The Ideal Dilute Solution 307

Table 14.2

Dependence of azeotropic temperature and
composition on pressure

Pressure/mmHg | Mass % HCI t,/°C

500 20916 97.578
700 20.360 106.424
760 20.222 108.584
800 20.155 110.007

W. D. Bonner, R. E. Wallace, J. Amer. Chem. Soc.
52:1747 (1930).

1410 THE IDEAL DILUTE SOLUTION

The rigid requirement of the ideal solution that every component obey Raoult’s law over
the entire range of composition is relaxed in the definition of the ideal dilute solution. To
arrive at the laws governing dilute solutions, we must examine the experimental behavior
of these solutions. The vapor—pressure curves for three systems are described below.

14.1 0.1 Benzene—Toluene

Figure 14.11 shows the vapor pressure versus mole fraction of benzene for the benzene-
toluene system, which behaves ideally to a good degree of accuracy over the entire range
of composition. The partial pressures of benzene and toluene, also shown in the figure,
are linear functions of the mole fraction of benzene, since Raoult’s law is obeyed.

14.10.2 Acetone—Carbon Disulfide

Figure 14.12(a) shows the partial-pressure curves and the total vapor pressure of mixtures
of carbon disulfide and acetone. In this system the individual partial-pressure curves fall
well above the Raoult’s law predictions indicated by the dashed lines. The system ex-
hibits positive deviations from Raoult’s law. The total vapor pressure exhibits a maximum
that lies above the vapor pressure of either component.
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Figure 14.12 Vapor pressure in the acetone—carbon disulfide system (35.17 °C).
[J. v. Zawidski, Z. physik Chem., 35:129 (1900).]

Figure 14.12(b) displays another interesting feature of this system. In this figure
only the partial pressure of carbon disulfide is shown; in the region near Xs, = 1, when
CS, is the solvent, the partial-pressure curve is tangent to the Raoult’s law line. However,
in the region near Xcs, = 0, when CS, is the solute present in low concentration, the
partial-pressure curve is linear.

Pcs, = Kcs, Xcs,» (14.14)

where K s, is a constant. The slope of the line in this region is different from the Raoult’s
law slope. The solute obeys Henry’s law, Eq. (14.14), where K ¢g, is the Henry’s law constant.
Inspection of the partial-pressure curve of the acetone discloses the same type of behavior:

p— o —_— .
Dacetone — Xacelonepacetone near Xacetone - 1’

pacelone = KacetoneXacetone near Xacewne = O

Note that if the solution were ideal, then K would equal p° and both Henry’s law and
Raoult’s law would convey the same information,

14.10.3 Acetone—Chloroform

In the acetone-chloroform system shown in Fig. 14.13, the vapor pressure curves fall
below the Raoult’s law predictions. This system exhibits negative deviations from Raoult’s
law. The total vapor pressure has a minimum value that lies below the vapor pressure of
either of the pure components. The Henry’s law lines, the fine dashed lines in the figure,
also lie below the Raoult’s law lines for this system.

Algebraically, we can express the properties of the ideal dilute solution by the following
equations:

Solvent (Raoult’s law): P1 = X1P%, (14.15)
Solutes (Henry’s law): p; = K;x;, (14.16)
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where the subscript j denotes any of the solutes, and the subscript 1 denotes the solvent.
All real solutions approach the behavior described by Egs. (14.15) and (14.16), provided
that the solution is sufficiently dilute. The same is true if several solutes are present, but
the solution must be dilute in all solutes; each solute has a different value of K ;.

1411 THE CHEMICAL POTENTIALS IN THE IDEAL DILUTE SOLUTION

Since the solvent follows Raoult’s law, the chemical potential of the solvent is given by
Eq. (14.3), repeated here for easy comparison:

uy = pi(T, p) + RT 1n x;.

For the solutes we require, as usual, equality of the chemical potential in the liquid,
p(1), with that in the gas phase, u(g):

#i) = ni@) = pj® + RTInp,.
Using Henry’s law, Eq. (14.16), for p;, this becomes
i) = 1j(g) + RTInK; + RTIn x;
We define a standard free energy, u¥(1), by
ui) = pj(@) + RTIn K; (14.17)

where u¥ is a function of temperature and pressure but not of composition. The final
expression for y; in the liquid is

4 = pu¥f + RT In x; (14.18)
According to Eq. (14.18), u¥ is the chemical potential the solute j would have in the

hypothetical state in which x; = 1 if Henry’s law were obeyed over the entire range,
0<x;<1
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The concept of the ideal dilute solution is extended to include nonvolatile solutes by
requiring that the chemical potential of such solutes also have the form given by Eq.
(14.18).

The mole fractions, x;, often are not convenient measures for the concentration of
solutes in dilute solution. Molalities, m;, and molarities, c;, are more commonly used.
We can use Eq. (14.18) to obtain expressions for the chemical potential in terms of m; or c;.
To do this we must write x; in terms of m; or c;.

By definition, x; = n;/(n + Z; n;), where n is the number of moles of solvent. Also by
definition, the molality of j is the number of moles of j per unit mass (1 kg) of solvent.
Thus, if M is the molar mass (kg/mol) of the solvent, we have

n.
m; = W or n; = nMmj. (14.19)
Using this result for n;in the expression for x;, we obtain
f= 14.20
ST M ’ (14.20)

where m = X; m;, the total molality of all the solutes. In dilute solution as m approaches
zero, we have

so that near m = 0,
(14.21)

This can be written in the form
x; = Mm<ﬂ) (14.22)
m

where m® is the standard molal concentration, m® = 1 mol/kg. This value for x; may be
used in Eq. (14.18), which becomes

;= ¥ + RTInMm° + RTIn (-:—1’1)

Defining p¥* = p¥ + RT In Mm?®, this becomes
uj = pf* + RT Inm; (14.23)

in which we understand m; as an abbreviation for the pure number, m;/(1 mol/kg).
Equation (14.23) expresses the u;in a dilute solution as a convenient function of m;. The
standard value, u}*, is the value u; would have in the hypothetical state of unit molality
if the solution had the properties of the ideal dilute solution in the entire range,0 < m; < 1.

To express u; in terms of ¢;, we first establish the relation between m; and ¢;, the

concentration in SI units, mol/m3. By definition

n nMm;

¢ =—J=

A A 7

If p, is the density of the solution, then V = w/p,, where the mass of the solution,
w=nM + Z;n;M; = nM + Z;nMm;M ;. Thus

nM
= <1 + m'ij)
J

Ps

J

|4
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and
5 PsM;
¢; = .
ST Y S mM, (14.24)
j
As all the m; approach zero we have
. ¢; . p
lim —’—) = lim ——=>——=p,
mj=0<mj mj=0 1 -+ Z mJMJ
J
where p is the density of the pure solvent. Thus, in dilute solution,
& =pm or m= % (14.25)
Rewriting to introduce the dimensionless ratios, Eq. (14.25) becomes
m-@) o meas(®)
m®  pm° \C m®  pm°\c
since ¢;/Co = c;/c°. Putting this value of m;/m° in Eq. (14.23) yields
W=+ RT1n< ¢ > +RTIn <L,
pm c
This can be written 7
pj=p + RTIng;, (14.26)

in which we understand c; as an abbreviation for the pure number, ¢;/(1 mol/L). In Eq.
(14.26) we have set

u? = p* + RTIn ( c ) (14.27)
pm
Equation (14.26) relates u; in dilute solution to c;, the concentration in mol/L. It
is not as commonly used as Eq. (14.23); ujD is the chemical potential the solute would have
at a concentration of 1 mol/L if the solution behaved ideally up to that concentration.
The difference between uP and pf* is not very large. Since ¢® = 1 mol/L, the cor-
responding value of ¢° = 10:{ mol/m>. Also, m® = 1 mol/kg, and for water at 25 °C,
p = 997.044 kg/m?>. Then

& 10® mol/m3
pm°  (997.044 kg/m>)(1 mol/kg)
The second term in Eq. (14.27) becomes (8.314 J/K mol)(298.15 K) In (1.002965) =

7.339 J/mol. In most cases, this is less than the uncertainties in the experimental values so
that the difference between the m;and c; standard states can be ignored.

= 1.002965.

1412 HENRY'S LAW AND THE SOLUBILITY OF GASES

Henry’s law, Eq. (14.16), relates the partial pressure of the solute in the vapor phase to the
mole fraction of the solute in the solution. Viewing the relation in another way, Henry’s
law relates the equilibrium mole fraction, the solubility of j in the solution, to the partial
pressure of j in the vapor:

X = p;. : (14.28)
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Equation (14.28) states that the solubility x; of a volatile constituent is proportional
to the partial pressure of that constituent in the gaseous phase in equilibrium with the
liquid. Equation (14.28) is used to correlate the data on solubility of gases in liquids.
If the solvent and gas do not react chemically, the solubility of gases in liquids is usually
small and the condition of diluteness is fulfilled. Here we have another example of the
physical significance of the partial pressure.

The solubility of gases is often expressed as the Bunsen absorption coefficient, «,
which is the volume of gas, measured at 0 °C and 1 atm, dissolved by unit volume of solvent
if the partial pressure of the gasis 1 atm.

_Vi@®
%= s (14.29)

but V5(g) = njRTy/po, while the volume of the solvent is V(I) = nM/p, where n is the
number of moles of solvent, M its molar mass, and p, the density. Thus
o, = iR To/Po, (14.30)

nM/p

When the partial pressure of the gas, p; = p® = 1 atm, the solubility by Henry’s law is x7,

n‘?_l

o _ J

x5 = =
J o
n+nj Kj

If the solution is dilute, nj < n and we have

ot (14.31)
Using this value of nj/n in Eq. (14.30) brings it to
RTO p 3 p
K. =[—1l—]= (0 — 14.32
%K < o )( M> ‘(0 022414 m*/mol) -, (14.32)

which is the relation between the Henry’s law constant K; and the Bunsen absorption
coeflicient a;; knowing one, we can calculate the other. The solubility of the gas in moles
per unit volume of solvent, nj/(nM/p),is directly proportional to a;, Eq. (14.30); this makes
o; more convenient than K ; for the discussion of solubility.

Some values of o for various gases in water are given in Table 14.3. Note the increase
in a with increase in boiling point of the gas.

Table 14.3
Bunsen absorption coefficients
in water at 25°C

Gas t,/°C o

Helium —268.9 0.0087
Hydrogen —252.8 0.0175
Nitrogen —195.8 0.0143
Oxygen —182.96 0.0283
Methane —161.5 0.0300
Ethane —88.3 0.0410
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14.13 DISTRIBUTION OF A SOLUTE BETWEEN TWO SOLVENTS

If a dilute solution of iodine in water is shaken with carbon tetrachloride, the iodine is
distributed between the two immiscible solvents. If u and u’ are the chemical potentials
of iodine in water and carbon tetrachloride, respectively, then at equilibrium p = y'.
If both solutions are ideal dilute solutions, then, choosing Eq. (14.18) to express ¢ and
the equilibrium condition becomes u* + RT Inx = p'* + RT In x’, which can be
rearranged to

’

RT ln% — —(u* — p). (14.33)

Since both u'* and u* are independent of composition, it follows that

’

*_k (14.34)
X

where K, the distribution coefficient or partition coefficient, is independent of the con-
centration of iodine in the two layers. The quantity y'* — u* is the standard Gibbs energy
change AG* for the transformation
I, in H,0) —— I, (in CCl,).

Equation (14.33) becomes ‘

RTIn K = —AG*, (14.35)
which is the usual relation between the standard Gibbs energy change and the equilibrium
constant of a chemical reaction.

If the solutions are quite dilute, then the mole fractions are proportional to the
molalities or the molarities; so we have

! /

k=" and K" =%

<, (14.36)
m C

where K’ and K" are independent of the concentrations in the two layers. Equation (14.36)
was originally proposed by W. Nernst and is called the Nernst distribution law.

14.14 CHEMICAL EQUILIBRIUM IN THE IDEAL SOLUTION

In Section 11.7 it was shown that the condition of chemical equilibrium is

(Z vi,ui) = 0, (14.37)

the v; being the stoichiometric coefficients. To apply this condition to chemical equilibrium
in the ideal solution, we simply insert the proper form of the y; from Eq. (14.3). This yields
directly

Yvitf + RT Y In () = 0,

which can be written in the usual way
AG°= —RTIn K, (14.38)

where AG® is the standard Gibbs energy change for the reaction, and K is the equilibrium



