated by a random number generator 
subroutine, and the corresponding 100 values of "b" are produced by solving the inverse of 
Equation 1.  The resulting "b" values have the correct mean and standard deviation (µ,σ).  This 
process is completed for the sensor and repeated for the transmitter to generate 100 values of 
the sensor uncertainty indications and 100 values of the transmitter uncertainty indications, 
respectively.
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Figure 2  Cumulative distribution function generation of input variable uncertainty  

distribution simulation data
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NOTE  Using the inverse of the cumulative distribution function to generate the simulation data 
is one way of accomplishing this task.  Other techniques that can be utilized include the following:

a) Using a look up table (see Hald Reference) for the cumulative normal distribution based 
on the standard normal variable

In this approach, the generation of Gaussian uncertainty distribution simulation points 
would involve dividing the range of the distribution into a number of intervals, then 
determining from the table the probability of data points falling within each interval, and, 
finally, using a random number generator to create a uniform distribution of the required 
number of simulation points within each interval.  The final set of simulation points for all 
intervals must then be randomized to assure that each variableso simulated 
approximates the random sample discussed in the previous experiment (see Berté 
Reference).

b) Using an Acceptance - Rejection Method for generating the uncertainty distribution 
simulation points

In this method, the given uncertainty distribution function is used directly by the following 
general procedures.  Simulation points are generated and then tested to determine if they 
"fit" the desired distribution.  If they "fit," they are kept and utilized in the simulation data 
set.  If not, they are eliminated.  (See Rubinstein and Press, et al, References where this 
method is described in detail.)

4.2  The methods listed in 4.1 produce the simulation equivalent of 100 sensor outputs and 
100 transmitter outputs with the specified output uncertainty characteristics.  Next, the simulation 
equivalent for the wiring of the instrument channel circuit must be addressed.  This part is 
modeled by the functional relationship between the sensor and the transmitter.  In this case, the 
output of the sensor is fed into the transmitter.  The output of the transmitter is the resultant 
variable of interest for which we desire the uncertainty distribution.  The functional relationship of 
the sensor and the transmitter signal processing is represented by Equation 2.  Recall that the 
temperatures in Equation 2 are really differences between actual and indicated temperatures. 

T(output) = T(sensor) + T(transmitter) (Eq. 2)

Since 100 sets of sensor signals and 100 sets of simulated transmitter signals are analytically 
summed using Equation 2, a hundred values of "T(output)" are generated.  Figure 3 is a histogram 

illustrating the results obtained, where the "y" axis is the number of times a small range of 
T(output) values occurred in the 100 simulation runs.
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Figure 3  Sensor/Transmitter Delta Temperature (Delta T) histogram from  experimental 

evaluation procedure
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4.3  Once the frequency histogram has been generated, questions concerning probability limits 
can be evaluated.  For example, what is the upper 95 percent probability limit of the instrument 
channel output temperature?  To determine this limit, find the point where the limit would have to 
be in order for the largest 5 data points in the output histogram to fall above the limit.

4.4  Questions about the output uncertainty distribution parameters can also be answered, such 
as the following:

a) What is the mean value of the output distribution?

b) What is the standard deviation of the output distribution?

c) Is the distribution Gaussian?

4.4.1  There are many reasons that this methodology is so useful; such as

a) it can readily handle any type of input variable probability distribution, assuming the 

cumulative distribution function is known;

b) it can readily handle any functional relationship between the input variables and the 
resultant; and

c) the number of samples simulated is only limited by the computer time available, and 
accuracy increases with increasing simulation sample size.

 5  When should MC techniques be used?

Since SRSS combinatorial techniques are widespread in setpoint evaluations and are fairly 
straightforward to apply, the engineer should examine the conditions under which the SRSS 
technique tends to become inaccurate and should use these conditions as markers in 
considering the use of MC as an alternative.

Before discussing these conditions, consider when the SRSS technique should be used.  In the 
ideal case, SRSS should be used when a resultant variable is a function of a linear combination 
of random variables.   SRSS can be used to find the standard deviation associated with the 
resultant, given that the standard deviations of the input variables are known.  If, in addition, each 
input variable is known to have an associated Gaussian probability distribution with a known 
mean and standard deviation, the resultant will also have a Gaussian distribution.  Applying the 
SRSS technique yields the standard deviation of the resultant Gaussian probability distribution.  
The mean value of the resultant distribution is the sum of the input variable mean values.
ISA-TR67.04.14-1998 21



This criterion, as found in ISA-RP67.04, Part II, on the distributions of the input variables and 
their functional relation to the resultant, ideally should be fulfilled for SRSS to be allowed.  In 
actual practice, some relaxation of this criteria is permitted when justifiable approximations are 
carefully made.

The breakdown in these approximations indicates the need for alternate techniques such as the 
MC.  The following examples are the types of decisions made relative to the need to use 
alternate combination techniques:

a) A large number of input variables are summed linearly, and some of the associated 
probability distribution functions are symmetrical but not Gaussian, e.g., if a few variables 
had uniform distributions.  

In this case, the central limit theorem can be applied and the resultant distribution function 
will be approximately Gaussian, assuming that the calculated standard deviation of each 
input variable is utilized.

NOTE  The exception here would be when only two or three non-Gaussian variables 
are summed.  In this case, higher order derivatives of the Taylor Series expansion, from 
which the SRSS technique is derived, would have to be employed or an MC technique 
might be used.

b) The functional relationship between the input variables and the output variable is not 
linear, but the input variables are definitely Gaussian.

In this case, an SRSS with Sensitivities (this would involve the incorporation of the first 
order derivatives in the analytic expression for the resultant standard deviation) might be 
employed.  If a complex functional relationship such as that inherent in a maximizer or a 
minimizer module exists, an MC technique would probably be more appropriate because 
the calculation of higher order derivatives becomes too complex.

c) The functional relationship between the input variables and the resultant is non-linear, 
and the input variables are decidedly non-Gaussian and also non-symmetrical about their 
respective means.  

An example of this might be when the outputs of two square root extractor modules are 
input to a maximizer module.  In this case, the use of an MC technique would definitely be 
indicated.

5.1  Sometimes there are no strict delineation criteria that can be used to definitively indicate the 
appropriate method.  The choice is really up to the analyst.  Considerations to be addressed 
might include the following:

a) How important is the result?  (Is there enough margin to accept an approximate answer?)

b) Does the approximation err in the conservative or unconservative direction?
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c) How difficult is it to do using the higher order derivatives? (How much time and effort is 
appropriate?)

d) Is the MC code readily available, and can it be used correctly?

 6  MC application sequence

The application sequence starts at the functional relationship between the input variables and the 
resultant variable (first step).  This must be known and be capable of translating to analytical form 
for incorporating into the MC computer code being utilized or written.  In some analyses or 
module characterizations, the functional relationship may already exist as a computer code.  The 
second step involves the characterizations of the input variable uncertainty distributions.  For 
input variables having Gaussian probability distributions, only the mean and standard deviation 
are needed.  For Uniform probability distributions, only the mean and the range are needed as 
input.  Typical simulation codes should already have the CDFs* for these distribution types built-
in. For other input variable distribution probability types, the CDF will be required.  The CDF is the 
most general way of characterizing any distribution.  The third step is to decide on the number of 
simulations required.  The number of simulations are affected by the following input and 
functional relationship considerations:

a) The accuracy required in the resultant’s probability distribution

b) The computer time required to propagate the input variables through the functional 
relationship

(Computer time is a consideration when a large computer code is required to characterize 
the relationship.)  The use of a response surface to generate the output variable as a 
function of the input variables is sometimes used when the actual functional relationship 
requires excessive running time on a computer.  The response surface is usually prepared 
to approximate the true output in a very limited region around the nominal output of the 
result.  (See Myers Reference.)

After the accuracy- and runtime-related decisions are made, the simulation software should be 
validated with respect to the functional relationship, as well as to the generation and propagation 
of uncertainties through the functional relationship.  In order to determine if the functional 
relationship incorporated in the code is giving correct results, the nominal values of each 
respective input variable can be propagated through the relationship and the result checked.  It 
should be noted that when input uncertainty distributions are propagated through the functional 
relationship, the nominal or mean value of the resultant distribution may not necessarily have the 
same mean value as when only the nominal values of the input variables are entered.  This can 
be due to the nonlinearities in the functional relationship or the characteristics of the input 
distribution types.

* CDF = Cumulative Distribution Functions
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6.1  Verifying the generation and the propagation of the input uncertainties (if they are assumed 
to be independent) can be readily carried out by substituting a functional relationship that is a 
linear combination of input variables into the code.  The resultant output can then be checked by 
a simple SRSS calculation of the resultant standard deviation.  For dependent input uncertainties 
more complicated testing is required, which should follow the same philosophy of testing under 
the condition that a simply calculable result is expected, and which can be checked against the 
code output, i.e., such as using a correlation coefficient of +1 in the test mode.

Interpreting the obtained simulation result involves the following questions related to both 
simulation and functional uncertainties:

a) How much of the resultant uncertainty is due to the inherent simulation uncertainty?  

This can be solved by running a number of simulation sets; each set will start running at a 
different time.  Normally a random number seed is taken from the computer clock on 
which the MC simulation code is running and is used to generate the complete set of 
random numbers used to drive the simulation data set.  Therefore, the characteristics of 
the resultant random variables in each simulation data set will vary slightly and affect the 
data set specific distribution parameters of the resultant variable probability distribution.  
The examination of the slight differences in the resultant probability distribution between 
the simulation sets is a measure of the inherent simulation uncertainty.

b) How is the uncertainty associated with the use of a response surface accounted for?  

If using a response surface is required, this usage contributes another uncertainty 
component to the final resultant probability distribution.  The magnitude of this error is 
usually an output of the methodology utilized to generate the response surface and 
should be included in the overall simulation process utilized.  One way to incorporate this 
uncertainty is to generate a random variable that is chosen from an uncertainty 
distribution (whose characteristics are the same as the response surface error term).  
This value is added to the resultant output of the response surface at each simulation 
point.

NOTE  This outlined pragmatic approach for verifying the generation and the 
propagation of uncertainties through an algorithm is intended to assist the analyst in 
informal checking of MC software and does not override the use of standard software 
Verification and Validation (V&V) Techniques in applications requiring them.
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 7  Using and interpreting results

The resultant distribution type must be identified before the obtained result is incorporated into a 
setpoint calculation.  If the distribution can be shown to be Gaussian, using the MC analysis 
result is straightforward.  If not, an alternative method must be employed.  For example, the 
question is asked, "What is the 95/95 probability/confidence limit on the resultant obtained?"  
Assuming the resultant probability distribution can be shown to be Gaussian (via the "W" or "D-
Prime tests", see ANSI/N15.15-1974), the number of simulations can be assumed equal to the 
sample size, and the "Xbar + K Sigma" analytical technique can be used to find the 95/95 limits. 
If the resultant is non-Gaussian, a set of simulations can be performed, and the distribution of the 
desired 95 percent probability limit can be obtained.  From this distribution, the 95/95 limits can 
be determined.

 8  Available tools that could potentially be used to perform MC 
analyses

Commercially available general MC software packages include 

a) "Sample" software
Provided by the Energy, Science, and Technology Software Center 
P.O. Box 1020 
Oak Ridge, TN 37831
Phone (615) 576-2606

b) "@Risk" software
Provided by Palisade
31 Decker Road
Newfield, NY  14867
Phone (607) 277-8000

EPRI provides a package of well documented, rigorously tested (nuclear Q/A) software for Monte 
Carlo and for setpoints analysis:

STARS (Statistical Transient Analysis by Response) NP-7558, January 1992

MOONS (Method of Optimizing Nuclear Setpoints) NP-7543, October 1992

PLANETS (Plant Network Simulation) NP-7557, October 1991
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The software is available through

Electric Power Software Center

1930 Hi Line Drive
Dallas, TX 75207

 9  Precautions and limitations

If very “large sets” of generated pseudo random numbers are used in an MC simulation, the 
randomness of these generated number sets may be violated by repetitions.  Quantification of 
the term “large sets” used above is not generically possible since the repetition effect is a function 
of both the generating algorithm used and computer hardware employed.  There are tests that 
can be run to check for this effect (see Rubinstein Reference).
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 Annex B — Applications of the MC technique

B.1  Single module application example

In a typical instrument string used to evaluate core "Delta T," the cold temperature is taken as the 
maximum of the two loop "Tcold" measurements.  Recalling the criteria for assessing when SRSS 
is usable (Gaussian inputs and a linear combination), the maximizer violates the linear 
combination criteria, even though the individual loop "Tcold" values may have an associated 
Gaussian uncertainty distribution.  This would indicate the need for an alternative calculational 
technique to evaluate the resultant maximized "Tcold" uncertainty distribution.  If an MC technique 
is chosen, the following analysis sequence is utilized.  Decide on the number of simulations to be 
utilized.  In this case, the functional relationship is simple, since all that is required is for the 
program to decide which loop temperature, chosen at random from the simulated loop 1 and
loop 2 "Tcold" values, is larger and then to place that value into the resultant bin.

The number of simulations can be 1000 or more since the computer run time will not be 
excessive, and the accuracy of the result at the 95 percent probability level will be assured since 
50 simulation points are expected to fall above the upper 95th percentile of the resultant 
distribution, assuming that 1000 simulation points are used.  The result of this analysis is shown 
in Figure B-1, along with the resultant maximized "Tcold" uncertainty distribution that would have 
been obtained if a simple SRSS calculation had been completed.  Note that the mean of MC 
distribution is shifted (biased) toward the higher values and further, that the standard deviation is 
smaller than that of the SRSS distribution.  Using the resulting bias and the standard deviation (if 
the maximized "Tcold" distribution was Gaussian) in an instrument channel uncertainty calculation 
would then proceed as normal.

B.2  Instrument string application example

The instrument channel example is a little different from the individual module example given 
previously in that the resultant from one module, the sensor, may be fed into the input of the next 
module, the transmitter etc., in the channel.  In this case, it is assumed that the whole channel is 
simulated in the MC analysis.  The Maximizer module is used in this example.   Figure B-2 is a 
schematic drawing of the instrument channel modules for determining core "Delta T," showing 
sensor signal processing.

The input data for these MC calculations is given in Table B-1.
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Table B-1  Input variable data

NOTES

1. It is assumed that the Averager, Maximizer, and Delta-T Calculator modules do not 
contribute additional uncertainties but do affect the overall signal processing uncertainty 
through their functions (as indicated).

2. It is assumed that the Correlation Coefficients have been determined from experimental 
analyses as discussed in ISA-dTR67.04.12 (see Reference).  

The calculation sequence follows the schematic in Figure B-2.  Table B-2 lists the functional 
relationship for each module.

Table B-2  Functional relationships and constraints in each module

The data from Table B-1 was entered into the appropriate equations in Table B-2.  The results of 
the calculations are shown in Table B-3.

Table B-3  Results

If the individual module output signal Distribution Types are Gaussian and the combination of 
uncertainties for the modules in the instrument string is a linear sum, the intermediate calculation 
results can be combined by the SRSS technique with this incorporation.   In this example this is 
not the case, since the bias is the mean value caused by the maximizer in the "Tcold" module; in 
addition the resultant distribution of the maximizer was not Gaussian, as shown in Figure B-1.  If 
any of these conditions required for using SRSS are not met, the simulated output signal 
distribution values of the "upstream" (nearest the signal source) modules must be the input to the 
"downstream" modules.

Variable Name Mean Standard Deviation Correlation Coefficient

Thot
-1 (loop 1) 542.0 1.0 +0.3 (Th1 correlated to Th2)

Thot
-2 (loop 2) 542.0 1.0 +0.3 (Th1 correlated to Th2)

Tcold
-1 (loop 1) 528.0 1.0 +0.7 (Tc1 correlated to Tc2)

Tcold
-2 (loop 2) 528.0 1.0 +0.7 (Tc1 correlated to Tc2)

Module Name Functional Relationship Constraint
Averager Th-Avg.= (Th1 + Th2)(1/2) Th1 and Th2 Correlated
Maximizer Tc-Max. = (Larger value of Tc1 or 

Tc2) Selected and Propagated
Tc1 and Tc2 Correlated

Delta T Calculator (Tcold Max. - Thot Avg.) none

Calculation Mean Standard Deviation Distribution Type
a. Thot Avg. 541.96 0.81 Gaussian

b. Tcold Max. 528.32 0.96 Non-Gaussian

c. Delta T 13.64 1.26 Non-Gaussian
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Figure B-1  Maximizer output signal for SRSS and MC uncertainty combination  
methods
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Figure B-2  Core "Delta T" determination instrument channel schematic
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