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Preface 

Accelerating economic, technological, social, and environmental change challenge 
managers and policy makers to learn at increasing rates, while at the same time the 
complexity of the systems in which we live is growing. Many of the problems we 
now face arise as unanticipated side effects of our own past actions. All too often 
the policies we implement to solve important problems fail, make the problem 
worse, or create new problems. 

Effective decision making and learning in a world of growing dynamic com- 
plexity requires us to become systems thinkers-to expand the boundaries of our 
mental models and develop tools to understand how the structure of complex sys- 
tems creates their behavior. 

This book introduces you to system dynamics modeling for the analysis of pol- 
icy and strategy, with a focus on business and public policy applications. System 
dynamics is a perspective and set of conceptual tools that enable us to understand 
the structure and dynamics of complex systems. System dynamics is also a rigor- 
ous modeling method that enables us to build formal computer simulations of com- 
plex systems and use them to design more effective policies and organizations. 
Together, these tools allow us to create management flight simulators-micro- 
worlds where space and time can be compressed and slowed so we can experience 
the long-term side effects of decisions, speed learning, develop our understanding 
of complex systems, and design structures and strategies for greater success. 

The field of system dynamics is thriving. Over the past decade, many top com- 
panies, consulting firms, and governmental organizations have used system dy- 
namics to address critical issues. More innovative universities and business 
schools are teaching system dynamics and finding enthusiastic and growing en- 
rollments. Hundreds of primary and secondary schools, from kindergarten to high 
school, are integrating systems thinking, system dynamics, and computer simula- 
tion into their curricula. Tools and methods for system dynamics modeling, the li- 
brary of successful applications, and insights into the effective use of the tools with 
executives and organizations are all expanding rapidly. 

vii 



viii Preface 

FEATURES AND CONTENT 
University and graduate-level texts, particularly those focused on business and 
public policy applications, have not kept pace with the growth of the field. This 
book is designed to provide thorough coverage of the field of system dynamics to- 
day, by examining 

Systems thinking and the system dynamics worldview; 
Tools for systems thinking, including methods to elicit and map the 
structure of complex systems and relate those structures to their dynamics; 
Tools for modeling and simulation of complex systems; 
Procedures for testing and improving models; 
Guidelines for working with client teams and successful implementation. 

You will learn about the dynamics of complex systems, including the structures 
that create growth, goal-seeking behavior, oscillation and instability, S-shaped 
growth, overshoot and collapse, path dependence, and other nonlinear dynamics. 
Examples and applications include 

Corporate growth and stagnation, 
The diffusion of new technologies, 
The dynamics of infectious disease such as HIV/AIDS, 
Business cycles, 
Speculative bubbles, 
The use and reliability of forecasts, 
The design of supply chains in business and other organizations, 
Service quality management, 
Transportation policy and traffic congestion, 
Project management and product development, 

and many others. 
The goal of systems thinking and system dynamics modeling is to improve our 

understanding of the ways in which an organization’s performance is related to its 
internal structure and operating policies, including those of customers, competi- 
tors, and suppliers and then to use that understanding to design high leverage poli- 
cies for success. To do so this book utilizes 

Process Points that provide practical advice for the successful application 
of the tools in real organizations. 
Case studies of System Dynamics in Action that present successful 
applications ranging from global warming and the war on drugs to 
reengineering the supply chain of a major computer firm, marketing 
strategy in the automobile industry, and process improvement in the 
petrochemicals industry. 

System dynamics is not a spectator sport. Developing systems thinking and mod- 
eling skills requires the active participation of you, the reader, via 
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Challenges. The challenges, placed throughout the text, give you practice 
with the tools and techniques presented in the book and will stimulate your 
original thinking about important real world issues. The challenges range 
from simple thought experiments to full-scale modeling projects. 
Simulation software and models. The accompanying CD-ROM and web 
site (http://www.mhhe.com/sterman) include all the models developed in 
the text along with state-of-the-art simulation software to run them. There 
are several excellent software packages designed to support system 
dynamics modeling. These include ithink, Powersim, and Vensim. The CD 
and website include the models for the text in all three software formats. 
The disk also includes fully functional versions of the ithink, Powersim, and 
Vensim software so you can run the models using any of these packages 
without having to purchase any additional software. 
Additionally, the Instructor’s Manual and instructor’s section of the 
web site include suggested solutions for the challenges, additional 
assignments, Powerpoint files with the diagrams and figures from the text 
suitable for transparencies, suggested course sequences and syllabi, and 
other materials. 

INTENDED AUDIENCE 
The book can be used as a text in courses on systems thinking, simulation model- 
ing, complexity, strategic thinking, operations, and industrial engineering, among 
others. It can be used in full or half-semester courses, executive education, and 
self-study. The book also serves as a reference for managers, engineers, consul- 
tants, and others interested in developing their systems thinking skills or using sys- 
tem dynamics in their organizations. 

A NOTE ON MATHEMATICS 
System dynamics is grounded in control theory and the modern theory of nonlin- 
ear dynamics. There is an elegant and rigorous mathematical foundation for the 
theory and models we develop. System dynamics is also designed to be a practical 
tool that policy makers can use to help them solve the pressing problems they con- 
front in their organizations. Most managers have not studied nonlinear differential 
equations or even calculus, or have forgotten it if they did. To be useful, system dy- 
namics modeling must be accessible to the widest range of students and practicing 
managers without becoming a vague set of qualitative tools and unreliable gener- 
alizations. That tension is compounded by the diversity of backgrounds within the 
community of managers, students, and scholars interested in system dynamics, 
backgrounds ranging from people with no mathematics education beyond high 
school to those with doctorates in physics. 
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IF YOU DON’T HAVE A STRONG MATHEMATICS BACKGROUND, 
FEAR NOT 

This book presents system dynamics with a minimum of mathematical formalism. 
The goal is to develop your intuition and conceptual understanding, without sacri- 
ficing the rigor of the scientific method. You do not need calculus or differential 
equations to understand the material. Indeed, the concepts are presented using only 
text, graphs, and basic algebra. Mathematical details and references to more ad- 
vanced material are set aside in separate sections and footnotes. Higher mathemat- 
ics, though useful, is not as important as the critical thinking skills developed here. 

IF YOU HAVE A STRONG MATHEMATICS BACKGROUND, FEAR NOT 
Realistic and useful models are almost always of such complexity and nonlinearity 
that there are no known analytic solutions, and many of the mathematical tools you 
have studied have limited applicability. This book will help you use your strong 
technical background to develop your intuition and conceptual understanding of 
complexity and dynamics. Modeling human behavior differs from modeling phy s- 
ical systems in engineering and the sciences. We cannot put managers up on the lab 
bench and run experiments to determine their transfer function or frequency re- 
sponse. We believe all electrons follow the same laws of physics, but we cannot 
assume all people behave in the same way. Besides a solid grounding in the mathe- 
matics of dynamic systems, modeling human systems requires us to develop our 
knowledge of psychology, decision malung, and organizational behavior. Finally, 
mathematical analysis, while necessary, is far from sufficient for successful sys- 
tems thinlung and modeling. For your work to have impact in the real world you 
must learn how to develop and implement models of human behavior in organiza- 
tions, with all their ambiguity, time pressure, personalities, and politics. Through- 
out the book I have sought to illustrate how the technical tools and mathematical 
concepts you may have studied in the sciences or engineering can be applied to the 
messy world of the policy maker. 

~ 

FEEDBACK 
I welcome your comments, criticisms, and suggestions. Suggestions for additional 
examples, cases, theory, models, flight simulators, and so on, to make the book 
more relevant and useful to you are especially invited. I will update the website 
to incorporate user feedback and new materials. Email comments to <BusDyn@ 
mit .edu > . 
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Learning in and about 
Complex Systems 

Experience is an expensive school. 
-Benjamin Franklin 

Experience is something you get just after you need it. 
-Anonymous 

1 .I INTRODUCTION 
The greatest constant of modern times is change. Accelerating changes in tech- 
nology, population, and economic activity are transforming our world, from the 
prosaic-the effect of information technology on the way we use the telephone- 
to the profound-the effect of greenhouse gases on the global climate. Some of the 
changes are wonderful; others defile the planet, impoverish the human spirit, and 
threaten our survival. All challenge traditional institutions, practices, and beliefs. 
Most important, most of the changes we now struggle to comprehend arise as 
consequences, intended and unintended, of humanity itself. All too often, well- 
intentioned efforts to solve pressing problems lead to policy resistance, where our 
policies are delayed, diluted, or defeated by the unforeseen reactions of other 
people or of nature. Many times our best efforts to solve a problem actually make 
it worse. 

The dizzying effects of accelerating change are not new. Henry Adams, a 
perceptive observer of the great changes wrought by the industrial revolution, 
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4 Part I Perspective and Process 

formulated the Law of Acceleration to describe the exponential growth of tech- 
nology, production, and population that made the legacy of colonial America he 
inherited irrelevant: 

Since 1800, scores of new forces had been discovered; old forces had been raised 
to higher powers . . . Complexity had extended itself on immense horizons, 
and arithmetical ratios were useless for any attempt at accuracy. 

If science were to go on doubling or quadrupling its complexities every 
10 years, even mathematics should soon succumb. An average mind had suc- 
cumbed already in 1850; it could no longer understand the problem in 1900. 
(Adams 1918, pp. 490,496) 

Adams believed the radical changes in society induced by these forces “would 
require a new social mind.” With uncharacteristic, and perhaps ironic, optimism, 
he concluded, “Thus far, since 5 or 10 thousand years, the mind had successfully 
reacted, and nothing yet proved that it would fail to react-but it would need 
to jump.” 

A steady stream of philosophers, scientists, and management gurus have since 
echoed Adams, lamenting the acceleration and calling for similar leaps to funda- 
mental new ways of thinking and acting. Many advocate the development of sys- 
tems thinking-the ability to see the world as a complex system, in which we 
understand that “you can’t just do one thing” and that “everything is connected to 
everything else.” If people had a holistic worldview, it is argued, they would then 
act in consonance with the long-term best interests of the system as a whole, iden- 
tify the high leverage points in systems, and avoid policy resistance. Indeed, for 
some, the development of systems thinking is crucial for the survival of humanity. 

The challenge facing us all is how to move from generalizations about accel- 
erating learning and systems thinking to tools and processes that help us under- 
stand complexity, design better operating policies, and guide change in systems 
from the smallest business to the planet as a whole. However, learning about com- 
plex systems when you also live in them is difficult. We are all passengers on an 
aircraft we must not only fly but redesign in flight. 

System dynamics is a method to enhance learning in complex systems. Just as 
an airline uses flight simulators to help pilots learn, system dynamics is, partly, a 
method for developing management flight simulators, often computer simulation 
models, to help us learn about dynamic complexity, understand the sources of pol- 
icy resistance, and design more effective policies. 

But learning about complex dynamic systems requires more than technical 
tools to create mathematical models. System dynamics is fundamentally interdis- 
ciplinary. Because we are concerned with the behavior of complex systems, system 

‘There are many schools of systems thinking (for surveys, see Richardson 1991 and Lane 
1994). Some emphasize qualitative methods; others stress formal modeling. As sources of method 
and metaphor they draw on fields as diverse as anthropology, biology. engineering, linguistics, psy- 
chology, physics, and Taoism and seek applications in fields still more diverse. All agree, however, 
that a systems view of the world is still rare. Jay Forrester developed system dynamics in the 1950s 
at MIT. Richardson (1991) traces the history of the field and relates system dynamics to other sys- 
tems approaches. 
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dynamics is grounded in the theory of nonlinear dynamics and feedback control 
developed in mathematics, physics, and engineering. Because we apply these tools 
to the behavior of human as well as physical and technical systems, system 
dynamics draws on cognitive and social psychology, economics, and other social 
sciences. Because we build system dynamics models to solve important real world 
problems, we must learn how to work effectively with groups of busy policy 
makers and how to catalyze sustained change in organizations. 

This chapter discusses the skills required to develop your systems thinking ca- 
pabilities, how to create an effective learning process in dynamically complex sys- 
tems, and how to use system dynamics in organizations to address important 
problems. I first review what we know about how people learn in and about com- 
plex dynamic systems. Such learning is difficult and rare because a variety of 
structural impediments thwart the feedback processes required for learning to oc- 
cur. Successful approaches to learning about complex dynamic systems require 
(1) tools to elicit and represent the mental models we hold about the nature of dif- 
ficult problems; (2) formal models and simulation methods to test and improve our 
mental models, design new policies, and practice new skills; and (3) methods to 
sharpen scientific reasoning skills, improve group processes, and overcome defen- 
sive routines for individuals and teams. 

1 .I .I Policy Resistance, the Law of Unintended 
Consequences, and the Counterintuitive 
Behavior of Social Systems 

And it will fall out as in a complication of diseases, that by applying a 
remedy to one sore, you will provoke another; and that which removes the 
one ill symptom produces others . . . 

-Sir Thomas More 

The best-laid schemes o’ mice an ’men/ Gang a@ a-gley. 
-Robert Burns 

Anything that can go wrong will go wrong. 
--“Murphy” 

We have met the enemy and he is us. 
-Pogo 

From Thomas More in 15 16 to Pogo in the mid 20th century it has long been ac- 
knowledged that people seeking to solve a problem often make it worse. Our poli- 
cies may create unanticipated side effects. Our attempts to stabilize the system may 
destabilize it. Our decisions may provoke reactions by others seehng to restore the 
balance we upset. Forrester (1971a) calls such phenomena the “counterintuitive 
behavior of social systems.” These unexpected dynamics often lead to policy re- 
sistance, the tendency for interventions to be delayed, diluted, or defeated by the 
response of the system to the intervention itself (Meadows 1982). 
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FIGURE 1-1 
Policy resistance: 
Romanian birth 
rates 

The crude birth 
rate in Romania 
showing the effect 
of restricting abor- 
tion beginning in 
1966 

1971 1994 
Statistical Yearbook 1995, 

As an example, consider the birth rate in Romania in the late 1960s. The crude 
birth rate (births per year per 1000 people) was extremely low-about 15 per 
thousand (Figure 1- 1). For various reasons, including national pride and ethnic 
identity, the low birth rate was considered to be a grave problem by the govern- 
ment, including the dictator Nicolau CeausesCu. The Ceausesp regime responded 
by imposing policies designed to stimulate the birth rate. Importation of contra- 
ceptive devices was outlawed; propaganda campaigns extolling the virtues of large 
families and the patriotic (matriotic would be more accurate) duty to have more 
children were introduced, along with some modest tax incentives for larger fami- 
lies. Perhaps most important, abortion-freely available on demand since 1957 
through the state health care system-was banned in October 1966 (David and 
Wright 197 1). 

The result was immediate and dramatic. The birth rate rose sharply to nearly 
40 per 1000 per year, rivaling those of the fastest growing nations. The policy ap- 
peared to be a sensational success. However, within months the birth rate began to 
fall. By the end of 1970, only 4 years after the policy was implemented, the birth 
rate had dropped below 20 per thousand, close to the low levels seen prior to the 
intervention. Though the policy continued in force, the birth rate continued to fall, 
reaching 16 per thousand by 1989-about the same low rate that led to the impo- 
sition of the policy. What happened? 

The system responded to the intervention in ways the regime did not antici- 
pate. The people of Romania found ways around the policy. They practiced alter- 
native methods of birth control. They smuggled contraceptive pills and devices in 
from other countries. Desperate women sought and found back-alley abortions. 
Many of these were unsanitary or botched, leading to a near tripling of deaths due 
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to complications of abortion from 1965 to 1967. Most horribly, the number of 
neonatal deaths rose by more than 300% between 1966 and 1967, a 20% increase 
in the infant mortality rate (David and Wright 1971). The result: the policy was 
rendered completely ineffective almost immediately after implementation. 

But the unanticipated consequences didn’t end with the failure of the popu- 
lation policy. The people of Romania, among the poorest in Europe, were having 
small families because they couldn’t afford larger ones. Child care was unavail- 
able for some. Many others lived with their extended families in small, crowded 
apartments. Jobs were scarce; income was low. Many people gave children they 
couldn’t support to state-run orphanages. The government’s policy didn’t prevent 
the people of Romania from controlling their own fertility, but it did breed intense 
resentment against the intrusive policies of the regime. In 1989, when the Berlin 
wall fell and the totalitarian regimes of Eastern Europe toppled, Romania was the 
only nation where the velvet revolution was violent. The hated Ceausesp and his 
equally hated wife were summarily executed by firing squad. Their bloody bodies 
were left in the courtyard of the presidential palace while the scene was broadcast 
on national television. The law banning abortion was the first overturned by the 
new government. The birth rate, already low, fell further. By the mid 1990s, the 
population of Romania was actually declining as births dropped below deaths. 

The children of Romania suffered the most from the population policy. During 
the years of the population policy thousands of children were placed in the care of 
state orphanages, where they were kept like animals in cribs (cages, really) with- 
out attention to basic needs, much less the love that all of us need and deserve. 
Food was so scarce that blood transfusions were routinely given as nutritional sup- 
plements. Because needles were used repeatedly, an epidemic of AIDS spread 
rapidly among the children. The side effects of the failed population policy cast a 
shadow on the health and happiness of an entire nation, a shadow stretching over 
generations. 

Policy resistance is not limited to dictators. It doesn’t respect national borders, 
political ideology, or historical epoch. Consider the US government’s fight against 
inflation in the early 1970s. Figure 1-2 shows the Consumer Price Index (CPI) for 
the United States between 1968 and 1976. In the early 1970s inflation had acceler- 
ated and the Nixon administration felt action had to be taken. Though a Republi- 
can, Nixon chose to implement wage and price controls. The policy was expensive: 
A new federal bureaucracy, the Council on Wage and Price Stability, was created 
to oversee the controls and enforce compliance. Wage and price controls were 
viewed by many in Nixon’s own party as verging on socialism, costing Nixon 
valuable political capital. At first, the policy seemed to work, although imperfectly. 
During so-called Phase I of the controls, the rate of inflation fell by about half. The 
administration decided the controls could be relaxed. In Phase 11, President Ford 
(who inherited the program from Nixon) launched a jawboning campaign, com- 
plete with campaign-style buttons labeled “WIN!” for “Whip Inflation Now!”. 
Few observers expected WIN! buttons to have any effect, and most felt inflation 
would return to its rate prior to the start of controls. Instead, inflation actually ac- 
celerated until, by 1975, the CPI had returned to the trajectory it was on prior to the 
imposition of the price controls. Less than 4 years after the intervention there was 
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FIGURE 1-2 
The US Consumer Price Index (CPI) showing the Nixon/Ford wage and price 
controls 

Policy resistance in the fight against inflation 
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no residue of benefit. Other examples of policy resistance can be found nearly 
every day in the newspaper. Table 1-1 lists a few.’ 

Machiavelli, a keen observer of human systems, discussed policy resistance at 
length, observing in the Discourses that 

When a problem arises either from within a republic or outside it, one brought 
about either by internal or external reasons, one that has become so great that it 
begins to make everyone afraid, the safest policy is to delay dealing with it rather 
than trying to do away with it, because those who try to do away with it almost 
always increase its strength and accelerate the harm which they feared might come 
from it. (Machiavelli 1979, pp. 240-241). 

I find Machiavelli’s view too cynical but can sympathize with his frustration in ob- 
serving his client princes (the CEOs of Renaissance Italy) take actions that only 
made their problems worse. A more reflective view is offered by the late biologist 
and essayist Lewis Thomas (1974, p. 90): 

When you are confronted by any complex social system, such as an urban center or 
a hamster, with things about it that you’re dissatisfied with and anxious to fix, you 
cannot just step in and set about fixing with much hope of helping. This realization 
is one of the sore discouragements of our century . . . You cannot meddle with one 
part of a complex system from the outside without the almost certain risk of setting 
off disastrous events that you hadn’t counted on in other, remote parts. If you want 
to fix something you are first obliged to understand. . . the whole system. . . 
Intervening is a way of causing trouble. 

2Further reading: John McPhee (1989) offers a wonderful description of policy resistance in the 
relationship of people with nature. McPhee brilliantly describes the unanticipated side effects and 
policy resistance arising from attempts to defeat three elemental forces of nature: volcanism, flood, 
and fire. Edward Tenner (1996) also identifies many examples of policy resistance. 
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“Use of Cheaper Drugs Pushes Costs Up, Not Down, Study Finds: Limiting 
what is prescribed, as managed-care systems do, has unintended effect of 
increasing costs, results show” (Headline in LA Times, 3/20/96, p. 1, report- 
ing Univ. of Utah study of 13,000 patients in various HMOs). 

soil out of cultivation for a decade to combat erosion and help the environ- 
ment, is a waste of money, so says a new study of the 11-year-old 
program . . . For every eroding acre a farmer idles, another farmer-or 
sometimes the same one-simply plows up nearly as much additional 
erosion-prone land . . . In the Great Plains, for instance, farmers set aside 
17 million acres, yet the total cultivated land dropped by only 2 million acres” 
(Business Week, 3/18/96, p. 6, reporting a Univ. of Minnesota study). 
Low tar and nicotine cigarettes actually increase intake of carcinogens, CO, 
etc. as smokers compensate for the low nicotine content by smoking more 
cigarettes per day, by taking longer, more frequent drags, and by holding the 
smoke in their lungs longer. 
Antilock brakes and other automotive safety devices cause some people to 
drive more aggressively, offsetting some of their benefits. 
Information technology has not enabled the “paperless off ice”-paper con- 
sumption per capita is up. 
Road building programs designed to reduce congestion have increased traf- 
fic, delays, and pollution. 
Despite widespread use of labor-saving appliances, Americans have less 
leisure today than 50 years ago. 
The US government’s war on drugs, focusing on interdiction and supply dis- 
ruption (particularly cocaine production in South America), with a cost in the 
billions, has had only a small impact on cocaine cultivation, production, or 
smuggling. Drug use in America and elsewhere remains high. 
The US policy of fire suppression has increased the size and severity of 
forest fires. Rather than frequent, small fires, fire suppression leads to the 
accumulation of dead wood and other fuels leading to larger, hotter, and 
more dangerous fires, often consuming the oldest and largest trees which 
previously survived smaller fires unharmed. 
Flood control efforts such as levee and dam construction have led to more 
severe floods by preventing the natural dissipation of excess water in flood 
plains. The cost of flood damage has increased as the flood plains were de- 
veloped by people who believed they were safe. 
Imposing 200-mile territorial limits and quotas to protect fish stocks did 
not prevent the collapse of the Georges Bank fishery off the coast of North 
America. Once the world’s richest, by the mid 1990s many species were 
commercially extinct, the fishery was shut down, the fleets were idled, 
and the local economies were in depression. 
Deregulation of the US Savings and Loan industry, designed to save the 
industry from financial problems, led to a wave of speculation followed by 
collapse, at a cost to taxpayers in the hundreds of billions of dollars. 
Antibiotics have stimulated the evolution of drug-resistant pathogens, 
including virulent strains of TB, strep, staph, and sexually transmitted 
diseases. 

and weeds, killed off natural predators, and accumulated up the food chain 
to poison fish, birds, and possibly humans. 

TABLE 1-1 
Examples Of policy 
resistance 

“Washington’s biggest conservation program, which pays farmers to take 

Pesticides and herbicides have stimulated the evolution of resistant pests 
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FIGURE 1-3 
Event-oriented 
view of the world 

But how can one come to understand the whole system? How does policy resis- 
tance arise? How can we learn to avoid it, to find the high leverage policies that 
can produce sustainable benefit? 

1 .I .2 Causes of Policy Resistance 
One cause of policy resistance is our tendency to interpret experience as a series of 
events, for example, “inventory is too high,” or “sales fell this month.” Accounts 
of who did what to whom are the most common mode of discourse, from the mail- 
room to the boardroom, from headlines to history books. We are taught from an 
early age that every event has a cause, which in turn is an effect of some still ear- 
lier cause: “Inventory is too high because sales unexpectedly fell. Sales fell be- 
cause the competitors lowered their price. The competitors lowered their price 
because. . .,’ Such event-level explanations can be extended indefinitely, in an un- 
broken Aristotelian chain of causes and effects, until we arrive at some First Cause, 
or more likely, lose interest along the way. 

The event-oriented worldview leads to an event-oriented approach to problem 
solving. Figure 1-3 shows how we often try to solve problems. We assess the state 
of affairs and compare it to our goals. The gap between the situation we desire and 
the situation we perceive defines our problem. For example, suppose sales of your 
organization were $80 million last quarter, but your sales goal was $100 million. 
The problem is that sales are 20% less than you desired. You then consider various 
options to correct the problem. You might cut prices to stimulate demand and in- 
crease market share, replace the vice president of sales with someone more ag- 
gressive, or take other actions. You select the option you deem best and implement 
it, leading (you hope) to a better result. You might observe your sales increase: 
problem solved. Or so it seems. 

The system reacts to your solution: As your sales rise, competitors cut prices, 
and sales fall again. Yesterday’s solution becomes today’s problem. We are not 
puppet masters influencing a system out there-we are embedded in the system. 
The puppet master’s movements respond to the position of the marionette on the 
strings. There is feedback The results of our actions define the situation we face in 
the future. The new situation alters our assessment of the problem and the deci- 
sions we take tomorrow (see the top of Figure 1-4). 

Policy resistance arises because we often do not understand the full range of 
feedbacks operating in the system (Figure 1-4). As our actions alter the state of the 
system, other people react to restore the balance we have upset. Our actions may 
also trigger side effects. 

Goals 

\ 
Problem -b Decision -b Results 

7 
Situation 



Chapter 1 Learning in and about Complex Systems 11 

FIGURE 1-4 
The feedback view 

We frequently talk about side effects as if they were a feature of reality. Not so. 
In reality, there are no side effects, there are just effects. When we take action, there 
are various effects. The effects we thought of in advance, or were beneficial, we 
call the main, or intended effects. The effects we didn’t anticipate, the effects 
which fed back to undercut our policy, the effects which harmed the system-these 
are the ones we claim to be side effects. Side effects are not a feature of reality but 
a sign that our understanding of the system is narrow and flawed. 

Unanticipated side effects arise because we too often act as if cause and effect 
were always closely linked in time and space. But in complex systems such as an 
urban center or a hamster (or a business, society, or ecosystem) cause and effect are 
often distant in time and space. Narrow model boundaries often lead to beliefs that 
violate the laws of physics: in the mid 1990s California and the automobile indus- 
try debated the introduction of so-called zero emission vehicles (ZEVs) to reduce 
air pollution. True, the ZEVs-electric cars-would have no tailpipe. But the 
power plants required to make the electricity to run them do generate pollution. In 
reality, California was promoting the adoption of DEVs-displaced emission ve- 
hicles-cars whose wastes would blow downwind to other states or accumulate in 
nuclear waste dumps outside its borders. Electric cars may turn out to be an envi- 
ronmental boon compared to internal combustion. The technology is improving 
rapidly, and air pollution is a major health problem in many cities. But no mode of 

/ Decisions 

J 
Environment 

Our decisions alter our environment, leading to new decisions, 

Environment 

Goals<( Other 

Agents LAct;t;;sof 
but also triggering side effects, delayed reactions, changes 
in goals and interventions by others. These feedbacks may 

lead to unanticipated results and ineffective policies. 
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transport or energy conversion process is free of environmental impact, and no 
legislature can repeal the second law of  thermodynamic^.^ 

To avoid policy resistance and find high leverage policies requires us to ex- 
pand the boundaries of our mental models so that we become aware of and under- 
stand the implications of the feedbacks created by the decisions we make. That is, 
we must learn about the structure and dynamics of the increasingly complex sys- 
tems in which we are embedded. 

1 .I -3 Feedback 
Much of the art of system dynamics modeling is discovering and representing the 
feedback processes, which, along with stock and flow structures, time delays, and 
nonlinearities, determine the dynamics of a system. You might imagine that there 
is an immense range of different feedback processes and other structures to be 
mastered before one can understand the dynamics of complex systems. In fact, the 
most complex behaviors usually arise from the interactions (feedbacks) among the 
components of the system, not from the complexity of the components themselves. 

All dynamics arise from the interaction of just two types of feedback loops, 
positive (or self-reinforcing) and negative (or self-correcting) loops (Figure 1-5). 
Positive loops tend to reinforce or amplify whatever is happening in the system: 
The more nuclear weapons NATO deployed during the Cold War, the more the So- 
viet Union built, leading NATO to build still more. If a firm lowers its price to gain 
market share, its competitors may respond in kind, forcing the firm to lower its 
price still more. The larger the installed base of Microsoft software and Intel ma- 
chines, the more attractive the “Wintel” architecture became as developers sought 
the largest market for their software and customers sought systems compatible 
with the most software; the more Wintel computers sold, the larger the installed 
base. These positive loops are all processes that generate their own growth, lead- 
ing to arms races, price wars, and the phenomenal growth of Microsoft and Intel, 
respectively. 

Negative loops counteract and oppose change. The less nicotine in a cigarette, 
the more smokers must consume to get the dose they need. The more attractive a 
neighborhood or city, the greater the inmigration from surrounding areas will be, 
increasing unemployment, housing prices, crowding in the schools, and traffic 
congestion until it is no more attractive than other places people might live. The 
higher the price of a commodity, the lower the demand and the greater the pro- 
duction, leading to inventory accumulation and pressure for lower prices to elimi- 
nate the excess stock. The larger the market share of dominant firms, the more 
likely is government antitrust action to limit their monopoly power. These loops 
all describe processes that tend to be self-limiting, processes that seek balance and 
equilibrium. 

3Even scientists suffer from these problems. I once heard a distinguished physicist argue that the 
solution to the energy problem was to build hundreds of huge offshore nuclear power stations, to be 
cooled by seawater. The warm wastewater would be pumped back in the ocean where, he said, 
“The waste heat would disappear.” Out of sight, out of mind. 
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FIGURE 1-5 
Positive and negative feedback loops 

Positive feedback: Positive loops are self-reinforcing. 
In this case, more chickens lay more eggs, which hatch 
and add to the chicken population, leading to still more 
eggs, and so on. A Causal Loop Diagram or CLD (chap- 
ter 5) captures the feedback dependency of chickens 
and eggs. The arrows indicate the causal relationships. 
The + signs at the arrowheads indicate that the effect is 
positively related to the cause: an increase in the 
chicken population causes the number of eggs laid each 
day to rise above what it would have been (and vice 
versa: a decrease in the chicken population causes egg 
laying to fall below what it would have been). The loop is 
self-reinforcing, hence the loop polarity identifier R. If 
this loop were the only one operating, the chicken and 
egg population would both grow exponentially. 
Of course, no real quantity can grow forever. There must 
be limits to growth. These limits are created by negative 
feedback. 

Negative feedback: Negative loops are self-correcting. 
They counteract change. As the chicken population 
grows, various negative loops will act to balance the 
chicken population with its carrying capacity. One clas- 
sic feedback is shown here: The more chickens, the 
more road crossings they will attempt. If there is any 
traffic, more road crossings will lead to fewer chickens 
(hence the negative - polarity for the link from road 
crossings to chickens). An increase in the chicken popu- 
lation causes more risky road crossings, which then 
bring the chicken population back down. The B in the 
center of a loop denotes a balancing feedback. If the 
road-crossing loop was the only one operating (say be- 
cause the farmer sells all the eggs), the number of 
chickens would gradually decline until none remained. 
All systems, no matter how complex, consist of net- 
works of positive and negative feedbacks, and all 
dynamics arise from the interaction of these loops 
with one another. 
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1 .I .4 Process Point: The Meaning of Feedback 
In common parlance the term “feedback” has come to serve as a euphemism for 
criticizing others, as in “the boss gave me feedback on my presentation.” This use 
of feedback is not what we mean in system dynamics. Further, “positive feedback” 
does not mean “praise” and “negative feedback” does not mean “criticism.” Posi- 
tive feedback denotes a self-reinforcing process, and negative feedback denotes a 
self-correcting one. Either type of loop can be good or bad, depending on which 
way it is operating and of course on your values. Reserve the terms positive and 
negative feedback for self-reinforcing and self-correcting processes, and avoid de- 
scribing the criticism you give or receive to others as feedback. Telling someone 
your opinion does not constitute feedback unless they act on your suggestions and 
thus lead you to revise your view. 

Though there are only two types of feedback loop, models may easily contain 
thousands of loops, of both types, coupled to one another with multiple time de- 
lays, nonlinearities, and accumulations. The dynamics of all systems arise from the 
interactions of these networks of feedbacks. Intuition may enable us to infer the 
dynamics of isolated loops such as those shown in Figure 1-5. But when multiple 
loops interact, it is not so easy to determine what the dynamics will be. Before con- 
tinuing, try the challenge shown in Figure 1-6. When intuition fails, we usually 
turn to computer simulation to deduce the behavior of our models. 

1.2 LEARNING Is A FEEDBACK PROCESS 
Just as dynamics arise from feedback, so too all learning depends on feedback. We 
make decisions that alter the real world; we gather information feedback about the 
real world, and using the new information we revise our understanding of the 
world and the decisions we make to bring our perception of the state of the system 
closer to our goals (Figure 1-7). 

The feedback loop in Figure 1-7 appears in many guises throughout the social 
sciences. George Richardson (1991), in his history of feedback concepts in the 
social sciences, shows how beginning in the 1940s leading thinkers in economics, 
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FIGURE 1-7 
Learning is a 
feedback process. 
Feedback from the 
real world to the 
decision maker 
includes all forms 
of information, 
both quantitative 
and qualitative. 

psychology, sociology, anthropology, and other fields recognized that the con- 
cept of feedback developed in physics and engineering applied not only to servo- 
mechanisms but to human decision making and social settings as well. By 1961, 
Forrester, in Industrial Dynamics, asserted that all decisions (including learning) 
take place in the context of feedback loops. Later, the psychologist Powers (1973, 
p. 351) wrote: 

Feedback is such an all-pervasive and fundamental aspect of behavior that it is as 
invisible as the air that we breathe. Quite literally it is behavior-we know nothing 
of our own behavior but the feedback effects of our own outputs. 

These feedback thinkers followed in the footsteps of John Dewey, who recognized 
the feedback loop character of learning around the beginning of the 20th century 
when he described learning as an iterative cycle of invention, observation, reflec- 
tion, and action (Schon 1992). Feedback accounts of behavior and learning have 
now permeated most of the social and management sciences. Learning as an ex- 
plicit feedback process has even appeared in practical management tools such as 
Total Quality Management, where the so-called Shewhart-Deming PDCA cycle 
(Plan-Do-Check-Act) lies at the heart of the improvement process in the quality 
improvement literature (Shewhart 1939; Shiba, Graham, and Walden 1993). 

The single feedback loop shown in Figure 1-7 describes the most basic type of 
learning. The loop is a classical negative feedback whereby decision makers com- 
pare information about the state of the real world to various goals, perceive dis- 
crepancies between desired and actual states, and take actions that (they believe) 
will cause the real world to move towards the desired state. Even if the initial 
choices of the decision makers do not close the gaps between desired and actual 
states, the system might eventually reach the desired state as subsequent decisions 
are revised in light of the information received (see Hogarth 1981). When driving, 
I may turn the steering wheel too little to bring the car back to the center of my 
lane, but as visual feedback reveals the error, I continue to turn the wheel until the 
car returns to the straight and narrow. If the current price for products of my firm 
is too low to balance orders with production, depleted inventories and long deliv- 
ery delays may cause me to gradually raise price until I discover a price that clears 
the market.4 

I t 
Information Decisions 

uFeedback 
4Depending on the time delays and other elements of dynamic complexity in the system, these 

examples may not converge. It takes but little ice, fog, fatigue, or alcohol to cause an accident, and 
equilibrium eludes many industries that experience chronic business cycles. 
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FIGURE 1-8 
Single-loop 
learning: 
information 
feedback is 
interpreted by 
existing mental 
models. 
The learning 
feedback operates 
in the context of 
existing decision 
rules, strategies, 
culture, and 
institutions which 
in turn are derived 
from our mental 
models. 

The feedback loop shown in Figure 1-7 obscures an important aspect of the 
learning process. Information feedback about the real world is not the only input 
to our decisions. Decisions are the result of applying a decision rule or policy to 
information about the world as we perceive it (see Forrester 1961, 1992). The poli- 
cies are themselves conditioned by institutional structures, organizational strate- 
gies, and cultural norms. These, in turn, are governed by our mental models 
(Figure 1-8). As long as the mental models remain unchanged, the feedback loop 
shown in the figure represents what Argyris (1985) calls single-loop learning, a 
process whereby we learn to reach our current goals in the context of our existing 
mental models. Single-loop learning does not result in deep change to our mental 
models-our understanding of the causal structure of the system, the boundary we 
draw around the system, the time horizon we consider relevant-nor our goals and 
values. Single-loop learning does not alter our worldview. 

Mental models are widely discussed in psychology and philosophy. Different 
theorists describe mental models as collections of routines or standard operating 
procedures, scripts for selecting possible actions, cognitive maps of a domain, ty- 
pologies for categorizing experience, logical structures for the interpretation of 
language, or attributions about individuals we encounter in daily life (Axelrod 
1976; Bower and Morrow 1990; Cheng and Nisbett 1985; Doyle and Ford 1998; 
Gentner and Stevens 1983; Halford 1993; Johnson-Laird 1983; Schank and Abel- 
son 1977; Vennix 1990). The concept of the mental model has been central to sys- 
tem dynamics from the beginning of the field. Forrester (1961) stresses that all 
decisions are based on models, usually mental models. In system dynamics, the 
term “mental model” includes our beliefs about the networks of causes and effects 
that describe how a system operates, along with the boundary of the model (which 
variables are included and which are excluded) and the time horizon we consider 
relevant-ur framing or articulation of a problem. 

Most of us do not appreciate the ubiquity and invisibility of mental models, 
instead believing naively that our senses reveal the world as it is. On the contrary, 
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FIGURE 1-9 
Kanizsa triangle 
Do you see the 
bright white 
triangle lying on 
top of the three 
dark circles and a 
second triangle? 

our world is actively constructed (modeled) by our senses and brain. Figure 1-9 
shows an image developed by psychologist Gaetano Kanizsa. The vast majority of 
people see a bright white triangle resting on top of three circles and a second tri- 
angle with black edges. The illusion is extremely powerful (try to look at the fig- 
ure and “not see” the two triangles!). Research shows that the neural structures 
responsible for the ability to see illusory contours such as the white triangle exist 
between the optic nerve and the areas of the brain responsible for processing visual 
inf~rmation.~ Active modeling occurs well before sensory information reaches the 
areas of the brain responsible for conscious thought.6 Powerful evolutionary pres- 
sures are responsible: Our survival depends so completely on the ability to rapidly 
interpret our environment that we (and other species) long ago evolved structures 
to build these models automatically. Usually we are completely unaware these 
mental models even exist. It is only when a construction such as the Kanizsa tri- 
angle reveals the illusion that we become aware of our mental models. 

The Kanizsa triangle illustrates the necessity of active and unconscious mental 
modeling or construction of “reality” at the level of visual perception. Modeling of 
higher-level knowledge is likewise unavoidable and often equally unconscious. 
Figure 1-10 shows a mental model elicited during a meeting between my colleague 
Fred Kofman and a team from a large global corporation. The company worked 
with the Organizational Learning Center at MIT in the early 1990s to reduce 
the total cycle time for their supply chain. At that time the cycle time was 182 days 
and they sought to cut it in half. The company viewed reductions in cycle time as 
essential for continued competitiveness and even corporate survival. With the 

G 
%ee Science, 256, (12 June 1992), pp. 1520-1521. 
6Even more obviously, our ability to see a three-dimensional world is the result of extensive 

modeling by the visual processing system, since the retina images a planar projection of the visual 
field. 
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FIGURE 1-10 
Mental model 
revealed by 
a diagram of a 
company’s 
supply chain 

The figure has 
been simplified 
compared to the 
actual chart to 
protect company- 
confidential 
information but is 
drawn to scale. 
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Current supply chain cycle time, 182 days; 
goal, 50% reduction. 

Manufacturing 
Lead Time 

Order Fulfillment 
Lead Time 

Customer 
Acceptance 
Lead Time 

support of senior management, they assembled a team to address these issues. 
At the first meeting the team presented background information, including 
Figure 1-10. 

The figure shows the current cycle time divided into three intervals along a 
line: manufacturing lead time, order fulfillment lead time, and customer accep- 
tance lead time. Order fulfillment, which then required 22 days, occupies more 
than half of the total length of the line, while the manufacturing lead time, then re- 
quiring 75 days (70 days due to suppliers), receives about one-fourth of the length. 
Customer acceptance, then requiring 85 days, occupies only about one-eighth of 
the total length. What the figure reveals is the prominence of order fulfillment op- 
erations in the mental models of the people on the team and the insignificance in 
their minds of suppliers and customers. It will come as no surprise that the mem- 
bers of the team all worked in functions contributing to order fulfillment. There 
was not a single person at the meeting representing procurement, nor a single sup- 
plier representative, nor anyone from accounting, nor a single customer. Until Fred 
pointed out this distortion, the members of the group were as unaware of the illu- 
sory character of their image of the supply line as we normally are of the illusory 
contours our brains project onto the data transmitted by our optic nerves. The dis- 
torted mental model of the supply chain significantly constrained the company’s 
ability to reduce cycle time: Even if order fulfillment could be accomplished in- 
stantly the organization would fall well short of its goal. 

The type of reframing stimulated by Fred’s intervention, denoted double-loop 
learning by Argyris (1985), is illustrated in Figure 1 - 11. Here information feed- 
back about the real world not only alters our decisions within the context of exist- 
ing frames and decision rules but also feeds back to alter our mental models. As 
our mental models change we change the structure of our systems, creating differ- 
ent decision rules and new strategies. The same information, processed and inter- 
preted by a different decision rule, now yields a different decision. Altering the 
structure of our systems then alters their patterns of behavior. The development of 
systems thinking is a double-loop learning process in which we replace a reduc- 
tionist, narrow, short-run, static view of the world with a holistic, broad, long-term, 
dynamic view and then redesign our policies and institutions accordingly. 
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FIGURE 1-11 
Double-loop 
learning 
Feedback from the 
real world can also 
stimulate changes 
in mental models. 
Such learning 
involves new 
understanding 
or reframing of 
a situation and 
leads to new goids 
and new decision 
rules, not just 
new decisions. 
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1.3 BARRIERS TO LEARNING 
For learning to occur each link in the two feedback loops shown in Figure 1-11 
must work effectively and we must be able to cycle around the loops quickly 
relative to the rate at which changes in the real world render existing knowledge 
obsolete. Yet in the real world, particularly the world of social action, these feed- 
backs often do not operate well. More than two and a half centuries elapsed from 
the first experiments showing that lemon juice could prevent and cure scurvy until 
citrus use was mandated in the British merchant marine (Table 1-2). Learning in 
this case was terribly slow, despite the enormous importance of the problem and 

TABLE 1-2 
Teaching scurvy 
dogs new tricks 
Total delay 
in learning: 
264 years. 

rn 

rn 

rn 

Prior to the 16OOs, scurvy (vitamin C deficiency) was the greatest killer of 
seafarers-more than battle deaths, storms, accidents, and all others 
combined. 
1601 : Lancaster conducts a controlled experiment during an East India 
Company voyage: 
The crew on one ship received 3 tsp. of lemon juice daily; the crew on three 
other ships did not. 
Results: At the Cape of Good Hope 11 0 out of 278 sailors had died, most 
from scurvy. The crew receiving lemon juice remained largely healthy. 
1747: Dr. James Lind conducts a controlled experiment in which scurvy 
patients were treated with a variety of elixirs. Those receiving citrus were 
cured in a few days; none of the other treatments worked. 
1795: The British Royal Navy begins using citrus on a regular basis. Scurvy 
wiped out. 
1865: The British Board of Trade mandates citrus use. Scurvy wiped out in 
the merchant marine. 

~~ 

Source: Mosteller (1981). 
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FIGURE 1-12 
Impediments 
to learning 

the decisive evidence supplied by controlled experiments throughout the years. 
You may reply that today we are much smarter and learn faster. Perhaps. Yet the 
rate of corporate and organizational failure remains high (for example, over one- 
third of the Fortune 500 largest industrial firms in 1970 had disappeared by 1983 
[de Geus 19971). Today the rate of change in our systems is much faster, and their 
complexity is much greater. The delays in learning for many pressing problems 
remain woefully long. In most settings we lack the ability to run experiments, 
and the delays between interventions and outcomes are much longer. As the 
rate of change accelerates throughout society, learning remains slow, uneven, and 
inadequate. 

Figure 1-12 shows the main ways in which each link in the learning feedbacks 
can fail. These include dynamic complexity, imperfect information about the state 
of the real world, confounding and ambiguous variables, poor scientific reasoning 
skills, defensive routines, and other barriers to effective group processes, imple- 
mentation failure, and the misperceptions of feedback that hinder our ability to un- 
derstand the structure and dynamics of complex systems. 

Mental Models 
Misperceptions of feedback 
Unscientific reasoning 
Judgmental biases 
Defensive routines 



Chapter 1 Learning in and about Complex Systems 21 

1.3.1 Dynamic Complexity 
Much of the literature in psychology, economics, and other fields suggests learn- 
ing proceeds via the simple negative feedback loops described in Figure 1- 11. Im- 
plicitly, the loops are seen as swift, linear, negative feedbacks that produce stable 
convergence to an equilibrium or optimal outcome, just as immediate visual feed- 
back allows you to fill a glass of water without spilling. The real world is not so 
simple. From the beginning, system dynamics emphasized the multiloop, multi- 
state, nonlinear character of the feedback systems in which we live (Forrester 
1961). The decisions of any one agent form but one of many feedback loops that 
operate in any given system. These loops react to the decision maker’s actions in 
ways both anticipated and unanticipated; there may be positive as well as negative 
feedback loops, and these loops will contain many stocks (state variables) and 
many nonlinearities. Natural and human systems have high levels of dynamic com- 
plexity. Table 1-3 shows some of the characteristics of systems that give rise to 
dynamic complexity. 

Most people think of complexity in terms of the number of components in a 
system or the number of combinations one must consider in making a decision. 
The problem of optimally scheduling an airline’s flights and crews is highly com- 
plex, but the complexity lies in finding the best solution out of an astronomical 
number of possibilities. Such needle-in-a-haystack problems have high levels of 
combinatorial complexity (also known as detail complexity). Dynamic complex- 
ity, in contrast, can arise even in simple systems with low combinatorial complex- 
ity. The Beer Distribution Game (Sterman 1989b, chap. 17.4) provides an example: 
Complex and dysfunctional behavior arises from a very simple system whose rules 
can be explained in 15 minutes. Dynamic complexity arises from the interactions 
among the agents over time. 

Time delays between taking a decision and its effects on the state of the system 
are common and particularly troublesome. Most obviously, delays reduce the num- 
ber of times one can cycle around the learning loop, slowing the ability to accu- 
mulate experience, test hypotheses, and improve. Schneiderman (1988) estimated 
the improvement half life-the time required to cut defects in half-in a wide 
range of manufacturing firms. He found improvement half lives as short as a few 
months for processes with short delays, for example reducing operator error in a 
job shop, while complex processes with long time delays such as product develop- 
ment had improvement half lives of several years or more.7 

Dynamic complexity not only slows the learning loop; it also reduces the 
learning gained on each cycle. In many cases controlled experiments are prohibi- 
tively costly or unethical. More often, it is simply impossible to conduct controlled 
experiments. Complex systems are in disequilibrium and evolve. Many actions 
yield irreversible consequences. The past cannot be compared well to current cir- 
cumstance. The existence of multiple interacting feedbacks means it is difficult to 
hold other aspects of the system constant to isolate the effect of the variable of 
interest. Many variables change simultaneously, confounding the interpretation 

7Sterman, Repenning, and Kofman (1997) show how these differential improvement rates led to 
difficulty at a leading semiconductor manufacturer. 
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TABLE 1-3 
Dynamic 
complexity 

Dynamic complexity arises because systems are 

Dynamic: Heraclitus said, “All is change.” What appears to be unchanging is, over a 
longer time horizon, seen to vary. Change in systems occurs at many time scales, 
and these different scales sometimes interact. A star evolves over billions of years as 
it burns its hydrogen fuel, then can explode as a supernova in seconds. Bull markets 
can go on for years, then crash in a matter of hours. 
Tightly coupled: The actors in the system interact strongly with one another and 
with the natural world. Everything is connected to everything else. As a famous 
bumper sticker from the 1960s proclaimed, “You can’t do just one thing.” 
Governed by feedback: Because of the tight couplings among actors, our actions 
feed back on themselves. Our decisions alter the state of the world, causing changes 
in nature and triggering others to act, thus giving rise to a new situation which then 
influences our next decisions. Dynamics arise from these feedbacks. 
Nonlinear: Effect is rarely proportional to cause, and what happens locally in a sys- I 
tem (near the current operating point) often does not apply in distant regions (other 
states of the system). Nonlinearity often arises from the basic physics of systems: In- 
sufficient inventory may cause you to boost production, but production can never fall 
below zero no matter how much excess inventory you have. Nonlinearity also arises 
as multiple factors interact in decision making: Pressure from the boss for greater 
achievement increases your motivation and effort-up to the point where you per- 
ceive the goal to be impossible. Frustration then dominates motivation and you give 
up or get a new boss. 
History-dependent: Taking one road often precludes taking others and determines 
where you end up (path dependence). Many actions are irreversible: You can’t un- 
scramble an egg (the second law of thermodynamics). Stocks and flows (accumu- 
lations) and long time delays often mean doing and undoing have fundamentally 
different time constants: During the 50 years of the Cold War arms race the nuclear 
nations generated more than 250 tons of weapons-grade plutonium (239Pu). The half 
life of 239Pu is about 24,000 years. 

structure. Often, small, random perturbations are amplified and molded by the feed- 
back structure, generating patterns in space and time and creating path dependence. 
The pattern of stripes on a zebra, the rhythmic contraction of your heart, the persis- 
tent cycles in the real estate market, and structures such as sea shells and markets 
all emerge spontaneously from the feedbacks among the agents and elements of the 
system. 

change over time. Evolution leads to selection and proliferation of some agents while 
others become extinct. Adaptation also occurs as people learn from experience, es- 
pecially as they learn new ways to achieve their goals in the face of obstacles. Learn- 
ing is not always beneficial, however. 
Counterintuitive: In complex systems cause and effect are distant in time and space 
while we tend to look for causes near the events we seek to explain. Our attention is 
drawn to the symptoms of difficulty rather than the underlying cause. High leverage 
policies are often not obvious. 

whelms our ability to understand them. The result: Many seemingly obvious solutions 
to problems fail or actually worsen the situation. 
Characterized by trade-offs: Time delays in feedback channels mean the long-run 
response of a system to an intervention is often different from its short-run response. 
High leverage policies often cause worse-before-better behavior, while low leverage 
policies often generate transitory improvement before the problem grows worse. 

Self-organizing: The dynamics of systems arise spontaneously from their internal 

Adaptive: The capabilities and decision rules of the agents in complex systems 

Policy resistant: The complexity of the systems in which we are embedded over- 
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of system behavior and reducing the effectiveness of each cycle around the learn- 
ing loop. 

Delays also create instability in dynamic systems. Adding time delays to 
negative feedback loops increases the tendency for the system to oscillate.8 Sys- 
tems from driving a car, to drinking alcohol, to raising hogs, to construction of 
office buildings all involve time delays between the initiation of a control action 
(acceleratinghraking, deciding to “have another,” choosing to breed more hogs, 
developing a new building) and its effects on the state of the system. As a result, 
decision makers often continue to intervene to correct apparent discrepancies 
between the desired and actual state of the system even after sufficient corrective 
actions have been taken to restore the system to equilibrium. The result is over- 
shoot and oscillation: stop-and-go traffic, drunkenness, commodity cycles, and real 
estate boom-and-bust cycles (see chapter 17.4). Oscillation and instability reduce 
our ability to control for confounding variables and discern cause and effect, fur- 
ther slowing the rate of learning. 

1.3.2 Limited Information 
We experience the real world through filters. No one knows the current sales rate 
of their company, the current rate of production, or the true value of the order back- 
log at any given time. Instead we receive estimates of these data based on sampled, 
averaged, and delayed measurements. The act of measurement introduces distor- 
tions, delays, biases, errors, and other imperfections, some known, others unknown 
and unknowable. 

Above all, measurement is an act of selection. Our senses and information sys- 
tems select but a tiny fraction of possible experience. Some of the selection is hard- 
wired (we cannot see in the infrared or hear ultrasound). Some results from our 
own decisions. We define gross domestic product (GDP) so that extraction of non- 
renewable resources counts as production rather than depletion of natural capital 
stocks and so that medical care and funeral expenses caused by pollution-induced 
disease add to the GDP while the production of the pollution itself does not reduce 
it. Because the prices of most goods in our economic system do not include the 
costs of resource depletion or environmental degradation, these externalities re- 
ceive little weight in decision making (see Cobb and Daly 1989 for thoughtful dis- 
cussion of alternative measures of economic welfare). 

Of course, the information systems governing the feedback we receive can 
change as we learn. They are part of the feedback structure of our systems. 
Through our mental models we define constructs such as GDP or scientific re- 
search, create metrics for these ideas, and design information systems to evaluate 
and report them. These then condition the perceptions we form. Changes in our 
mental models are constrained by what we previously chose to define, measure, 

8Technically, negative loops with no time delays are first-order; the eigenvalue of the linearized 
system can only be real and oscillation is impossible. Adding delays (state variables) allows the 
eigenvalues to become complex conjugates, yielding oscillatory solutions. Whether the oscillations 
of the linearized system are damped or expanding depends on the parameters. All else equal, the 
more phase lag in a control loop, the less stable the system will be. 
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and attend to. Seeing is believing and believing is seeing. They feed back on one 
another. 

In a famous experiment, Bruner and Postman (1949) showed playing cards to 
people using a tachistoscope to control exposure time to the stimuli. Most could 
identify the cards rapidly and accurately. They also included some anomalous 
cards, such as a black three of hearts or a red ten of spades. People took on average 
four times as long to judge the anomalous cards. Many misidentified them 
(e.g., they said three of spades or three of hearts when shown a black three of 
hearts). Some could not identify the card at all, even with very long exposure 
times, and grew anxious and confused. Only a small minority correctly identified 
the cards. Bruner and Postman concluded, “Perceptual organization is powerfully 
determined by expectations built upon past commerce with the environment.” 
Henri Bergson put it more succinctly: “The eye sees only what the mind is pre- 
pared to comprehend.” 

The self-reinforcing feedback between expectations and perceptions has been 
repeatedly demonstrated in a wide variety of experimental studies (see Plous 1993 
for excellent discussion). Sometimes the positive feedback assists learning by 
sharpening our ability to perceive features of the environment, as when an experi- 
enced naturalist identifies a bird in a distant bush where the novice birder sees only 
a tangled thicket. Often, however, the mutual feedback of expectations and per- 
ception limits learning by blinding us to the anomalies that might challenge our 
mental models. Thomas Kuhn (1970) cited the Bruner-Postman study to argue that 
a scientific paradigm suppresses the perception of data inconsistent with the para- 
digm, makmg it hard for scientists to perceive anomalies that might lead to scien- 
tific revol~t ion.~  

As one of many examples, the history of ozone depletion by chlorofluoro- 
carbons (CFCs) shows the mutual dependence of expectation and perception is no 
laboratory artifact but a phenomenon with potentially grave consequences for 
humanity. 

The first scientific papers describing the ability of CFCs to destroy atmos- 
pheric ozone were published in 1974 (Molina and Rowland 1974; Stolarski and 
Cicerone 1974). Yet much of the scientific community remained skeptical, and 
despite a ban on CFCs as aerosol propellants, global production of CFCs remained 
near its all time high. It was not until 1985 that evidence of a deep ozone hole in 
the Antarctic was published (Farman, Gardiner, and Shanklin 1985). As described 
by Meadows, Meadows, and Randers (1992, pp. 151-152): 

The news reverberated around the scientific world. Scientists a t  [NASA] . . . scram- 
bled to  check readings on atmospheric ozone made by the Nimbus 7 satellite, mea- 
surements that had been taken routinely since 1978. Nimbus 7 had never indicated 
an ozone hole. 

9Sterman (1985a) developed a formal model of Kuhn’s theory, which showed that the positive 
feedback between expectations and perceptions suppressed the recognition of anomalies and the 
emergence of new paradigms. Sterman and Wittenberg (1999) extended the model to simulate 
the competition among rival theories. 
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Checking back, NASA scientists found that their computers had been pro- 
grammed to reject very low ozone readings on the assumption that such low 
readings must indicate instrument error. 

The NASA scientists’ belief that low ozone readings must be erroneous led them 
to design a measurement system that made it impossible to detect low readings that 
might have shown their belief to be wrong. Fortunately, NASA had saved the orig- 
inal, unfiltered data and later confirmed that ozone concentrations had indeed been 
falling since the launch of Nimbus 7. Because NASA created a measurement sys- 
tem immune to disconfirmation the discovery of the ozone hole and resulting 
global agreements to cease CFC production were delayed by as much as 7 years. 
Those 7 years could be significant: ozone levels in Antarctica dropped to less than 
one-third of normal in 1993, and current models show that even with full compli- 
ance with the ban (there is a thriving black market in CFCs), atmospheric chlorine 
will not begin to fall until the first decade of the 21st century, and then only slowly. 
Data collected near Toronto in the early 1990s showed a 5 %  increase in cancer- 
causing UV-B ultraviolet radiation at ground level, indicating that ozone depletion 
already affects the heavily populated and agriculturally vital northern hemisphere 
(Culotta and Koshland 1993). The thinning of the ozone layer is a global phenom- 
enon, not just a problem for penguins. 

1.3.3 Confounding Variables and Ambiguity 
To learn we must use the limited and imperfect information available to us to un- 
derstand the effects of our own decisions, so we can adjust our decisions to align 
the state of the system with our goals (single-loop learning) and so we can revise 
our mental models and redesign the system itself (double-loop learning). Yet much 
of the information we receive is ambiguous. Ambiguity arises because changes in 
the state of the system resulting from our own decisions are confounded with si- 
multaneous changes in a host of other variables. The number of variables that 
might affect the system vastly overwhelms the data available to rule out alternative 
theories and competing interpretations. This identification problem plagues both 
qualitative and quantitative approaches. In the qualitative realm, ambiguity arises 
from the ability of language to support multiple meanings. In the opening solilo- 
quy of Richard ZZZ, the hump-backed Richard laments his deformity: 

And therefore, since I cannot prove a lover 
To entertain these fair well-spoken days, 
I am determinbd to prove a villain 
And hate the idle pleasures of these days. 

(I, i, 28-31) 

Does Richard celebrate his free choice to be evil or resign himself to a predestined 
fate? Did Shakespeare intend the double meaning? Rich, ambiguous texts, with 
multiple layers of meaning often make for beautiful and profound art, along with 
employment for literary critics, but also make it hard to know the minds of others, 
rule out competing hypotheses, and evaluate the impact of our past actions so we 
can decide how to act in the future. 
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In the quantitative realm, engineers and econometricians have long struggled 
with the problem of uniquely identifying the structure and parameters of a system 
from its observed behavior. Elegant and sophisticated theory exists to delimit the 
conditions in which one can identify a system from its behavior alone. In practice 
the data are too scarce and the plausible alternative specifications are too numer- 
ous for statistical methods to discriminate among competing theories. The same 
data often support wildly divergent models equally well, and conclusions based on 
such models are not robust. As Learner (1983) put it in an article entitled “Let’s 
Take the ‘Con’ Out of Econometrics”: 

In order to draw inferences from data as described by econometric texts, it is neces- 
sary to make whimsical assumptions . . . The haphazard way we individually and 
collectively study the fragility of inferences leaves most of us unconvinced that any 
inference is believable.’O 

1.3.4 Bounded Rationality and the Misperceptions 
of Feedback 

Dynamic complexity and limited information reduce the potential for learning and 
performance by limiting our knowledge of the real world. But how wisely do we 
use the knowledge we do have? Do we process the information we do get in the 
best way and make the best decisions we can? Unfortunately, the answer is no. 

Humans are not only rational beings, coolly weighing the possibilities and 
judging the probabilities. Emotions, reflex, unconscious motivations, and other 
nonrational or irrational factors all play a large role in our judgments and behavior. 
But even when we find the time to reflect and deliberate we cannot behave in a 
fully rational manner (that is, make the best decisions possible given the informa- 
tion available to us). As marvelous as the human mind is, the complexity of the real 
world dwarfs our cognitive capabilities. Herbert Simon has best articulated the 
limits on human decision-making ability in his famous “principle of bounded ra- 
tionality,” for which he won the Nobel Memorial Prize in economics in 1979: 

The capacity of the human mind for formulating and solving complex problems is 
very small compared with the size of the problem whose solution is required for ob- 
jectively rational behavior in the real world or even for a reasonable approximation 
to such objective rationality. (Simon 1957, p. 198) 

Faced with the overwhelming complexity of the real world, time pressure, and lim- 
ited cognitive capabilities, we are forced to fall back on rote procedures, habits, 
rules of thumb, and simple mental models to make decisions. Though we some- 
times strive to make the best decisions we can, bounded rationality means we of- 
ten systematically fall short, limiting our ability to learn from experience. 

While bounded rationality affects all decision contexts, it is particularly acute 
in dynamic systems. Indeed, experimental studies show that people do quite poorly 

l0I am not arguing that econometrics should be abandoned, despite its difficulties. On the con- 
trary, wise use of numerical data and statistical estimation is central to good system dynamics prac- 
tice, and more effort should be devoted to the use of these tools in simulation model development 
and testing. See chap. 2 1 .  
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TABLE 1-4 
Misperceptions 
of feedback 
have been 
documented 
in many 
experimental 
studies. 

in systems with even modest levels of dynamic complexity (Table 1-4). These 
studies led me to suggest that the observed dysfunction in dynamically complex 
settings arises from misperceptions offeedback. The mental models people use 
to guide their decisions are dynamically deficient. As discussed above, people 
generally adopt an event-based, open-loop view of causality, ignore feedback 
processes, fail to appreciate time delays between action and response and in the 
reporting of information, do not understand stocks and flows and are insensitive to 
nonlinearities that may alter the strengths of different feedback loops as a system 
evolves. 

Subsequent experiments show that the greater the dynamic complexity of the 
environment the worse people do relative to potential. Further, the experiments 
show the misperceptions of feedback are robust to experience, financial incentives, 
experience, and the presence of market institutions (see, e.g., Diehl and Sterman 
1993; Paich and Sterman 1993; Kampmann and Sterman 1998). 

The robustness of the misperceptions of feedback and the poor performance 
they cause are due to two basic and related deficiencies in our mental model. First, 
our cognitive maps of the causal structure of systems are vastly simplified com- 
pared to the complexity of the systems themselves. Second, we are unable to infer 
correctly the dynamics of all but the simplest causal maps. Both are direct conse- 
quences of bounded rationality, that is, the many limitations of attention, memory, 
recall, information processing capability, and time that constrain human decision 
making. 

e 

e 

e 

e 

In a simple production-distribution system (the Beer Distribution Game), 
people, from high school students to CEOs, generate costly fluctuations 
(business cycles). Average costs were more than 10 times greater than 
optimal (Sterman 1989b). 
Subjects responsible for capital investment in a simple multiplier-accelerator 
model of the economy generate large amplitude cycles even though con- 
sumer demand is constant. Average costs were more than 30 times greater 
than optimal (Sterman 1989a). 
Subjects managing a firm in a simulated consumer product market generate 
the boom and bust, price war, and shake-out characteristic of industries from 
video games to chain saws (Paich and Sterman 1993). 
Participants in experimental asset markets repeatedly bid prices well above 
fundamental value, only to see them plummet when a “greater fool” can no 
longer be found to buy. These speculative bubbles do not disappear when 
the participants are investment professionals, when monetary incentives are 
provided, or when short-selling is allowed (Smith, Suchanek, and Williams 
1988). 
In a forest fire simulation, many people allow their headquarters to burn 
down despite their best efforts to put out the fire (Brehmer 1989). 
In a medical setting, subjects playing the role of doctors order more tests 
while the (simulated) patients sicken and die (Kleinmuntz and Thomas 
1987). 
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1.3.5 Flawed Cognitive Maps 
Causal attributions are a central feature of mental models. We all create and update 
cognitive maps of causal connections among entities and actors, from the pro- 
saic-if I touch a flame I will be burned-to the grand-the larger the government 
deficit, the higher interest rates will be. Studies of cognitive maps show that few 
incorporate any feedback loops. Axelrod (1976) found virtually no feedback 
processes in studies of the cognitive maps of political leaders; rather, people tended 
to formulate intuitive decision trees relating possible actions to probable conse- 
quences-an event-level representation. Hall (1976) reports similar open-loop 
mental maps in a study of the publishing industry. Dorner (1980, 1996) found that 
people tend to think in single strand causal series and had difficulty in systems with 
side effects and multiple causal pathways (much less feedback loops). Similarly, 
experiments in causal attribution show people tend to assume each effect has a sin- 
gle cause and often cease their search for explanations when the first sufficient 
cause is found (see the discussion in PIOUS 1993). 

The heuristics we use to judge causal relations lead systematically to cognitive 
maps that ignore feedbacks, multiple interconnections, nonlinearities, time delays, 
and the other elements of dynamic complexity. The causal field or mental model of 
the stage on which the action occurs is crucial in framing people’s judgments of 
causation (Einhorn and Hogarth 1986). Within a causal field, people use various 
cues to causality including temporal and spatial proximity of cause and effect, tem- 
poral precedence of causes, covariation, and similarity of cause and effect. These 
heuristics lead to difficulty in complex systems where cause and effect are often 
distant in time and space, where actions have multiple effects, and where the de- 
layed and distant consequences are different from and less salient than proximate 
effects (or simply unknown). The multiple feedbacks in complex systems cause 
many variables to be correlated with one another, confounding the task of judging 
cause. However, people are poor judges of correlation. Experiments show people 
can generally detect linear, positive correlations among variables if they are given 
enough trials and if the outcome feedback is accurate enough. However, we have 
great difficulty in the presence of random error, nonlinearity, and negative correla- 
tions, often never discovering the true relationship (Brehmer 1980). 

A fundamental principle of system dynamics states that the structure of the 
system gives rise to its behavior. However, people have a strong tendency to at- 
tribute the behavior of others to dispositional rather than situational factors, that is, 
to character and especially character flaws rather than the system in which these 
people are acting. The tendency to blame the person rather than the system is so 
strong psychologists call it the “fundamental attribution error” (Ross 1977). In 
complex systems different people placed in the same structure tend to behave in 
similar ways. When we attribute behavior to personality we lose sight of how the 
structure of the system shaped our choices. The attribution of behavior to individ- 
uals and special circumstances rather than system structure diverts our attention 
from the high leverage points where redesigning the system or governing policy 
can have significant, sustained, beneficial effects on performance (Forrester 1969, 
chap. 6; Meadows 1982). When we attribute behavior to people rather than system 
structure the focus of management becomes scapegoating and blame rather than 
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the design of organizations in which ordinary people can achieve extraordinary 
results. l1 

1.3.6 Erroneous Inferences about Dynamics 
Even if our cognitive maps of causal structure were perfect, learning, especially 
double-loop learning, would still be difficult. To use a mental model to design a 
new strategy or organization we must make inferences about the consequences of 
decision rules that have never been tried and for which we have no data. To do so 
requires intuitive solution of high-order nonlinear differential equations, a task far 
exceeding human cognitive capabilities in all but the simplest systems (Forrester 
1971a; Simon 1982). In many experimental studies, including Diehl and Sterman 
(1995) and Sterman (1989a), the participants were given complete knowledge of 
all structural relationships and parameters, along with perfect, comprehensive, and 
immediate knowledge of all variables. Further, the systems were simple enough 
that the number of variables to consider was small. Yet performance was poor and 
learning was slow. Poor performance in these tasks is due to our inability to make 
reasonable inferences about the dynamics of the system despite perfect and com- 
plete knowledge of the system structure. 

People cannot simulate mentally even the simplest possible feedback system, 
the first-order linear positive feedback 10op.l~ Such positive feedback processes are 
commonplace, from the compounding of interest to the growth of populations. 
Wagenaar and Sagaria (1975) and Wagenaar and Timmers (1978, 1979) showed 
that people significantly underestimate exponential growth, tending to extrapolate 
linearly rather than exponentially. Using more data points or graphing the data did 
not help, and mathematical training did not improve performance. 

Bounded rationality simultaneously constrains the complexity of our cognitive 
maps and our ability to use them to anticipate the system dynamics. Mental mod- 
els in which the world is seen as a sequence of events and in which feedback, non- 
linearity, time delays, and multiple consequences are lacking lead to poor 
performance when these elements of dynamic complexity are present. Dysfunction 
in complex systems can arise from the misperception of the feedback structure of 
the environment. But rich mental models that capture these sources of complexity 
cannot be used reliably to understand the dynamics. Dysfunction in complex sys- 
tems can arise from faulty mental simulation-the misperception of feedback 
dynamics. These two different bounds on rationality must both be overcome for 
effective learning to occur. Perfect mental models without a simulation capability 
yield little insight; a calculus for reliable inferences about dynamics yields sys- 
tematically erroneous results when applied to simplistic models. 

"Repenning and Sterman (1999) show how the fundamental attribution error arose in a 
major manufacturing organization, thwarting their efforts to improve operations and product 
development. 

yields pure exponential growth, x = x,exp(gt); see chap. 8. 
12The first-order linear positive loop is represented by the differential equation dddt  = gx and 
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1.3.7 Unscientific Reasoning: 
Judgmental Errors and Biases 

To learn effectively in a world of dynamic complexity and imperfect information 
people must develop what Davis and Hogarth (1992) call “insight skills”-the 
skills that help people learn when feedback is ambiguous: 

[Tlhe interpretation of feedback . . . needs to be an active and disciplined task gov- 
erned by the rigorous rules of scientific inference. Beliefs must be actively chal- 
lenged by seeking possible disconfirming evidence and asking whether alternative 
beliefs could not account for the facts (emphasis in original). 

Unfortunately, people are poor intuitive scientists, generally failing to reason in ac- 
cordance with the principles of scientific method. For example, people do not gen- 
erate sufficient alternative explanations or consider enough rival hypotheses. 
People generally do not adequately control for confounding variables when they 
explore a novel environment. People’s judgments are strongly affected by the 
frame in which the information is presented, even when the objective information 
is unchanged. People suffer from overconfidence in their judgments (under- 
estimating uncertainty), wishful thinking (assessing desired outcomes as more 
likely than undesired outcomes), and the illusion of control (believing one can pre- 
dict or influence the outcome of random events). People violate basic rules of 
probability, do not understand basic statistical concepts such as regression to the 
mean, and do not update beliefs according to Bayes’ rule. Memory is distorted by 
hindsight, the availability and salience of examples, and the desirability of out- 
comes. And so on. Hogarth (1987) discusses 30 different biases and errors docu- 
mented in decision-making research and provides a good guide to the literature 
(see also Kahneman, Slovic, and Tversky 1982). The research convincingly shows 
that scientists and professionals, not only “ordinary” people, suffer from many of 
these judgmental biases. 

Among the failures of scientific reasoning most inimical to learning is the ten- 
dency to seek evidence consistent with current beliefs rather than potential discon- 
firmation (Einhorn and Hogarth 1978; Klayman and Ha 1987). In a famous series 
of experiments, Wason and colleagues presented people tasks of the sort shown in 
Figure 1-13.13 Before continuing, try the challenge shown in the figure. 

13The summary of the Wason test is drawn from PIOUS (1993, chap. 20). 
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In one version you are shown one side of four cards, each with a letter on one 
side and a number on the other, say E, K, 4, and 7. You are told that if a card has a 
vowel on it, then it has an even number on the other side. You must then identify 
the smallest set of cards to turn over to see if the proposed rule is correct. 

Wason and Johnson-Laird (1972) found that the vast majority of subjects se- 
lected E or E and 4 as the answers. Less than 4% gave the correct answer: E and 7. 
The rule has the logical form i f p ,  then q. Falsification requires observation of 
p and not-q. The only card showing p is the E card, so it must be examined (the 
back of the E card must be an even number for the rule to hold). The only card 
showing not-q is the 7, so it too must be examined. The K and 4 cards are irrele- 
vant. Yet people consistently choose the card showing q, a choice that can only 
provide data consistent with the theory, but cannot test it; if the back of the 4 is a 
consonant, you have learned nothing, since the rule is silent about the numbers as- 
sociated with consonants. Experiments show the tendency to seek confirmation is 
robust in the face of training in logic, mathematics, and statistics. Search strategies 
that focus only on confirmation of current beliefs slow the generation and recogni- 
tion of anomalies that might lead to learning, particularly double-loop learning. 

Some argue that while people err in applying the principles of logic, at least 
people are rational in the sense that they appreciate the desirability of scientific ex- 
planation. Unfortunately, the situation is far worse. The rational, scientific world- 
view is a recent development in human history and remains rare. Many people 
place their faith in what Dostoyevsky’s Grand Inquisitor called “miracle, mystery, 
and authority,” for example, astrology, ESP, UFOs, creationism, conspiracy theo- 
ries of history, channeling of past lives, cult leaders promising Armageddon, and 
Elvis sightings. The persistence of such superstitious beliefs depends partly on the 
bias towards confirming evidence. Wade Boggs, former Boston Red Sox batting 
champion, ate chicken every day for years because he once had a particularly good 
day at the plate after a dinner of lemon chicken (Shaughnessy 1987). During this 
time Boggs won five batting championships, proving the wisdom of the “chicken 
theory.” Consider the continued popularity of astrology, psychics, and economic 
forecasters, who publicize their successes and suppress their (more numerous) 
failures. Remember that the 40th president of the United States and first lady man- 
aged affairs of state on the basis of astrology (Robinson 1988). And it worked: He 
was reelected in a landslide. 

Such lunacy aside, there are deeper and more disturbing reasons for the preva- 
lence of these learning failures and the superstitions they engender. Human beings 
are more than cognitive information processors. We have a deep need for emo- 
tional and spiritual sustenance. But from Copernican heliocentrism through evolu- 
tion, relativity, quantum mechanics, and Godelian uncertainty, science has stripped 
away ancient and comforting beliefs placing humanity at the center of a rational 
universe designed for us by a supreme authority. For many people scientific 
thought leads not to enlightenment and empowerment but to existential angst and 
the absurdity of human insignificance in an incomprehensibly vast universe. 
Others believe science and technology were the shock troops for the triumph of 
materialism and instrumentalism over the sacred and spiritual. These antiscientific 
reactions are powerful forces. In many ways they are important truths. They have 
led to many of the most profound works of art and literature. But they can also lead 
to mindless new-age psychobabble. 
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The reader should not conclude from this discussion that I am a naive defender 
of science as it is practiced nor an apologist for the real and continuing damage 
done to the environment and to our cultural, moral, and spiritual lives in the name 
of rationality and progress. On the contrary, I have stressed the research showing 
that scientists are often as prone to the judgmental errors and biases discussed 
above as laypeople. It is precisely because scientists are subject to the same cog- 
nitive limitations and moral failures as others that we experience abominations 
such as the US government funded research in which plutonium was injected into 
seriously ill patients, and in which radioactive calcium was fed to retarded chil- 
dren, all without their knowledge or consent (Mann 1994). A central principle of 
system dynamics is to examine issues from multiple perspectives; to expand the 
boundaries of our mental models to consider the long-term con.sequences and “side 
effects” of our actions, including their environmental, cultural, and moral implica- 
tions (Meadows, Richardson, and Bruckmann 1982). 

1.3.8 Defensive Routines and Interpersonal 
Impediments to Learning 

Learning by groups, whether system dynamics is used or not, can be thwarted even 
if participants receive excellent information feedback and reason well as individu- 
als. We rely on our mental models to interpret the language and acts of others, con- 
struct meaning, and infer motives. However, as Forrester (1971) argues, 

The mental model is fuzzy. It is incomplete. It is imprecisely stated. Furthermore, 
within one individual, a mental model changes with time and even during the flow 
of a single conversation. The human mind assembles a few relationships to fit the 
context of a discussion. As the subject shifts so does the model . . . [Elach partici- 
pant in a conversation employs a different mental model to interpret the subject. 
Fundamental assumptions differ but are never brought into the open. 

Argyris (1985), Argyris and Schon (1978), Janis (1982), Schein (1969, 1985, 
1987), and others document the defensive routines and cultural assumptions peo- 
ple rely on, often unknowingly, to interact with and interpret their experience of 
others. We use defensive routines to save face, assert dominance over others, make 
untested inferences seem like facts, and advocate our positions while appearing to 
be neutral. We make conflicting, unstated attributions about the data we receive. 
We fail to distinguish between the sense-data of experience and the attributions and 
generalizations we readily form from them. We avoid publicly testing our hy- 
potheses and beliefs and avoid threatening issues. Above all, defensive behavior 
involves covering up the defensiveness and making these issues undiscussable, 
even when all parties are aware they exist. 

Defensive routines are subtle. They often arrive cloaked in apparent concern 
and respect for others. Consider the strategy called “easing-in:” 

If you are about to criticize someone who might become defensive and you want 
him to see the point without undue resistance, do not state the criticism openly; in- 
stead, ask questions such that if he answers them correctly, he will figure out what 
you are not saying (Argyris, Putnam, and Smith 1985, p. 83). 
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But easing-in often 

Creates the very defensiveness that it is intended to avoid, because the recipient 
typically understands that the actor is easing-in. Indeed, easing-in can be successful 
only if the recipient understands that he is supposed to answer the questions in a 
particular way, and this entails the understanding that the actor is negatively evalu- 
ating the recipient and acting as if this were not the case (Argyris, Putnam, and 
Smith 1985, p. 85). 

Defensive behavior, in which the espoused theories we offer to others differ from 
our theories in use, prevents learning by hiding important information from others, 
avoiding public testing of important hypotheses, and tacitly communicating that 
we are not open to having our mental models challenged. Defensive routines often 
yield groupthink (Janis 1982), where members of a group mutually reinforce their 
current beliefs, suppress dissent, and seal themselves off from those with different 
views or possible disconfirming evidence. Defensive routines ensure that the men- 
tal models of team members remain ill formed, ambiguous, and hidden. Thus 
learning by groups can suffer even beyond the impediments to individual learning. 

1.3.9 Implementation Failure 
In the real world decisions are often implemented imperfectly, further hindering 
learning. Even if a team agreed on the proper course of action, the implementation 
of these decisions can be delayed and distorted as the actual organization responds. 
Local incentives, asymmetric information, and private agendas can lead to game 
playing by agents throughout a system. Obviously implementation failures can 
hurt the organization. Imperfect implementation can defeat the learning process as 
well, because the management team evaluating the outcomes of their decisions 
may not know the ways in which the decisions they thought they were implement- 
ing were distorted. 

Finally, in the real world of irreversible actions and high stakes the need to 
maintain performance often overrides the need to learn by suppressing new strate- 
gies for fear they would cause present harm even though they might yield great in- 
sight and prevent future harm. 

REQUIREMENTS FOR SUCCESSFUL LEARNING IN 
COMPLEX SYSTEMS 

We face grave impediments to learning in complex systems like a nation, firm, or 
family. Every link in the feedback loops by which we might learn can be weakened 
or cut by a variety of structures. Some of these are physical or institutional features 
of the environment-the elements of dynamic complexity that reduce opportuni- 
ties for controlled experimentation, prevent us from learning the consequences of 
our actions, and distort the outcome feedback we do receive. Some are conse- 
quences of our culture, group process, and inquiry skills. Still others are funda- 
mental bounds on human cognition, particularly the poor quality of our mental 
maps and our inability to make correct inferences about the dynamics of complex 
nonlinear systems. 
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1.4.1 Improving the Learning Process: 
Virtues of Virtual Worlds 

What then are the requirements for successful learning in complex systems? If we 
are to create useful protocols and tools for learning effectively in a world of dy- 
namic complexity we must attend to all of the impediments to learning. Figure 
1-14 shows how the learning feedbacks would operate when all the impediments 
to learning are addressed. The diagram features a new feedback loop created by the 
use of virtual worlds. Virtual worlds (the term is Schon’s [ 19831) are formal mod- 
els, simulations, or “microworlds” (Papert 1980), in which decision makers can re- 
fresh decision-making skills, conduct experiments, and play. They can be physical 
models, role plays, or computer simulations. In systems with significant dynamic 
complexity, computer simulation will typically be needed (though there are notable 
exceptions, such as the Beer Distribution Game (Sterman 1989b) and the Mainte- 
nance Game described in section 2.4, along with role-playkomputer hybrids such 
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as Fish Banks, Ltd. (Meadows, Fiddaman, and Shannon 1993). Many of the tools 
of system dynamics are designed to help you develop useful, reliable, and effective 
models to serve as virtual worlds to aid learning and policy design. 

Virtual worlds have several virtues. First, they provide low-cost laboratories 
for learning. The virtual world allows time and space to be compressed or dilated. 
Actions can be repeated under the same or different conditions. One can stop the 
action to reflect. Decisions that are dangerous, infeasible, or unethical in the real 
system can be taken in the virtual world. Thus controlled experimentation becomes 
possible, and the time delays in the learning loop through the real world are dra- 
matically reduced. In the real world the irreversibility of many actions and the need 
to maintain high performance often override the goal of learning by preventing ex- 
periments with untried possibilities (“If it ain’t broke, don’t fix it”). In the virtual 
world you can try strategies that you suspect will lead to poor performance or even 
(simulated) catastrophe. Often pushing a system into extreme conditions reveals 
more about its structure and dynamics than incremental adjustments to successful 
strategies. Virtual worlds are the only practical way to experience catastrophe 
in advance of the real thing. Thus a great deal of the time pilots spend in flight 
simulators is devoted to extreme conditions such as engine failure or explosive 
decompression. 

Virtual worlds provide high-quality outcome feedback. In the People Express 
Management Flight Simulator (Sterman 1988a), for example, and similar system 
dynamics simulations, players receive perfect, immediate, undistorted, and com- 
plete outcome feedback. In an afternoon one can gain years of simulated experi- 
ence. The degree of random variation in the virtual world can be controlled. Virtual 
worlds offer the learner greater control over strategy, lead to more consistent deci- 
sion making, and deter implementation failure and game playing. In contrast to the 
real world, which, like a black box, has a poorly resolved structure, virtual worlds 
can be open boxes whose assumptions are fully known and can even be modified 
by the learner. 

Virtual worlds for learning and training are commonplace in the military, in 
pilot training, in power plant operations, and in many other real time tasks where 
human operators interact with complex technical systems. Virtual worlds are also 
common in professions such as architecture and engineering that lend themselves 
to the use of physical models (Schon 1983). The use of virtual worlds in man- 
agerial tasks, where the simulation compresses into minutes or hours dynamics ex- 
tending over years or decades, is more recent and less widely adopted. Yet these 
are precisely the settings where dynamic complexity is most problematic, where 
the learning feedbacks described above are least effective, and where the stakes are 
highest. 

1.4.2 Pitfalls of Virtual Worlds 
Virtual worlds are effective when they engage people in what Dewey called “re- 
flective thought” and what Schon (1992) calls “reflective conversation with the 
situation.” Though simulation models and virtual worlds may be necessary for 
effective learning in dynamically complex systems, they are not sufficient to over- 
come the flaws in our mental models, scientific reasoning skills, and group 
processes. 
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Obviously, while the virtual world enables controlled experimentation, it does 
not require the learner to apply the principles of scientific method. Many partici- 
pants in system dynamics projects lack training in scientific method and awareness 
of the pitfalls in the design and interpretation of experiments. A commonly ob- 
served behavior among modelers and in workshops using management flight sim- 
ulators is the video game syndrome in which people play too much and think too 
little. People often do not take time to reflect on the outcome of a simulation, iden- 
tify discrepancies between the outcomes and their expectations, formulate hy- 
potheses to explain the discrepancies, and then devise experiments to discriminate 
among the competing alternatives. Effective learning using system dynamics will 
often require training for participants in scientific method. Protocols for the use of 
simulations should be structured to encourage proper procedure, such as keeping 
laboratory notebooks, explicitly formulating hypotheses and presenting them to the 
group, and so on. 

Defensive routines and groupthink can operate in the learning laboratory just 
as in the real organization. Indeed, protocols for effective learning in virtual worlds 
such as public testing of hypotheses, accountability, and comparison of different 
strategies can be highly threatening, inducing defensive reactions that prevent 
learning (Isaacs and Senge 1992). The use of system dynamics to stimulate learn- 
ing in organizations often requires members of the client team to spend time ad- 
dressing their own defensive behavior. Managers unaccustomed to disciplined 
scientific reasoning and an open, trusting environment with learning as its goal will 
have to build these basic skills before a system dynamics model-or indeed, any 
model-can prove useful. Developing these skills takes effort and practice. 

Still, settings with high dynamic complexity can garble the reflective conver- 
sation between the learner and the situation. Long time delays, causes and effects 
that are distant in time and space, and the confounding effects of multiple nonlin- 
ear feedbacks can slow learning even for people with good insight and group 
process skills. Learning in virtual worlds can be accelerated when the modeling 
process also helps people learn how to represent complex feedback structures and 
understand their implications rather than simply presenting the results of an analy- 
sis. To learn in dynamically complex systems participants must have confidence 
that the model is an appropriate representation of the problem they care about. 
They must believe it mimics the relevant parts of the real world well enough that 
the lessons emerging from the virtual world apply to the real one. To develop such 
confidence the virtual world must be an open box whose assumptions can be in- 
spected, criticized, and changed. To learn, participants must become modelers, not 
merely players in a simulation game. 

In practice, effective learning from models occurs best, and perhaps only, 
when the decision makers participate actively in the development of the model. 
Modeling here includes the elicitation of the participants’ existing mental models, 
including articulating the issues (problem structuring), selecting the model bound- 
ary and time horizon, and mapping the causal structure of the relevant system. 
Along with techniques developed in system dynamics, many tools and protocols 
for group model-building are now available, including causal loop diagrams, 
policy structure diagrams, interactive computer mapping, and various problem 
structuring and soft systems methods (see, e.g., Checkland 1981; Eden, Jones and 
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Sims 1983; Lane 1994; Morecroft 1982; Morecroft and Sterman 1994; Reagan- 
Cirincione et al. 1991; Richmond 1987, 1993; Rosenhead 1989; Senge and 
Sterman 1992; and Wolstenholme 1990). 

1.4.3 Why Simulation Is Essential 
Eliciting and mapping the participants’ mental models, while necessary, is far from 
sufficient. As discussed above, the temporal and spatial boundaries of our mental 
models tend to be too narrow. They are dynamically deficient, omitting feedbacks, 
time delays, accumulations, and nonlinearities. The great virtue of many protocols 
and tools for elicitation is their ability to improve our models by encouraging peo- 
ple to identify the elements of dynamic complexity normally absent from mental 
models. However, most problem structuring methods yield qualitative models 
showing causal relationships but omitting the parameters, functional forms, exter- 
nal inputs, and initial conditions needed to fully specify and test the model. Re- 
gardless of the form of the model or technique used, the result of the elicitation and 
mapping process is never more than a set of causal attributions, initial hypotheses 
about the structure of a system, which must then be tested. 

Simulation is the only practical way to test these models. The complexity of 
our mental models vastly exceeds our capacity to understand their implications. 
Typical conceptual models such as the type of causal diagram shown in Figure 1-6 
are too large and complex to simulate mentally. Without simulation, even the best 
conceptual models can only be tested and improved by relying on the learning 
feedback through the real world. As we have seen, this feedback is very slow and 
often rendered ineffective by dynamic complexity, time delays, inadequate and 
ambiguous feedback, poor reasoning skills, defensive reactions, and the costs of 
experimentation. In these circumstances simulation becomes the only reliable way 
to test hypotheses and evaluate the likely effects of policies. 

Some scholars argue that formal modeling can at best provide quantitative 
precision within preexisting problem definitions but cannot lead to fundamentally 
new conceptions (for various views see Dreyfus and Dreyfus 1986 and the discus- 
sion in Lane 1994). On the contrary, formalizing qualitative models and testing 
them via simulation often leads to radical changes in the way we understand real- 
ity. Simulation speeds and strengthens the learning feedbacks. Discrepancies 
between formal and mental models stimulate improvements in both, including 
changes in basic assumptions such as model boundary, time horizon, and dynamic 
hypotheses (see Forrester 1985 and Homer 1996 for philosophy and examples). 
Without the discipline and constraint imposed by the rigorous testing enabled by 
simulation, it becomes all too easy for mental models to be driven by ideology or 
unconscious bias. 

Some argue that formalization forces the modeler to omit important aspects of 
the problem to preserve tractability and enable theorems to be proved or to omit 
soft variables for which no numerical data exist. These are indeed dangers. The lit- 
erature of the social sciences is replete with models in which elegant theorems are 
derived from questionable axioms, where simplicity dominates utility, and where 
variables known to be important are ignored because data to estimate parameters 
are unavailable. System dynamics was designed specifically to overcome these 
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limitations and from the beginning stressed the development of useful models; 
models unconstrained by the demands of analytic tractability, based on realistic as- 
sumptions about human behavior, grounded in field study of decision making, and 
utilizing the full range of available data, not only numerical data, to specify and es- 
timate relationships (see Forrester 1961, 1987). 

Some people don’t believe that models of human behavior can be developed. 
Simulations of natural and technical systems such as the climate or an oil refinery 
are based on well-understood laws of physics, but, it is argued, there are no com- 
parably reliable laws of human behavior. This view overestimates our understand- 
ing of nature and underestimates the regularities in human decision making. As 
Kenneth Boulding points out, “Anything that exists is possible.” You will see many 
examples of models of human systems throughout this book (see also the models 
in Levine and Fitzgerald 1992; Roberts 1978; Langley et al. 1987; Sterman 1985a; 
Homer 1985; and many of the models cited in Sastry and Sterman 1993). 

Is it possible to learn effectively in complex settings without simulation? Can 
the use of problem structuring methods, elicitation techniques, and other qualita- 
tive systems methods overcome the impediments to learning? If intuition is devel- 
oped highly enough, if systems thinking is incorporated in precollege education 
early enough, or if we are taught how to recognize a set of “system archetypes” 
(Senge 1990), will we be able to improve our intuition about complex dynamics 
enough to render simulation unnecessary? 

The answer is clearly no. It is true that systems thinkmg techniques, including 
system dynamics and qualitative methods such as soft systems analysis, can en- 
hance our intuition about complex situations, just as studying physics can improve 
our intuition about the natural w0r1d.I~ As Wolstenholme (1990) argues, qualitative 
systems tools should be made widely available so that those with limited mathe- 
matical background can benefit from them. I am a strong advocate for the intro- 
duction of system dynamics and related methods at all levels of the educational 
system. Yet even if we all began serious study of physics in kindergarten and con- 
tinued it through a Ph.D., it is ludicrous to suggest that we could predict the track 
of a hurricane or understand by intuition alone what happens when two galaxies 
collide. Many human systems are at least as complex. Even if children learn to 
think in systems terms-a goal I believe is vitally important-it will still be nec- 
essary to develop formal models, solved by simulation, to learn about such sys- 
tems. 

Most important, when experimentation in real systems is infeasible, simulation 
becomes the main, and perhaps the only, way you can discover for yourself how 
complex systems work. The alternative is rote learning based on the authority of 
the teacher and textbook, a method that dulls creativity and stunts the development 
of the scientific reasoning skills needed to learn about complexity. 

14Such knowledge of basic physics is desperately needed. When asked the question “If a pen is 
dropped on the moon, will it (a) float away; (b) float where it is; (c) fall to the surface of the 
moon?” 48 out of 168 students in physics courses at Iowa State University gave incorrect answers. 
Typical student explanations were “The gravity of the moon can be said to be negligible” and “The 
moon’s a vacuum, there is no external force on the pen. Therefore it will float where it is.” (Partee, 
personal communication, 1992). 
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1.5 

The implications for this book are clear. System dynamics is not a spectator 
sport: Throughout the book I have tried to encourage the active participation of 
you, the reader. You will find Challenges in each chapter-examples for you to 
consider and work through yourself, such as the chicken and egg causal loop dia- 
gram in Figure 1-6 and the Wason card puzzle in Figure 1-13. Some of these are 
followed by a suggested response. Others are not. As you work through the book, 
extend the examples. Build the models. Experiment with them. Apply your skills 
to new problems and new issues. And, most of all, have fun.I5 

S u NI MARY 
Complex dynamic systems present multiple barriers to learning. The challenge of 
bettering the way we learn about these systems is itself a classic systems problem. 
System dynamics is a powerful method to gain useful insight into situations of 
dynamic complexity and policy resistance. It is increasingly used to design more 
successful policies in companies and public policy settings. However, no one 
method is a panacea. Overcoming the barriers to learning requires a synthesis of 
many methods and disciplines, from mathematics and computer science to 
psychology and organizational theory. Theoretical studies must be integrated with 
field work. Interventions in real organizations must be subjected to rigorous 
follow-up research. 

The field of system dynamics is itself dynamic. Recent advances in interactive 
modeling, tools for representation of feedback structure, and simulation software 
make it possible for anyone to engage in the modeling process. Corporations, uni- 
versities, and schools are experimenting vigorously. The library of successful in- 
terventions and insightful research is growing. Much further work is needed to test 
the utility of the tools and protocols, evaluate their impact on individual and orga- 
nizational learning, and develop effective ways to train others to use them. Never 
before have the challenges of our increasingly dynamic world been more daunting. 
Never before have the opportunities been greater. It’s an exciting time to be learn- 
ing in and about complex systems. 

l5The accompanying CD-ROM and website (http://www.mhhe.com/sterman) include the models 
developed in the text and simulation software you can use to run and extend them. 
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System Dynamics in Action 

[System dynamics] is an approach that should help in important top- 
management problems . . . The solutions to small problems yield small 
rewards. Very often the most important problems are but little more difficult to 
handle than the unimportant. Many [people] predetermine mediocre results by 
setting initial goals too low. The attitude must be one of enterprise design. The 
expectation should be for major improvement. . . The attitude that the goal is 
to explain behaviol; which is fairly common in academic circles, is not 
sufficient. The goal should be to find management policies and organizational 
structures that lead to greater success. 

-Jay W. Forrester (Industrial Dynamics, 1961, p. 449). 

This chapter presents three case studies of the successful application of system dy- 
namics to solve important real world problems. The cases span a range of indus- 
tries and issues. They illustrate different contexts for the use of system dynamics 
and different modeling processes, from large, data intensive models to small mod- 
els, interactive management flight simulators, and role-playing games. The cases 
illustrate how system dynamics can be used to help solve high-stakes problems in 
real time. The cases illustrate the principles discussed in chapter 1 and preview 
many of the tools and methods discussed in subsequent chapters. 

2.1 APPL-ICATIONS OF SYSTEM DYNAMICS 
System dynamics has been applied to issues ranging from corporate strategy to the 
dynamics of diabetes, from the cold war arms race between the US and USSR to 
the combat between HIV and the human immune system. System dynamics can be 
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applied to any dynamic system, with any time and spatial scale. In the world of 
business and public policy, system dynamics has been applied to industries from 
aircraft to zinc and issues from AIDS to welfare reform.’ 

Developing an insightful model is difficult enough; using modeling to help 
change organizations and implement new policies is even harder. The greatest po- 
tential for improvement comes when the modeling process changes deeply held 
mental models. Yet the more fundamental the mental model you challenge, the 
more defensive the client may be. To resolve the dilemma the clients must discover 
the insights for themselves by active participation in the modeling process. 

This chapter presents three case studies illustrating the process. Each ad- 
dressed an important real world issue. Each involved a different context and there- 
fore used a different approach. Yet each also succeeded in involving the clients as 
partners in the modeling process, in changing long-established mental models, and 
in generating significant benefit. 

2.2 AUTOMOBILE LEASING STRATEGY: 
GONE TODAY, HERE TOMORROW* 

In the 1990s a new way to buy cars emerged in the United States-the used car 
superstore. National chains like CarMax and AutoNation offered a large selection 
of clean, low mileage late model cars with warranties, roadside assistance plans, 
and other amenities traditionally available only to new car buyers. Superstore sales 
grew from nothing in 1992 to more than $13 billion in 1998. Internet car vendors 
began to spring up as well. Many analysts believed the combination of superstores 
and internet sales heralded a revolution in the retail auto market. 

In 1995 some senior managers at General Motors were concerned about the 
impact of the superstores on new car sales. Would they cut into GM’s core market? 
Would they force prices down? How could GM respond? Ron Zarella, then vice 
president and group executive for North American vehicle sales, service, and mar- 
keting (VSSM) and later promoted to president of GM’s North American region, 
needed a way to examine these issues. 

There was little research on the used car market available to help. For many 
decades the new and used car markets were only loosely coupled because people 
tended to keep their cars a long time. Market research in the early 1990s showed 
new car buyers were keeping their cars an average of more than 6 years. The bulk 
of used cars offered for sale were 4 or more years old and were poor substitutes for 
new cars. The prevailing mental model in the auto industry, including GM, was 

‘Richardson (1996), Roberts (1978), and Morecroft and Sterman (1994), among others, provide 
examples of the application of system dynamics to important problems in a wide range of industries 
and public policy issues. Mosekilde (1996) describes applications in physics and biology. Ford 
(1999) describes environmental applications. 

*This case is based on the work of the General Motors Strategy Support Center, led by Nick 
Pudar. I’m grateful to Nick and GM for permission to present the case and to Nick and Mark Paich 
for help in its preparation. 
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that auto companies were in the business of selling new cars; the vehicles people 
traded in were old and effectively disappeared into a separate system, the used car 
market. “There are really two markets-new and used,” the executive director of 
sales operations at Ford told The Wall Street Journal in 1994 (3  June, p. B 1). 

Zarella contacted Vince Barabba, then general manager of corporate strategy 
and knowledge development in the VSSM organization, and described his con- 
cerns. Barabba, former head of the US Census Bureau, also headed up the Decision 
Support Center (DSC) and asked Nick Pudar, then a senior business analyst in the 
DSC, to work on the superstore issue. The DSC is an internal group GM formed to 
help business units and project teams throughout the company develop and imple- 
ment strategy. The DSC uses a variety of analytical tools, including system dy- 
namics. More than simply a group of analytical modelers, the DSC developed a 
sophisticated approach, the dialogue decision process, designed to build consensus 
that leads to action, not merely analysis and reports. Barabba and Pudar (1996) de- 
scribe the dialogue decision process as 

a disciplined decision making process which involves a series of structured dia- 
logues between two groups responsible for reaching a decision and implementing 
the resulting action plan. The first group (Decision Review Board) consists of the 
decision-makers, who generally represent different functions. What they have in 
common is the authority to allocate resources: people, capital, materials, time, and 
equipment . . . The second group (Core Team), consists o f .  . . those with a stake in 
the implementation. 

The dialogue between the two groups, which involves sharing and learning for 
both, takes place in four sequential stages: 1) framing the problem; 2) developing 
alternatives; 3) conducting the analysis; and 4) establishing connection. Each of 
these four steps is completed by the Core Team and supported by facilitators 
equipped with decision analytic tools. At the end of each phase, they have a dia- 
logue session with the Decision Review Board where they jointly review the 
progress. In an atmosphere of inquiry . . . senior leadership converses with a cross- 
functional team of managers on a topic of mutual strategic importance. 

Pudar told Zarella he would need to commit to a several hour meeting each week 
for a month “to be sure we are working on the right problem.” While Zarella’s 
schedule was extremely tight he offered to meet with Barabba and Pudar the 
next day. 

Pudar, working with Mark Paich, an external system dynamics consultant and 
professor of economics at Colorado College, Darren Post of the DSC, and Tom Pa- 
terson (another consultant to the DSC) scrambled to develop an initial model of the 
issue. That afternoon they developed a simple diagram representing the stocks and 
flows of cars through the new and used markets and some of the feedbacks that 
might couple them. They deliberately kept it very simple, both to be sure they 
could complete it in time and so they could explain it clearly. 

That night Pudar developed a simple, working simulation model of the inter- 
actions between the new and used markets. The model included sectors for 
new and used cars (divided into GM and non-GM vehicles) and tracked vehicles 
from production through initial sale or lease, trade-in, the used car market, and, 
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ultimately, scrapping. It also tracked the flows of customers moving into and out 
of the market and included a simple consumer choice model for the newhsed pur- 
chase decision. Pudar used data at hand and his judgment to estimate parameters. 

Figure 2-lshows a simplified diagram of the initial model. The structure in 
black captures the prevailing mental model focused on the new car market. The left 
side tracks the stocks and flows of vehicles. Starting at the top, the inventory of 
unsold new cars is increased by production and drained by new car sales. New car 
sales add to the stock of late model cars on the road. People sell or trade in their car 
and buy a new one with a frequency defined by the average trade-in time. 

Figure 2-1 also shows the main feedbacks operating in the new car market. 
Manufacturers and dealers pay close attention to the stock of new cars. Inventory 
coverage of about 45 days provides a good balance between the selection available 
on dealer lots and carrying costs. Low coverage hurts sales because cars aren’t 
available; high inventories slash dealer and automaker profits as carrying costs bal- 
loon. If inventory coverage rises above normal, carmakers cut production, which 
helps reduce inventories back to normal. The response of production to inventories 
forms the negative (balancing) Production Control feedback loop, B 1. However, 
automakers are reluctant to cut production and in any case, it takes time. The delay 
in adjusting production means inventories tend to fluctuate around desired levels 
as demand varies. 

The second main response to excess inventories is lower prices. When inven- 
tory coverage is high, dealers are more willing to cut their margins and manu- 
facturers offer incentives such as cash-back and low annual percentage rates 
(APRs) on loans financed through their credit divisions. Lower prices make new 
cars more attractive relative to the cars people already own. People trade in their 
old cars sooner, boosting new car sales until inventories fall back to normal (the 
negative Pricing loop, B2). 

2.2.1 Dynamic Hypothesis 
Challenging the conventional wisdom, the team expanded the stock and flow struc- 
ture to include late model used cars. Instead of disappearing, trade-ins add to in- 
ventories of late model used cars on dealer lots or available for auction. When 
these cars are purchased, they reenter the stock of late model cars on the road. The 
sum of the cars on the road and cars on dealer lots is the total stock of late model 
vehicles (shown by the large rectangle in Figure 2- 1); these cars gradually age into 
the population of older cars and are eventually scrapped. The model used an “aging 
chain” to keep track of the cars on the road and in used car inventories by 1-year 
cohorts. The aging chain (chapter 12) allowed the team to examine how the 
number of 1-, 2-, and 3-year-old cars on the road and for sale changed in response 
to sales. 

The stock and flow perspective motivated the modeling team to ask where the 
superstores got the large inventories of attractive late model cars they required. 
Part of the answer was the growing quality of new cars. Stimulated by the high 
quality of foreign cars, particularly the Japanese imports, all manufacturers had 
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FIGURE 2-1 A simple model of the automobile market 

Production 
Control 

q Reinforcing 

Balancing 
Feedback 

Rectangles represent stocks of cars; pipes and valves represent flows between 
categories (chapter 6). Arrows and polarities (+ or -) indicate causal influences: 
An increase in New Car Inventory leads to an increase in Inventory Coverage (and a 
decrease leads to a decrease); an increase (decrease) in Inventory Coverage causes 
new car prices to decrease (increase); see chapter 5. Gray structure was not captured 
in the prevailing industry mental model in which new and used car markets do not 
interact. 
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invested in major quality programs. Though there was still room for improvement, 
by the 1990s the quality and durability of new cars was significantly higher than in 
the 1980s. 

But quality improvement alone could not explain the rise of the superstores. 
By the time most cars are traded in they are too old to compete against new cars 
and are unsuitable for the superstores. Quality improvements might even lengthen 
the trade-in cycle time, reducing the supply of late model used cars. 

The answer was leasing. In the early 1990s leasing was the hot new marketing 
tool in the automobile industry. Leasing offered what seemed to be a sure-fire way 
to boost sales. Rising quality meant the market value of 2-, 3-, and 4-year-old cars 
was much higher relative to new cars than in the past. The higher the residual value 
at the end of a lease, the lower the lease payments. Leases also give customers the 
option to buy the car when the lease expires at the specified residual value, trans- 
ferring the risk of fluctuations in the market value of used vehicles from the cus- 
tomer to the carmaker. Most important to the manufacturers, typical lease terms are 
2 to 4 years, stimulating sales by cutting the trade-in cycle time. Leasing increased 
from 4.1% of all new car sales in 1990 to more than 22% in 1997. 

From the perspective of the prevailing mental model, leasing was a boon. First, 
it stimulated sales. Whenever inventories rise carmakers could increase incentives 
for leasing through lease subvention. Subvention lowers lease payments by as- 
suming higher residuals, lower interest rates, or lower initial capitalization; typi- 
cally carmakers would raise residual values above guidebook values for used cars. 
Lower lease payments boost the attractiveness of new cars and induce some people 
to trade their current car for a new leased vehicle (forming the balancing Lease 
Incentive loop B3 in Figure 2-1). Second, the shorter the average lease term, the 
shorter the trade-in time and the greater the sales (the balancing Lease Term loop 
B4). If all new car buyers switched to leases with an average term of 3 years, the 
trade-in cycle time would be cut in half and new car sales would double-all else 
equal. 

The modeling team quickly challenged the assumption that all else was equal. 
While a 6-year old car is a poor substitute for a new car, a 1- to 3-year-old car with 
low mileage might be attractive to many people. As the growing volume of leases 
expired the used car market could be flooded with high-quality nearly new cars. 
Used car prices might plummet. Some people who might have traded their current 
cars for new ones opt instead for off-lease vehicles, raising the average trade-in 
time and returning more late model used cars to the stock of cars on the road (the 
balancing Used Car Market loop, B5). Leasing also shortens the average trade-in 
cycle time, raising the average quality of used cars for sale. More people opt for 
off-lease vehicles instead of buying new. The average trade-in time for the popula- 
tion as a whole rises, forming the balancing Used Car Quality loop, B6. Even more 
interesting, the used market could feed back to affect the fraction of customers who 
choose to buy their car when their lease expires. If, at lease end, used car prices are 
higher than the residual value written into the lease, the customer can purchase the 
car below market value. The customer retention fraction would rise. If, however, 
used car prices dropped below residual values, the retention fraction would fall as 
more customers turned their cars back to the lessor. The inventory of late model 
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cars would rise and used car prices would drop still more, in a vicious cycle, the 
positive (self-reinforcing) Purchase Option loop, R1 .3 

However, the feedbacks shown in gray operate with a long delay (roughly 
equal to the average lease term) and were poorly understood in the industry. Leas- 
ing stimulates sales in the short-run. Unaware of the structure shown in gray in 
Figure 2-1, the experience of the early 1990s taught carmakers that leasing 
works-and they diverted still more marketing dollars to subvention and shorter 
terms. 

Initial results suggested, however, that leasing would eventually create a glut 
of high-quality nearly new cars, depressing late model used car prices. New car 
sales would suffer as more consumers opted for cheap off-lease vehicles. The car- 
makers’ credit companies (General Motors Acceptance Corporation [GMAC], 
Ford Credit Corporation, and Chrysler Credit Corporation) would face losses as 
market values fell short of the residual value they had booked and as fewer con- 
sumers exercised their option to buy, turning the car back to the lessors instead. 

The following day Pudar and his team presented these results to Zarella, in- 
cluding the structure of the initial model and simulations showing the problems ag- 
gressive leasing could cause. By shortening trade-in cycle times through leasing 
and fleet sales, carmakers were creating a glut of high-quality used cars at attrac- 
tive prices. Superstores were simply the market response to the opportunity the 
manufacturers themselves had created. 

Used car superstores were only the symptom of a deeper problem-the leasing 
policies of the carmakers. Leasing increased sales in the short run but set in motion 
feedbacks that caused sales to slump when the leased vehicles reentered the mar- 
ket. In the old days, people kept their cars long enough that trade-ins effectively 
disappeared from concern. But in a world of short-term leases, new cars are gone 
today, here tomorrow. 

The realization that superstores were an endogenous consequence of the car- 
makers’ own actions dramatically redefined the focus of the work. Initial model 
analysis suggested GM should de-emphasize leasing, exactly counter to industry 
trends. 

These effects may seem obvious (especially now that you have read the de- 
scription of the model above), and auto industry executives did know that some 
off-lease cars would reenter the market. However, most discounted the possibility 
of any problems. In 1994, USA Today quoted a General Motors leasing executive 
who said, “The demand for cars coming off leases is triple the supply. Lease-end 
cars have ‘not created a bottleneck in the industry”’ (2 November). A Detroit-area 

3The Purchase Option loop is partially offset because customers turning their cars back to 
lessors purchase another vehicle. If lease customers used their purchase option to make a pure arbi- 
trage play when used car prices fell below residual values by turning their cars in and immediately 
buying identical ones at the lower market price, then the net effect of changes in the retention frac- 
tion would be zero. However, some customers turning their cars back to lessors will buy a new car 
or different used car, possibly from a competitor. On net a lower retention fraction for a given make 
and model will tend to push prices for that car down still more, triggering even lower retention. 
These effects were captured in the full model but for clarity are not shown in Figure 2-1. 
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Cadillac dealer dismissed any linkage between the new and used markets for high- 
end cars, scoffing, “You’ll never get a luxury buyer to take a car with 30,000 miles 
on it” (The Wall Street Journal, 3 June 1994). In the same article, The Journal went 
on to note that Ford’s executive director of sales operations 

argues that the industry has had a chronic shortage of good two-year-old cars to 
sell . . . “This [short-term leasing] brings the cars back at just the right time, when 
demand is highest,” he says. Moreover, the used-car market is at least twice as big 
as the new-car market and can easily absorb the projected volumes. 

The underlying strength in used-car demand will safely absorb the volume of 
used vehicles coming off lease, without cannibalizing new-car sales,” predicts . . . 
[an] auto securities analyst at Salomon Bros. 

There appeared to be ample evidence to support these views. Used car sales grew 
from 37.5 million in 1990 to nearly 42 million in 1995 while 1995 new car sales 
were about 15 million, a rise of only about a million vehicledyear since 1990. 
Used car prices rose more than 6%/year between 1990 and 1995, much faster than 
inflation. With rising used car prices, more and more people opted to keep their ve- 
hicle when their lease expired. Many in the industry, including GM, argued that 
strong demand and rising used car values justified even higher residual values, al- 
lowing lower lease payments and boosting new car sales still more. 

While the initial results were intriguing, more work was needed before credi- 
ble policy recommendations could be made, much less any action taken. Even if 
leasing was a devil’s bargain, every carmaker felt strong pressure to match the 
terms and prices of its competitors. Once all major manufacturers were offering 
short lease terms with aggressive subvention, unilaterally backing away from leas- 
ing might risk too much market share. Zarella asked the team to continue the mod- 
eling to address these questions. The DSC formed a decision review board, chaired 
by Zarella and Barabba, to oversee the project and the modeling team then began 
to refine the model and gather the data needed to calibrate it. They had 20 days. 

2.2.2 Elaborating the Model 
The modeling team interviewed people throughout the organization to understand 
the issues and gather data. Through the meetings of the core and modeling teams 
they opened up the model to critical review and presented interim results for 
discussion. 

One area for improvement was the treatment of the competition and segmen- 
tation of the market into different vehicle types. Some argued for explicit treatment 
of every major manufacturer and market segment. Brand loyalty is important: 
People who bought GM cars last time are more likely to buy another GM car than 
non-GM owners. They also argued that GM customers were different from Ford or 
Honda customers and that markets for luxury cars, family sedans, sport utility ve- 
hicles, and so on were all different. The team countered that the data requirements 
for such a detailed model would be enormous and would delay development of a 
useful model. They preferred an iterative approach, with more limited disaggrega- 
tion; if sensitivity analysis showed that further segmentation was needed they 
could then revise the model to include more detail. The team agreed to separate the 
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FIGURE 2-2 
The matrix shows 
the probability 
p(i, j) that cus- 
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category shown 
in row i will, on 
trade-in, move 
to the category 
in column j. 
The transition 
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prices. The full 
matrix disaggre- 
gates GM and 
non-GM vehicles. 

market into GM and non-GM vehicles but to represent only a single aggregate 
vehicle type. 

Another important area of discussion was disaggregation of the customer base. 
Parallel to the flow of cars between the “on the road” and “for sale” stocks are 
stocks and flows of drivers. Every car traded in moves a customer from “on the 
road” to “in the market;” every new or used car sold puts a driver on the road 
again. Changes in the relative attractiveness of new and used cars shift the propor- 
tion of drivers in the market opting for a new car. The choice between new and 
used vehicles also depends on their past behavior. The chance a customer will 
lease, buy new, or buy used depends on whether he or she leased, bought new, or 
bought used last time. Some members of the organization pointed out that the com- 
pany, through extensive market research, already knew a lot about consumer be- 
havior in the new car market. They insisted that the dynamic model incorporate 
these data so the DSC could speak with one voice and avoid the need to reconcile 
conflicting models. 

To address the brand loyalty and consumer behavior issues the modeling team 
disaggregated the customer base into several categories: those who leased a new 
car, purchased a new car, or purchased used cars of various ages. Figure 2-2 shows 
a simplified representation of the resulting transition matrix. Each entry in the ma- 
trix is the probability that buyers coming from a particular category shown in a row 
will, when they next trade in, move to the categories shown in the columns. The 
actual matrix had twice as many categories as it included probabilities for each 
purchase option for both GM and non-GM vehicles. 

The transition probabilities in the matrix were not constant but changed as 
the prices of new and used cars changed. Lower payments on GM leases increase 

New Car Purchase 

New Car Lease 

1 -Yr-Old Used Car 

2-Yr-Old Used Car 

3-Yr-Old Used Car 

4-Yr-Old Used Car 

Source: Adapted from GM Decision Support Center diagram. Used with 
permission. 
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the proportion opting for a GM lease, while lower used car prices increase the 
share of people buying used cars at the expense of new purchases and leases. The 
response to such changes differed for each category of customer. 

The disaggregation of the model was not accomplished in one step but in sev- 
eral iterations. At each stage modeling team members made sure they understood 
the structure and behavior of the model and presented it to Zarella and his team for 
comment and review. Each iteration they incorporated the criticisms and sugges- 
tions they received. Even with the limited disaggregation of the model the data 
challenges were formidable. Given the 20-day deadline, the team had to use data 
already available in various parts of the organization. The market research data for 
new cars were excellent. Data on leasing, a relatively new phenomenon, were 
sketchy. And consistent with the prevailing mental model that downplayed the 
used car market, there was almost no research describing how people traded off 
new and late model used vehicles. They drew on the best data sources available 
and used judgment and qualitative data where numerical data were not available. 

At the end of the 20 days the team met again with Zarella and his team. Instead 
of presenting the model and results, they configured the model as an interactive 
management flight simulator. A “dashboard” contained dials and gauges reporting 
standard accounting information such as inventory levels, sales volumes, prices, 
market share, and profitability. Players set production targets, incentives, lease 
terms, and so on. By clicking a button on the screen players could get additional in- 
formation including the structure and assumptions of the model. 

By playing the game instead of listening to a presentation, Zarella and his team 
explored the dynamics of leasing for themselves. They could try various strategies, 
from aggressive subvention of leases to pulling out of the lease market altogether, 
and see the impact on sales and profits in the short run and the long run. They dis- 
covered that the full impact of leasing decisions took up to 5 years to play out. 
While leasing did provide a lift to sales in the short run, it often caused problems 
when the off-lease cars returned to the market. 

After 20 days the modeling process revealed the challenges leasing posed for 
the company and indicated preliminary policy recommendations. However, before 
any consensus for action could be developed, the process had to be broadened to 
include other key decision makers throughout North American Operations (NAO). 

The modeling team began to work with the Leasing Strategy Implementation 
Team, a task force including people from marketing, finance, and other functions. 
Their mandate was to boost market share and profitability. They didn’t think a 
model was necessary, didn’t trust the modeling approach, and opposed the initial 
recommendations. Viewed through the lens of their mental model, this posi- 
tion was entirely rational. The success of leasing and strength of the used car 
market provided ample evidence that competitive leasing was essential to GM’s 
strategy. 

Working with your critics is often the best way to improve your understanding 
of complex issues. Over the next few months the modeling team refined the model 
structure, improved the data and calibration, and tested the model over a wide 
range of conditions. They met with the leasing team about once a month to present 
interim results and listen to critiques. 
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2.2.3 Policy Analysis 

FIGURE 2-3 
Policy analysis 
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of economic 
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As their confidence in the formulations and calibration of the model grew, the team 
turned to policy analysis. Policy levers include lease terms and subvention levels, 
along with purchase incentives, fleet sales, and various decision rules for produc- 
tion, The impact of each policy combination depended on the policies of the com- 
petitors and a host of market uncertainties, from changes in the economy, 
demographics, gasoline prices, and interest rates to changes in the unit costs of 
each carmaker, car quality, and brand loyalty. 

The combination of policies and market scenarios define a policy matrix. The 
team used the model to find the optimal lease policies for each cell in the matrix. 
Figure 2-3 shows a sample illustrating the net present value of GM profits as a 
function of leasing policy (no leasing vs. 2-, 3-, or 4-year terms) for each combi- 
nation of competitor lease terms and economic growth scenario (stable, boom, or 
recession). 

The policy analysis showed that there was no going back: Profits without leas- 
ing were consistently negative, reflecting the attractiveness of leasing to consumers 
and the prisoner’s dilemma that unilaterally stopping leasing while competitors 
continued to offer it dramatically reduced GM sales. 

The analysis also showed that GM’s profits were consistently higher with 4- 
year lease terms. Four-year terms were superior over a wide range of competitor 
strategies and uncertainties. Longer terms have two main beneficial effects. First, 
though shorter terms do shorten the trade-in cycle, the resulting glut of nearly new 
cars depresses used prices so much that the substitution of used for new purchases 
offsets their benefit. In terms of Figure 2-1, the Used Car Market, Used Car Qual- 
ity, and Purchase Option loops overwhelm the benefit of the Lease Term and Lease 
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FIGURE 2-4 
Bathtub 
diagram to 
illustrate 
the  impact 
of leasing 
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Incentive loops. Four-year terms mean the cars coming off lease are less attractive 
substitutes for new cars, while still speeding the trade-in cycle somewhat. 

The second benefit of longer terms is a more subtle, disequilibrium effect. By 
increasing the substitutability between new and nearly new used cars, short-term 
leases increased the vulnerability of earnings to industry downturns. Rather than 
showing complex diagrams such as Figure 2-1 to explain why, Pudar developed 
Figure 2-4, showing the stock of late model vehicles as a bathtub. The bathtub di- 
agram uses a simple metaphor to illustrate the dynamics of leasing. The stock of 
new and new-car substitutes is increased by production and the flow of late model 
used cars coming off lease (and out of rental car fleets). Sales drain the tub. 

During recessions, auto sales drop. The water level in the tub rises. Carmakers 
come under pressure to cut prices and subsidize leases to drain cars out of the tub 
faster and also cut production to stop the inflow. However, the flow of new car sub- 
stitutes into the market from expiring leases cannot be turned off. When a recession 
hits, leases sold during the preceding boom continue to expire, boosting the level 
in the tub. Lower used car prices and concerns over future income lead more peo- 
ple to turn their off-lease cars back to the lessor rather than exercising their option 
to buy. The larger the share of new cars sold through leasing, the larger the un- 
stoppable flow of returning vehicles. Prices are forced down even farther, and pro- 
duction cuts must be even deeper, significantly eroding profits. 

The team used the bathtub diagram in presentations to senior managers 
throughout the firm, including all brand managers. Of course the formal analysis, 
model structure, and other details were presented, but the bathtub provided a pow- 
erful metaphor to communicate an important dynamic insight and helped in the 
difficult process of changing mental models. 

Why do short-term leases make us more vulnerable 
during an economic downturn? 

Production New Car Substitutes 

When industry demand falls, the f low of returning lease cars cannot be stopped: 
- Prices of used cars will be  driven down; 
- New car transaction prices wil l  be forced down; 
- Some returning lessees will opt for cheap used cars. 

Price does not alter the supply of new car substi tutes 
Source: GM Decision Support Center. Used with permission. 
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Pudar and his team made two main recommendations to Zarella and other 
senior managers in NAO. First, GM should shift incentives to favor longer leases 
and move the mix of the leasing portfolio toward a higher average term. Second, 
they recommended that all proposals for new pricing and marketing programs for- 
mally include analysis of their impact on the used car market and its feedback to 
the new car market. They recommended the market research organization create 
new clinics to assess new/used/lease consumer choice behavior so that up-to-date 
data would be available on an ongoing basis. They also supported changing the 
incentives and metrics for managers of the car groups to include the profit or loss 
GMAC realized as a result of leasing. 

Many brand managers and brand analysts were initially opposed to these rec- 
ommendations. They argued that consumers had been conditioned to prefer short- 
term leases. Competition was intense and GM’s market share had been slipping. 
Ford, in particular, was aggressively pushing 2-year leases with significant sub- 
vention; unless GM responded in kind, they argued, market share would suffer 
more. Given the tremendous pressure they faced to stay competitive, they were not 
willing to sacrifice market share and profits today to avoid the possibility that leas- 
ing might lead to problems in a few years. Brand managers and the sales organiza- 
tion put strong pressure on the senior management of NAO to increase residual 
levels. They pointed to strong used car demand and rising used car prices to justify 
increased residuals. They also argued that subvention levels should be increased 
even further above the higher residuals they were recommending. Finally, they ar- 
gued for a decrease in the fraction of off-lease vehicles GM predicted it would 
have to take back at lease end. The costs of subvention are deferred because they 
are only realized when cars come off lease. Accounting rules require carmakers to 
set aside reserves to cover the expected cost of subvention; these reserves reduce 
current period earnings. The amount set aside in reserves depends on the fraction 
of cars they expect to be returned. If customers exercise their option to buy when 
their lease expires then GMAC never has to pay the difference between the sub- 
vented residual and market value. Many brand managers believed that the strong 
used car market meant reserves were too high and could safely be cut, allowing the 
car divisions to show higher current period profits while increasing market share. 
They supported their case with spreadsheets in which recent trends toward higher 
used car prices and higher customer retention of off-lease vehicles were assumed 
to continue, that is, in which all feedbacks between the new and used markets 
were cut. 

The dynamic model, in contrast, suggested that used car prices would soon de- 
cline as the large volume of leased and fleet vehicles sold in the last few years 
reentered the market. The team’s analysis suggested some of the surge in used car 
prices was a temporary blip generated by the used car superstores as they bought 
heavily to stock their lots. When that period of inventory building ended, used car 
sales would slump while the flow of cars coming off lease continued. As used 
prices fell below the contracted residuals, more customers would terminate their 
leases early and fewer would exercise their option to buy, decreasing the retention 
fraction and boosting the supply of late model used cars still more. GM would have 
to take a significant charge against earnings for residual reconciliation, and new car 
sales would suffer as customers opted for late model off-lease vehicles. 
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FIGURE 2-5 
Used car prices, 
1989-1999 

Index shows the 
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component of the 
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Senior managers at NAO decided to focus on 36- to 48-month terms and elim
inated 2-year leases. They also chose not to increase residual values and moved to 
full accrual of residual risk in calculating reserves. These decisions made subven
tion much more expensive to brand managers and raised lease payments. 

2.2.4 Impact and Follow-up 
In 1997 a flood of off-lease vehicles inundated the market. Used car prices fell sig
nificantly (Figure 2-5). The data show the aggregate for all used cars; the drop for 
late model vehicles was much steeper and was most severe in the segments in 
which leasing had grown most rapidly. 

As prices fell, fewer customers opted to keep their cars. The Consumer Bank
ing Association reported that the fraction of vehicles from expiring full-term leases 
returned to lessors jumped from 29% in 1997 to 39% in 1998. About three-quarters 
of all off-lease vehicles returned to lessors incurred losses; the average loss in 1998 
was $1878 per vehicle, 220% more than the average for 1993. 

GM's early action helped it avoid these losses, while other carmakers found 
themselves facing huge reconciliation charges. Profits at Ford Credit Corporation 
fell $410 million in 1997 compared to 1996, a 28% drop, largely due to losses on 
off-lease vehicles. At GMAC, net income from automotive financing operations 
fell only $36 million, less than 4%, and overall GMAC profits rose more than 6%. 

In 1997 several carmakers, including Ford and Nissan USA, attempted to prop 
up wholesale prices for their cars by paying dealers to keep off-lease cars instead 
of returning them to the manufacturer for sale at auction. Ford paid dealers $700 to 
$6000 (depending on the model) for each 2-year old off-lease vehicle the dealer 
agreed to keep, dipping into its residual reserves for the first time to do so. This 
policy reduced the number of 2-year-old cars sold at auction, but of course, since 
retention of these cars added to dealer inventories, the number of these cars dealers 
bought at auction fell by the same amount, so wholesale prices continued to slide. 

In 1998 GE Capital dropped its partnership with Chrysler to finance leases be
cause, as Automotive News (24 August, p. 1) reported, 
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GE Capital Auto Financial Services got burned on residual-value losses in 1997. 
Much of that was due to off-lease products from Chrysler . . . GE Capital cited 
residual losses as one reason for the decline in operating profits for Consumer 
Services, the GE unit that includes Auto Financial Services. Profits fell from 
$1.3 billion in 1996 to $563 million [in 19971. 

In 1998 net income at Ford Credit rose $53 million over the depressed level of 
1997 but remained 25% below the net for 1996.4 GMAC’s net on auto financing 
rose $74 million over 1997, a rise of 4% over 1996, and total GMAC profit for 
1998 rose $181 million over 1996, a gain of 15%. In 1998 Ford and other car- 
makers belatedly followed GM’s lead and began to move away from short-term 
leasing. 

Since 1996 the leasing model has been updated several times, disaggregated 
further to separate the car and light truck segments, and used to examine issues 
such as sales of fleet vehicles. The model is now used on an ongoing basis by 
NAO’s Portfolio Pricing Team, the group responsible for review and approval of 
all pricing and incentive programs in North America. 

Pudar, now Director of the DSC (renamed the Strategy Support Center [SSC]), 
reports that the SSC continues to apply system dynamics, in combination with 
other analytic methods, to a wide range of issues, from negotiating joint ventures 
with foreign governments to designing business plans for new products, services, 
and business units. 

O N  ’TIME AND UNDER BUDGET: 
THE DYNAMICS OF PROJECT MANAGEMENT5 

In 1970, Ingalls Shipbuilding of Pascagoula, Mississippi, won a major contract to 
build a fleet of 30 new destroyers for the US Navy. Combined with its 1969 con- 
tract for 9 LHAs (an amphibious assauWaircraft carrier), Ingalls found itself in the 
happy position of landing two of the largest shipbuilding programs in the world 
and looked forward to healthy sales and profits for years to come. By the mid- 
1970s, however, Ingalls was in deep trouble, facing cost overruns projected to ex- 
ceed $500 million. With annual sales in the mid-1970s of $500-800 million, the 
overrun threatened to sink Ingalls, and its parent Litton Industries, altogether. Ad- 
justed for inflation the overrun would exceed $1.5 billion in 1999 dollars. 

Both contracts were awarded as total package procurement projects with a firm 
fixed-price contract structure in which Ingalls “was provided only with the perfor- 
mance specifications, and was thereafter solely responsible for all system design, 
detailed design, materials procurement, planning, testing, and construction” 
(Cooper 1980, p. 22). 

Both programs involved innovative and technically sophisticated new designs. 
The DD class multimission destroyers were twice as large as earlier “tin cans.” The 

4Excluding one-time income from asset sales. 
5This section is based on Cooper (1980) and personal communication with Ken Cooper 

(president, Pugh-Roberts Associates), Rich Goldbach (formerly with IngallsLitton Industries and 
currently president, Metro Machine Corporation), and many others at hgh-Roberts Associates. 
I’m grateful for their help. 
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LHA was also an entirely new design. More than 20 stories high and three football 
fields long, each LHA carries a complement of 2000 battle-ready Marines and 200 
combat vehicles that can be deployed by landing craft and several dozen heli- 
copters. The DD and LHA contracts required a massive mobilization of Ingalls’ re- 
sources. Already one of the largest shipyards in the world, Ingalls doubled its 
workforce to more than 20,000. During this time there were shortages of some 
skilled trades and critical materials. Ingalls also had to create new organizational 
structures to manage the two programs. 

Large-scale projects are among the most important and consistently misman- 
aged endeavors in modern society. Large-scale projects include the design and con- 
struction of civil works and infrastructure (e.g., bridges, tunnels, power plants, and 
telecommunications networks), military systems (e.g., aircraft, ships, and weapons 
systems), and new products in every industry (e.g., software, automobiles, semi- 
conductor chip design, and wafer fab construction). 

Projects of all types routinely experience cost overruns, delays, and quality 
problems. Cooper and Mullen (1993) examined a sample of large civilian and mil- 
itary projects (averaging 130,000 person-hours of planned work over about a year 
for the civilian projects and 170,000 person-hours of planned work over more than 
2 years for the military projects). They found commercial projects cost 140% and 
took 190% as long as originally scheduled, while defense projects cost 310% of the 
original estimates and took 460% as long to complete. 

Delays, cost overruns, and quality problems in commercial new product de- 
velopment can kill a company, particularly in high-velocity industries such as soft- 
ware and high technology. Overruns and delays in civil works and military projects 
can affect the economic vitality of a region and the ability of a nation to defend 
itself. 

2.3.1 The Claim 
The Navy and Ingalls disagreed sharply over the causes of the delays and cost 
overrun. Ingalls believed the majority of the cost overrun was caused by the ac- 
tions of the Navy. As is common in large, lengthy projects, the technologies and 
systems to be used in the DD and LHA ships were not mature at the time the con- 
tracts were awarded. Technologies for navigation, intelligence, communications, 
and weapons systems, for example, were advancing rapidly, and the Navy natu- 
rally sought to incorporate the most up-to-date systems in the ships. Rich Gold- 
bach, then a senior manager at Ingalls and one of the key participants in the claim, 
commented that “Ingalls was convinced that the government interfered with the 
design for the LHA from the start by micro-managing the design pro~ess .~’  As 
high-level design, detailed design, and even construction proceeded, Ingalls re- 
ceived many thousands of design changes from the Navy. Ingalls believed that 
much of the overrun was caused by the imposition of these design changes. After 
the Navy repeatedly refused to compensate Ingalls for these costs, Ingalls brought 
a claim against the Navy to recover the $500 million in losses it expected. 

Suing your customers is always tricky. In the case of Ingalls it was particularly 
delicate. Ingalls brought the claim early, while the two programs still had many 
years to run. Ingalls had to continue to manage the two programs and maintain a 
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good working relationship with the Navy while simultaneously pursuing the claim. 
Further, since commercial shipbuilding was in decline in the US, the Navy was 
Ingalls’ most important customer and would be for the indefinite future.6 

The Navy conceded that it had generated the design changes but argued that 
their impact was limited to the direct cost of reissuing the specifications and re- 
working the affected engineering drawings. The total cost of these direct impacts 
was a small fraction of the total claim. Ingalls countered that a design change could 
create much larger costs, for example, by altering the sequence of tasks and re- 
quiring overtime and unscheduled hiring that interfered with other phases of the 
work, diluted experience, and reduced productivity even in work phases not di- 
rectly affected by change orders. Ingalls believed such ripple effects could multi- 
ply the direct impact of a change notice many times, leading to significant overall 
“delay and disruption.” 

The Navy countered that the supposed delay and disruption were actually the 
result of contractor mismanagement or deliberate underbidding to win the contract. 
Disputes over the delay and disruption component of prior claims throughout the 
defense industry often dragged out over many years. The Navy had never paid a 
significant delay and disruption claim. 

2.3.2 Initial Model Development 
Ingalls spent several years pursuing the claim, but traditional project management 
tools did not provide a means to quantify the ripple effects. Ingalls turned to 
system dynamics to quantify the delay and disruption created by Navy design 
changes. The model, developed by Pugh-Roberts Associates of Cambridge, 
Massachusetts, simulated all phases of the DD and LHA projects, from the award 
of the contract to the delivery of the last ship, then 5 years in the future. 

The model ultimately contained many thousands of equations, a very large 
model indeed (especially considering the state of computer technology at the time). 
It began, however, as a much smaller model designed to illuminate the basic feed- 
backs that might be responsible for ripple effects. The modeling team worked 
closely with Ingalls’ claim management organization, including managers from all 
major phases of each program and key attorneys. Lead modeler Ken Cooper de- 
scribed the process this way (1980, pp. 26-27): 

The Ingalls project team guided and reviewed the decision of what elements 
to include in the model, and with what measures and in what detail to include 
them . . . [Dlozens of individuals in all stages of shipbuilding, from workers 
through vice presidents, were interviewed. They offered qualitative and quantitative 
observations on ship design and construction. As the design of the model began to 
gel, the numerical data requirements were clarified; a massive data collection ef- 
fort, in concert with other elements of the claim, was undertaken. These data and 
information provided enough material to assemble a preliminary mathematical 
model of a single work phase. The equations, parameters, and detailed output 
were reviewed by the project team, and several model modifications made. 

6Due in part to the problems encountered in the program, the number of LHAs utlimately 
built was cut to 5. LHA5, the USS Peleliu, was completed in mid 1980, as was the last DD class 
destroyer, USS Fletcher. 
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A full description of the feedback structure of the model is beyond the scope of this 
discussion; this section provides only a few illustrations of the type of ripple ef- 
fects the model addressed. 

Figure 2-6 shows a highly simplified stock and flow structure for the flow of 
work within a single project phase. The tasks could be high-level systems design 
tasks, preparation of detailed engineering drawings, or construction of a vessel. 
The rectangles and valves represent the stock and flow structure of the ~ y s t e m . ~  
The stocks represent the accumulations of work in different categories; the valves 
represent the flow of tasks through the system. Initially all tasks are in the stock of 
Work to be Done. Completing a task requires resources such as a productive labor 
force with appropriate skills; the number and productivity of the labor force vary 
over time as project conditions change. Tasks can be done correctly or incorrectly, 
depending on the quality of the work. Tasks done correctly add to the stock of 
Work Really Done while tasks containing errors of various types add to the stock 
of Undiscovered Rework. Work quality is often quite low, as new-product devel- 
opment and large-scale projects usually involve new technologies, materials, and 
systems and often involve unique new circumstances. Cooper and Mullen (1993) 
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Source: Adapted from a diagram developed by Pugh-Roberts Associates, Cambridge, MA. Used with 
permission. 

7Mathematically, each stock is the integral of the flows in less the flows out. Stocks and flows 
are discussed in chapters 6 and 7. 
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found the average fraction of work done correctly the first time in their sample to 
be 68% for commercial projects and just 34% for defense projects. 

Uncovering errors takes time and resources. Often, errors are only detected by 
a downstream phase, as when a design flaw is discovered during the construction 
phase. Tasks in the stock of undiscovered rework are therefore perceived to be 
complete and are treated as done by the organization. Discovery of errors by qual- 
ity assurance, testing, or a downstream phase moves the imperfectly done tasks to 
the stock of Known Rework. Cooper and Mullen (1993) found average rework dis- 
covery delays of about 9 months for both civil and military projects, a significant 
fraction of scheduled project duration. 

Changes in customer specifications have effects similar to the discovery of 
errors. Specification changes make some work previously done correctly obsolete, 
moving those tasks from the stock of Work Really Done to the stock of Known 
Rework. The affected phase must recall work it previously released to other phases 
and upon which those downstream phases have based their own work. The or- 
ganization must then increase the resources and attention devoted to rework, slow- 
ing completion of remaining basework tasks and potentially disrupting the entire 
project. * 

Obviously customer changes that make completed design work obsolete are 
costly because the affected tasks must be reworked; these are the direct impacts of 
changes the Navy was willing to pay for. But the indirect effects can be many times 
larger. Figure 2-7 shows a few of the feedbacks that explain how the indirect ef- 
fects of customer changes could be amplified. 

As a project falls behind contractors have only a few choices. They can put the 
existing workforce on overtime, thus increasing the effective number of people 
working on the project. This negative or balancing feedback is the intended effect 
of overtime and is shown in the diagram by solid lines. However, excessive or ex- 
tended overtime causes fatigue and burnout. Productivity and quality fall, reducing 
progress and increasing the stock of undiscovered rework. Burnout also leads to 
absenteeism and attrition as employees request transfers or quit, reducing the num- 
ber of people on the project. These unintended effects, shown as dashed lines, form 
positive (self-reinforcing) feedbacks that act as vicious cycles to undercut the 
progress-enhancing effect of overtime. To avoid the side effects of overtime more 
people can be hired (another balancing loop). But rapid hiring dilutes the experi- 
ence base of the employees. If the pool of qualified workers in the region is small 
relative to hiring needs, accelerated hiring lowers the average quality of available 
candidates. Recruiting standards often erode so vacancies can be filled quickly. All 
these effects lower productivity and quality and slow progress even as manage- 
ment seeks to boost headcount and speed progress. 

‘Most large military and civilian projects specify deadlines for delivery. Failure to meet the 
deadline leads to penalties, known as liquidated damages (LDs), for every day the project is late; 
LDs can rapidly mount to many millions. In disputes such as discussed here the LDs form the 
primary basis for the customer’s counterclaim against the contractor. In several cases for which 
system dynamics models have been used the difference between the contractor delay and disruption 
claim and the customer’s counterclaim was several billion dollars. Even when LDs do not apply, as 
for in-house commercial product development projects, every day the project is late erodes the 
competitiveness of the product and the sales and profits it can generate. 
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time is increasingly consumed by meetings to work out conflicts arising from the 
accelerated schedule and ad hoc, last-minute coordination of out-of-sequence ac- 
tivities. Stress from work pressure, increased fire fighting, and constant changes in 
schedules can lead to morale problems that cut productivity and quality and in- 
crease absenteeism and attrition. These effects are further multiplied by the rework 
cycle. Lower quality means more tasks contain errors. Because many errors are not 
discovered immediately, subsequent work begins using designs, materials, and in- 
formation that appear to be correct at the time but are later recalled for rework. 

Thus customer changes can disrupt and delay upstream activities such as sys- 
tem design. These phases must then recall some previously released work, so de- 
lays and quality problems cascade to downstream phases such as detailed design, 
materials procurement, and construction. The downstream phases must then redo 
much of their job, often at great expense (particularly when construction has al- 
ready begun). To the extent different projects such as the DD and LHA programs 
share resources such as work sites, workers, support infrastructure, and manage- 
ment, problems in one can spill over to another. 

The diagrams above are highly simplified, and many other important feed- 
backs captured in the full model are omitted (how many other such effects can you 
identify from your own experience?). But they illustrate how apparently small 
changes in customer specifications can snowball into much larger delay and dis- 
ruption despite management’s best efforts to get the project back on track. The 
model augmented traditional project analysis through the explicit recognition of 
the rework cycle, variable staff productivity and quality, and the bane of most de- 
velopment projects-undiscovered rework. Conventionally, any indirect effects 
were viewed as a small additional percentage over the direct costs. Explicit recog- 
nition of the feedback structure described here helped explain how the indirect ef- 
fects of customer changes could be many times larger than the direct effects. 

2.3.4 The Modeling Process 
The modeling team assembled the full model by replicating the generic project 
phase module to represent each phase for each ship in each program. The major ac- 
tivities (system design, detailed design, procurement, construction, etc.) were dis- 
aggregated further where necessary; for example, construction was divided into 
several major activities (e.g., hull, piping, electrical, etc.) and the construction 
workforce was disaggregated by major crafts (e.g., steelworkers, electricians, etc.). 
Construction progress for each ship was represented separately. Each instance of 
the generic phase module was calibrated to the particular activity it represented. 
The individual activities, phases, and programs were linked by additional structure 
representing overall program management, progress monitoring, scheduling, hir- 
ing, resource allocation, and so on. 

A model of this scope could never be built, calibrated, maintained, or under- 
stood if such a modular architecture were not used. To represent such a diverse ar- 
ray of activities the generic module had to be extremely robust. Considerable effort 
went into extreme conditions tests to ensure that the model behaved appropriately 
under any conceivable combination of inputs or conditions (see chapter 21). The 
team worked to ensure the model was consistent with all available information, 
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including the qualitative assessments gleaned from interviews and observations in 
the field, not only the numerical data. 

Early on the team compared the output of the model to the history of the pro- 
jects to date. The purpose of the comparison to historical behavior was not to prove 
to Ingalls that the model was right, but rather to identify areas where the model 
required improvement. These comparisons sometimes identified omissions and 
problems, leading to revisions in model structure and parameters. Other times, 
discrepancies between model and data suggested the data were inconsistent or 
incomplete, leading to additional data collection, interviews, and refinement of the 
values and justification for parameters. This process led to three major and many 
minor iterations in the model. 

The model ultimately replicated the historical performance of the projects 
quite well. But, as discussed in chapter 21, it is quite easy to fit a model to a set of 
data. It is also necessary that the model replicate the data for the right reasons, rea- 
sons the modelers and Ingalls’ management understand and can explain in plain 
language. While particularly important in the adversarial setting of a large lawsuit, 
these are important in any modeling project. Ultimately the clients for any model- 
ing project will take action only to the extent their mental models have changed. In 
turn, the clients’ mental models are unlikely to change unless they have confidence 
in the integrity and appropriateness of the formal model. Developing that confi- 
dence requires a modeling process that gives the clients the opportunity to delve as 
deeply into the details as they want, to question any assumption, and to challenge 
any result. Opening the model to review by the clients is also essential for the mod- 
elers to ensure it addresses the issues the client cares most deeply about and to gen- 
erate the best model for that purpose. 

To uncover model flaws and create opportunities for the Ingalls team to chal- 
lenge the model the modeling team used several other procedures. Cooper (1980, 
p. 27) explains: 

First, we established at the outset explicit limits of reasonableness for each numeri- 
cal parameter in the model; these would not be violated in order to achieve a more 
“accurate” simulation. Further, the numerical parameters in different sections of the 
model were required to be consistent with one another in terms of relative magni- 
tude. These guidelines . . . were never violated. The model was also subjected to a 
series of “shock tests” to assess robustness in responding as the company would to 
radically different circumstances. Finally, several different plausible combinations 
of equations and parameters were tested to explore “alternative models” that might 
accurately represent Ingalls operations. 

As time passed the model-generated projections for schedule and costs turned out 
to be quite close to what actually happened, further boosting confidence in the abil- 
ity of the model to capture the underlying structure of the projects. 

The modeling team assessed the systemwide effects of the Navy’s design 
changes by comparing two simulations. The “as-built’’ case was the historical sim- 
ulation including all the Navy design changes; this was compared to the “would 
have” case in which the design changes were removed. The difference in total costs 
and completion times represented the cumulative impact of the design changes. 
Sensitivity analysis then placed confidence bounds around the estimated cost of the 
delay and disruption. 
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The model also allowed Ingalls to estimate the role of its own management de- 
cisions in the overrun. Simulations of alternative policies showed how much lower 
project costs and duration might have been if Ingalls had managed the project more 
effectively. The ability to quantify the contribution of customer interference and 
contractor mismanagement to the delays and cost overrun was a critical part of the 
process. Goldbach (personal communication, 1999) described the dispute resolu- 
tion process prior to the development of the system dynamics model as 

just a bunch of finger-pointing. A contractor would say “Here’s what the govern- 
ment did wrong” and blame all their problems on that. Then the government would 
send the GAO [General Accounting Office] in to find all the things the contractor 
did wrong. It went nowhere. 

at the time there was no way to separate the impact of government and contractor 
problems or examine the synergy between them. In the end we had to have the 
ability to say “here are the things the contractor didn’t do well and here are the 
things the government didn’t do well, and here’s how much each contributed to 
costs and time.” 

The problem was that with the [project management] technologies available 

The adversarial setting of a large dispute accentuates the need for a robust, well- 
understood model whose parameters and assumptions can be justified with inde- 
pendent data. As part of the discovery process in the lawsuit Ingalls had to turn the 
model, documentation, analysis, and supporting data over to the Navy, which hired 
its own experts to try to debunk it. A common criticism of such models, and one 
used by the Navy, is that the parameters and assumptions are “cooked” to achieve 
a preselected outcome. “Garbage in, garbage out,” they would say, and argued that 
the model was merely a complicated ruse designed to impress the court. 

The Navy’s outside experts examined and criticized the model. After they de- 
livered their reports, the modeling team, along with Ingalls management and their 
attorneys, Navy officials, the government’s attorneys, and the Navy’s outside ex- 
perts met for several days in a large conference room to discuss the critique. Each 
issue was discussed in detail, from high-level issues of modeling methodology and 
model architecture to specific equations and parameters. Ingalls and the modeling 
team then had a chance to respond. They revised the model to address the criti- 
cisms leveled by the Navy’s experts. In the next round of meetings, they showed 
the Navy team how they had modified the model to incorporate the changes the 
Navy’s experts wanted. Repeating the comparison of the as-built to would have 
cases, the modeling team found that the fraction of the overrun and delay caused 
by the Navy’s design changes had actually increased.’O 

The Navy clearly expected that incorporating the critiques and parameter esti- 
mates of its experts into the model would show more of the overrun was due 
to contractor mismanagement. The counterintuitive result that the claim value 

‘OGiven the technology of the time (mainframe computers operating with time-sharing, teletype 
printers, and 100 baud acoustic coupler modems) it was not feasible to run the model live in the 
meetings. The model developers painfully recall overnight sessions running the model on the 
largest computer then available. Today it is possible to bring the model to such meetings on a laptop 
and make many changes in assumptions on the spot, slashing the cycle time for experimentation 
and greatly increasing client involvement. 
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increased demonstrated to all that it is actually quite difficult to engineer a model 
to generate a preselected result. Goldbach commented, “For the first time the Navy 
saw that Ingalls had a credible case.” Intensive negotiations then began at the high- 
est levels of Litton and the Navy. In June 1978 the parties settled out of court. In- 
galls received $447 million. 

Thus the clients for the modeling work were not only Ingalls’ management and 
attorneys but also the court and the Navy. It may seem counterintuitive to include 
the opposing side among the client group for a model used in a lawsuit. And indeed 
the Navy attempted to discredit the model and have it excluded from the proceed- 
ings. However, to the extent the model became the focus, even through the critique 
of the Navy experts, the structures in the model and the dynamics they generated 
started to become the common framework for discussion of the claim by all par- 
ties. The process of changing mental models was well underway. This process has 
since been observed in many other conflicts (see, e.g., Weil and Etherton 1990, Re- 
ichelt and Sterman 1990). Experience shows that the better the oppositions’ under- 
standing of the model, the more likely it will be influential in the resolution of the 
dispute. 

Though the setting here was a lawsuit, the process applies to any modeling 
project. Even when the clients for the work are all from the same management 
team, there will always be different sides and factions, proponents and opponents 
of each policy. Only the intensive involvement of the clients in the modeling 
process can create the understanding of the issues needed to change entrenched 
mental models and lead to consensus for action. 

2.3.5 Continuing Impact 
The system dynamics model was the sole technical basis for the delay and disrup- 
tion component of Ingalls’ claim against the Navy. Estimates from the attorneys 
and Ingalls management “place the model’s dollar contribution to the settlement 
between $170-350 million” (Cooper 1980, pp. 28). But these sums, large as they 
are, underestimate the benefits of the modeling process. The lawsuit itself can be 
viewed as a large project that generated its own ripple effects. By achieving a set- 
tlement a little over 2 years after beginning the modeling process (a very short in- 
terval in such large disputes), 

The direct dollar costs of continuing the claim effort were avoided [legal fees and 
court costs]. Even more significant, however, was the vast amount of managerial 
and professional time and talent (an entire “claim organization” of over 100 Ingalls 
personnel) that would have continued to be spent on something other than ship 
design and construction . . . Above all, the elimination of the adversary relationship 
between Ingalls and its best customer was a milestone achievement (Cooper 1980, 
p. 28). 

Since this groundbreaking work Pugh-Roberts and other firms have gone on to ap- 
ply system dynamics to disputes totaling many billions of dollars. These range 
from other military and commercial shipbuilding projects to aerospace and 
weapons systems, power plants, civil works such as the cross-channel tunnel, and 
software projects. In most cases contractors use the models in actions against their 
customers. In each case the defendants have sought to debunk the models and 
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exclude them from the allowable expert testimony but each time the models have 
been allowed and have contributed to favorable settlements. 

While the dollar value of these actions is impressive and of undoubted benefit 
to the plaintiffs, the damage (the cost overrun) has already been done, and the dis- 
pute is only over who pays. The real leverage lies in using these models proac- 
tively so overruns and delays are avoided in the first place. Since the first Ingalls 
model, many organizations have gone on to apply similar models to the manage- 
ment of large-scale projects in a wide range of industries (for examples see sec- 
tions 6.3.4 and 14.5).” Ingalls itself has used descendants of that first model to 
help manage virtually every program since the LHA and DD. The benefits of such 
proactive modeling are harder to quantify but likely outweigh the value of dispute 
settlements many times. 

As one illustration, Rich Goldbach left Ingalls in the late 1970s to head up 
Metro Machine, a shipyard in Norfolk, Virginia. Then small and struggling, Metro 
today is a highly successful yard specializing in repair and refitting work for the 
Navy with about 700 employees and sales of about $90 milliodyear. Goldbach in- 
troduced a wide range of innovative management practices including employee in- 
volvement. The firm is 100% employee owned, with universal participation in the 
employee stock ownership plan. Metro has won several awards for the high qual- 
ity of their work, including National Small Business Prime Contractor of the Year 
and the US Navy AEGIS Excellence Award “for superior performance in quality, 
reliability, delivery and cost”-the first ever given to a repair yard. 

Models continue to play an important role. Goldbach commissioned the de- 
velopment of a simulation model to project the financial consequences of various 
decisions for up to 10 years. Metro uses the model to assess acquisitions, capital 
investment decisions, new ventures, and all aspects of bidding for jobs. 

We built the model to a spec[ification] I provided based on what I learned from the 
Ingalls model. The model helps the government understand our bids better. It lets 
the DCAA [Defense Contract Audit Agency, a Department of Defense agency that 
audits defense contractor bids and assesses their ability to do the work] look at al- 
ternative scenarios. We use the model interactively with them. There is an on-site 
DCAA auditor who knows the model. She can ask us to run any set of assumptions, 
and we usually get the answer back in an hour (Goldbach, personal communication, 
1999). 

The financial simulation has been very effective, but far more important, Goldbach 
says, are the lessons he learned about the challenges of managing complex 
systems: 

For the [shipbuilding] industry I thought I was a pretty sophisticated manager, but it 
changed my whole perspective. I never had the ability I think I got from working 
with system dynamics to ask ”how will this decision ripple out?” I got to the point 
that I had the mental self-discipline to fight my impulses and not just do the macho 
thing when there’s a problem. The playing field changes while you’re playing the 

“See also Abdel-Hamid and Madnick (1989a-c, 1990, 1991); Cooper (1993a-c, 1994); Cooper 
and Mullen (1993); Ford and Sterman (1998a-b); Homer et al. (1993); Weil and Etherton (1990); 
and Yourdon (1993). 
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game. Now I ask how customers, employees, suppliers and so on will react to what 
we might do. Sometimes I get it right and sometimes I don't. 

It permeates every aspect of my thinking. I'm a different person than I was 
before. 

2.4 PLAYING THE MAINTENANCE GAME'* 
In 1991, Winston Ledet, then a manager in Gulf Coast Regional Manufacturing 
Services at Du Pont, reflected on the results of an in-house benchmarking study 
documenting a large gap between Du Pont's maintenance record and those of the 
best-practice companies in the global chemicals industry. 

The benchmarking study revealed an apparent paradox: Du Pont spent more 
on maintenance than industry leaders but got less for it. Du Pont had the highest 
number of maintenance employees per dollar of plant value yet its mechanics 
worked more overtime. Spare parts inventories were excessive yet the plants re- 
lied heavily on costly expedited procurement of critical components. Most 
disturbing, Du Pont spent 10-30% more on maintenance per dollar of plant value 
than the industry leaders, while at the same time overall plant uptime was some 
10-15% lower. 

Many people found the results of the benchmarking study to be counterintu- 
itive. Their mental models suggested that equipment quality should suffer and up- 
time should be low in a company that spends little on maintenance, while spending 
more on maintenance should yield high-quality equipment and high uptime. How 
could Du Pont be spending more and getting less? 

Many people blamed the problem on the difficult competitive environment. 
The chemicals industry is mature and intensely competitive. Because there is little 
product differentiation for bulk (commodity) feedstocks, chemical manufacturers 
compete on other dimensions, mostly cost and delivery reliability. Since the early 
1970s the industry was hit by one crisis after another: Two severe energy crises 
wreaked havoc with input and operating costs. Always cyclical, the three worst re- 
cessions since the Great Depression caused widespread excess capacity. New com- 
petitors from the Pacific rim and the oil-rich nations of the Middle East entered the 
market. Environmental concerns and regulations were growing. 

Ledet knew all this; he had lived through it during his 25 years with Du Pont. 
But blaming outside forces for the problems, while psychologically safe, didn't 
provide any leverage to improve. Ledet felt that the explanation of the paradox lay 
not in the outside pressures the company had faced during two turbulent decades 
but in its response to those pressures. 

Ledet and his team needed a way to explore the ways in which different parts 
of the maintenance system interacted, explain why past attempts to improve had 
failed, and assist in the design of new policies. And they needed to explain these 
complex dynamics to the experienced plant operations and maintenance people 
who had to take action. 

"Tm indebted to Winston P. Ledet and Winston J. Ledet (principals, The Manufacturing Game), 
Paul Moms (BP Chemicals), and Mark Paich (Colorado College) for permission to present their 
work and their assistance in the preparation of the material. Thanks also to Tony Cardella, Mark 
Downing, Vince Flynn, and the rest of the Du Pont team. 
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Ledet and his team began the development of a simulation model to capture 
the systemwide, dynamic benefits and costs of different maintenance initiatives. 
They developed the model with the assistance of an experienced modeler, Mark 
Paich. The model was developed interactively, with the participation of Ledet and 
other key team members. The role of the expert modeler was more of a coach and 
facilitator, and the modeling process involved extensive hands-on workshops in 
which the model was discussed, tested, and changed in real time as members of the 
modeling team identified problems or areas needing improvement. 

Du Pont, like most large firms, already used a number of maintenance plan- 
ning tools. These tools tend to focus on the detail complexity of the maintenance 
challenge, for example, databases to track the maintenance history of each indi- 
vidual piece of equipment, statistical models to optimize maintenance schedules, 
scheduling systems to assign mechanics to planned and reactive work, and so on. 
These tools are important for the day-to-day management of large plants but they 
don’t capture the dynamic complexity of the maintenance system. Where the de- 
tailed planning and scheduling models tracked each pump and motor in the plant 
separately, the dynamic model divided all equipment into just three categories: op- 
erable, broken down, or taken down for planned maintenance. But where the ex- 
isting models assumed failure rates and repair costs and durations were exogenous, 
the dynamic model treated these factors endogenously. It encompassed technical 
issues such as equipment characteristics; logistical issues such as spare parts avail- 
ability, maintenance scheduling, and mechanic assignments; human resources is- 
sues such as mechanic skill, training, and motivation; and financial issues 
including maintenance budgets, resource allocation, and overall plant performance. 
The system dynamics model was a complement to, and not a replacement for, ex- 
isting planning and scheduling tools. 

2.4.1 Dynamic Hypothesis 
Using the model as a laboratory to design and test different policies, the team grad- 
ually developed an appreciation for the dynamic complexity of the maintenance 
system. The dynamic hypothesis they developed explained the paradox that Du 
Pont spent more on maintenance and got less for it in terms of uptime and equip- 
ment reliability. 

The modeling process led to several important conceptual shifts in the way 
they viewed maintenance. Prior to the modeling work maintenance was largely 
seen as a process of defect correction (repair of failed equipment) and the mainte- 
nance function was viewed as a cost to be minimized. The first conceptual shift 
was to change the focus from defect correction to defect prevention and defect 
elimination. The model therefore centered on the physics of breakdowns rather 
than the cost minimization mentality that prevailed throughout the organization. 
Equipment fails when a sufficient number of latent defects accumulate in it. Latent 
defects are any problem that might ultimately cause a failure. They include leaky 
oil seals in pumps, dirty equipment that causes bearing wear, pump and motor 
shafts that are out of true and cause vibration, poorly calibrated instrumentation, 
and so on. A pump with a leaky oil seal or dirty bearings can still run but will even- 
tually fail unless these latent defects are eliminated. 
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The total number of latent defects in a plant's equipment is a stock (Figure 
2-8). Defects are created by operations (normal wear and tear) and by collateral 
damage arising from breakdowns (when the oil leaks out of the pump bearing and 
the bearing seizes, the shaft may be bent, the motor may overheat, and the vibra- 
tion may break couplings and pipes, introducing new problems). More subtly, 
maintenance activity can create new defects, through mechanic errors or the use of 
poor quality replacement parts. The lower the intrinsic design quality of the equip- 
ment, the more defects these activities create. 

The stock of defects is drained by two flows: reactive maintenance (repair of 
failed equipment) and planned maintenance (proactive repair of operable equip- 
ment).13 Each of these activities forms a balancing feedback loop. As defects ac- 
cumulate, the chance of a breakdown increases. Breakdowns lead to more reactive 

FIGURE 2-8 Defect creation and elimination 

The diagram is simplified. In the full model equipment was divided into operable, broken 
down, and taken down for planned maintenance, with an associated stock of latent 
defects for each category. 
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maintenance, and, after repair, the equipment is returned to service and the stock 
of defects is reduced (the Reactive Maintenance loop B 1). Similarly, scheduled 
maintenance or equipment monitoring may reveal the presence of latent defects (a 
vibrating pump, an oil leak). The equipment is then taken out of service and the de- 
fects are corrected before a breakdown occurs (the Planned Maintenance loop B2). 

Obviously breakdowns reduce plant uptime. In addition, most planned main- 
tenance activity also reduces uptime since planned maintenance frequently re- 
quires operable equipment be taken out of service so the needed work can be done. 
Figure 2-8 shows only the most basic physics of defect accumulation. The two 
negative feedbacks regulating the stock of defects appear to be symmetrical: De- 
fects can be eliminated either by planned maintenance or repair of failed equip- 
ment. The full system is more complex, however, and includes a number of 
positive, self-reinforcing feedbacks (Figure 2-9). 

FIGURE 2-9 Positive feedbacks undercutting planned maintenance 
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Consider the impact of the first oil crisis in late 1973. Input and operating costs 
skyrocketed. But the severe recession that began in 1974 meant chemical produc- 
ers could not pass the entire cost increase on to consumers. Under intense financial 
pressure, all plants and functions had to cut costs. If maintenance departments are 
asked to cut expenses nearly all of the cut has to come from activities such as plan- 
ning and preventive maintenance: When critical equipment breaks down, it must 
be fixed. At the same time, financial pressure leads to other actions (e.g., postpon- 
ing replacement of older, less reliable equipment or running equipment longer and 
more aggressively than original design specifications indicate), which increase the 
maintenance workload. With resources for planned maintenance diminishing and 
maintenance needs increasing, the stock of defects grows. Breakdowns increase. 
Breakdowns cause collateral damage, directly increasing the stock of defects fur- 
ther and leading to still more breakdowns in a vicious cycle (the positive loop Rl). 
Because the total number of mechanics is limited, more breakdowns necessarily 
pull mechanics off planned work as management reassigns mechanics to repair 
work. But many mechanics also prefer repair work. A planned maintenance man- 
ager in one plant commented, “We’ve had several people who say they want to get 
involved in preventive work but when an outage comes and [they] have a chance 
to work 14-16 hours per week overtime they say ‘to hell with this vibration [mon- 
itoring] stuff, I’m going to the outage area.”’ With less planned work, breakdowns 
increase still more, forming the reinforcing Go to the Outage loop R2. 

The rising breakdown rate means more critical equipment will be out of ser- 
vice awaiting repair. Plant uptime falls. Plant operators find it harder to meet de- 
mand. When a mechanic or maintenance supervisor requests that a certain piece of 
equipment be taken off line to correct latent defects, the harried line manager is 
likely to shout something like “I can barely meet demand as it is and you want me 
to take this line down? No way. If you maintenance people were doing your job, I 
wouldn’t have so many down pumps in the first place. Now get out of here, I’ve 
got a plant to run.” The balancing Too Busy for PM loop (B3) means operators are 
less willing to take working equipment down for planned maintenance when up- 
time is low. The side effect of that policy, however, is a further increase in defects 
and breakdowns and still lower uptime. The plant slowly slides down the slippery 
slope (reinforcing loop R3) into a trap of high breakdowns and low uptime, with 
nearly all maintenance resources devoted to crisis management, fire fighting, and 
repair work. 

The positive feedbacks R l  to R3 operate fairly quickly but are not the only 
vicious cycles that can drag a plant into the trap of low reliability and high costs. 
The operational feedbacks in Figure 2-9 are embedded in a larger system shown in 
Figure 2- 10. 

A higher breakdown rate increases costs (due to overtime, the nonroutine and 
often hazardous nature of outages, the need to expedite parts procurement, col- 
lateral damage, etc.). The resulting pressure to cut costs leads to a reduction in 
the quality of parts, increasing the stock of equipment defects and leading to 
still more breakdowns and still higher costs (the Part Quality loop R4). Cost pres- 
sure also reduces investment in equipment upgrades and other design improve- 
ments, so breakdowns increase further (the Design Improvement loop R5). As 
costs rise training for maintenance workers is cut, particularly training in planned 
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FIGURE 2-1 0 Additional positive feedbacks leading to a reactive maintenance culture 
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maintenance techniques (the Training loop R6). Cost pressure also forces the main- 
tenance department to downsize. The first to go are the planners and sched- 
ulers-unlike mechanics, they don't actually fix anything, and with less and less 
planned maintenance going on there is less for them to do. Without advance plan- 
ning, part kits, equipment histories, and engineering drawings for maintenance 
work are less available, lowering the quality of work still more (the Planning 
Capability loop R7). 

A parallel set of self-reinforcing feedbacks operate to reduce the maintenance 
budget even as costs rise. Lower uptime directly constrains production and 
therefore revenue, forcing budget cuts throughout the organization. Worse, high 
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breakdown rates and low uptime mean the plant is less able to meet its delivery 
commitments. As it develops a reputation for poor delivery reliability the price it 
can charge and volume of business it attracts decline, further eroding revenue and 
profit and forcing still more budget cuts. Cost pressure rises still further, accelerat- 
ing the part quality, training, design improvement, and planning capability loops. 
These loops are summarized as the Revenue Erosion and Reputation Erosion loops 
(R8 and R9). 

After years of cost pressure, Du Pont had developed a culture of reactive main- 
tenance. Unreliable equipment and frequent breakdowns had become an accepted 
occurrence. Organizational norms and routines for writing up work orders, sched- 
uling maintenance effort, and ordering parts had come to reflect a world of frequent 
breakdowns. Mechanics spent most of their time fighting fires. Mechanics who 
were scheduled for planned maintenance were routinely pulled off to do reactive 
work. Mechanics knew they could work overtime on a regular basis and consid- 
ered overtime pay a part of their regular income. The knowledge that equipment 
was unreliable had even led to installation of backup pumps in many sites, embed- 
ding the low-reliability culture in the physical layout and capital costs of the plants. 
As the years passed the workforce increasingly consisted of people who had never 
experienced anything other than the reactive regime. For them, the equipment was 
intrinsically unreliable, low uptime was normal, and reactive maintenance was 
business as usual (the Reactive Culture loop RlO). 

As the model developed they calibrated it to represent a typical plant. In the 
early 1990s a typical Du Pont chemical plant was valued at $400 million and spent 
about 3-3.5% of its value annually on maintenance, or $12 to $14 milliodyear. 
The spare parts store stocked more than 60,000 parts. It employed about 90 main- 
tenance mechanics who might complete as many as 25,000 work orders per year. 
Average uptime was 83.5%. Maintenance expenses accounted for 1.5-40% of 
direct production costs, depending on the process and product. The amount of 
money Du Pont spent companywide on maintenance in the late 1980s was about 
$1 billiodyear, a significant fraction of net income. 

Once the model was adequately calibrated to the historical data, the next step 
was to design high leverage policies to escape from the reactive regime. The team 
simulated the impact of different policies, including those that had been tried in the 
past and failed. Table 2-1 shows the results of selected simulations. 

Optimizing the use of scheduling alone, within the traditional cost-minimiza- 
tion mindset, had only a modest impact. Through better scheduling the plant could 
still meet its traditional uptime of 83.5% with 10% fewer mechanics, generating 
savings of $350,00O/year. Implementing a full suite of proactive maintenance poli- 
cies, including better planning systems, parts, reliability engineering, and so on, al- 
lowed the plant to achieve the traditional uptime with only 61 mechanics, saving 
$1.2 milliodyear. 

However, deploying the same suite of proactive policies without downsizing 
allowed uptime to rise above 93% and generated $9 milliodyear in additional 
profit. Why the difference? The cost-minimization approach means any improve- 
ment in productivity generated by the adoption of improved maintenance tech- 
niques is immediately harvested as headcount reduction. Resources for planned 
maintenance remain constrained. The organization continues to fight fires and 
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TABLE 2-1 
Results from 
selected policy 
simulations 

Cases 1 and 2: 
Minimize 
maintenance 
costs subject to 
uptime 2 initial 
uptime. 
Case 3: Maximize 
plant profit subject 
to mechanic 
headcount 5 

initial headcount. 

Policy Mix 

0. Typical plant under existing policies 
1. Use scheduling to minimize 

maintenance costs 
2. Minimize costs via full suite of 

proactive maintenance policies 
3. Maximize plant profit via full suite of 

proactive maintenance policies 

Change in 
Head Profit 
Count Uptime ($ milliodyear) 

91 83.5 0.00 

82 83.5 0.35 

61 83.5 1.20 

91 93.3 9.00 

Source: Winston Ledet, Mark Paich, Tony Cardella, and Mark Downing (1991), “The Value of 
Integrating the CMLT Key Pursuits,” Du Pont internal report. 

focus on reactive maintenance but does so more efficiently. In contrast, imple- 
menting the new policies without downsizing frees up resources that can be rein- 
vested in still more planned maintenance. As breakdowns fall, still more mechanics 
are released from fire fighting and outages to do even more planned work. Main- 
tenance expenses drop, releasing resources that can be invested in training, parts 
quality, reliability engineering, planning and scheduling systems, and other activi- 
ties that cut defects and breakdowns still more. Higher uptime yields more revenue 
and provides additional resources for still more improvement. For example, up- 
grading to a more durable type of pump seal improves reliability, allowing main- 
tenance intervals to be lengthened and inventories of replacement seals to be cut. 

All the positive loops that once acted as vicious cycles to drag reliability down 
become virtuous cycles, progressively and cumulatively reducing breakdowns and 
improving uptime. The result is a tremendous synergy, with the combined effect of 
the individual policies greatly exceeding the sum of their impacts when imple- 
mented individually. 

The model also revealed an important insight about the transition path follow- 
ing implementation of the new policies. The simulation results in Table 2-1 show 
that proactive maintenance policies’ with reinvestment of the results ultimately 
lowers maintenance costs and boosts uptime. Immediately after implementation, 
however, maintenance costs increase and uptime falls. Why? It takes time for the 
planned work to cut the breakdown rate; in the short run the plant must bear the 
cost of both the repair work and the additional planned maintenance effort. Uptime 
falls because additional operable equipment must be taken off-line so planned 
maintenance can be performed. Only later, as the stock of latent defects starts to 
fall, does the breakdown rate drop. As it does, expenses fall and uptime rises. This 
worse-before-better behavior is quite common in complex systems. However, if 
managers do not understand why it occurs or how long it might last, they may in- 
terpret the short-run deterioration in performance as evidence that the policies 
don’t work and then abandon them. 
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2.4.2 The Implementation Challenge 
Ledet and his colleagues felt that the new perspectives they developed on the 
maintenance problem could improve the contribution of Du Pont’s maintenance 
program to corporate profitability. Now their challenge was to implement the 
needed changes. The team wrote a white paper detailing the results of the model- 
ing study and gave presentations throughout the organization. The result? Nothing 
happened. People would say, “We already know that planned maintenance is a 
good idea,” “We tried those policies and they didn’t work,” or “Your model doesn’t 
account for x.” 

Ledet realized that the client group for the project-the group of people whose 
behavior had to change for any results to be realized-was far broader than the 
management team responsible for maintenance. Nothing could happen without the 
cooperation and willing participation of huge numbers of line managers, equip- 
ment operators, and maintenance mechanics. The client group numbered in the 
thousands. Reflecting on their own learning process, modeling team members 
realized that their views had changed radically because they had participated in an 
iterative process of modeling. They had seen the model evolve, had challenged and 
questioned it, had seen their concerns addressed, and had gone through the process 
of working out the feedback structures that explained the dynamics of the system. 
Somehow they had to recreate that learning process throughout the plants, from top 
management to the lowest-grade mechanics. 

It was obviously impossible for the thousands of people they had to reach to 
participate in modeling workshops or even to give them the model so they could 
work with it themselves. None had training in system dynamics or computer mod- 
eling. Line supervisors and maintenance mechanics are action oriented and have 
little patience for presentations with lots of charts and graphs. 

Ledet was familiar with the Beer Distribution Game, a role-playing manage- 
ment flight simulator of a manufacturing supply chain developed by the MIT Sys- 
tem Dynamics Group as an introduction to systems thinking.14 Working with his 
son, Ledet converted the maintenance model into an interactive role-play simula- 
tion that they called the Manufacturing Game (see Ledet 1999). The game was 
embedded in a 2-day workshop or learning laboratory designed to be highly inter- 
active, to put people at ease, and to create an environment for learning that ad- 
dressed emotional as well as cognitive issues. 

The game simulates a typical plant. There are three roles: operations manager, 
maintenance manager, and spare parts stores manager. The operations manager is 
charged with meeting demand and has equipment, represented by chips, to do so. 
As production proceeds, red markers representing latent defects are placed on the 
equipment chips. When enough red markers accumulate, the equipment breaks 
down and capacity falls. The maintenance manager must then allocate mechanics 
to repair the equipment and must go to the spare parts store to see if the needed 

I4The Beer Distribution Game is an enjoyable and effective introduction not only to supply 
chain management but also to the principles of systems thinking in general (see chapter 17; also 
Sterman 1989b, 1992 and Senge 1990 for descriptions, but not until after you have played the 
game). 
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parts (determined by a roll of the dice) are available. If the parts are in stock, the 
equipment is repaired. If not, the mechanics must wait until they are available or 
pay to have delivery expedited. Alternatively, the maintenance manager can sched- 
ule planned work, ordering the needed parts and allocating mechanics in advance. 
Planned maintenance can only be done, however, if the operations manager agrees 
to take operating equipment out of service. Each round the participants make deci- 
sions such as how much equipment to take down for planned maintenance, how to 
allocate mechanics and maintenance resources, and how many spare parts to order. 
Revenue and cost are recorded, along with production, uptime, inventories, and so 
on. While the game is highly simplified compared to real plants, and even com- 
pared to the original simulation model, it realistically captures the time delays, 
costs, and other parameters characterizing a plant. 

Despite its many simplifications the game rapidly becomes in many ways a 
real plant, with real emotions and conflicts among players. Initialized with high 
breakdowns and low uptime, the maintenance manager's attempts to increase 
planned maintenance are often rebuffed by the operations manager, who faces in- 
tense pressure to meet demand, just as in the real world. 

Teams who stick with the prevailing cost-minimization, reactive maintenance 
policies are able to keep costs low for a while. But as defects build up they find 
their uptime slowly sinking and costs gradually rising. Teams who do follow 
through with a planned maintenance strategy immediately find costs rising and up- 
time falling as equipment is taken off line for planned maintenance. Soon, how- 
ever, costs begin to fall and uptime rises. By compressing time the game allows 
people to experience the worse-before-better dynamic in a few hours instead of a 
few months. 

Two members of the implementation team at Du Pont's Washington Works 
complex in Parkersburg, West Virginia, described how they used the game to cat- 
alyze a broad-based improvement program: 

The team was initiated with a two-day learning lab . . . learning the concepts of de- 
fect elimination and experiencing the Manufacturing Game . . . The basic concepts 
are presented in different manners so that all learning modes are utilized-visual, 
auditory and kinesthetic. The material is presented in the form of lectures, skits and 
participative exercises in an off-site environment. Posters and music are used. The 
atmosphere is much different than routine plant meetings or training, to open up 
their thinking . . . Through interactive exercises, the team develops their personal 
aspirations for improving the area where they have chosen to work . . . [Then] 
they . . . develop an action plan to immediately start ~ 0 r k i n g . l ~  

The game and learning laboratory proved popular throughout the company. But 
playing it once with a small group of managers wasn't enough. The team found 
that they had to run several workshops for a given plant before a critical mass of 
people emerged to lead action teams that put proactive maintenance policies into 
practice. Often the plant needed to develop its own capability to run the game and 
workshop so it could be done on demand by local people, with their site-specific 

'STewksbury, R., and R. Steward (1997) Improved Production Capability Program at 
Du Pont's Washington Works, Proceedings of the 1997 Society for Maintenance and Reliability 
annual conference. 
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FIGURE 2-11 
Worse-before- 
better behavior of 
maintenance costs 
at a typical plant 

Graph shows 
direct cost 
savings after 
implementation 
of the learning 
laboratory and 
new maintenance 
policies at a 
particular plant. 
Vertical axis 
disguised. 
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experience and authority. Ledet’s team thus had to develop a group of trained fa- 
cilitators and a training process so that the quality of the workshop could be main- 
tained as it spread into the plants. The demand for the workshop grew slowly at 
first, but as favorable word of mouth about the experience and results spread, more 
and more plants asked Ledet’s group to run the program for them. The surge in de- 
mand stressed the number of skilled facilitators, which lagged behind. By the end 
of 1992 some 1200 people had participated in the workshop and more than 50 fa- 
cilitators had been certified. 

2.4.3 Results 
By 1994 a number of plants throughout the Gulf Coast region had adopted the 
learning lab and associated policies. Figure 2-1 1 shows the direct maintenance cost 
savings for a particular plant after implementation of the program. Just as seen in 
the model and the game, the first effect of the new policies is an increase in costs. 
Only after several months did the cost savings begin to accumulate. 

Among plants that implemented the program by the end of 1993, the mean 
time between failure (MTBF) for pumps (the focus of the program) rose by an av- 
erage of 12% each time cumulative operating experience doubled, while direct 
maintenance costs had fallen an average of 20%. In 23 comparable plants not im- 
plementing the program the learning rate averaged just 5% per doubling of cumu- 
lative experience and costs were up an average of 7% (Carroll, Sterman, and 
Marcus 1998). The program at Washington Works boosted net production capabil- 
ity 20%, improved customer service 9096, and cut delivery lead time by 5070, all 
with minimal capital investment and a reduction in maintenance costs. It is diffi- 
cult to estimate the total benefit of the program for the company as a whole, but 
conservative estimates exceed $350 milliodyear in avoided maintenance costs. 

The story does not end here, however. Success creates its own challenges. 
What happens to a plant after it succeeds in improving MTBFs and cutting main- 
tenance expenditures? One issue related to the persistence of the cost-saving 
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mentality. A member of the modeling team commented, “As soon as you get the 
problems down, people will be taken away from the effort and the problems will 
go back up.” In fact, cost-cutting programs mandated by corporate headquarters 
did cause significant downsizing throughout the entire company and limited their 
ability to expand the program. 

Another problem for Du Pont was rewarding the modeling team. Ledet be- 
lieved the game and learning laboratory had great potential to stimulate improve- 
ment in a wide range of companies and industries. He began to receive inquiries 
from other firms interested in using the game. Ledet acquired the rights to the game 
from Du Pont, took early retirement, and became an entrepreneur, working with 
other companies to implement the approach. These firms include other chemicals 
manufacturers along with firms in the energy, automotive, and high-tech sectors. 

2.4.4 Transferring the Learning: 
The Lima Experience 

One of the organizations that adopted the maintenance game and other system dy- 
namics tools was British Petroleum (BP).16 BP’s Lima, Ohio, refinery was built in 
1886 by John D. Rockefeller to supply fuel and petrochemicals to the Midwest. 
Once the “Queen of the Fleet,” cost cutting during the 1980s had led to the same 
spiral of increasing breakdowns, declining performance, and still more cost cutting 
that had plagued Du Pont. By the early 1990s it was a poor performer and lagged 
well behind other US refineries. A number of improvement programs were tried, 
with little success, and BP began to think about selling or closing the facility while 
trying to cut costs. 

In 1994 the Lima facility introduced the maintenance learning lab and game 
along with some other tools of system dynamics such as the Beer Distribution 
Game. This was not a top management intervention: The game was initially cham- 
pioned by an equipment specialist, a maintenance training supervisor, and an engi- 
neer, Paul Monus, then working in continuous improvement. Successful pilot 
projects led refinery management to run 80% of all employees through the pro- 
gram. Soon dozens of improvement teams were in place. During the first 6 months 
maintenance costs ballooned by 30%. Management was prepared for this worse- 
before-better dynamic, however, and focused on the improvements generated by 
the action teams. Momentum began to build. 

In January 1996 BP announced that it intended to sell the Lima refinery and 
stepped up its cost cutting and downsizing. A few months later BP stunned the em- 
ployees by announcing that it could not find a buyer at a satisfactory price and 
would therefore close the refinery. 

The announcement was a deep blow to the workers and the city. The Lima 
facility was one of the most important employers in the community, occupying 
650 acres of prime real estate and generating 400 jobs with payroll, utility, 
and other payments pumping more than $60 milliodyear into Lima’s depressed 
economy. 

16BP merged with Amoco in 1998, after the work described here was done. 
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Some employees became discouraged and questioned the value of continuing 
the program of defect elimination and proactive maintenance. A few transferred to 
other BP facilities or left altogether. Winston Ledet described what happened next: 

For those who decided to stay with the ship, a new spirit emerged. They realized 
that they needed a future in Lima and should take responsibility for creating that 
future. The first step was to ensure that the exit of many experienced people did not 
throw them back in the reactive mode. This heightened the sense of urgency to do 
defect elimination. It actually created a clearer focus for the people who remained. 
They were all there because they had chosen to be there.17 

Soon the cumulative impact of the new maintenance policies and attitudes was 
clearly visible in the performance of the plant. Table 2-2 highlights some of the 
results. 

The dramatic improvements in the refinery did not go unnoticed. On July 2, 
1998, the banner headline of the Lima News announced “Oil Refinery Rescued.” 
Clark USA, a privately held Fortune 500 company with refining and distribution 
interests, agreed to buy the Lima refinery from BP for $215 million and keep it op- 
erating as a refinery. Many people and organizations contributed to the rescue of 
the refinery. Yet without the dramatic improvements in refinery operations stimu- 
lated by the systems thinking intervention it is unlikely Clark, or any buyer, would 
have offered enough for the facility to keep it running. 

1. Lima Refinery pump MTBF up from 12 to 58 months (pump failures 
down from more than 640 in 1991 to 131 in 1998). Direct savings: 

TABLE 2-2 
improvement at 

the Lima refinery $1.8 million/year. 
2. Total flare-off of hydrocarbon down from 1.5% to 0.35%. Direct savings: 

$0.27/barrel. Improved environmental quality. 
3. On-line analyzer uptime improvement from 75% and not trusted to 97% 

and trusted, permitting real-time optimization of product flow. Savings: 
$0.10-0.12/barrel. 

4. Thirty-four production records set. 
5. Safety incidents and lost hours cut by factor of 4. 
6. Cash margin improved by $0.77 per barrel of oil processed. 
7. Total new value created: $43 million/year. Total cost: $320,00O/year. 

8. BP wide learning initiative under way for all other refineries and plants. 
Ratio: 143:l. 

Over 2000 people from sites in the US, UK, Australia, North Sea, Alaska, 
and Europe had participated in the workshop and game by 1998. 

Source: Paul Monus, personal communication; Monus, P. (1997) “Proactive Manufacturing at BP’s 
Lima Oil Refinery,” presented at National Petroleum Refiners Association Maintenance Conference, 
20-23 May 1997, New Orleans; and Griffith, J., D. Kuenzli, and P. Monus (1998) “Proactive Manufac- 
turing: Accelerating Step Change Breakthroughs in Performance,” NPRA Maintenance Conference, 
MC-98-92. 

I7TMG News, 15 September 1998. 
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The success of the learning laboratory and maintenance game illustrates the 
real purpose of the modeling process. The model, game, and workshop don’t teach 
anyone how to maintain a pump better or how to do vibration monitoring. Du Pont, 
BP, and other organizations already have plenty of technical tools and knowledge. 
Instead, the game and learning laboratory enable people to experience the long- 
term organizationwide consequences of their actions, to enact a future in which old 
ways of behaving are changed, and to experience emotionally as well as cogni- 
tively what it might be like to make the transition to a high-performing plant. 

The Lima experience illustrates the power of a shift in mental models. The BP 
team reduced butane flare-off to zero, generating annual savings of $1.5 million/ 
year and reducing pollution as well. The effort took 2 weeks and cost $5000, a 
return on investment of 30,00O%/year. What had stopped them from implementing 
this improvement long ago? Members of the team knew about the problem and 
how to solve it for 8 years. They already had all the engineering know-how they 
needed to solve the problem and most of the equipment and materials were 
already on site. The only barriers were the mental models through which employ- 
ees came to believe that they were powerless, that the problem was imposed by 
external forces beyond their control, and that a few people could never make a 
difference. 

These entrenched mental models changed in four essential ways. The belief 
that the problem was out there had to change from “our equipment is lousy and 
there’s nothing we can do about it” to “our equipment performs poorly as a result 
of our own past policies-if we change our behavior, the equipment will respond.” 
The focus on defect correction through repairs had to shift to a focus on defect pre- 
vention and elimination. The focus on minimizing maintenance costs had to shift 
to maximizing overall organizational performance. And they had to realize that es- 
caping the trap of reactive maintenance necessarily involved a worse-before-better 
tradeoff. 

The formal model was essential, as it led to the initial insights into the dynam- 
ics of process improvement and the synergistic effects of high leverage policies. 
The model also allowed the modeling team to develop the game and helped make 
it realistic. Ultimately implementation success required the modeling team to em- 
bed their insights into a learning environment that involved the active participation 
of the people on the front lines, that enabled people to discover those insights for 
themselves, and that spoke not only to their heads but also to their hearts. 

SUMMARY: PRINCIPLES FOR SUCCESSFUL USE OF 
SYSTEM DYNAMICS 

Though the projects described above differed in many ways, they all illustrate a 
number of principles for effective development and implementation of system dy- 
namics models (see chapter 3; see also Forrester 1961; Roberts 1977/1978; and 
Morecroft and Sterman 1994): 

1. Develop a model to solve a particular problem, not to model the system. 
A model must have a clear purpose and that purpose must be to solve the 
problem of concern to the client. Modelers must exclude all factors not 
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2. 

3. 

4. 

5. 

6. 

7. 

relevant to the problem to ensure the project scope is feasible and the results 
timely. The goal is to improve the performance of the system as defined by 
the client. Focus on results. 

Modeling should be integrated into a project from the beginning. 
The value of the modeling process begins early on, in the problem 
definition phase. The modeling process helps focus diagnosis on the 
structure of the system rather than blaming problems on the people making 
decisions in that structure. 

Be skeptical about the value of modeling and force the “why do we 
need it” discussion at the start of the project. 
There are many problems for which system dynamics is not useful. 
Carefully consider whether system dynamics is the right technique for the 
problem. Modelers should welcome difficult questions from the clients 
about how the process works and how it might help them with their 
problem. The earlier these issues are discussed, the better. 

System dynamics does not stand alone. Use other tools and methods as 
appropriate. 
Most modeling projects are part of a larger effort involving traditional 
strategic and operational analysis, including benchmarking, statistical work, 
market research, etc. Effective modeling rests on a strong base of data and 
understanding of the issues. Modeling works best as a complement to other 
tools, not as a substitute. 

Focus on implementation from the start of the project. 
Implementation must start on the first day of the project. Constantly ask, 
How will the model help the client make decisions? Use the model to set 
priorities and determine the sequence of policy implementation. Use the 
model to answer the question, How do we get there from here? Carefully 
consider the real world issues involved in pulling various policy levers. 
Quantify the full range of costs and benefits of policies, not only those 
already reported by existing accounting systems. 

Modeling works best as an iterative process of joint inquiry between 
client and consultant. 
Modeling is a process of discovery. The goal is to reach new understanding 
of how the problem arises and then use that understanding to design high 
leverage policies for improvement. Modeling should not be used as a tool 
for advocacy. Don’t build a client’s prior opinion about what should be 
done into a model. Use workshops where the clients can test the model 
themselves, in real time. 

Avoid black box modeling. 
Models built out of the sight of the client will never lead to change in 
deeply held mental models and therefore will not change client behavior. 
Involve the clients as early and as deeply as possible. Show them the model. 
Encourage them to suggest and run their own tests and to criticize the 
model. Work with them to resolve their criticisms to their satisfaction. 
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8. 

9. 

10. 

11. 

12. 

Validation is a continuous process of testing and building confidence in 
the model. 
Models are not validated after they are completed nor by any one test such 
as their ability to fit historical data. Clients (and modelers) build confidence 
in the utility of a model gradually, by constantly confronting the model with 
data and expert opinion-their own and others’. Through this process both 
model and expert opinions will change and deepen. Seek out opportunities 
to challenge the model’s ability to replicate a diverse range of historical 
experiences. 

Get a preliminary model working as soon as possible. Add detail only 
as necessary. 
Develop a working simulation model as soon as possible. Don’t try to 
develop a comprehensive conceptual model prior to the development of a 
simulation model. Conceptual models are only hypotheses and must be 
tested. Formalization and simulation often uncover flaws in conceptual 
maps and lead to improved understanding. The results of simulation 
experiments inform conceptual understanding and help build confidence in 
the results. Early results provide immediate value to clients and justify 
continued investment of their time. 

A broad model boundary is more important than a great deal of detail. 
Models must strike a balance between a useful, operational representation 
of the structures and policy levers available to the clients while capturing 
the feedbacks generally unaccounted for in their mental models. In general, 
the dynamics of a system emerge from the interactions of the components 
in the system-capturing those feedbacks is more important than a lot of 
detail in representing the components themselves. 

Use expert modelers, not novices. 
While the software available for modeling is easily mastered by a high 
school student or CEO, modeling is not computer programming. You cannot 
develop a qualitative diagram and then hand it off to a programmer for 
coding into a simulation model. Modeling requires a disciplined approach 
and an understanding of business, skills developed through study and 
experience. Get the expert assistance you need. Use the project as an 
opportunity to develop the skills of others on the team and in the client 
organization. 

Implementation does not end with a single project. 
In all three cases the modeling work continued to have impact long after 
the initial project was over. Models and management flight simulators were 
applied to similar issues in other settings. The modelers developed expertise 
they applied to related problems and clients moved into new positions and 
new organizations, taking the insights they gained and, sometimes, a new 
way of thinking, with them. Implementation is a long-term process of 
personal, organizational, and social change. 
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The Modeling Process 

Perhaps the fault (for the poor implementation record for models] lies in the 
origins of managerial model-making-the translation of methods and prin- 
ciples of the physical sciences into wartime operations research . , . If 
hypothesis, data, and analysis lead to proof and new knowledge in science, 
shouldn’t similar processes lead to change in organizations? The answer is 
obvious-NO! Organizational changes (or decisions or policies) do not 
instantly Pow from evidence, deductive logic, and mathematical optimization. 

-Edward B. Roberts’ 

In chapter 1 the concept of a virtual world was introduced as a way to speed the 
learning process, and chapter 2 showed how models became virtual worlds to help 
solve problems in three different situations. How can virtual worlds (models) be 
used most effectively? How can useful virtual worlds be created? Modeling takes 
place in the context of real world problem solving, with all its messiness, ambi- 
guity, time pressure, politics, and interpersonal conflict. The purpose is to solve a 
problem, not only to gain insight (though insight into the problem is required to 
design effective policies). Modeling, as a part of the learning process, is iterative, 
a continual process of formulating hypotheses, testing, and revision, of both formal 
and mental models. Experiments conducted in the virtual world inform the design 
and execution of experiments in the real world; experience in the real world then 
leads to changes and improvements in the virtual world and in participants’ mental 

‘Roberts, E. (1977), “Strategies for effective implementation of complex corporate models,” 
Interfaces 7(5); also chapter 4 in Roberts (1978). The paper remains a succinct and still relevant 
statement of the need for an implementation focus from the very start of any modeling project. 

83 
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3.1 

3.2 

models. This chapter discusses the purpose of modeling, describes the process of 
system dynamics modeling, the role of the client, and the modeler’s professional 
and ethical responsibilities. 

THE PURPOSE OF MODELING: 
MANAGERS AS ORGANIZATION DESIGNERS 

Jay Forrester often asks, Who are the most important people in the safe operation 
of an aircraft? Most people respond, The pilots. In fact, the most important people 
are the designers. Skilled, well-trained pilots are critical, but far more important is 
designing an aircraft that is stable, robust under extreme conditions, and that ordi- 
nary pilots can fly safely even when stressed, tired, or in unfamiliar conditions. In 
the context of social and business systems, managers play both roles. They are pi- 
lots, malung decisions (who to hire, what prices to set, when to launch the new 
product) and they are designers, shaping the organizational structures, strategies, 
and decision rules that influence how decisions are made. The design role is the 
most important but usually gets the least attention. Too many managers, especially 
senior managers, spend far too much time acting as pilots-making decisions, tak- 
ing control from subordinates-rather than creating an organizational structure 
consistent with their vision and values and which can be managed well by ordinary 
people (see Forrester 1965). 

Today designing a new aircraft is impossible without modeling and simulation. 
Managers seeking to enhance their organizational design skills, however, continue 
to design by trial and error, by anecdote, and by imitation of others, though the 
complexity of their organizations rivals that of an aircraft. Virtual worlds provide 
an important tool for managers in both the operation and especially the design of 
their organizations. 

There is clearly a role for models that help managers pilot their organizations 
better, and system dynamics is often useful for these purposes. But the real value 
of the process comes when models are used to support organizational redesign. In 
Industrial Dynamics, Forrester calls for courage in the selection of problems, say- 
ing, “The solutions to small problems yield small rewards. . . The goal should be 
to find management policies and organizational structures that lead to greater suc- 
cess.” Focus your modeling work on the important issues, on the problems where 
your work can have lasting benefit, on the problems you care most deeply about. 

THE CLIENT AND THE MODELER 
Modeling does not take place in splendid isolation. It is embedded in an organi- 
zation and social context. Even before the modeling process per se begins, the 
modeler must gain access to the organization and identify the client. The client is 
not the person who brings you in to an organization or champions your work, nor 
even the person who pays for the modeling study, though it is helpful to have 
contacts, champions, and cash. Your clients are the people you must influence for 
your work to have impact. They are those people whose behavior must change to 
solve the problem. Your client can be a CEO or a machine operator on the factory 
floor. Clients can be individuals, groups, or entire communities. The client for a 
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modeling study can be your academic colleagues, the public at large, or even your- 
self. In the discussion that follows, I will focus on modeling projects conducted for 
organizations. The process, however, is similar for these other contexts as well. 

To be effective the modeling process must be focused on the clients’ needs. 
The clients for a modeling project are busy. They are embroiled in organizational 
politics. They are looking out for their own careers. Their concern is solving a 
problem and taking action in the real world. They care little for the elegance of 
your theory or cleverness of your model. Modeling is done to help the client, not 
for the benefit of the modeler. The client context and real world problem determine 
the nature of the model, and the modeling process must be consistent with the 
clients’ skills, capabilities, and goals. The purpose is to help the clients solve their 
problem. If the clients perceive your model does not address their concerns or lose 
confidence in it, you will have little impact. Focus your modeling work on the 
problems that keep the clients up at night. 

The political context of modeling and the need to focus on the clients’ problem 
does not mean modelers should be hired guns, willing to do whatever the clients 
want. Modelers should not automatically accede to clients’ requests to include 
more detail or to focus on one set of issues while ignoring others, just to keep the 
clients on board. A good modeling process challenges the clients’ conception of the 
problem. Modelers have a responsibility to require their clients to justify their 
opinions, ground their views in data, and consider new viewpoints. When the 
clients ask you to do something you think is unnecessary or misguided, you must 
work with them to resolve the issue. 

Unfortunately, far too many clients are not interested in learning but in using 
models to support conclusions they’ve already reached or as instruments to gain 
power in their organizations. Sadly, far too many consultants and modelers are 
only too eager to oblige. As a modeler you have an ethical responsibility to carry 
out your work with rigor and integrity. You must be willing to let the modeling 
process change your mind. You must “speak truth to power,” telling the clients that 
their most cherished beliefs are wrong, if that is what the modeling process reveals, 
even if it means you will be fired. If your clients push you to generate a result 
they’ve selected in advance or that is not supported by the analysis, push back. If 
your clients’ minds are closed, if you can’t convince them to use modeling hon- 
estly, you must quit. Get yourself a better client.2 

3.3 STEPS OF THE MODELING PROCESS 
In practice, as a modeler you are first brought into an organization by a contact 
who thinks you or your modeling tools might be helpful. Your first step is to find 
out what the real problem is and who the real client is. Your initial contact may not 
be the client, but only serve as a gatekeeper who can introduce you to the client. 
As the modeling project proceeds, you may find the client group expands or 
changes. Assume that you’ve successfully negotiated entry to the organization and 

2Wallace (1994) provides a good collection of articles addressing the ethical issues facing 
modelers. 
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TABLE 3-1 
Steps of the 
modeling process 

1. Problem Articulation (Boundary Selection) 
Theme selection: What is the problem? Why is it a problem? 
Key variables: What are the key variables and concepts we must 
consider? 
Time horizon: How far in the future should we consider? How far back in 
the past lie the roots of the problem? 
Dynamic problem definition (reference modes): What is the historical 
behavior of the key concepts and variables? What might their behavior 
be in the future? 

2. Formulation of Dynamic Hypothesis 
Initial hypothesis generation: What are current theories of the problem- 
atic behavior? 
Endogenous focus: Formulate a dynamic hypothesis that explains the 
dynamics as endogenous consequences of the feedback structure. 
Mapping: Develop maps of causal structure based on initial hypotheses, 
key variables, reference modes, and other available data, using tools 
such as 

Model boundary diagrams, 
Subsystem diagrams, 
Causal loop diagrams, 
Stock and flow maps, 
Policy structure diagrams, 
Other facilitation tools. 

3. Formulation of a Simulation Model 
Specification of structure, decision rules. 
Estimation of parameters, behavioral relationships, and initial conditions. 
Tests for consistency with the purpose and boundary. 

Comparison to reference modes: Does the model reproduce the prob- 

Robustness under extreme conditions: Does the model behave realis- 

Sensitivity: How does the model behave given uncertainty in parame- 

. . . Many other tests (see chapter 21). 

Scenario specification: What environmental conditions might arise? 
Policy design: What new decision rules, strategies, and structures might 
be tried in the real world? How can they be represented in the model? 
“What i f .  . .” analysis: What are the effects of the policies? 
Sensitivity analysis: How robust are the policy recommendations under 

Interactions of policies: Do the policies interact? Are there synergies or 

4. Testing 

lem behavior adequately for your purpose? 

tically when stressed by extreme conditions? 

ters, initial conditions, model boundary, and aggregation? 

5. Policy Design and Evaluation 

different scenarios and given uncertainties? 

compensatorv responses? 
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identified the (initial) clients. How do you proceed to develop a model which can 
be helpful to them?3 

There is no cookbook recipe for successful modeling, no procedure you can 
follow to guarantee a useful model. Modeling is inherently creative. Individual 
modelers have different styles and approaches. Yet all successful modelers follow 
a disciplined process that involves the following activities: (1) articulating the 
problem to be addressed, (2) formulating a dynamic hypothesis or theory about the 
causes of the problem, (3) formulating a simulation model to test the dynamic hy- 
pothesis, (4) testing the model until you are satisfied it is suitable for your purpose, 
and ( 5 )  designing and evaluating policies for improvement. Table 3-1 lists these 
steps along with some of the questions each step addresses and the principal tools 
used in each (see also Randers 1980). 

MODELING Is ITERATIVE 

FIGURE 3-1 
The modeling 
process is 
iterative. 
Results of any 
step can yield 
insights that lead 
to revisions in 
any earlier step' 
(indicated by the 
links in the center 
of the diagram). 

Before discussing each of these steps in more detail, it is important to place the 
modeling process in context with the ongoing activities of the people in the system. 
Modeling is a feedback process, not a linear sequence of steps. Models go through 
constant iteration, continual questioning, testing, and refinement. Figure 3- 1 re- 
casts the modeling process shown in Table 3-1 more accurately as an iterative 
cycle. The initial purpose dictates the boundary and scope of the modeling effort, 
but what is learned from the process of modeling may feed back to alter our basic 
understanding of the problem and the purpose of our effort. Iteration can occur 
from any step to any other step (indicated by the interconnections in the center of 
the diagram). In any modeling project one will iterate through these steps many 
times.4 

(Boundary Selection) 

\". Testing / 3. Formulation 

3There is a huge literature on methods for planned organizational change and group interven- 
tions. See particularly Argyris and Schon (1996), Beckhard and Harris (1987), Dyer (1995), 
Michael (1997), and Schein (1987, 1988). 

4Homer (1996) provides an excellent discussion of the value of iteration and rigor in system 
dynamics, not only in academic research but also in consulting work, with a variety of examples. 
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FIGURE 3-2 
Modeling is 
embedded in 
the dynamics 
of the system. 
Effective modeling 
involves constant 
iteration between 
experiments and 
learning in the 
virtual world and 
experiments 
and learning in 
the real world. 

Most importantly, modeling is embedded in the larger cycle of learning and ac- 
tion constantly taking place in organizations (and described in chapter 1). Pilots 
step into an aircraft flight simulator and learn more quickly, effectively, and safely 
how to operate the real aircraft, then put these skills to use in the real thing. They 
feed back what they learn flying the real thing to the simulator designers so the 
simulators can be continually improved. What pilots and designers learn in the 
simulator is used in the real world. And what they learn in the real world is used to 
change and improve the virtual world of the simulator. So it is with management 
flight simulators and system dynamics models. Figure 3-2 shows the modeling 
process embedded in the single- and double-loop learning feedbacks discussed in 
chapter 1. Simulation models are informed by our mental models and by informa- 
tion gleaned from the real world. Strategies, structures, and decision rules used in 
the real world can be represented and tested in the virtual world of the model. The 
experiments and tests conducted in the model feed back to alter our mental models 
and lead to the design of new strategies, new structures, and new decision rules. 
These new policies are then implemented in the real world, and feedback about 
their effects leads to new insights and further improvements in both our formal and 

Real 
World 

Decisions 
(Organizational 
Experiments) 

Information 
Feedback 

Formulatibn /=#* 
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mental models. Modeling is not a one-shot activity that yields The Answer, but an 
ongoing process of continual cycling between the virtual world of the model and 
the real world of action. 

3.5 OVERVIEW OF THE MODELING PROCESS 

3.5.1 Problem Articulation: 
The Importance of Purpose 

The most important step in modeling is problem articulation. What is the issue the 
clients are most concerned with? What problem are they trying to address? What is 
the real problem, not just the symptom of difficulty? What is the purpose of the 
model? 

A clear purpose is the single most important ingredient for a successful mod- 
eling study. Of course, a model with a clear purpose can still be misleading, un- 
wieldy, and difficult to understand. But a clear purpose allows your clients to ask 
questions that reveal whether a model is useful in addressing the problem they care 
about. 

Beware the analyst who proposes to model an entire business or social system 
rather than a problem. Every model is a representation of a system-a group of 
functionally interrelated elements forming a complex whole. But for a model to be 
useful, it must address a specific problem and must simplify rather than attempt to 
mirror an entire system in detail. 

What is the difference? A model designed to understand how the business cy- 
cle can be stabilized is a model of a problem. It deals with a specific policy issue. 
A model designed to explore policies to slow fossil fuel use and mitigate global 
warming is also a model of a problem; it too addresses only a limited set of issues. 
A model that claims to be a representation of the entire economy is a model of a 
whole system. Why does it matter? The usefulness of models lies in the fact that 
they simplify reality, creating a representation of it we can comprehend. A truly 
comprehensive model would be just as complex as the system itself and just as in- 
scrutable. Von Clausewitz famously cautioned that the map is not the territory. It’s 
a good thing it isn’t: A map as detailed as the territory would be of no use (as well 
as being hard to fold). 

The art of model building is knowing what to cut out, and the purpose of the 
model acts as the logical knife. It provides the criteria to decide what can be ig- 
nored so that only the essential features necessary to fulfill the purpose are left. In 
the example above, since the purpose of the comprehensive model would be to rep- 
resent the entire economic system, nothing could be excluded. To answer all con- 
ceivable questions about the economy, the model would have to include an 
overwhelming array of variables. Because its scope and boundary are so broad, the 
model could never be completed. If it were, the data required to use it could never 
be compiled. If they were, the model’s underlying assumptions could never be 
examined or tested. If they were, the model builders could never understand its 
behavior and the clients’ confidence in it would depend on the authority of the 
modeler and other nonscientific grounds. Mihailo Mesarovic, a developer of early 
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global simulations, captured the impossibility of building models of systems when 
he said, “No matter how many resources one has, one can envision a complex 
enough model to render resources insufficient to the task.” (Meadows, Richardson, 
and Bruckmann 1982, p. 197). 

A model designed for a particular purpose such as understanding the business 
cycle or global climate change would be much smaller, since it would be limited to 
those factors believed to be relevant to the question at hand. For example, the busi- 
ness cycle model need not include long-term trends in population growth, resource 
depletion, or climate change. The global warming model could exclude short-term 
dynamics related to interest rates, employment, and inventories. The resulting 
models could be simple enough so that their assumptions could be examined. The 
relation of these assumptions to the most important theories regarding the business 
cycle and climate change could then be assessed to determine how useful the mod- 
els were for their intended purposes. Of course even models with well-defined pur- 
poses can be too large. But without a clear purpose, there is no basis to say “we 
don’t need to include that” when a member of the client team makes a suggestion. 
In sum: Always model a problem. Never model a system. 

Usually the modeler develops the initial characterization of the problem 
through discussion with the client team, supplemented by archival research, data 
collection, interviews, and direct observation or participation. There are many 
methods available to work with a group to elicit the information needed to define 
the problem dynamically while still keeping the conversation focused firmly on the 
clients and their p r ~ b l e m . ~  Two of the most useful processes are establishing refer- 
ence modes and explicitly setting the time horizon. 

Reference Modes 
System dynamics modelers seek to characterize the problem dynamically, that is, 
as a pattern of behavior, unfolding over time, which shows how the problem arose 
and how it might evolve in the future. You should develop a reference mode, liter- 
ally a set of graphs and other descriptive data showing the development of the 
problem over time. Reference modes (so-called because you refer back to them 
throughout the modeling process) help you and your clients break out of the short- 
term event-oriented worldview so many people have. To do so you and the clients 
must identify the time horizon and define those variables and concepts you 
consider to be important for understanding the problem and designing policies to 
solve it. 

Time Horizon 
The time horizon should extend far enough back in history to show how the prob- 
lem emerged and describe its symptoms. It should extend far enough into the 
future to capture the delayed and indirect effects of potential policies. Most people 
dramatically underestimate the length of time delays and select time horizons that 

5See the references in note 9 for modeling tools that are effective for real time modeling with 
organizations and teams including eliciting and structuring the mental models of a group to define 
the problem. 
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are far too short. A principal deficiency in our mental models is our tendency to 
think of cause and effect as local and immediate. But in dynamically complex sys- 
tems, cause and effect are distant in time and space. Most of the unintended effects 
of decisions leading to policy resistance involve feedbacks with long delays, far re- 
moved from the point of decision or the problem symptom. Work with your clients 
to think about the possible reactions to policies and how long they might take to 
play out and then increase the time horizon even further. A long time horizon is a 
critical antidote to the event-oriented worldview so crippling to our ability to iden- 
tify patterns of behavior and the feedback structures generating them. 

The choice of time horizon dramatically influences your perception of the 
problem. Figure 3-3 shows production, consumption, and imports of petroleum in 
the United States from 1986 to 1996. The historical time horizon is 10 years, al- 
ready a long time relative to most discussion of energy policy (the oil shocks of 
the 1970s are considered ancient history in most policy debate today). The graphs 
show production slowly trending down, consumption trending slowly up, and 
therefore imports growing modestly. Prices fluctuate in a narrow band between 
$14 and $23 per barrel, lower than any time since the first oil crisis in 1973 (though 
prices did spike to $40/barrel after the Iraqi invasion of Kuwait, they soon fell 
back). The energy system appears to be relatively stable; there is little evidence of 
a long-term problem. 
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Source: EIA (US Energy Information Agency) Annual Energy Review. 
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Now consider Figure 3-4, showing the same variables from near the beginning 
of the oil era (the petroleum industry began in earnest in 1859 with Colonel 
Drake’s famous well in Titusville, Pennsylvania). The impression is completely 
different. The history of the oil industry in the United States is divided into two 
regimes. From 1920 through 1973, consumption grew exponentially at an average 
rate of 4.3%/year. Production nearly kept pace, as exploration and better drilling 
techniques more than offset depletion. Starting in the 1950s, imports grew slightly, 
stimulated by the availability of cheap foreign oil. Prices fluctuated, often dramat- 
ically, but along a slowly declining trend as technology improved. All this changed 
in 1970. In 1970, domestic production of oil peaked. It’s been falling ever since, 
despite the intense exploration stimulated by the much higher prices of the 1970s 
and early 1980s. US production from the lower 48 states and adjacent offshore area 
in 1996 stood at only 54% of its peak level. Even the addition of Prudhoe Bay and 
the trans-Alaska pipeline did not halt the slide, and Alaskan production peaked in 
1988. Higher prices following the 1970s oil shocks, along with the deepest reces- 
sions since the Great Depression, cut the growth of consumption, but imports nev- 
ertheless reached 61% of total oil consumption by 1996. 

Changing the time horizon completely changes the assessment of the problem. 
Viewed with a time scale consistent with the life of the resource, it is clear that the 
petroleum problem wasn’t solved in the 1980s but has been steadily getting worse. 
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The fossil fuel 
era shovvn with a 
time horizon of 
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Petroleum is a finite nonrenewable resource. In the US, depletion began to domi- 
nate finding rates in the 1960s, leading to an inevitable decline in production, a de- 
cline that began in 1970. The United States is the most heavily explored and 
densely drilled region of the world. The very success of early wildcatters in find- 
ing oil means there is less left to find now. While not all the petroleum in the US 
has been found or recovered, consumption continues to exceed the rate at which 
what remains is found. Consequently, imports continue to grow, leading to still 
greater dependency on the unstable Persian Gulf region, still more political and 
economic power for the oil exporting countries and less for the US, and, eventu- 
ally, higher oil prices, either at the pump or in the defense budget.6 

The oil industry illustrates the dangers of selecting a time horizon too short to 
capture the important dynamics and feedbacks creating them. Of course, one can 
err too far in the other direction. Figure 3-5 shows a graph developed by the late 
petroleum geologist M. King Hubbert. Hubbert invented the most successful tech- 
nique for forecasting fossil fuel production ever created. In 1956 he estimated the 
ultimate recoverable petroleum resources of the US to be between 150 and 200 bil- 
lion barrels and forecast that “the peak in production should probably occur within 
the interval 1966-1971” (Hubbert 1975, p. 371). His prediction of decline came at 
a time when the US Geological Survey projected ultimate recoverable resources 
nearly three times as large and claimed “the size of the resource base would not 
limit domestic production capacity ‘in the next 10 to 20 years at least, and proba- 
bly [not] for a much longer time’ ” (Gillette 1974). The actual peak occurred in 
1970 at almost the precise value Hubbert had predicted, one of the most accurate 
long-term forecasts on record. Hubbert’s success lay in explicitly modeling oil as 
a nonrenewable resource. Production could grow exponentially in the early phases 

6There is a large literature of energy modeling in system dynamics, originating with work in 
Meadows et al. (1974). See, e.g., Backus (1996), Bunn and Larsen (1997), Fiddaman (1997), 
Ford (1990, 1997, 1999), Ford and Bull (1989), Naill (1977, 1992), and Naill et al. (1992) for 
work on national and global energy markets, electric utilities, global climate change, and other 
energy policy issues. 
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of its life cycle but had to fall to zero as it was depleted, forcing a transition to re- 
newable energy s o u r c e ~ . ~  To emphasize the transitory nature of fossil fuel civiliza- 
tion, Hubbert showed the production of fossil fuels on a time scale from the 
beginning of the agricultural revolution 10,000 years ago to 5000 years in the fu- 
ture. Against this backdrop, the fossil fuel era is seen as a transitory spike-a 
unique period during which humanity lives extravagantly off a rich inheritance of 
irreplaceable natural capital. The picture is sobering. But Hubbert’s pimple, as it 
was called by critics, takes a time horizon too long to be useful to policy makers 
who influence public policy or corporate strategy affecting energy prices, regula- 
tions, capital investment, and R&D. 

The choice of time horizon can dramatically influence the evaluation of 
policies. In the early 1970s a US government agency concerned with foreign aid 
sponsored a model focused on the Sahel region of sub-Saharan Africa. The Sahel 
was then experiencing rapid population growth at the same time the desert was 
expanding southward, reducing grazing land for the nomadic herders’ cattle. The 
purpose of the model was to identify high leverage policies to spur economic 
development in the region. The model was used to assess the effects of many of 
the policies then in use, such as drilling bore holes to increase the water supply for 
cattle by tapping deep aquifers or subsidizing crops such as sorghum and ground 
nuts. Running the model to the year 2000, a round number several decades in the 
future at the time, showed that the policies led to improvement. Subsidies in- 
creased agricultural output. Bore holes permitted cattle stocks to grow, increasing 
the supply of milk and meat and the wealth of the herders. However, running the 
model into the first decades of the 21 st century showed a different outcome: larger 
stocks of cattle began to outstrip the carrying capacity of the region. As the cattle 
overbrowsed and trampled the grasslands, erosion and desertification increased. 
The cattle population dropped sharply, creating a food deficit in the region. Select- 
ing a time horizon too short to capture these feedbacks favored adoption of poli- 
cies counter to the long-term interests of the region’s people and the mission of the 
client organization.* 

Modelers must guard against accepting the client’s initial assessment of the ap- 
propriate time frame. Often these are based on milestones and round numbers hav- 
ing little to do with the dynamics of the problem, such as the end of the fiscal year, 
or the next 5-year planning cycle. A good rule of thumb is to set the time horizon 
several times as long as the longest time delays in the system, and then some. 

3.5.2 Formulating a Dynamic Hypothesis 
Once the problem has been identified and characterized over an appropriate time 
horizon, modelers must begin to develop a theory, called a dynamic hypothesis, to 

7Sterman and Richardson (1985), Sterman et al. (1988), and Sterman, Richardson, and Davidsen 
(1990) model the world and US petroleum life cycles and study the evolution of estimates of the 
resource base, showing why Hubbert was so accurate while other estimation methods proved so 
wildly overoptimistic. 

*Picadi and Seifert (1976) describe one of several models of the Sahel region (the model 
described above was not published). 
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account for the problematic behavior. Your hypothesis is dynamic because it must 
provide an explanation of the dynamics characterizing the problem in terms of the 
underlying feedback and stock and flow structure of the system. It is a hypothesis 
because it is always provisional, subject to revision or abandonment as you learn 
from the modeling process and from the real world. 

A dynamic hypothesis is a working theory of how the problem arose. It guides 
modeling efforts by focusing you and your clients on certain structures. Much of 
the remainder of the modeling process helps you to test the dynamic hypothesis, 
both with the simulation model and by experiments and data collection in the real 
world. 

In practice, discussion of the problem and theories about the causes of the 
problem are jumbled together in conversation with client teams. Each member of 
a team likely has a different theory about the source of the problem; you need to 
acknowledge and capture them all. Many times the purpose of the model is to solve 
a critically important problem that has persisted for years and generated great 
conflict and not a little animosity among members of the client team. All will 
tenaciously advocate their positions while deriding the views of others in the 
group. Early in the modeling process, the modeler needs to act as a facilitator, cap- 
turing these mental models without criticizing or filtering them. Clarifying and 
probing questions are often useful, but the modeler’s role during this early phase is 
to be a thoughtful listener, not a content expert. A variety of elicitation techniques 
and diagramming tools have been developed to assist you in facilitating a produc- 
tive conversation to elicit people’s theories about the causes of the p r ~ b l e m . ~  Your 
goal is to help the client develop an endogenous explanation for the problematic 
dynamics. 

Endogenous Explanation 
System dynamics seeks endogenous explanations for phenomena. The word “en- 
dogenous” means “arising from within.” An endogenous theory generates the dy- 
namics of a system through the interaction of the variables and agents represented 
in the model. By specifying how the system is structured and the rules of interac- 
tion (the decision rules in the system), you can explore the patterns of behavior cre- 
ated by those rules and that structure and explore how the behavior might change 
if you alter the structure and rules. In contrast, a theory relying on exogenous vari- 
ables (those “arising from without,” that is, from outside the boundary of the 
model) explains the dynamics of variables you care about in terms of other vari- 
ables whose behavior you’ve assumed. Exogenous explanations are really no ex- 
planation at all; they simply beg the question, What caused the exogenous 
variables to change as they did? The focus in system dynamics on endogenous ex- 
planations does not mean you should never include any exogenous variables in 
your models. But the number of exogenous inputs should be small, and each can- 
didate for an exogenous input must be carefully scrutinized to consider whether 

9The literature on group model building is growing rapidly. Reagan-Cirincione et al. (1991), 
Morecroft and Sterman (1994), Vennix (1996), and Vennix et al. (1997) provide good overviews of 
tools and techniques to elicit and capture the mental models of teams and client groups. 
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there are in fact any important feedbacks from the endogenous elements to the can- 
didate. If so, the boundary of the model must be expanded and the variable must be 
modeled endogenously. 

The consequences of narrow model boundaries and reliance on exogenous 
variables are often serious. A typical example is provided by the Project Indepen- 
dence Evaluation System (PIES) model, a hybrid model based on linear program- 
ming, econometrics, and input/output analysis used in the 1970s by the US Federal 
Energy Administration (FEA) and later by the US Department of Energy. As de- 
scribed by the FEA, the purpose of the model was to evaluate different energy poli- 
cies according to the following criteria: their impact on the development of 
alternative energy sources; their impact on economic growth, inflation, and unem- 
ployment; their regional and social impacts; their vulnerability to import disrup- 
tions; and their environmental effects. 

Surprisingly, considering the stated purpose, the PIES model treated the econ- 
omy as exogenous. The model economy (including economic growth, interest 
rates, inflation, world oil prices, and the costs of unconventional fuels) was com- 
pletely unaffected by the energy situation (including prices, policies, and produc- 
tion). In the model, even a full embargo of imported oil or a doubling of oil prices 
would have no impact on the economy. 

Treating the economy exogenously made the PIES model inherently contra- 
dictory. Because it assumed high rates of economic growth and low price elastici- 
ties, it projected huge increases in energy demand, requiring even greater increases 
in the capital requirements of the energy sector as cheap domestic oil was con- 
sumed. In the model, these huge investments in energy production were satisfied 
without reducing investment or consumption in the rest of the economy and with 
no impact on interest rates or inflation. In effect, the model let the economy have 
its pie and eat it too. 

In part because it ignored the feedbacks between the energy sector and the rest 
of the economy, the PIES model consistently proved to be overoptimistic. In 1974 
the model projected that by 1985 the US would be well on the way to energy 
independence: energy imports would be only 3.3 million barrels per day and 
production of shale oil would be 250,000 barrels per day. Furthermore, these 
developments would be accompanied by oil prices of about $22 per barrel (1984 
dollars) and by vigorous economic growth. It didn’t happen. Imports in the late 
1980s were about 5.5 million barrels per day and grew to more than half of oil con- 
sumption by the mid 1990s. Shale oil and other exotic synfuels never materialized. 
This situation prevailed despite huge reductions in oil demand caused by oil prices 
in the early 1980s greater than $30/bbl and the most serious recession since the 
Great Depression. 

A broad model boundary that captures important feedbacks is more impor- 
tant than a lot of detail in the specification of individual components. It is worth 
noting that the PIES model provided a breakdown of supply, demand, and price for 
dozens of fuels in each region of the country yet its,aggregate projections 
weren’t even close. What purpose was served by the effort devoted to forecasting 
the demand for jet fuel or naphtha in the Pacific Northwest when the basic as- 
sumptions were so palpably inadequate and the main results were so woefully 
erroneous? 
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Mapping System Structure 
System dynamics includes a variety of tools to help you communicate the bound- 
ary of your model and represent its causal structure. These include model bound- 
ary diagrams, subsystem diagrams, causal loop diagrams, and stock and flow 
maps. 

Model boundary chart. A model boundary chart summarizes the scope of the 
model by listing which key variables are included endogenously, which are exoge- 
nous, and which are excluded from the model. 

To illustrate, Table 3-2 shows a model boundary diagram for a model designed 
to study the feedbacks between the energy system and the economy (Sterman 
1983). Partly in reaction to the limitations of existing models such as PIES, the De- 
partment of Energy in the late 1970s sought to develop dynamic models with a 
broader boundary (Nail1 1977, 1992). The purpose of the model was to explore the 
impact of higher energy prices on economic growth, unemployment, inflation, and 
interest rates and how these macroeconomic considerations might constrain the de- 
velopment of new energy sources. The time horizon of the model was quite long 
(1950-2050) to capture the full transition from fossil fuels to renewable or other 
energy sources and consistent with the long time delays in the development, con- 
struction, and useful life of energy-producing and energy-consuming capital 
stocks. 

In contrast to nearly all models used to address these issues at the time, the 
model had a broad boundary, with all major macroeconomic variables generated 
endogenously. Unlike the PIES model, the capital, labor, and energy requirements 

TABLE 3-2 
Model boundary Endogenous Exogenous Excluded 

chart for a long- GNP .. 

Consumption 
Investment 

term model of 
energy-economy 
interactions 

Savings 
Prices (real and nominal) 
Wages (real and nominal) 
Inflation rate 
Labor force participation 
Employment 
Unemployment 
Interest rates 
Money supply 
Debt 
Energy production 
Energy demand 
Energy imports 

Population Inventories 
Technological change International trade 
Tax rates (except with OPEC) 
Energy policies Environmental constraints 

Nonenergy resources 
Interfuel substitution 
Distributional equity 

Source: Sterman (1 983). 
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of the energy industries were endogenous and the energy industry had to compete 
against other sectors for these resources. The model still contained several exoge- 
nous variables. These include population, the rate of overall technological 
progress, and the price of imported oil. Were these exogenous variables accept- 
able? Population growth and the overall rate of technical progress might be af- 
fected by changes in energy prices and consequent changes in the rate of economic 
growth. However, these feedbacks seemed likely to be small. The decision to 
model the price of imported oil exogenously is more problematic. Clearly the price 
of oil affects both the demand for and supply of energy in the United States, deter- 
mining the quantity imported. As a major importer, changes in US oil imports can 
dramatically alter the supply/demand balance of the oil exporting nations, feeding 
back to the price of oil in the world market. Treating import prices exogenously 
cuts an important feedback loop. In discussing the boundary of the model I argued 
that there were in fact important feedbacks between the US energy system and the 
world oil market. But I also argued that the dynamics of the world price were so 
complex that incorporating them endogenously was beyond the scope and purpose 
of the project. I had previously helped build a model of the world oil market for the 
US Department of Energy and hoped that ultimately the two models could be 
joined. The model boundary chart alerted the clients to a questionable assumption 
so they could evaluate what the effect of the missing feedback might be. 

The list of excluded concepts also provides important warnings to the model 
user. The model omitted inventories of goods and materials (and hence short-term 
business cycles)-no problem in such a long-term model. International trade was 
excluded, except for the flows of oil, goods, capital, and money between the US 
and the oil exporting nations. The petrodollars flowing to OPEC and their recy- 
cling as exports or foreign investment had to be included, but to include nonenergy 
trade would have expanded the model into a global macroeconomic system, and I 
would probably still be working on it. Environmental constraints and nonenergy 
resources such as water that might limit new energy sources like synfuels were ex- 
cluded, meaning conclusions about the rate of development of these exotic energy 
sources would be overoptimistic. The model also treated the energy system in a 
fairly aggregate fashion, so interfuel substitution (oil vs. gas, for example), was not 
considered, another optimistic assumption. Finally, the model did not consider 
income distribution, even though some energy policies such as gasoline taxes are 
regressive unless offset by changes in the income tax code. The purpose of listing 
all these omissions from the model was to help model users decide for themselves 
whether the model was appropriate for their purpose. 

Model boundary diagrams are surprisingly useful and shockingly rare. Often, 
models are used not as tools of inquiry but as weapons in a war of advocacy. 
In such cases modelers seek to hide the assumptions of their models from potential 
critics. But even when the modelers’ motives are benign, many feel uncomfortable 
listing what they’ve left out, see the omissions as flaws and prefer to stress the 
strengths of their model. While this tendency is natural, it undercuts the utility of 
your model and weakens the ability of people to learn from and improve your 
work. By explicitly listing the concepts you have chosen not to include, at least 
for now, you provide a visible reminder of the caveats to the results and limitations 
of the model. Without a clear understanding of the boundary and assumptions, 
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FIGURE 3-6 
Patterns of 
corporate growth 

models constructed for one purpose are frequently used for another for which they 
are ill-suited7 sometimes producing absurd results. All too often models with com- 
pletely inappropriate and even bizarre assumptions about exogenous and excluded 
variables are used in policy making because the model users are unable to exam- 
ine the boundary of the models themselves and the modelers have not provided 
that information for them (chapter 21 provides examples; see also Meadows and 
Robinson 1985). 

Subsystem diagram. A subsystem diagram shows the overall architecture of 
a model. Each major subsystem is shown along with the flows of material, money, 
goods, information, and so on coupling the subsystems to one another. Subsystems 
can be organizations such as the firm and the customer or organizational subunits 
such as operations, marketing, and product development. Subsystem diagrams 
convey information on the boundary and level of aggregation in the model by 
showing the number and type of different organizations or agents represented. 
They also communicate some information about the endogenous and exogenous 
variables. 

In the 1960s Jay Forrester served on the boards of several successful high-tech 
companies and became interested in the dynamics of corporate growth. To help 
him think about the strategic issues facing these firms, Forrester (1964, p. 32) 
created a model designed “to show how the differing kinds of corporate growth 
patterns can be created by different corporate policies and management attitudes 
and by the interactions between a company and its market.” Figure 3-6 shows the 
reference mode. Forrester (pp. 32-33) explained: 

The very rare company grows smoothly, as in curve A, and eventually reaches 
a healthy sustained plateau of mature life. More frequently, the company follows a 
pattern, as in curve B, where it appears to succeed at first and then encounters a 
severe crisis that leads to bankruptcy or merger. Often, the pattern is growth stag- 
nation, as in curve C, marked by neither success nor failure. Of those companies 
which do show a long-term growth trend, the most common pattern is that in 
curve D, where growth is accompanied by repeated crisis. 

Time 
Source: Adapted from Forrester (1 964). 
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FIGURE 3-7 
Subsystem 
diagram for 
Forrester’s 
corporate growth 
model 

Forrester argued that “contrary to first impressions, one cannot explain these 
differences on the basis of the particular industry or the type and design of prod- 
ucts.. . One must therefore look deeper into the structure of information flows and 
the policies which guide operating decisions” (p. 33). To do so the model consisted 
of two subsystems, the company and the market (Figure 3-7). 

The two subsystems are coupled by the obvious flows of orders, product, and 
money: The firm receives orders from the market, ships product, and receives pay- 
ment. But in addition, the firm sends signals to the market including the price of 
the product, its availability (measured by the delivery delay), its functionality, 
quality, suitability to customer needs, and other intangible attributes of the com- 
pany’s reputation. The market responds to these signals through the order rate and 
through customer feedback about price, quality, service, product features, and so 
on. The diagram elegantly presents the essential feedback processes coupling a 
firm to its market, stresses that orders depend on much more than price, and begins 
to suggest the structure which must be captured within each subsystem. Forrester 
reflected on the importance of this conceptual framework in his thinking: 

Defining the system boundary and the degree of aggregation are two of the most 
difficult steps in successful modeling. In this particular study, part-time effort for 
about two years was devoted to false starts before arriving at the point shown in 
[Figure 3-71. Thereafter, only eight weeks were required to create the entire system 
of some 200 equations. 

Chapter 15 presents a simple version of this model, Forrester’s “market growth 
model,” and shows how different management policies can create the patterns of 
growth described in Figure 3-6. 

A more detailed subsystem diagram is shown in Figure 3-8. The diagram 
shows the architecture for a model of a semiconductor manufacturer (Sterman, 
Repenning, and Kofman 1997). The purpose of the model was to explore the 
dynamics of process improvement programs. The firm had implemented a very 

Product Suitability 

/Delivery of Product 
Company Market 

\Payment-/ 

Mkt. Response to Price 

Mkt. Response to Quality 

Source: Adapted from Forrester (1 964). 
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successful quality improvement program. However, despite dramatic improve- 
ments in quality, productivity, and customer responsiveness, operating profit 
and the stock price fell, leading to layoffs. Exploring this paradox required a 
model with a broad boundary both within the representation of the firm and in 
interactions of the firm with its environment. Besides the usual subsystems for 
manufacturing, product development, and accounting, the model includes a 
process improvement sector and a sector labeled “Financial Stress.” The Financial 
Stress subsystem is not an organizational subunit but represents top manage- 
ment decisions regarding layoffs, investment, and the attention given to process 

FIGURE 3-8 Subsystem diagram for model of a semiconductor firm and its quality 
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improvement. These decisions were affected by the firm’s financial health and the 
threat of takeover (as influenced by the market value of the firm relative to book 
value and cash flow). The diagram also shows that the firm’s sales and market 
share are endogenous, as is competitor behavior (note that competitors respond not 
only to the firm’s price but also to its quality improvement efforts). The stock price 
and market valuation of the firm are also endogenous. 

Subsystem diagrams are overviews and should not contain too much detail. 
The diagram in Figure 3-8 is quite complex; subsystem diagrams should generally 
be simpler. Multiple subsystem diagrams can be used to convey the hierarchical 
structure of large models. 

Causal loop diagrams. Model boundary charts and subsystem diagrams 
show the boundary and architecture of the model but don’t show how the variables 
are related. Causal loop diagrams (CLDs) are flexible and useful tools for dia- 
gramming the feedback structure of systems in any domain. Causal diagrams are 
simply maps showing the causal links among variables with arrows from a cause 
to an effect. Chapter 2 provides examples; chapter 5 covers the rules for their con- 
struction and interpretation in depth. 

Stock and flow maps. Causal loop diagrams emphasize the feedback struc- 
ture of a system. Stock and flow diagrams emphasize their underlying physical 
structure. Stocks and flows track accumulations of material, money, and informa- 
tion as they move through a system. Stocks include inventories of product, popu- 
lations, and financial accounts such as debt, book value, and cash. Flows are the 
rates of increase or decrease in stocks, such as production and shipments, births 
and deaths, borrowing and repayment, investment and depreciation, and receipts 
and expenditures. Stocks characterize the state of the system and generate the in- 
formation upon which decisions are based. The decisions then alter the rates of 
flow, altering the stocks and closing the feedback loops in the system. Chapter 2 
shows examples; chapters 6 and 7 discuss the mapping and behavior of stocks and 
flows. 

Policy structure diagrams. These are causal diagrams showing the informa- 
tion inputs to a particular decision rule. Policy structure diagrams focus attention 
on the information cues the modeler assumes decision makers use to govern the 
rates of flow in the system. They show the causal structure and time delays in- 
volved in particular decisions rather than the feedback structure of the overall sys- 
tem. Chapter 15 provides examples; see Morecroft (1982) for details. 

3.5.3 Formulating a Simulation Model 
Once you’ve developed an initial dynamic hypothesis, model boundary, and con- 
ceptual model, you must test them. Sometimes you can test the dynamic hypothe- 
sis directly through data collection or experiments in the real system. Most of the 
time, however, the conceptual model is so complex that its dynamic implications 
are unclear. As discussed in chapter 1, our ability to infer correctly the dynamics of 
a complex model is extremely poor. Further, in many situations, especially human 
systems, it is difficult, dangerous, unethical, or simply impossible to conduct the 
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real world experiments that might reveal the flaws in a dynamic hypothesis. In the 
majority of cases, you must conduct these experiments in a virtual world. To do so, 
you must move from the conceptual realm of diagrams to a fully specified formal 
model, complete with equations, parameters, and initial conditions. 

Actually, formalizing a conceptual model often generates important insight 
even before it is ready to be simulated. Formalization helps you to recognize vague 
concepts and resolve contradictions that went unnoticed or undiscussed during the 
conceptual phase. Formalization is where the real test of your understanding oc- 
curs: computers accept no hand waving arguments. Indeed, the most experienced 
modelers routinely write some equations and estimate parameters throughout the 
modeling process, even in the earliest phases of problem articulation and concep- 
tualization-often with the clients-as a way to resolve ambiguity and test initial 
hypotheses. System dynamics practice includes a large variety of tests one can 
apply during the formulation stage to identify flaws in proposed formulations and 
improve your understanding of the system. 

3.5.4 Testing 
Testing begins as soon as you write the first equation. Part of testing, of course, is 
comparing the simulated behavior of the model to the actual behavior of the sys- 
tem. But testing involves far more than the replication of historical behavior. Every 
variable must correspond to a meaningful concept in the real world. Every equa- 
tion must be checked for dimensional consistency (so you aren’t adding apples and 
oranges). The sensitivity of model behavior and policy recommendations must be 
assessed in light of the uncertainty in assumptions, both parametric and structural. 

Models must be tested under extreme conditions, conditions that may never 
have been observed in the real world. What happens to the GDP of a simulated 
economy if you suddenly reduce energy supplies to zero? What happens in a model 
of an automaker if you raise the price of its cars by a factor of one billion? What 
happens if you suddenly increase dealer inventories by 1000%? Even though these 
conditions have never and could never be observed, there is no doubt about what 
the behavior of the system must be: Without energy, the GDP of a modern econ- 
omy must fall nearly to zero; with a price one billion times higher, the demand for 
the firm’s cars must fall to zero; with a huge surplus of cars on dealer lots, produc- 
tion should soon fall to zero but cannot become negative. You might imagine that 
models would never fail to pass such obvious tests, that production without energy, 
demand for goods that cost more than the total wealth of many nations, and nega- 
tive production would never arise. But you’d be wrong. Many widely used models 
in economics, psychology, management, and other disciplines violate basic laws of 
physics, even though they may replicate historical behavior quite well (see section 
9.3.2 and chapter 21). Extreme conditions tests, along with other tests of model be- 
havior, are critical tools to discover the flaws in your model and set the stage for 
improved understanding. 

3.5.5 Policy Design and Evaluation 
Once you and the client have developed confidence in the structure and behavior 
of the model, you can use it to design and evaluate policies for improvement. 
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Policy design is much more than changing the values of parameters such as a tax 
rate or markup ratio. Policy design includes the creation of entirely new strategies, 
structures, and decision rules. Since the feedback structure of a system determines 
its dynamics, most of the time high leverage policies will involve changing the 
dominant feedback loops by redesigning the stock and flow structure, eliminating 
time delays, changing the flow and quality of information available at key decision 
points, or fundamentally reinventing the decision processes of the actors in the sys- 
tem. 

The robustness of policies and their sensitivity to uncertainties in model para- 
meters and structure must be assessed, including their performance under a wide 
range of alternative scenarios. The interactions of different policies must also be 
considered: Because real systems are highly nonlinear, the impact of combination 
policies is usually not the sum of their impacts alone. Often policies interfere 
with one another; sometimes they reinforce one another and generate substantial 
synergies. 

3.6 SUMMARY 
This chapter described the modeling process. While there are certain steps all mod- 
elers go through, modeling is not a cookbook procedure. It is fundamentally cre- 
ative. At the same time, modeling is a disciplined, scientific, and rigorous process, 
challenging the modeler and client at every step to surface and test assumptions, 
gather data, and revise their models-both formal and mental. 

Modeling is iterative. No one ever built a model by starting with step 1 and 
progressing in sequence through a list of activities. Modeling is a continual process 
of iteration among problem articulation, hypothesis generation, data collection, 
model formulation, testing, and analysis. There are revisions and changes, blind al- 
leys and backtraclung. Effective modeling continually cycles between experiments 
in the virtual world of the model and experiments and data collection in the real 
world. 

Models must be clearly focused on a purpose. Never build a model of a sys- 
tem. Models are simplifications; without a clear purpose, you have no basis for ex- 
cluding anything from your model and your effort is doomed to failure. Therefore 
the most important step in the modeling process is working with your client to ar- 
ticulate the problem-the real problem, not the symptoms of the problem, the lat- 
est crisis, or the most recent fad. Of course, as the modeling process leads you to 
deeper insight, your definition and statement of the problem may change. Indeed, 
such radical reframings are often the most important outcome of modeling. 

The purpose of modeling is to help the clients solve their problem. Though the 
modeling process often challenges the clients’ conception of the problem, ulti- 
mately, if the client perceives that your model does not address their concern, you 
can have little impact. The modeler must not grow attached to a model, no matter 
how elegant or how much time has been invested in it. If it doesn’t help the clients 
solve their problem, it needs to be revised until it does. 

Modeling takes place in an organizational and social context. The setting may 
be a business but can also be a government agency, a scientific community, a pub- 
lic policy debate, or any other organization. Modelers are inevitably caught up in 
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the politics of the community and personalities of its members. Modelers require 
both first-rate analytical skills and excellent interpersonal and political skills. 

Finally, modelers have an ethical responsibility to pursue the modeling process 
with rigor and integrity. The fact that modeling is embedded in an organizational 
context and subject to political pressures does not relieve you of your responsibil- 
ity to carry out your work with the highest standards of scientific inquiry and pro- 
fessional conduct. If your client is not willing to pursue the modeling process 
honestly, quit and find yourself a better client. 





4 

Structure and Behavior of 
Dynamic Systems 

Like all systems, the complex system is an interlocking structure of feedback 
loops . . . This loop structure surrounds all decisions public or private, 
conscious or unconscious. The processes of man and nature, of psychology and 
physics, of medicine and engineering all fall within this structure. 

-Jay W. Forrester, Urban Dynamics (1969), p. 107. 

The behavior of a system arises from its structure. That structure consists of the 
feedback loops, stocks and flows, and nonlinearities created by the interaction of 
the physical and institutional structure of the system with the decision-making 
processes of the agents acting within it. This chapter provides an overview of dy- 
namics focusing on the relationship between structure and behavior. The basic 
modes of behavior in dynamic systems are identified along with the feedback 
structures generating them. These modes include growth, created by positive feed- 
back; goal seeking, created by negative feedback; and oscillations (including 
damped oscillations, limit cycles, and chaos), created by negative feedback with 
time delays. More complex modes such as S-shaped growth and overshoot and col- 
lapse arise from the nonlinear interaction of these basic structures. The chapter also 
illustrates the concept of reference modes to capture dynamic behavior and causal 
loop diagrams as a method to represent feedback structure. 

1 07 
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4.1 FUNDAMENTAL MODES OF DYNAMIC BEHAVIOR 
Change takes many forms, and the variety of dynamics around us is astounding. 
You might imagine that there must be a correspondingly huge variety of different 
feedback structures to account for such a rich array of dynamics. In fact, most dy- 
namics are instances of a fairly small number of distinct patterns of behavior, such 
as exponential growth or oscillation. Figure 4-1 shows the most common modes of 
behavior. 

The most fundamental modes of behavior are exponential growth, goal seek- 
ing, and oscillation. Each of these is generated by a simple feedback structure: 
growth arises from positive feedback, goal seeking arises from negative feedback, 
and oscillation arises from negative feedback with time delays in the loop. Other 
common modes of behavior, including S-shaped growth, S-shaped growth with 
overshoot and oscillation, and overshoot and collapse, arise from nonlinear inter- 
actions of the fundamental feedback structures. 

4.1 . I  Exponential Growth 
Exponential growth arises from positive (self-reinforcing) feedback. The larger the 
quantity, the greater its net increase, further augmenting the quantity and leading to 
ever-faster growth (Figure 4-2). The paradigm cases are compound interest and the 
growth of populations. The more money you have invested, the more interest you 
earn, so the greater your balance and the greater still the next interest payment will 
be. The larger the population, the bigger the net birth rate, adding to the population 
and eventually leading to still more births, in an ever-accelerating spiral. Pure ex- 
ponential growth has the remarkable property that the doubling time is constant: 
the state of the system doubles in a fixed period of time, no matter how large. 

FIGURE 4-1 Common modes of behavior in dynamic systems 

Soal Seeking I S-shaDed Growth 

- Time - 

I Oscillation Growth with Overshoot Overshoot and Collapse 
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It takes the same length of time to grow from one unit to two as it does to grow 
from one million to two million. This property is a direct consequence of positive 
feedback: the net increase rate depends on the size of the state of the system (see 
chapter 8). Positive feedback need not always generate growth. It can also create 
self-reinforcing decline, as when a drop in stock prices erodes investor confidence 
which leads to more selling, lower prices, and still lower confidence. 

What about linear growth? Linear growth is actually quite rare. Linear growth 
requires that there be no feedback from the state of the system to the net increase 
rate, because the net increase remains constant even as the state of the system 
changes. What appears to be linear growth is often actually exponential, but 
viewed over a time horizon too short to observe the acceleration. 

Figure 4-3 shows some examples of exponential growth. Growth is never per- 
fectly smooth (due to variations in the fractional growth rates, cycles, and pertur- 
bations), but in each case exponential growth is the dominant mode of behavior. 
Though the doubling times vary widely (from about 40 years for world population 
to about 2 years for semiconductor performance), these systems all exhibit the 
same enormous acceleration caused by positive feedback. 

Process Point: When a Rate Is Not a Rate 
In dynamic modeling, the term “rate” generally refers to the absolute rate of 
change in a quantity. The population growth example above states, “the larger the 

FIGURE 4-2 
Exponential growth: structure and behavior 
The causal loop diagram in the bottom half 
of the figure shows the feedback structure 
that generates (exponential growth. Arrows 
indicate the direction of causal influences. 
Here, State of the System determines Net 
Increase Rate (the lower arrow), and Net 
Increase Rate adds to State of the System 
(the upper arrow). Signs at arrow heads 
(f or -) indicate the polarity of the 
relationship. A positive polarity, indicated 
by f ,  means an increase in the 
independent va.riable causes the 
dependent variable to rise above what it 
would have been (and a decrease causes 
a decrease). Negative signs (see Figure 
4-4) mean an increase (decrease) in 
the independent variable causes the 
dependent variable to decrease (increase) 
beyond what it would have been. Loop 
identifiers show the polarity of the loop, 
either positive (self-reinforcing, denoted 
by R) or negative (balancing, denoted 
by B; see Figure 4-4). Chapter 5 
discusses causal loop diagrams in depth. 

f+ / 
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Rate 
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FIGURE 4-3 Exponential growth: examples 
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FIGURE 4-4 
Goal seeking: 
structure and 
behavior 

population, the greater the birth rate.” The term “birth rate” here refers to the num- 
ber of people born per time period. For example, the birth rate in a city of one mil- 
lion people might be 20,000 people per year. Often, however, the term “rate” is 
used as shorthand for thefractional rate of change of a variable. For example, the 
birth rate is often interpreted as the number of births per year per thousand people 
(also known as the crude birth rate). The crude birth rate in the city of one million 
would be 20 births per year per thousand people, or 2%/year. Similarly, we com- 
monly speak of the interest rate or the unemployment rate. The word “rate” in 
these cases actually means “ratio”: the interest rate is the ratio of the interest pay- 
ments you must make each period to the principal outstanding; the unemployment 
rate is the ratio of the number of unemployed workers to the labor force. 

You must carefully distinguish between absolute and fractional rates of change 
and between rates of change and ratios. Select variable names that minimize the 
chance for confusion. Be sure to check the units of measure for your rates. The 
units of measure for rates of flow are unitskime period; the units of measure for 
fractional rates of flow are units per unit per time period = l/time periods. For ex- 
ample, the interest rate on your credit card is not, say, 12%, but 12% per yea6 or, 
equivalently, 1% per month (0.12/year or O.Ol/month). The economy doesn’t grow 
at, say, 3.5%, but at a fractional rate of 3.5%/year. 

4.1.2 Goal Seeking 
Positive feedback loops generate growth, amplify deviations, and reinforce 
change. Negative loops seek balance, equilibrium, ,and stasis. Negative feedback 
loops act to bring the state of the system in line with a goal or desired state. They 
counteract any disturbances that move the state of the system away from the goal. 
All negative feedback loops have the structure shown in Figure 4-4. The state of 
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the system is compared to the goal. If there is a discrepancy between the desired 
and actual state, corrective action is initiated to bring the state of the system back 
in line with the goal. When you are hungry, you eat, satisfying your hunger; when 
tired, you sleep, restoring your energy and alertness. When a firm’s inventory 
drops below the stock required to provide good service and selection, production 
increases until inventory is once again sufficient. 

Every negative loop includes a process to compare the desired and actual con- 
ditions and take corrective action. Sometimes the desired state of the system and 
corrective action are explicit and under the control of a decision maker (e.g., the 
desired level of inventory). Sometimes the goal is implicit and not under conscious 
control, or under the control of human agency at all. The amount of sleep you need 
to feel well rested is a physiological factor not under your conscious control. The 
equilibrium surface temperature of the earth depends on the flux of solar energy 
and the concentration of greenhouse gases in the atmosphere, among other physi- 
cal parameters. And a cup of coffee cools via negative feedback until it reaches 
room temperature. 

In most cases, the rate at which the state of the system approaches its goal di- 
minishes as the discrepancy falls. We do not often observe a constant rate of ap- 
proach that suddenly stops just as the goal is reached. The gradual approach arises 
because large gaps between desired and actual states tend to generate large re- 
sponses, while small gaps tend to elicit small responses. The flow of heat from 
your coffee cup to the air in the room is larger when the temperature gap between 
them is large and diminishes as the gap falls. When coffee and room temperatures 
are equal, there is no net heat flow between them. 

When the relationship between the size of the gap and the corrective action is 
linear, the rate of adjustment is exactly proportional to the size of the gap and the 
resulting goal-seeking behavior is exponential decay. As the gap falls, so too does 
the adjustment rate. And just as exponential growth is characterized by its doubling 
time, pure exponential decay is characterized by its halflife-the time it takes for 
half the remaining gap to be eliminated (see chapter 8). 

Figure 4-5 shows examples of goal-seeking behavior. The top left panel shows 
the rate of defect generation in the wafer fabrication process of a major semi- 
conductor manufacturer. In 1987, the company began a process improvement 
program using principles of Total Quality Management. The goal of the program 
was zero defects. In 4 years the defect rate declined from 1500 ppm to about 150 
ppm. Note that as the defect rate fell, the rate of improvement declined. The top 
right panel shows the average load factor (up time) for two Finnish nuclear power 
plants started up in 1978. The fraction of the year the plants operated increased 
rapidly at first, then more slowly, until a maximum of about 94% was reached. The 
bottom left panel shows the share of all advertising dollars spent on television in 
the US. Growth was rapid in the 1950s, but reached a fairly steady level of about 
20-25% by 1980. The bottom right panel shows the roughly exponential decline in 
automobile-related fatalities in the US per 100 million vehicle miles driven. De- 
spite the substantial decline in death risk per mile, the number of miles driven has 
grown exponentially, so the total number killed on the roads each year has fluctu- 
ated between about 30 and 50 thousand since the 1930s. 
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FIGURE 4-6 
Oscillation: 
structure and 
behavior 
Delays can exist 
in any of the 
causal links in a 
negative feedback 
loop. Oscillation 
can occur if there 
are delays in at 
least one of 
the links in a 
negative loop. 
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4.1.3 Oscillation 
Oscillation is the third fundamental mode of behavior observed in dynamic sys- 
tems. Like goal-seeking behavior, oscillations are caused by negative feedback 
loops. The state of the system is compared to its goal, and corrective actions are 
taken to eliminate any discrepancies. In an oscillatory system, the state of the sys- 
tem constantly overshoots its goal or equilibrium state, reverses, then undershoots, 
and so on. The overshooting arises from the presence of significant time delays in 
the negative loop. The time delays cause corrective actions to continue even after 
the state of the system reaches its goal, forcing the system to adjust too much, and 
triggering a new correction in the opposite direction (Figure 4-6). 

Oscillations are among the most common modes of behavior in dynamic sys- 
tems. There are many types of oscillation, including damped oscillations, limit cy- 
cles, and chaos (see section 4.3.3). Each variant is caused by a particular feedback 
structure and set of parameters determining the strengths of the loops and the 
lengths of the delays. But every type of oscillation has, at its core, a negative feed- 
back loop with delays. 

Oscillations can arise if there is a significant delay in any part of the negative 
loop. As shown in Figure 4-6, there may be delays in any of the information links 
making up the loop. There may be delays in perceiving the state of the system 
caused by the measurement and reporting system. There may be delays in initiat- 
ing corrective actions after the discrepancy is perceived due to the time required 
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to reach a decision. And there may be delays between the initiation of a corrective 
action and its effect on the state of the system. It takes time for a company to mea- 
sure and report inventory levels, time for management to meet and decide how 
much to produce, and more time while raw materials procurement, the labor force, 
and other needed resources respond to the new production schedule. Sufficiently 
long delays at any one of these points could cause inventory to oscillate. 

Figure 4-3 showed real GDP in the US. The dominant mode of behavior in the 
data is exponential growth. But the growth is not smooth. Output fluctuates around 
the growth trend. In the top panel of Figure 4-7 these oscillations are revealed by 
detrending the GDP data (removing the best fit exponential function). After the ex- 
ponential growth is removed, the business cycle is clearly visible as a fluctuation 
averaging about 5% in amplitude and with an average period of about 4 years. A 
longer and larger fluctuation in real production is also apparent, with peaks relative 
to trend around 1910 and 1970-the so-called economic long wave.l The bottom 
panels of Figure 4-7 show two critical business cycle indicators--capacity utiliza- 
tion in the US manufacturing sector and the civilian unemployment rate. The am- 
plitude of the business cycle in these important variables is quite large. Utilization 
typically fluctuates 15 points from peak to trough (nearly 20% of its average 
value), while unemployment during the postwar period in the US has ranged from 
under 3% to nearly 11% of the labor force, with much higher values in Europe. 

Note that the business cycle (and most real world oscillations) is not perfectly 
regular. You should not expect it to be. Many people think a cycle must be as pre- 
dictable as the dawn, as regular as the orbits of the planets, as smooth and sym- 
metric as the swing of a pendulum clock. But these paradigms of periodicity are 
special systems. The planets interact mainly with the sun and only weakly with one 
another.2 A pendulum clock has been carefully designed to generate a regular mo- 
tion by isolating its components from the environment. Biological, social, and eco- 
nomic systems, in contrast, involve huge numbers of interactions among tightly 
coupled elements. They are continuously bombarded by perturbations that cause 
their motion to be somewhat irregular, a (usually nonlinear) combination of their 
endogenous dynamics and these exogenous shocks (see section 4.3.2). 

‘The long wave, or Kondratiev cycle, has an average period of about 60 years and, as seen in the 
data, an amplitude much larger than the short-term business cycle. Sterman (1986) and Forrester 
(1977, 1983) present theory and evidence for the existence and feedback structure generating the 
long wave. Sterman (1985b) presents a simple model of the long wave; Sterman 1989a reports an 
experimental test of the model, and Sterman (1989~) shows that many of the decision rules charac- 
terizing human subjects in the experiment generate chaotic dynamics. 

ing as tidal and frictional forces dissipate the earth’s rotational energy. Recent research shows that 
the orbits of most of the planets are chaotic and that chaotic resonances among the planets can hurl 
meteorites and asteroids from distant orbits into trajectories that cross the earth’s orbit, perhaps ac- 
counting for the impacts now believed to have caused the major extinctions. It is only our short (by 
heavenly standards) record of observations that causes us to perceive the solar system to be stable 
and predictable. Peterson (1993) provides an excellent nontechnical treatment of chaotic dynamics 
in the solar system; Diacu and Holmes (1996) cover the origins of chaos in theories of celestial me- 
chanics. Jack Wisdom of MIT pioneered computer simulations that revealed the chaotic character 
of the solar system (see Wisdom 1987 for a review). See section 4.3.3 for more on chaos. 

2Actually, the apparent regularity of the solar system is illusory. The length of the day is increas- 



116 

FIGURE 4-7 
Oscillation: 
examples 
The business 
cycle in the 
United States. 
Top: Deviation 
of real GDP 
from long-term 
exponential trend. 
Middle: Capacity 
utilization. 
Bottom: Civilian 
unemployment. 
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4.1.4 Process Point 
The connection between structure and behavior provides a useful heuristic for the 
conceptualization process. Any time you observe exponential growth in a variable, 
you know there is at least one positive feedback in which the variables of interest 
participate (and possibly more). There will, of course, be many negative loops 
present as well. However, if the system is exhibiting exponential growth, then you 
know that positive loops are dominant (at least during the regime in which growth 
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occurs). You can then guide the discussion among the client group toward the iden- 
tification of self-reinforcing processes. Typically, the group will be able to identify 
many positive loops involving the variables of interest. Of course, it is not possi- 
ble to tell which of these candidate loops are active and contributing to the behav- 
ior, nor their relative strengths, without recourse to data and/or model simulations. 
But focusing on the connection between structure and behavior helps generate 
fruitful hypotheses about the key loops. 

Similarly, any time you observe the other core modes of behavior, you imme- 
diately know what types of loop must be dominant, guiding your initial search for 
the structures responsible. Oscillation, for example, must mean there is an impor- 
tant negative feedback with significant time delays. You can then ask about the de- 
cision processes by which the variable is regulated and the time delays in the 
perception of the state of the system, in the decision process, and in the response 
of the system to the corrective actions of the decision makers. 

A caveat: This heuristic helps in the identification of the feedback structures 
responsible for the observed behavior. In addition, it is essential to consider what 
structures exist but have not yet played a significant role in the history of the sys- 
tem or left a trace in the available data. As the system evolves these latent feed- 
backs may become dominant, dramatically changing the dynamics, shifting trends 
and patterns, and altering the system’s response to policies. Identifying potential 
shifts in loop dominance arising from latent structures is a valuable function of 
modeling. 

To illustrate, return to the case of exponential growth. No real quantity can 
grow forever. Eventually, one or more negative loops will become dominant as 
various limits to growth are approached. Immediately after identifying some posi- 
tive loops potentially responsible for observed growth, you should ask, What neg- 
ative loops might stop the growth? Most people can easily generate a wide range 
of potential limits and constraints to the growth of the system. Identifying the po- 
tential constraints to growth is a powerful way to identify possible future bottle- 
necks and limits, even if there is no evidence of a slowdown in the data. As with 
the identification of positive loops, empirical investigation and modeling are re- 
quired to determine which negative loops are strongest, what limits to growth they 
reflect, and whether those limits can be relaxed or tightened by other feedbacks or 
through policy interventions (see section 4.2.1). 

Identifying Feedback Structure from System Behavior 
1. Identify the positive loops responsible for the growth in the examples 

shown in Figure 4-3. Sketch a causal loop diagram to capture the loops you 
identify. Identify as many negative feedbacks that might halt growth in 
these systems as you can. 

2. Identify the negative loops that might be responsible for the goal-seeking 
behaviors shown in Figure 4-5. Identify the state of the system, the goal, 
and the corrective action(s) for each case. What counterforces might 
prevent the state of the system from reaching its goal? 
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3 .  Identify the negative loops and time delays that might be responsible for the 
oscillations in economic affairs illustrated by Figure 4-7. Identify the state 
of the system, the goal, the corrective action, and delays. Estimate the 
length of the time delays you identify. 

4.2 INTERACTIONS OF THE FUNDAMENTAL MODES 

FIGURE 4-8 
S-shaped growth: 
structure and 
behavior 

The three basic modes of behavior-exponential growth, goal seeking, and oscil- 
lation-are caused by three basic feedback structures: positive feedback, negative 
feedback, and negative feedback with delays. Other, more complex patterns of be- 
havior arise through the nonlinear interaction of these structures with one another. 

4.2.1 S-shaped Growth 
As discussed above, no real quantity can grow (or decline) forever: eventually one 
or more constraints halt the growth. A commonly observed mode of behavior in 
dynamic systems is S-shaped growth-growth is exponential at first, but then grad- 
ually slows until the state of the system reaches an equilibrium level. The shape of 
the curve resembles a stretched-out “S” (Figure 4-8). To understand the structure 
underlying S-shaped growth it is helpful to use the ecological concept of carrying 
capuc i~ .  The carrying capacity of any habitat is the number of organisms of a 
particular type it can support and is determined by the resources available in the 
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environment and the resource requirements of the population. As a population 
approaches its carrying capacity, resources per capita diminish thereby reducing 
the fractional net increase rate until there are just enough resources per capita to 
balance births and deaths, at which point the net increase rate is zero and the pop- 
ulation reaches equilibrium. Any real quantity undergoing exponential growth can 
be interpreted as a population drawing on the resources in its environment. As the 
capacity of the environment is approached, the adequacy of the required resources 
diminishes, and the fractional net increase rate must decline. The state of the sys- 
tem continues to grow, but at a slower rate, until resources are just scarce enough 
to halt growth. In general, a population may depend on many resources, each cre- 
ating a negative loop which might limit growth. The constraint that is most bind- 
ing determines which of the negative loops will be most influential as the state of 
the system grows. 

The carrying capacity concept is subtle and complex. While it is appropriate to 
consider the carrying capacity of an environment to be constant in some situations, 
in general the carrying capacity of an environment is intimately intertwined with 
the evolution and dynamics of the species it supports. We humans alter the carry- 
ing capacity of the planet in ways both intended and unintended, through the de- 
velopment of technology enabling greater utilization of resources, through changes 
in cultural practices and norms for consumption of resources per capita, and 
through consumption, depletion, and erosion of the various resources upon which 
we depend. Even so-called lower species interact with their environment to alter 
the carrying capacity. The co-evolution of flowers and pollinating insects permit- 
ted greater population densities for both. Similarly, all businesses and organiza- 
tions grow in the context of a market, society, and physical environment that 
imposes limits to their growth. As with natural populations, these limits can in- 
crease or decrease, both exogenously and, more importantly, endogenously, as the 
organization interacts with its customers, competitors, suppliers, regulators, and 
other entities in the system. In general, one must model the various resources that 
together determine the carrying capacity-for a species or an organization-as an 
endogenous element of the system. 

Despite the dynamic character of the carrying capacity, there is, at any mo- 
ment, a limit to the size of the population (the current carrying capacity), which, if 
exceeded, causes the population to fall. Further, the carrying capacity itself cannot 
grow forever. The laws of thermodynamics dictate an absolute limit to the carrying 
capacity of the earth, though there is no agreement among scholars as to what that 
level is, how it is changing, whether population should grow to the carrying ca- 
pacity or be voluntarily stabilized below it, or whether a population as large as the 
carrying capacity would enable a reasonable quality of life or provide only the bare 
minimum for ~ubsistence.~ 

A system generates S-shaped growth only if two critical conditions are met. 
First, the negative loops must not include any significant time delays (if they did, 
the system would overshoot and oscillate around the carrying capacity; see section 

3For good discussion of the uncertainty in definitions and estimates of the earth’s carrying 
capacity, see Cohen (1995). For system dynamics models in which the carrying capacity of the 
earth is treated endogenously and dynamically, see Meadows, Meadows, and Randers (1992). 
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4.2.2). Second, the carrying capacity must be fixed. It cannot be consumed by the 
growth of the population, lest the population exhaust its resources and force itself 
into extinction, as a population of yeast consumes the sugar in a cask of wine, ul- 
timately causing fermentation to stop (see section 4.2.3). 
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FIGURE 4-10 
S-shaped grow1:h 
with overshoot 
and oscillation: 
structure and 
behavior 

A key aspect of the structure generating S-shaped growth is that the interaction 
of the positive and negative loops must be nonlinear. At first, when the state of the 
system is small relative to the resource base, the limits to growth are distant and the 
positive loops dominate. An additional unit added to the state of the system con- 
tributes more to the net increase rate than it decreases the fractional net increase 
rate by reducing resource adequacy. The state of the system grows exponentially. 
However, as a direct consequence of that growth, the adequacy of the resource 
base falls. As the limits to growth are approached, the negative loops grow stronger 
and stronger, until they begin to dominate the dynamics. The inflection point in the 
curve is the point where the system, though still growing, shifts from acceleration 
to deceleration. The inflection marks the point at which there is a shift in loop 
dominance. It is the point at which an additional unit added to the state of the sys- 
tem reduces the fractional net increase rate more than it adds to the total population 
driving the growth. 

Figure 4-9 shows some examples of S-shaped growth. Whether the growth of 
a plant, the diffusion of a new product or service such as cable television, or the 
adoption of a new idea or technology like the cardiac pacemaker, growth always 
confronts limits. 

4.2.2 S-Shaped Growth with Overshoot 
S-shaped growth requires the negative feedbacks that constrain growth to act 
swiftly as the carrying capacity is approached. Often, however, there are signifi- 
cant time delays in these negative loops. Time delays in the negative loops lead to 
the possibility that the state of the system will overshoot and oscillate around the 
carrying capacity (Figure 4-10). Figure 4-11 shows some examples of S-shaped 
growth with overshoot and oscillation. 

Carrying Capacity 

State of the 
System 

Time - 

Net p+ 
Increase State of the 

 ate @ System 

@ Resource Carrying 
Fractional 

Net Increase 
Rate Adequacy Capacity +y-f -F u 



122 

5000 

z 

5 
I 
+ 
0 .- 

2500-  
I 
U 
m 
a 
c + 

FIGURE 4-1 1 
S-shaped growth 
with overshoot 
and oscillation: 
examples 

, , , I , ,  I 1 . 1 ,  1 , s  i , , , , ~  , / ,  1 1 1  , 

o-,-, , , - ,  , ,  , , ,  , , ,  , , ,  , 

Part I Perspective and Process 

Population of London 
1 0 '  " ' " ' " ' 1 ' 1 '  I " " 1 

1800 1850 1900 1950 2000 

Identifying the Limits to Growth 
What are the limits to growth for the population of a city and the rise in production 
of commodities such as aluminum? Identify the negative feedbacks that halt the 
growth in each case. Identify the time delays responsible for the overshoot and 

41n Urban Dynamics, Forrester (1969) presents a model of urban growth and stagnation, show- 
ing how many urban renewal policies actually accelerate the decay of the inner city. Mass (1975) 
and Schroeder, Sweeney, and Alfeld (1975) extend and apply the results of Urban Dynamics, and 
Alfeld and Graham (1976) build up a simplified version of the Urban Dynamics model suitable for 
teaching. 
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4.2.3 Overshoot and Collapse 
The second critical assumption underlying S-shaped growth is that the carrying 
capacity is fixed. Often, however, the ability of the environment to support a 
growing population is eroded or consumed by the population itself. For example, 
the population of deer in a forest can grow so large that they overbrowse the 
vegetation, leading to starvation and a precipitous decline in the population. Figure 
4-12 shows the feedback structure and typical behavior for the overshoot and col- 
lapse behavior mode. 

Consumption or erosion of the carrying capacity by the population creates a 
second negative feedback limiting growth. Population growth now cuts resource 
adequacy two ways: by reducing the resources available per capita and by reduc- 
ing total resources. As in the S-shaped growth case, when resources are initially 
ample the positive growth loop dominates and the state of the system grows expo- 
nentially. As it grows, resource adequacy drops. The negative loops gradually gain 
in strength. At some point, the net increase rate falls to zero, and the population 
reaches its maximum. But unlike the S-shaped growth case, the system does not 
reach equilibrium. When the population reaches its peak, the rate of decline of the 
carrying capacity is at its maximum. The carrying capacity continues to drop, re- 
sources per capita fall further, and the net increase rate of the population becomes 
negative. The state of the system declines. Even as it declines, the remaining pop- 
ulation continues to consume the carrying capacity, so resources per capita remain 
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insufficient and the population keeps falling. If there is no regeneration of the car- 
rying capacity (if it is strictly nonrenewable), the equilibrium of the system is ex- 
tinction: any nonzero population continues to consume the resource base, forcing 
it to zero, and with it, the population. If the carrying capacity can be regenerated or 
supplemented with renewable resources, a nonzero equilibrium can be sustained. 

Figure 4-13 shows some examples of overshoot and collapse. The New Eng- 
land Haddock fishery collapsed due to overfishing of Georges Bank, once one of 
the world’s richest fishing areas. Overfishing has also shut down the Canadian and 
US cod fishery, and similar overexploitation is common in fisheries around the 
world.5 Nuclear power construction ground to a halt in the 1980s as high-level 
waste-and public concern over safety-accumulated and as the costs of nuclear 
power steadily escalated. The Atari Corporation was the leader of the first wave of 
home and arcade video games in the late 1970s. Sales doubled roughly every year 
from 1976 through 1982. Abrupt saturation of the market-depletion of the stock 
of potential customers-led to a precipitous drop in sales from $2 billion per year 
in 1982 to $100 million per year in 1984. The company lost about $600 million 
during the collapse. Silver experienced a classic speculative bubble in the late 
1970s, with prices rising tenfold in a year, then collapsing even more precipitously. 

The interplay between population and carrying capacity leading to overshoot 
and collapse is illustrated in Figure 4-14, which shows the population of Easter 
Island (Rapa Nui in the local language) and a measure of the carrying capacity de- 
rived from pollen cores indicating the extent of tree cover. 

Easter Island, one of the most remote spots on earth, is a small island of about 
160 km2 located in the eastern Pacific. Easter Island is most famous for the giant 
stone statues, known as moai, that dot the island. Radiocarbon dating puts the ar- 
rival of the first settlers, intrepid sailors of Polynesian origin, at about the year 400 
and not later than 690. Population is estimated to have grown slowly until about 
1 100, when growth accelerated dramatically, perhaps doubling about every cen- 
tury, until about the year 1400. Pollen counts from soil cores and other records 
show that prior to the arrival of the first humans, Easter Island was lushly forested 
and supported a diverse set of fauna, particularly birds (Bahn and Flenley 1992; 
Steadman 1995). However, as the human population grew, the forests were pro- 
gressively cut to provide wood and fiber for boats, structures, ropes, and tools, as 
well as to provide firewood. The Polynesian rat, which arrived with the original 
settlers, hastened the decline by killing birds and eating the seeds and nuts of the 
native palm. 

By about the year 1400, deforestation was nearly complete. The loss of tree 
cover dramatically reduced the island’s carrying capacity. There is clear strati- 
graphic evidence that soil erosion increased with deforestation as rain washed 
away the unprotected soil. Without tree cover, wind speeds at ground level in- 
creased, carrying still more valuable soil into the sea. The erosion was so severe 

5The “Fishbanks” simulation (Meadows, Fiddaman, and Shannon 1993) is a wonderful role-play 
management flight simulator illustrating the dynamics of renewable resources such as fisheries. 



126 

FIGURE 4-1 4 
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that sediment washed from the higher elevations eventually covered many of the 
moai, so that European visitors thought the giant statues were just heads, when in 
fact they were complete torsos averaging 20 feet in height. Deforestation also in- 
creased evaporation from the soil and may have reduced rainfall. The few streams 
on the island dried up, further reducing food production and the fresh water supply. 
Eventually, fishing, the other main source of food, also fell, as boats, lines, and 
hooks, all made from wood, could no longer be replaced. When the first Europeans 
arrived, the islanders prized wood above all other items offered in trade. Most of 
the bird species living on Easter Island became at least locally extinct. Only 1 of 
about 25 indigenous species still nests on the island today (Steadman 1995). 
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As the carrying capacity declined, population growth slowed, reaching a peak 
generally estimated to be between 6000 and 10,000 people around the year 1600. 
A precipitous decline in population had set in by about 1680, accompanied by 
major changes in social, political, and religious structures. Spear points and other 
tools of war appeared for the first time, and there is evidence of large battles 
among competing groups. Some scholars believe there is evidence of cannibalism 
during this period. The first Europeans known to visit Easter Island arrived in 1722 
and found a small and poor population. Scholars generally accept an estimate of 
2000 people in 1786. After Peruvian slave raids and a subsequent smallpox epi- 
demic the population fell to 111 in 1877. The population recovered to about 2100 
by the early 1990s, largely the result of immigration and settlement from Chile, 
which has governed the island since 1888. 

The overshoot and collapse of Easter Island is but one of many similar 
episodes documented in the history of island biogeography (see Kirch 1997). In 
each case, population growth led to deforestation, the extinction of native species, 
and unfavorable changes in local climate, rainfall, and agricultural productivity, 
followed by starvation, conflict, and, often, population collapse.6 

4.3 OTHER MODES OF BEHAVIOR 
Growth, goal seeking, oscillation, and their combinations: are these the only pat- 
terns of behavior systems can exhibit? No, but they cover the vast majority of dy- 
namics. There are other patterns, for example: (1) stasis, or equilibrium, in which 
the state of the system remains constant over time; and (2) random variation. 

4.3.1 Stasis, or Equilibrium 
Constancy arises either because dynamics affecting the state of the system are so 
slow that change is imperceptible or because there are powerful negative feedback 
processes keeping the state of the system nearly constant even in the face of envi- 
ronmental disturbances. In the former case, change is too slow relative to your time 
horizon to be meaningful. In the latter case, constancy is an example of highly ef- 
fective goal-seeking behavior. The firmness and reliability with which you remain 
in contact with the ground when standing reflects the equilibrium caused by a 
powerful negative feedback loop: as gravity causes you to sink into the earth, the 
electrons in the atoms of the ground exert greater and greater upward force on 
the electrons in the atoms of your feet until the force of their mutual electrostatic 
repulsion just offsets the force of gravity, at which point you come to rest. 

4.3.2 Randomness 
Many variables appear to vary randomly. In most situations, randomness is a mea- 
sure of our ignorance, not intrinsic to the system. (Except in quantum mechanics, 

6The Easter Island data above are drawn primarily from Bahn and Flenley (1992), Kirch (1984), 
and Van Tilburg (1994). These works, along with Kirch (1997) and Steadman (1995), provide a 
good survey of recent research on the biological and human history of Rapa Nui and other island 
ecosystems. 
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where Einstein’s famous lament “God does not play dice with the universe!” 
appears to be wrong. However, the random behavior of elementary particles near 
the Planck scale has little if any bearing on the dynamics of macroscopic systems 
such as a company). When we say there are “random” variations in, say, the de- 
mand for a firm’s product, what we actually mean is that we don’t know the rea- 
sons for these variations. We are revealing the limitations of our understanding, not 
characterizing a feature of reality. The demand for a firm’s product may be grow- 
ing and may also experience a seasonal cycle. The firm may understand and can 
perhaps even forecast the trend and seasonal cycle with some accuracy. But after 
accounting for these sources of change, people tend to call the residual variation 
random as if the customers were somehow rolling dice to decide whether to buy 
the product. People generally have reasons for behaving as they do, but the man- 
agers of the firm are not aware of either their decision rules or the information they 
use to make their decisions. The managers’ model of customer behavior is im- 
perfect. If the firm could, through additional modeling and fieldwork, discover 
those rules and their inputs, they could explain more of the total variation in de- 
mand, and some of what was formerly deemed random would now be resolved 
into their theory of the system structure. 

As a practical matter, no one can never know all the local conditions and idio- 
syncrasies causing a customer to place an order today or wait until tomorrow or 
cause a machine to break down now instead of 3 hours from now. The aggregate 
impact of the individual deviations from average behavior means systems are 
bathed in a continuous rain of random shocks. Engineers term these random per- 
turbations “noise,” after the distortion heard on telephone lines caused by thermal 
fluctuations of the atoms in the wires. Of course, the rain of random shocks in- 
cludes the occasional downpour, or even flood (for example, note the impact of 
WWII on economic output in the US, Figure 4-3). 

The rain of random noise falling on our systems does play an important role in 
dynamics, however. By constantly knocking systems away from their current tra- 
jectory, noise can excite modes of behavior that otherwise would lie dormant. A 
pendulum swinging in the air will tend towards equilibrium as friction dissipates 
its energy; eventually the bob of the pendulum comes to rest, straight down. How- 
ever, perturb the bob with small, random jolts, and soon it will begin swinging, 
somewhat irregularly, with a rhythm close to its natural frequency. The structure of 
the system has the potential to oscillate, but energy from some external source such 
as high-frequency random noise is required to excite its latent dynamics (chapters 
18-20 provide examples). Random noise can also unfreeze systems that are stuck 
on local optima, sending them into a new neighborhood where the dynamics are 
quite different, and can determine which of many equally attractive paths a system 
takes, contributing to path dependence (see chapter 10). These disturbances can be 
modeled as random variations around the average behavior given by the equations 
capturing the feedback structure of the system. Other times it is more appropriate 
to model the individual elements and actors in the system, in which case nonaver- 
age behavior arises from the heterogeneity of the population of agents. These roles 
for random perturbations will be explored in later chapters. 
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4.3.3 Chaos 
In recent years chaos has become a ubiquitous buzz word in the popular press and 
management literature. Books and articles by a host of new age management gu- 
rus warn companies to “manage at the edge of chaos” or be overtaken by more 
nimble competitors. Extravagant claims have been made that chaos is a new and 
radically different science, one which is fundamentally nonlinear and complex, one 
that can’t be explained without some mysterious new theory. Actually, the term 
“chaos” has a narrow and precise technical meaning in dynamical theory. Unfortu- 
nately, the hunger for the latest fad in the business world, reinforced by marketing 
hype attending the development of chaos and complexity theory, has led to the 
misappropriation and dilution of the term. To explain chaos I first describe some 
more common types of oscillations. 

Damped Oscillations: Local Stability 
One important characteristic of oscillations is damping: if an oscillatory system is 
perturbed once and then left undisturbed, will the fluctuations die out? If so, the cy- 
cle is damped. Many systems are damped oscillators. The classic example is a pen- 
dulum like a child’s swing: Given a single push, the arc traversed by the swing 
steadily diminishes as friction dissipates its energy, until it eventually comes to 
rest. If you could reduce the frictional energy losses of the pendulum, damping 
would be weaker and it would take longer and longer for equilibrium to be reestab- 
lished after a shock. In the (unattainable) limit of zero friction, a single shock 
would cause a perpetual oscillation at a constant amplitude. 

The equilibrium of the damped pendulum is said to be locally stable: pertur- 
bations will cause the system to oscillate, but it will eventually return to the same 
equilibrium. The qualifier “locally” is important. Real systems are nonlinear, 
meaning that the feedback loops and parameters governing the dynamics vary de- 
pending on the state of the system (where the system is operating in state space- 
the space created by the state variables of the ~ y s t e m ) . ~  Local stability means the 
perturbations have to be small relative to nonlinearities that might cause other dy- 
namics to emerge, as when the pendulum is swung so hard it breaks. 

Many real world oscillators are damped, but the oscillations never die away 
because the systems are continually bombarded with noise. Many models suggest 
that the short-term business cycle (Figure 4-7) is a damped, locally stable oscilla- 
tion (chapter 19). The oscillatory structure is a set of negative feedback loops 
through which firms adjust production to control their inventories of products and 
raw materials. These loops are oscillatory because of the lags in the adjustment of 
production to changes in demand and inventory, particularly delays in hiring and 

71n a simple pendulum, there are two state variables: the position of the pendulum and its mo- 
mentum. These two states define a two-dimensional space, and the state of the system is defined at 
any time by the point in that space corresponding to the position and momentum of the pendulum. 
As the pendulum swings through its arc, its trajectory traces out a curve in state space. More com- 
plex systems have high-dimensional state spaces, but the concept of a trajectory in state space re- 
mains the same. 
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FIGURE 4-1 5 
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materials acquisition (Forrester 1961; Mass 1975). In these models, both the per- 
sistence and irregularity of the business cycle are caused by the excitation of the 
economy by random shocks, just as the simple pendulum discussed above fluctu- 
ates somewhat irregularly when perturbed by noise. 

Figure 4-15 shows an example of damped oscillation in a simple model of a 
firm based on the Beer Distribution Game (Sterman 1989b, chap. 17). The game 
represents the supply chain in a typical manufacturing industry. The supply chain 
has four sectors: a retailer, wholesaler, distributor, and factory. Each stage is iden- 
tical and managed by a different person. The managers strive to minimize their 
costs by controlling inventories as they seek to meet incoming demand. The simu- 
lation shows the response of the factory order rate to a one-time change in cus- 
tomer orders. The decision rule used by each agent in the simulation was estimated 
from the behavior of actual players. In response to the shock in demand, factory or- 
ders exhibit a damped oscillation which returns the system to equilibrium after 
about 70 weeks. Here the negative loop is the process by which each stage in the 
supply chain manages its inventory: ordering more when inventories are inade- 
quate and less when they are high. The delays arise from the time required to 
process orders and produce and deliver the beer. 

Expanding Oscillations and Limit Cycles 
While many oscillatory systems are damped, the equilibria of other systems are 
locally unstable, meaning that small disturbances tend to move the system farther 
away from the equilibrium point. Imagine a ball balanced on top of a hill. As long 
as the ball is exactly balanced on the hilltop, it remains in equilibrium. But the 
slightest breeze pushes the ball down the hill ever so slightly, leading to a still 
greater force downhill, in a positive feedback. The equilibrium is unstable. While 
an equilibrium may be locally unstable, any real system must be globally stable. 
Global stability means the trajectories of the system do not diverge to infinity: 
the trajectories are bounded because the positive feedbacks leading to the accel- 
erating flight from the balance point must ultimately be limited by various nega- 
tive loops. The ball cannot accelerate indefinitely, but will come to rest at the 
bottom of the hill. 
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If an oscillatory system with a locally unstable equilibrium is given a slight 
nudge off its equilibrium point, its swings grow larger and larger until they are con- 
strained by various nonlinearities. Such oscillations are known as limit cycles, to 
denote the nonlinear limits restricting their amplitude. In limit cycles, the states of 
the system remain within certain ranges (they are limited to a certain region of state 
space). In the steady state, after the effects of any initial perturbations have died 
out, a limit cycle follows a particular orbit (closed curve) in state space. The steady 
state orbit is known as an attractor, since trajectories near enough to it will move 
toward it, just as the bob of the damped pendulum is attracted to its stable equilib- 
rium point. 

Figure 4-16 shows an example of a limit cycle from the Beer Distribution 
Game. The situation in the figure is the same as described above for the damped 
oscillation except that the parameters of the ordering decision rule are slightly dif- 
ferent. As in the case of the damped oscillation, the parameters characterize the be- 
havior of an actual player. Again, there is a one-time change in customer demand. 
Instead of dying out, the cycle persists indefinitely, even though the environment 
is completely unchanging. The figure shows the cycle both as a time series and as 
a so-called phase plot with orders on the vertical axis and inventory on the hori- 
zontal axis, showing the closed orbit perpetually traced by the system. 

Of course, limit cycles are not perpetual motion machines. The energy re- 
quired to maintain the cycle must be provided from a source outside the oscillator. 
Limit cycles are quite common. Your life depends on them-your heartbeat and 
respiration are limit cycles. The circadian rhythms (daily fluctuations in alertness, 
hormone production, and a host of other physiological parameters) observed in al- 
most all organisms, from bacteria to people, are limit cycles. Many cycles in the bi- 
ological world also appear to be limit cycles, including cycles in predator-prey 
populations, cycles in the mass fruiting of certain plant species such as Piiion pines 
and some bamboos, and the periodic population explosions of certain insects such 
as the 17-year cicada (see Murray 1993). Many models suggest that very long-term 

FIGURE 4-1 6 
Le,ft Time series of factory orders. The cycle repeats indefinitely without any external variation. 
Right: The orbit of the system is a closed curve, shown here with factory orders plotted against net 
factory inventory (inventory less backlog). 
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fluctuations in the world economy known as “long waves” are self-perpetuating 
limit cycles (Sterman 1985; Forrester 1983). Sterman (1989a) reports an experi- 
ment in which people managed a simple economic model; the vast majority gener- 
ated long waves much like the behavior of the model. Sterman (1989~) shows that 
many of the decision rules’characterizing the human subjects generate chaos and 
various forms of limit cycle. 

Chaotic Oscillations 
Chaos, like damped fluctuations and limit cycles, is a form of oscillation. How- 
ever, unlike limit cycles, a chaotic system fluctuates irregularly, never exactly re- 
peating, even though its motion is completely deterministic. The irregularity arises 
endogenously and is not created by external, random shocks. Like a limit cycle, the 
path of a chaotic system is bounded to a certain region of state space. Because 
chaotic systems are bounded, chaos, like limit cycles, can only arise in nonlinear 
systems. However, unlike linear systems or limit cycles, chaotic dynamics do not 
have a well-defined period, as does the simple pendulum discussed above. The mo- 
tion of a chaotic system never repeats; instead, the orbits of the system approach 
what is known as a strange attractor-a set of closely related but slightly different 
orbits rather than a single closed curve. Furthermore, chaotic systems have the 
property known as sensitive dependence on initial conditions. Two nearby tra- 
jectories, no matter how close, will diverge exponentially until the state of one 
provides no more information about the state of the other than any randomly cho- 
sen trajectory. Sensitive dependence means that the prediction horizon for chaotic 
systems-the length of time over which forecasts of future behavior are accurate- 
is likely to be short even if our model of the system structure and parameter esti- 
mates are perfect. Further, the cost of increasing the prediction horizon a fixed 
amount by improving our knowledge of the current state of the system increases 
exponentially. 

Figure 4-17 shows chaotic behavior in a simulation of the Beer Distribution 
Game. Only the parameters of the decision rule for orders have been altered; again, 

FIGURE 4-17 Chaos in the Beer Distribution Game 
Left: Time series showing factory orders. Right: Phase plot showing orders vs. net factory inventory 
(inventory less backlog). 

8 o  t 8ot 
6 0  E 6 0  

2 2  Q h 

2 2  LL 

E 
0 
2. 40 
0 
0 m 

z% 40 
+ 8 c 

- c  0 

2 0  2 0  

0 0 
600 7 0 0  800 900 1000 -100 -50 0 5 0  100 

Factory Net Inventory Weeks 



Chapter 4 Structure and Behavior of Dynamic Systems 133 

these parameters were estimated from the behavior of an actual player. Like the 
limit cycle, orders fluctuate indefinitely, in this case with an amplitude ranging 
from 0 to about 50 units per week and an average period of about 20 weeks. Un- 
like the limit cycle, the oscillation does not have a regular amplitude, periodicity, 
or shape, even though the environment is completely constant and the system is 
completely free of random shocks. The trajectory of the system in state space fol- 
lows a well-defined path, but one which never closes on itself.8 

In all three of these cases, damped oscillation, limit cycle, and chaos, the feed- 
back structure and decision rules are the same. The only differences are in the pa- 
rameters of the ordering rule such as the size of desired inventory and the 
aggressiveness with which managers react to the discrepancy between desired and 
actual inventory. 

4.4 SUMMARY 
The feedback structure of a system generates its behavior. Most dynamics ob- 
served in the real world are examples of a small set of basic patterns or modes of 
behavior. Three of these modes are fundamental: exponential growth, goal seeking, 
and oscillation. Each of these modes is generated by a particular underlying feed- 
back structure. Exponential growth is generated by positive feedback processes, 
goal seeking is generated by negative feedback, and oscillation is generated 
by negative feedback with delays. More complex patterns of behavior such as 
S-shaped growth, growth with overshoot, and overshoot and collapse result from 
the nonlinear interaction of these basic feedback structures. 

The principle that the structure of a system generates its behavior leads to a 
useful heuristic to help modelers discover the feedback loop structure of a system. 
Whenever a particular pattern of behavior is observed, you know which of the 
basic feedback structures must have been dominant during the period covered by 
the data. Observing that a variable of interest has been fluctuating, for example, 
implies the existence of (at least) one negative feedback loop with significant time 
delays, which helps to guide the search for the particular structures, decision 
processes, and time delays that comprise the negative loop. While this heuristic is 
useful as an aid to the initial conceptualization process, modelers must also take 
care to search for and include in their models the feedback loops and structures that 
have not been important in generating the dynamics to date but that may become 
active as the system evolves. 

sMosekilde (1996) provides an excellent treatment of chaotic and other nonlinear dynamics in 
the Beer Distribution Game and a wide variety of other physical, technical, and biological systems. 
Strogatz (1994) provides an excellent mathematical introduction to nonlinear dynamics and chaos. 









Causal Loop Diagrams 

We shape our buildings; thereaffer; our buildings shape us. 
-Winston Churchill 

Feedback is one of the core concepts of system dynamics. Yet our mental models 
often fail to include the critical feedbacks determining the dynamics of our 
systems. In system dynamics we use several diagramming tools to capture the 
structure of systems, including causal loop diagrams and stock and flow maps. 
This chapter focuses on causal loop diagrams, including guidelines, pitfalls, and 
examples. 

5.1 CAUSAL DIAGRAM NOTATION 
Causal loop diagrams (CLDs) are an important tool for representing the feedback 
structure of systems. Long used in academic work, and increasingly common in 
business, CLDs are excellent for 

Quickly capturing your hypotheses about the causes of dynamics; 
Eliciting and capturing the mental models of individuals or teams; 
Communicating the important feedbacks you believe are responsible for a 
problem. 

The conventions for drawing causal diagrams are simple but should be followed 
faithfully. Think of causal diagrams as musical scores. Neatness counts, and idio- 
syncratic symbols and styles make it hard for fellow musicians to read your score. 
At first, you may find it difficult to construct and interpret these diagrams. With 
practice, however, you will soon be sight-reading. 

137 
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FIGURE 5-1 
Causal loop 
diagram notation 

A causal diagram consists of variables connected by arrows denoting the 
causal influences among the variables. The important feedback loops are also iden- 
tified in the diagram. Figure 5-1 shows an example and key to the notation. 

Variables are related by causal links, shown by arrows. In the example, the 
birth rate is determined by both the population and the fractional birth rate. Each 
causal link is assigned a polarity, either positive (+) or negative (-) to indicate 
how the dependent variable changes when the independent variable changes. The 
important loops are highlighted by a loop identifier which shows whether the 
loop is a positive (reinforcing) or negative (balancing) feedback. Note that the loop 
identifier circulates in the same direction as the loop to which it corresponds. In the 
example, the positive feedback relating births and population is clockwise and so 
is its loop identifier; the negative death rate loop is counterclockwise along with its 
identifier. 

Table 5-1 summarizes the definitions of link polarity. 

Example 

n+ -- 
Death Rate (3 Population til Birth Rate 

Fractional 
Birth Rate 

Average 
Lifetime 

Causal Link 
-+ Link Polarity 

Birth Rate 
Variable 

Population 
Variable 

Loop Identifier: Positive (Reinforcing) Loop 

0 or +iJ Loop Identifier: Negative (Balancing) Loop 
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A positive link means that if the cause increases, the effect increases above 
what it would otherwise have been, and if the cause decreases, the effect de- 
creases below what it would otherwise have been. In the example in Figure 5-1 an 
increase in the fractional birth rate means the birth rate (in people per year) will 
increase above what it would have been, and a decrease in the fractional birth rate 
means the birth rate will fall below what it would have been. That is, if average 
fertility rises, the birth rate, given the population, will rise; if fertility falls, the 
number of births will fall. When the cause is a rate of flow that accumulates into a 
stock then it is also true that the cause adds to the stock. In the example, births add 
to the population (see chapter 6 for more on stocks and flows). 

A negative link means that if the cause increases, the effect decreases below 
what it would otherwise have been, and if the cause decreases, the effect increases 
above what it would otherwise have been. In the example, an increase in the aver- 
age lifetime of the population means the death rate (in people per year) will fall 
below what it would have been, and a decrease in the average lifetime means the 
death rate will rise above what it would have been. That is, if life expectancy 
increases, the number of deaths will fall; and if life expectancy falls, the death rate 
will rise. 

Link polarities describe the structure of the system. They do not describe the 
behavior of the variables. That is, they describe what would happen IF there were 
a change. They do not describe what actually happens. The fractional birth rate 
might increase; it might decrease-the causal diagram doesn’t tell you what will 
happen. Rather, it tells you what would happen if the variable were to change. 

Note the phrase above (or below) what it otherwise would have been in the 
definition of link polarity. An increase in a cause variable does not necessarily 
mean the effect will actually increase. There are two reasons. First, a variable of- 
ten has more than one input. To determine what actually happens you need to know 
how all the inputs are changing. In the population example, the birth rate depends 

TABLE 5-1 Link polarity: definitions and examples 

Symbol Interpretation Mathematics Examples 

+ Product - 
Quality 

Effort -Results 

Sales dY/dX > 0 
+ (decreases) above (below) In the case of 

accumulations, 

All else equal, if X increases 
(decreases), then Y increases 

what it would have been. 
+ 

x - 2 - y  
In the case of accumulations, y = + . . .)ds + ytO 

X adds to Y. 
Births 

+ 
t 

Population 

Sales 
Product- dY/dX < 0 

In the case of 
accumulations, 

All else equal, if X increases 

(increases) below (above) 
what it would have been. 

X subtracts from Y. 

(decreases), then Y decreases Price - 
Frustration Results - x -y 

In the case of accumulations, Y = (-x + . . .)ds + Yt0 

Deaths Population 
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on both the fractional birth rate and the size of the population (that is, Birth Rate = 
Fractional Birth Rate * Population). You cannot say whether an increase in the 
fractional birth rate will actually cause the birth rate to rise; you also need to know 
whether the population is rising or falling. A large enough drop in the population 
may cause the birth rate to fall even if the fractional birth rate rises. When assess- 
ing the polarity of individual links, assume all other variables are constant (the fa- 
mous assumption of ceteris pavibus). When assessing the actual behavior of a 
system, all variables interact simultaneously (all else is not equal) and computer 
simulation is usually needed to trace out the behavior of the system and determine 
which loops are dominant. 

Second, and more importantly, causal loop diagrams do not distinguish be- 
tween stocks and flows-the accumulations of resources in a system and the rates 
of change that alter those resources (see chapter 6). In the population example, the 
population is a stock-it accumulates the birth rate less the death rate. An increase 
in the birth rate will increase the population, but a decrease in the birth rate does 
not decrease the population. Births can only increase the population, they can 
never reduce it. The positive link between births and population means that the 
birth rate adds to the population. Thus an increase in the birth rate increases the 
population above what it otherwise would have been and a decrease in the birth 
rate decreases population below what it otherwise would have been. 

Similarly, the negative polarity of the link from the death rate to population in- 
dicates that the death rate subtracts from the population. A drop in the death rate 
does not add to the population. A drop in deaths means fewer people die and more 
remain alive: the population is higher than it would otherwise have been. Note that 
you cannot tell whether the population will actually be increasing or decreasing: 
Population will be falling even if the birth rate is rising if the death rate exceeds 
births. To know whether a stock is increasing or decreasing you must know its net 
rate of change (in this case, births less deaths). It is always true, however, that if the 
birth rate rises, population will rise above what it would have been in the absence 
of the change in births, even if the population continues to fall. Population will be 
falling at a slower rate than it otherwise would. Chapters 6 and 7 discuss the struc- 
ture and behavior of stocks and flows. 

Process Point: A Note on Notation 
In some of the system dynamics literature, especially the systems thinking tradition 
(see, e.g., Senge et al. 1994 and Kim 1992), an alternate convention for causal dia- 
grams has developed. Instead of + or - the polarity of a causal link is denoted 
by s or 0, respectively (denoting the same or opposite relationship between inde- 
pendent and dependent variables): 

X A Y  

X A Y  

insteadof X d Y  

insteadof X Y 
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The link denoted with an s is read as “X and Y move in the same direction” 
while the link denoted with an o is read as “X and Y move in the opposite direc- 
tion.” Thus Product Quality and Sales tend to move in the same direction while 
Product Price and Sales tend to move in the opposite direction. 

The s and o notation was motivated by a desire to make causal diagrams even 
easier to understand for people with little mathematical background. Which nota- 
tion is better is hotly debated. Richardson (1997) provides strong arguments 
against the use of s and 0. He notes that the statement “X and Y move in the same 
direction” is not in general correct, for the reasons stated above. The correct state- 
ment is, “If X increases, Y increases above what it would have been.” That is, a 
causal link is a contingent statement of the individual effect of a hypothesized 
change. The variables X and Y may be positively linked and yet Y may fall even as 
X increases, as other variables also affect Y. The s and o definitions also don’t 
work for stock and flow relationships. Births and population do not move in the 
same direction: a decrease in births does not cause population to decrease because 
the birth rate is an inflow to the stock of population. The correct definition is given 
in Table 5-1: for positive link polarity, if X increases, Y will always be higher than 
it would have been; for negative polarity, if X increases, Y will always be lower 
than it would have been. In this book I will use the + and - signs to denote link 
polarity. As a modeler you should know how to interpret the s and o notation when 
you see it, but you should use the + and - notation to denote link polarity. 

5.2 GUIDELINES FOR CAUSAL LOOP DIAGRAMS 

5.2.1 Causation versus Correlation 
Every link in your diagram must represent (what you believe to be) causal rela- 
tionships between the variables. You must not include correlations between vari- 
ables. The Latin root of the word simulate, sirnulare, means “to imitate.” A system 
dynamics model must mimic the structure of the real system well enough that the 
model behaves the same way the real system would. Behavior includes not only 
replicating historical experience but also responding to circumstances and policies 
that are entirely novel. Correlations among variables reflect the past behavior of a 
system. Correlations do not represent the structure of the system. If circumstances 
change, if previously dormant feedback loops become dominant, if new policies 
are tried, previously reliable correlations among variables may break down. Your 
models and causal diagrams must include only those relationships you believe cap- 
ture the underlying causal structure of the system. Correlations among variables 
will emerge from the behavior of the model when you simulate it. 

Though sales of ice cream are positively correlated with the murder rate, you 
may not include a link from ice cream sales to murder in your models. Instead, as 
shown in Figure 5-2, both ice cream sales and murder rise in summer and fall in 
winter as the average temperature fluctuates. Confusing correlation with causality 
can lead to terrible misjudgments and policy errors. The model on the left side of 
Figure 5-2 suggests that cutting ice cream consumption would slash the murder 
rate, save lives, and allow society to cut the budget for police and prisons. 
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FIGURE 5-2 
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While few people are likely to attribute murders to the occasional double-dip 
cone, many correlations are more subtle, and it is often difficult to determine the 
underlying causal structure. A great deal of scientific research seeks the genuine 
causal needles in a huge haystack of correlations: Does vitamin C cure the com- 
mon cold? Can eating oat bran reduce cholesterol, and if it does, will your risk of 
a heart attack drop? Does economic growth lead to lower birth rates, or is the lower 
rate attributable to literacy, education for women, and increasing costs of child 
rearing? Do companies with serious quality improvement programs earn superior 
returns for stockholders? Scientists have learned from bitter experience that reli- 
able answers to such questions are hard to come by and require dedication to the 
scientific method-controlled experiments, randomized, double-blind trials, large 
samples, long-term follow-up studies, replication, statistical inference, and so on. 
In the social and human systems we often model, such experiments are difficult, 
rare, and often impossible. Modelers must take extra care to consider whether the 
relationships in their models are causal, no matter how strong the correlation, how 
high the R2, or how great the statistical significance of the coefficients in a re- 
gression may be. As the English economist Phelps-Brown (1972, p. 6) noted, 
“Where, as so often, the fluctuations of different series respond in common to the 
pulse of the economy, it is fatally easy to get a good fit, and get it for quite a num- 
ber of different equations . . . Running regressions between time series is only 
likely to deceive.” 

5.2.2 Labeling Link Polarity 
Be sure to label the polarity of every link in your diagrams. Label the polarity of 
the important feedback loops in your diagrams, using the definitions in Table 5-1 
to help you determine whether the links are positive or negative. Positive feed- 
back loops are also called reinforcing loops and are denoted by a + or R, while 
negative loops are sometimes called balancing loops and are denoted by a - or B 
(Figure 5-3). 
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FIGURE 5-3 
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Assigning Link Polarities 
Consider the attractiveness of a product to customers as it depends on various at- 
tributes of the product (Figure 5-4). Assign link polarities. What feedback loops 
might be created as product attractiveness changes the demand for the firm’s prod- 
uct? Add these to the diagram, labeling the link and loop polarities. 

Quality 

Price 
Product 

Attractiveness 

Delay 
Delivery ’/ 

Functionality 

5.2.3 Determining Loop Polarity 
There are two methods for determining whether a loop is positive or negative: the 
fast way and the right way. 
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The Fast Way: Count the Number of Negative Links 
The fast way to tell if a loop is positive or negative is to count the number of 
negative links in the loop. If the number of negative links is even, the loop is posi- 
tive; if the number is odd, the loop is negative. The rule works because positive 
loops reinforce change while negative loops are self-correcting; they oppose dis- 
turbances. Imagine a small disturbance in one of the variables. If the disturbance 
propagates around the loop to reinforce the original change, then the loop is posi- 
tive. If the disturbance propagates around the loop to oppose the original change, 
then the loop is negative. To oppose the disturbance, the signal must experience a 
net sign reversal as it travels around the loop. Net reversal can only occur if the 
number of negative links is odd. A single negative link causes the signal to reverse: 
an increase becomes a decrease. But another negative link reverses the signal 
again, so the decrease becomes an increase, reinforcing the original disturbance. 
See “Mathematics of Loop Polarity” below for a formal derivation of this rule. 

The fast method always works . . . except when it doesn’t. Why might it fail? 
In a complex diagram it is all too easy to miscount the number of negative links in 
a loop. And it is easy to mislabel the polarity of links when you first draw the dia- 
gram. Counting the number of negative signs is unlikely to reveal these errors. The 
right method, carefully tracing the effect of a disturbance around the loop, will of- 
ten reveal a wrongly labeled polarity and will help you and your audience to grasp 
the meaning and mechanism of the loop. Assigning loop polarity the right way 
rather than the fast way saves time in the long run. 

The Right Way: Trace the Effect of a Change around the Loop 
The right way to determine the polarity of a loop is to trace the effect of a small 
change in one of the variables as it propagates around the loop. If the feedback ef- 
fect reinforces the original change, it is a positive loop; if it opposes the original 
change, it is a negative loop. You can start with any variable in the loop; the result 
must be the same. In the market loops shown in Figure 5-3, assume sales from 
word of mouth increase. Because the link from sales from word of mouth to the 
customer base is positive, the customer base increases. Because the link from the 
customer base back to sales from word of mouth is positive, the signal propagates 
around the loop to increase sales from word of mouth still further. The feedback ef- 
fect reinforces the original change, so the loop is positive. Turning to the other 
loop, assume a small increase in the customer loss rate. If customer losses increase, 
the customer base falls. With a lower customer base, there are fewer customers 
who can drop out. The feedback effect opposes the original change, so the loop is 
negative. 

This method works no matter how many variables are in a loop and no matter 
which variable you start with. (Identify the loop polarities for the example starting 
with customer base instead of sales from word of mouth: you should get the same 
result). You may also assume an initial decrease in a variable rather than an initial 
increase. 
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Identifying Link and Loop Polarity 
Identify and label the polarity of the links and loops in the examples shown in 
Figure 5-5. 
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Mathematics of Loop Polarity 
When you determine loop polarity, you are calculating what is known in control 
theory as the sign of the open loop gain of the loop. The term “gain” refers to the 
strength of the signal returned by the loop: a gain of two means a change in a vari- 
able is doubled each cycle around the loop; a gain of negative 0.5 means the dis- 
turbance propagates around the loop to oppose itself with a strength half as large. 
The term “open loop” means the gain is calculated for just one feedback cycle by 
breaking-opening-the loop at some point. Consider an arbitrary feedback loop 
consisting of n variables, xl, . . . , x,. You can calculate the open loop gain at any 
point; let x1 denote the variable you choose. When you break the loop, x1 splits into 
an input, xll, and output, xl0 (Figure 5-6). The open loop gain is defined as the 
(partial) derivative of xl0 with respect to xll, that is, the feedback effect of a small 
change in the variable as it returns to itself. The polarity of the loop is the sign of 
the open loop gain: 

Polarity of loop = SGN(dx,O/dxll) (5- 1) 
where SGN() is the signum or sign function, returning + 1 if its argument is posi- 
tive and -1 if the argument is negative (if the open loop gain is zero, the SGN 
function = 0: there is no loop). The open loop gain is calculated by the chain rule 
from the gains of the individual links, dxi/dxi-,: 
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Since the sign of a product is the product of the signs, loop polarity is also 
given by: 

SGN(dx1O/dx,') = SGN(dx,'/dx,) * SGN(dxn/dx,_1) * SGN(~X,- , /~X,_~)  
* . . - * SGN(dx2/dxI1) (5-3) 

Using the right method to determine loop polarity by tracing the effect of a 
small change around a loop is equivalent to calculating equation (5-3). Equation 
(5-3) also explains why the fast method works: Since the product of two negative 
signs is a positive sign, negative open loop polarity requires an odd number of neg- 
ative links in the loop. 

All Links Should Have Unambiguous Polarities 
Sometimes people say a link can be either positive or negative, depending on other 
parameters or on where the system is operating. For example, people often draw 
the diagram on the left side of Figure 5-7 relating a firm's revenue to the price of 
its product and then argue that the link between price and company revenue can be 
either positive or negative, depending on the elasticity of demand. If demand is 
highly elastic, a higher price means less revenue because a 1% increase in price 
causes demand to fall more than 1 %. The link would have negative polarity. If de- 
mand is inelastic, then a l % increase in price causes demand to drop less than l %, 
so revenues rise. The link would be positive. It appears no single polarity can be 
assigned. 

When you have trouble assigning a clear and unambiguous polarity to a link it 
usually means there is more than one causal pathway connecting the two variables. 
You should make these different pathways explicit in your diagram. In the exam- 
ple, price has at least two effects on revenue: (1) it determines how much revenue 
is generated per unit sold and (2) it affects the number of units sold. That is, Reve- 
nue = Price * Sales, and (Unit) Sales depend on Price (presumably the demand 
curve is downward sloping: Higher prices reduce sales). The proper diagram is 
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shown on the right side of Figure 5-7. There is now no ambiguity about the polar- 
ity of any of the links. 

The price elasticity of demand determines which causal pathway dominates. If 
demand is quite insensitive to price (the elasticity of demand is less than one), then 
the lower path in Figure 5-7 is weak, price raises unit revenue more than it de- 
creases sales, and the net effect of an increase in price is an increase in revenue. 
Conversely, if customers are quite price sensitive (the elasticity of demand is 
greater than one), the lower path dominates. The increase in revenue per unit is 
more than offset by the decline in the number of units sold, so the net effect of a 
price r ise is a drop in revenue. Separating the pathways also allows you to specify 
different delays, if any, in each. In the example above, there is likely to be a long 
delay between a change in price and a change in sales, while there is little or no de- 
lay in the effect of price on revenue. 

Separating links with apparently ambiguous polarity into the underlying mul- 
tiple pathways is a fruitful method to deepen your understanding of the causal 
structure, delays, and behavior of the system. 

Employee Motivation 
Your client team is worried about employee motivation and is debating the best 
ways to generate maximum effort from their people. They have drawn a diagram 
(Figure 5-8) and are arguing about the polarity of the links. One group argues that 
the greater the performance shortfall (the greater the gap between Required Per- 
formance and Actual Performance), the greater the motivation of employees will 
be. They argue that the secret of motivation is to set aggressive, even impossible 
goals (so-called stretch objectives) to elicit maximum motivation and effort. The 
other group argues that too big a performance shortfall simply causes frustration as 
people conclude there is no chance to accomplish the goal, so the link to employee 
motivation should be negative. Expand the diagram to resolve the apparent conflict 
by incorporating both theories. Discuss which links dominate under different cir- 
cumstances. Can you give some examples from your own experience where these 
different pathways were dominant? How can a manager tell which pathway is 
likely to dominate in any situation? What are the implications for goal setting in or- 
ganizations? Actual and required performance are not exogenous but part of the 
feedback structure. How does motivation feed back to performance, and how 
might actual performance affect the goal? Indicate these loops in your diagram and 
explain their importance. 
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5.2.4 Name Your Loops 
Whether you use causal diagrams to elicit the mental models of a client group or to 
communicate the feedback structure of a model, you will often find yourself trying 
to keep track of more loops than you can handle. Your diagrams can easily over- 
whelm the people you are trying to reach. To help your audience navigate the net- 
work of loops, it’s helpful to give each important feedback a number and a name. 
Numbering the loops R1, R2, B1, B2, and so on helps your audience find each loop 
as you discuss it. Naming the loops helps your audience understand the function of 
each loop and provides useful shorthand for discussion. The labels then stand in for 
a complex set of causal links. When working with a client group, it’s often possi- 
ble to get them to name the loop. Many times, they will suggest a whimsical phrase 
or some organization-specific jargon for each loop. 

Figure 5-9 shows a causal diagram developed by engineers and managers in a 
workshop designed to explore the causes of late delivery for their organization’s 
design work. The diagram represents the behavior of the engineers trying to 
complete a project against a deadline. The engineers compare the work remaining 
to be done against the time remaining before the deadline. The larger the gap, the 
more Schedule Pressure they feel. When schedule pressure builds up, engineers 
have several choices. First, they can work overtime. Instead of the normal 50 hours 
per week, they can come to work early, skip lunch, stay late, and work through the 
weekend. By burning the Midnight Oil, they increase the rate at which they com- 
plete their tasks, cut the backlog of work, and relieve the schedule pressure (bal- 
ancing loop B l). However, if the workweek stays too high too long, fatigue sets in 
and productivity suffers. As productivity falls, the task completion rate drops, 
which increases schedule pressure and leads to still longer hours: the reinforcing 
Burnout loop R1 limits the effectiveness of overtime. Another way to complete the 
work faster is to reduce the time spent on each task. Spending less time on each 
task boosts the number of tasks done per hour (productivity) and relieves schedule 
pressure, thus closing the balancing loop B2. Discussion of the name for this loop 
was heated. The managers claimed the engineers always gold-plated their work; 
they felt schedule pressure was needed to squeeze out waste and get the engineers 
to focus on the job. The engineers argued that schedule pressure often rose so high 
that they had no choice but to cut back quality assurance and skip documentation 
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of their work. They called it the Corner Cutting loop (B2). The engineers then ar- 
gued that corner cutting is self-defeating because it increases the error rate, which 
leads to rework and lower productivity in the long run: “Haste makes waste,” they 
said, and schedule pressure rises further, leading to still more pressure to cut cor- 
ners (loop R2). 

The full model included many more loops (section 5.1 provides a closely re- 
lated example; see also section 2.3). The names given to the loops by one group 
(engineers) communicated their attitudes and the rationale for their behavior to the 
managers in a clear and compelling way. The conversation did not degenerate into 
ad hominem arguments between managers shouting that engineers just need to 
have their butts kicked and engineers griping that getting promoted to management 
turns your brain to [fertilizer]-the mode of discourse most common in the orga- 
nization prior to the intervention. Participants soon began to talk about the Burnout 
Loop kicking in and the nonlinear relationships between schedule pressure, over- 
time, fatigue, and errors. The names for the loops made it easy to refer to complex 
chunks of feedback structure. The concepts captured by the names gradually began 
to enter the mental models and decision making of the managers and engineers in 
the organization and led to change in deeply ingrained behaviors. 
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FIGURE 5-10 
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delays in causal 
diagrams 

5.2.5 Indicate Important Delays in Causal Links 
Delays are critical in creating dynamics. Delays give systems inertia, can create os- 
cillations, and are often responsible for trade-offs between the short- and long-run 
effects of policies. Your causal diagrams should include delays that are important 
to the dynamic hypothesis or significant relative to your time horizon. As shown in 
chapter 11, delays always involve stock and flow structures. Sometimes it is im- 
portant to show these structures explicitly in your diagrams. Often, however, it is 
sufficient to indicate the presence of a time delay in a causal link without explic- 
itly showing the stock and flow structure. Figure 5-10 shows how time delays are 
represented in causal diagrams. 

When the price of a good rises, supply will tend to increase, but often only af- 
ter significant delays while new capacity is ordered and built and while new firms 
enter the market. See also the time delays in the Burnout and Haste Makes Waste 
loops in Figure 5-9. 

Example: Energy Demand 
The response of gasoline sales to price involves long delays. In the short run, gaso- 
line demand is quite inelastic: if prices rise, people can cut down on discretionary 
trips somewhat, but most people still have to drive to work, school, and the super- 
market. As people realize that prices are likely to stay high they may organize car- 
pools or switch to public transportation, if it is already available. Over time high 
prices induce other responses. First, consumers (and the auto companies) wait to 
see if gas prices are going to stay high enough and long enough to justify buying 
or designing more efficient cars (a perceptual and decision-making delay of per- 
haps a year or more). Once people have decided that the price won’t drop back 
down any time soon, the auto companies must then design and build more efficient 
cars (a delay of several years). Even after more efficient cars become available, the 
vast majority of cars on the road will be inefficient, older models which are only 
replaced as they wear out and are discarded, a delay of about 10 years. If prices 
stay high, eventually the density of settlement patterns will increase as people 
abandon the suburbs and move closer to their jobs. Altogether, the total delay in the 
link between price and demand for gasoline is significantly more than a decade. As 
the stock of cars on the road is gradually replaced with more efficient cars, and as 
(perhaps) new mass transit routes are designed and built, the demand for gasoline 
would fall substantially-long-run demand is quite elastic. Figure 5-1 1 makes 
these different pathways for the adjustment of gasoline demand explicit. 

Explicitly portraying the many delays between a change in price and the 
resulting change in demand makes it easier to see the worse-before-better behavior 
of expenditures on gasoline caused by a price increase. The bottom of Figure 
5-1 1 shows the response of gasoline demand and expenditures to a hypothetical 
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unanticipated step increase in the price of gasoline. In the short run gasoline 
demand is rather inflexible, so the first response to an increase in the price of gas 
is an increase in gasoline expenditures. As the high price persists, efficiency 

FIGURE 5-11 
Top: The short run response to higher prices is weak, while the long run response is substantial as the 
stock of cars is gradually replaced with more efficient models, and as lifestyles change. 
Bottom: Resporise to a hypothetical permanent unanticipated increase in gasoline price. Consumption 
slowly declines 'due to the long delays in adjusting the efficiency of automobiles and in changing 
settlement patterns and mass transit routes. Expenditures therefore immediately rise and only later fall 
below the initial level: a worse-before-better trade-off for consumers. Of course, as demand falls, there 
would be downvvard pressure on price, possibly lowering expenditures still more, but also discouraging 
further efficiency improvements. The feedback to price is deliberately ignored in the diagram. 
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improvements gradually cut consumption of gasoline per vehicle mile, and even- 
tually, settlement patterns and mass transit availability will adjust to reduce the 
number of vehicle miles driven per year. In the long run, demand adjustments more 
than offset the price increase and expenditures fall. From the point of view of the 
consumer, this is a worse-before-better situation. The time delays and the trade-off 
they create help explain why it has proven so difficult, in the United States at least, 
to increase gasoline taxes. Although the long-run benefits outweigh the short-run 
costs, even in net present value terms, they only begin to accrue after many years. 
Government officials focused on the next reelection campaign judge the short-run 
costs to be politically unacceptable. In turn, they make this judgment because the 
public is unwilling to sacrifice a little today for larger benefits tomorrow. 

5.2.6 Variable Names 
Variable Names Should Be Nouns or Noun Phrases 
The variable names in causal diagrams and models should be nouns or noun 
phrases. The actions (verbs) are captured by the causal links connecting the vari- 
ables. A causal diagram captures the structure of the system, not its behavior-not 
what has actually happened but what would happen if other variables changed in 
various ways. Figure 5- 12 shows examples of good and bad practice. 

The correct diagram states: If costs rise, then price rises (above what it would 
have been), but if costs fall, then price will fall (below what it would have been). 
Adding the verb “rises” to the diagram presumes costs will only rise, biasing the 
discussion towards one pattern of behavior (inflation). It is confusing to talk of a 
decrease in costs rising or a fall in price increases-are prices rising, rising at a 
falling rate, or falling? 

Variable Names Must Have a Clear Sense of Direction 
Choose names for which the meaning of an increase or decrease is clear, variables 
that can be larger or smaller. Without a clear sense of direction for the variables 
you will not be able to assign meaningful link polarities. 

On the left side of Figure 5-13 neither variable has a clear direction: If feed- 
back from the boss increases, does that mean you get more comments? Are these 
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comments from the boss good or bad? And what does it mean for mental attitude 
to increase? The meaning of the right side is clear: More praise from the boss 
boosts morale; less praise erodes it (though you should probably not let your self- 
esteem depend so much on your boss’ opinion). 

Choose Variables Whose Normal Sense of Direction Is Positive 
Variable names should be chosen so their normal sense of direction is positive. 
Avoid the use of variable names containing prefixes indicating negation (non, un, 
etc.; Figure 5-14). 

Standard accounting practice is Profit = Revenue - Costs, so the better vari- 
able name is Profit, which falls when costs rise and rises when costs fall. Likewise, 
criticism may make you unhappy, but it is confusing to speak of rising un- 
happiness; a better choice is the positive happiness, which may fall when you are 
criticized and rise when criticism drops. Though there are occasional excep- 
tions, decreasing noncompliance with this principle will diminish your audience’s 
incomprehension. 

5.2.7 Tips for Causal Loop Diagram Layout 
To maximize the clarity and impact of your causal diagrams, you should follow 
some basic principles of graphic design. 

1. Use curved lines for information feedbacks. Curved lines help the reader 
visualize the feedback loops. 

2. Make important loops follow circular or oval paths. 
3. Organize your diagrams to minimize crossed lines. 
4. Don’t put circles, hexagons, or other symbols around the variables in causal 

diagrams. Symbols without meaning are “chart junk” and serve only to 
clutter and distract. An exception: You will often need to make the stock 
and flow structure of a system explicit in your diagrams. In these cases the 
rectangles and valves around the variables tell the reader which are stocks 
and which are flows-they convey important information (see chapter 6). 

5. Iterate. Since you often won’t know what all the variables and loops will be 
when you start, you will have to redraw your diagrams, often many times, 
to find the best layout. 
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5.2.8 Choose the Right Level of Aggregation 
Causal loop diagrams are designed to communicate the central feedback structure 
of your dynamic hypothesis. They are not intended to be descriptions of a model at 
the detailed level of the equations. Having too much detail makes it hard to see the 
overall feedback loop structure and how the different loops interact. Having too lit- 
tle detail makes it hard for your audience to grasp the logic and evaluate the plau- 
sibility and realism of your model. 

If your audience doesn’t grasp the logic of a causal link, you should make 
some of the intermediate variables more explicit. Figure 5-15 shows an example. 
You might believe that in your industry, market share gains lead to lower unit costs 
because higher volumes move your company down the learning curve faster. The 
top panel compresses this logic into a single causal link. If your audience found 
that link confusing, you should disaggregate the diagram to show the steps of your 
reasoning in more detail, as shown in the bottom panel. 

Once you’ve clarified this logic to the satisfaction of all, you often can 
“chunk” the more detailed representation into a simple, more aggregate form. The 
simpler diagram then serves as a marker for the richer, underlying causal structure. 

5.2.9 Don’t Put All the Loops into 
One Large Diagram 

Short-term memory can hold 7 t 2 chunks of information at once. This puts a 
rather sharp limit on the effective size and complexity of a causal map. Presenting 
a complex causal map all at once makes it hard to see the loops, understand which 
are important, or understand how they generate the dynamics. Resist the tempta- 
tion to put all the loops you and your clients have identified into a single compre- 
hensive diagram. Such diagrams look impressive-My, what a lot of work must 
have gone into it! How big and comprehensive your model must be!-but are not 
effective in communicating with your audience. A large, wall-filling diagram may 
be perfectly comprehensible to the person who drew it, but to the people with 
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whom the author seeks to communicate, it is indistinguishable from a Jackson 
Pollock and considerably less valuable. 

How then do you communicate the rich feedback structure of a system without 
oversimplifying? Build up your model in stages, with a series of smaller causal 
loop diagrams. Each diagram should correspond to one part of the dynamic story 
being told. Few people can understand a complex causal diagram unless they have 
a chance to digest the pieces one at a time. Develop a separate diagram for 
each important loop. These diagrams can have enough detail in them to show how 
the process actually operates. Then chunk the diagrams into a simpler, high- 
level overview to show how they interact with one another. In presentations, build 
up your diagram piece by piece from the chunks (see sections 5.4 and 5.6 for 
examples). 

5.2.10 Make the Goals of Negative Loops Explicit 
All negative feedback loops have goals. Goals are the desired state of the system, 
and all negative loops function by comparing the actual state to the goal, then ini- 
tiating a corrective action in response to the discrepancy. Make the goals of your 
negative loops explicit. Figure 5-16 shows two examples. The top panel shows a 
negative loop affecting the quality of a company’s product: the lower the quality, 
the more quality improvement programs will be started, and (presumably) the de- 
ficiencies in quality will be corrected. Making goals explicit encourages people to 
ask how the goals are formed. The goals in most systems are not given exoge- 
nously but are themselves part of the feedback structure. Goals can vary over time 
and respond to pressures in the environment. In the example, what determines the 
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desired level of product quality? The CEO’s edict? Benchmarking studies of com- 
petitor quality? Customer input? The company’s own past quality levels? When the 
goal is explicit these questions are more likely to be asked and hypotheses about 
the answers can be quickly incorporated in the model. 

Making the goals of negative loops explicit is especially important when the 
loops capture human behavior. But often it is important to represent goals explic- 
itly even when the loop does not involve people at all. The second example por- 
trays the negative feedback by which a cup of coffee cools to room temperature. 
The rate of cooling (the rate at which heat diffuses from the hot coffee to the sur- 
rounding air) is roughly proportional to the difference between the coffee temper- 
ature and room temperature. The cooling process stops when the two temperatures 
are equal. This basic law of thermodynamics is made clear when the goal is shown 
explicitly. 

There are exceptions to the principle of showing the goals of negative loops. 
Consider the death rate loop in Figure 5- 1. The goal of the death rate loop is im- 
plicit (and equal to zero: in the long run, we are all dead). Your models should not 
explicitly portray the goal of the death loop or the goals of similar decay processes 
such as the depreciation of capital equipment. 

5.2.11 Distinguish between Actual and 
Perceived Conditions 

Often there are significant differences between the true state of affairs and the 
perception of that state by the actors in the system. There may be delays caused by 
reporting and measurement processes. There may be noise, measurement error, 
bias, and distortions. In the quality management example shown in Figure 5-16, 
there may be significant delays in assessing quality and in changing management’s 
opinion about product quality. Separating perceived and actual conditions helps 
prompt questions such as How long does it take to measure quality? To change 
management’s opinion about quality even after the data are available? To im- 
plement a quality improvement program? To realize results? Besides the long time 
delays, there may be bias in the reporting system causing reported quality to differ 
systematically from quality as experienced by the customer. Customers don’t file 
warranty claims for all problems or report all defects to their sales representative. 
Sales and repair personnel may not report all customer complaints to the home 
office. There may be bias in senior management’s quality assessment because sub- 
ordinates filter the information that reaches them. Some auto executives are pro- 
vided with the latest models for their personal use; these cars are carefully selected 
and frequently serviced by company mechanics. Their impression of the quality of 
their firm’s cars will be higher than that of the average customer who buys off the 
lot and keeps the car for 10 years. The diagram might be revised as shown in 
Figure 5-17. The diagram now shows how management, despite good inten- 
tions, can come to hold a grossly exaggerated view of product quality, and you are 
well positioned for a discussion of ways to shorten the delays and eliminate the 
distortions. 
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5.3 PROCESS POINT: 
DEVELOPING CAUSAL DIAGRAMS FROM INTERVIEW DATA 

Much of the data a modeler uses to develop a dynamic hypothesis comes from in- 
terviews and conversations with people in organizations. There are many tech- 
niques available to gather data from members of organizations, including surveys, 
interviews, participant observation, archival data, and so on. Surveys generally do 
not yield data rich enough to be useful in developing system dynamics models. In- 
terviews are an effective method to gather data useful in formulating a model, ei- 
ther conceptual or formal. Semistructured interviews (where the modeler has a set 
of predefined questions to ask but is free to depart from the script to pursue av- 
enues of particular interest) have proven to be particularly effective. 

Interviews are almost never sufficient alone and must be supplemented by 
other sources of data, both qualitative and quantitative. People have only a local, 
partial understanding of the system, so you must interview all relevant actors, at 
multiple levels, including those outside the organization (customers, suppliers, 
etc.). Interview data is rich, including descriptions of decision processes, internal 
politics, attributions about the motives and characters of others, and theories to ex- 
plain events, but these different types of information are mixed together. People 
both know more than they will tell you and can invent rationales and even inci- 
dents to justify their beliefs, providing you with “data” they can’t possibly know 
(Nisbett and Wilson 1977). The modeler must triangulate by using as many sources 
of data as possible to gain insight into the structure of the problem situation and the 
decision processes of the actors in it. An extensive literature provides guidance in 
techniques for qualitative data collection and analysis; see, for example, Argyris et 
al. (1985), Emmerson et al. (1995), Glaser and Strauss (1967), Kleiner and Roth 
(1997), March et al. (1991), Morecroft and Sterman (1994), Van Maanen (1988), 
and Yin (1994). 
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Once you’ve done your interviews, you must be able to extract the causal 
structure of the system from the statements of the interview subjects. Formulate 
variable names so that they correspond closely to the actual words used by the per- 
son you interviewed, while still adhering to the principles for proper variable name 
selection described above (noun phrases, a clear and positive sense of direction). 
Causal links should be directly supported by a passage in the transcript. Typically, 
people will not describe all the links you may see and will not explicitly close 
many feedback loops. Should you add these additional links? It depends on the 
purpose of your diagram. 

If you are trying to represent a person’s mental model, you must not include 
any links that cannot be grounded in the person’s own statements. However, you 
may choose to show the initial diagram to the person and invite him or her to elab- 
orate or add any missing links. People will often mention the motivation for a de- 
cision they made, with the feedback effect on the state of the system implicitly 
understood. For example, “Our market share was slipping, so we fired the market- 
ing VP and got ourselves a new ad agency.” Implicit in this description is the be- 
lief that a new VP and agency would lead to better ads and an increase in market 
share, closing the negative loop. 

If the purpose of your interviews is to develop a good model of the problem 
situation, you should supplement the links suggested by the interviews with other 
data sources such as your own experience and observations, archival data, and so 
on. In many cases, you will need to add additional causal links not mentioned in 
the interviews or other data sources. While some of these will represent basic phys- 
ical relationships and be obvious to all, others require justification or explanation. 
You should draw on all the knowledge you have from your experience with the 
system to complete the diagram1 

Process Improvement 
The following two quotes are actual interview transcripts developed in fieldwork 
carried out in an automobile company in the United States. The managers, from 
two different component plants in the same division of the company, describe why 
the yield of their lines was persistently low and why it had been so difficult to get 
process improvement programs off the ground (Repenning and Sterman 1999): 

In the minds of the [operations team leaders] they had to hit their pack counts [daily 
quotas]. This meant if you were having a bad day and your yield had fallen . . . you 
had to run like crazy to hit your target. You could say, “You are making 20% 
garbage, stop the line and fix the problem,” and they would say, ‘‘I can’t hit my 
pack count without running like crazy.” They could never get ahead of the game. 

Supervisors never had time to make improvements or do preventive maintenance 
on their lines . . . they had to spend all their time just trying to keep the line going, 

-Manager at Plant A 

‘Burchill and Fine (1997) illustrate how causal diagrams can be developed from interview data 
in a product development context. 
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but this meant it was always in a state of flux . . . because everything was so unpre- 
dictable. It was a kind of snowball effect that just kept getting worse. 

-Supervisor ut Plant B 

Develop a single causal diagram capturing the dynamics described by the inter- 
views. Name your loops using terms from the quotes where possible. Explain in a 
paragraph or two how the loops capture the dynamics described. Build your dia- 
gram around the basic physical structure shown in Figure 5-18. The Net Through- 
put of a process (the number of usable parts produced per time period, for example, 
the number of usable parts produced per day) equals Gross Throughput (the total 
number produced per time period) multiplied by the process Yield (the fraction of 
gross throughput that passes inspection and is usable). The remainder, Gross 
Throughput * (1 - Yield), are defective. 

5.4 CONCEPTUALIZATION CASE STUDY: 
MANlAGlNG YOUR WORKLOAD 

This section illustrates the use of causal diagrams to model an issue. The example 
shows how causal diagramming can be an aid to the development of a dynamic hy- 
pothesis, along with identifying variables and developing a reference mode show- 
ing the dynamics of the variables over the relevant time horizon. 

5.4.1 Problem Definition 
Consider the process of managing your workload. You might be an engineer in a 
product development organization, a consultant, or a CEO. To keep it concrete, fo- 
cus on a student managing his or her workload. A student (imagine yourself) must 
balance classes and assignments with outside activities, a personal life, and sleep. 
During the semester you attend classes, do the readings, and hand in assignments 
as they are due, at least occasionally. You probably try to work harder if you think 
your grades are lower than you desire and take more time off when you are sleep- 
deprived and your energy level falls. There are two basic policies you can follow: 
(1) The ant strategy-never put off until tomorrow what you can do today; or 
(2) the grasshopper strategy-never do today what can be put off until tomorrow. 

The ant works steadily throughout the semester as work is assigned and never 
builds up a large backlog of assignments. As a result, the ant avoids the end of se- 
mester crunch, keeps the workweek under control, and is able to stay well rested. 
Because the ant gets enough sleep, productivity is high, and the ant has plenty of 
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time to participate in outside activities. The ant’s grades improve steadily through- 
out the term. 

The grasshopper, in contrast, defers the work until the last minute. The 
grasshopper’s workweek is low at the beginning of the term, providing lots of time 
for parties and outside activities. The grasshopper can stay reasonably well rested 
despite a heavy social schedule because the workweek is low. But because the 
grasshopper doesn’t do the work as fast as it is assigned, the assignment backlog 
steadily builds up. Eventually, it’s crunch time, and the grasshopper starts putting 
in long hours, perhaps pulling a few all-nighters. Unfortunately, as sleep suffers, 
energy and productivity fall. The rate and quality of work suffers. Grades plummet, 
and the term ends before the grasshopper can finish all the work, perhaps leading 
the grasshopper to plead for extensions from the faculty. 

5.4.2 Identifying Key Variables 
The description above suggests several variables important in a model of student 
workload management (units of measure are given in parentheses): 

Assignment rate: the rate at which professors assign work throughout the 
term (taskdweek). 
Work completion rate: the rate at which tasks are completed (taskdweek). 
Assignment backlog: the number of tasks that have been assigned but not 
yet completed (tasks). 
Grades: the grade received for work handed in (0-100 scale). 
Workweek: the number of hours spent on academic work, including 
classes, reading, homework, projects, etc. (hourdweek). 
Energy level: measures how well rested the student is. Arbitrary scale from 
0-100% where 100% = fully rested and 0 = comatose). 

Other variables could be added, but this set provides a reasonable starting point for 
conceptualization of the feedback structure governing the dynamics. As you pro- 
ceed, you may find you need to revise the list. 

5.4.3 Developing the Reference Mode 
Figure 5- 19 translates the written descriptions of the ant’s behavior into graphical 
form (Figure 5-20 shows the grasshopper strategy). These graphs constitute the ref- 
erence mode characterizing the problem. Some items to note: 

1. The time horizon is explicitly stated. Here, the semester is 13 weeks long. 
2. Several different graphs are used to avoid clutter. The time axes of each 

graph are aligned so that the timing of events can be directly compared. 
3. Variables with the same units are plotted on the same axis. For example, the 

assignment and completion rates are both measured in taskdweek and are 
plotted together. 

4. You don’t need quantitative data to capture the dynamics in the reference 
modes. When numerical data are unavailable you should estimate the 
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behavior of the variables from the written description and other qualitative 
information. Scales and rough magnitudes are provided where possible, as 
they are for the workweek, grades, and energy level. Of course, when 
quantitative data are available, they should be used. But don’t omit 
important variables simply because they haven’t been measured yet or 
because the data aren’t readily available. An important goal of the modeling 
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process is the identification of variables that should be measured so the 
necessary empirical work can be done. 

5.  There should be a basis in the data (numerical or written) for each feature of 
the reference mode. For example, the graph of the ant’s grades rises because 
the description of the ant strategy states that the ant’s grades improve 
steadily throughout the term. Likewise, for the grasshopper the “term ends 



Chapter 5 Causal Loop Diagrams 163 

before the grasshopper can finish all the work" so the assignment backlog, 
though falling, remains positive even as the term ends. 

6. The magnitudes and timing of variables should be consistent with your 
knowledge of the system even if the description available does not specify 
these features. Details matter. For example, consider the grasshopper 
strategy. The work completion rate must depend on the student's work 
effort (workweek), so these move together. However, because energy and 
productivity are falling at the end, the completion rate does not rise as much 
as the workweek during the end of semester crunch. To make this even 
more obvious, you might define the variable Productivity explicitly (try 
sketching its dynamics from the description above). 

7. Make sure your graphs are consistent with any stock and flow relationships 
among the variables. Since the assignment backlog accumulates the rate of 
assignments less the rate of work completion, it must be rising whenever 
the assignment rate exceeds the completion rate, and vice versa. The 
relationship between the backlog and its flows is most clearly seen in 
the grasshopper strategy. Until week 10, the assignment rate exceeds the 
completion rate, so the backlog builds up. At week 10, the grasshopper 
is handing in work just as fast as new work is assigned, and the backlog 
reaches its peak. After week 10, the completion rate exceeds the assignment 
rate and the backlog falls. 

5.4.4 Developing the Causal Diagrams 
Next you must use the description of the system and reference modes to develop a 
causal map of the feedback processes you believe are responsible for the dynamics. 

Consider Figure 5-21. The Assignment Rate is assumed to be exogenous: Once 
a student has signed up for a set of courses, the assignment rate is determined. 
Classes can sometimes be dropped, but this possibility is ignored for now. The As- 
signment Backlog is increased by the Assignment Rate and decreased by the Com- 
pletion Rate. Completion Rate (taskdweek) is Workweek (hours per week) times 
Productivity (tasks completed per hour of effort) times the Effort Devoted to As- 
signments. Effort Devoted to Assignments is the effort put in by the student com- 
pared to the effort required to complete the assignment with high quality. If work 
pressure is high, the student may choose to cut corners, skim some reading, skip 
classes, or give less complete answers to the questions in assignments. For exam- 
ple, if a student works 50 hours per week and can do one task per hour with high 
quality but only does half the work each assignment requires for a good job, then 
the completion rate would be (50)( 1)(.5) = 25 task equivalents per week. 

Work Pressure determines the workweek and effort devoted to assignments. 
Work pressure depends on the assignment backlog and the Time Remaining to 
complete the work: The bigger the backlog or the less time remaining, the higher 
the workweek needs to be to complete the work on time. Time remaining is of 
course simply the difference between the Due Date and the current Calendar Time. 
The two most basic options available to a student faced with high work pressure 
are to (1) work longer hours, thus increasing the completion rate and reducing the 
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FIGURE 5-21 Basic control loops for the assignment backlog 
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backlog (the Midnight Oil loop B l), or (2) work faster by spending less time on 
each task, speeding the completion rate and reducing the backlog (the Corner Cut- 
ting loop B2). Both are negative feedbacks whose goal is to reduce work pressure 
to a tolerable level. 

However, each of these negative feedbacks has side effects. Consider Figure 
5-22. Sustained high workweeks cut into sleep and the satisfaction of other needs 
(eating, exercise, human companionship, etc.), causing the student’s Energy Level 
to fall. As energy level falls, so too do concentration and focus. Errors rise. Pro- 
ductivity drops, reducing the completion rate-a tired student must spend longer 
than a well-rested one to complete a task with a given level of quality. As the com- 
pletion rate falls, the backlog remains higher than it would otherwise be and work 
pressure intensifies, leading to still higher workweeks and still lower energy and 
productivity. If the self-reinforcing Burnout loop, R1, dominates the balancing 
Midnight Oil loop, an increase in workweek would actually lower the completion 
rate as the extra hours are more than offset by the increase in errors and reduction 
in productivity. 

Reducing the effort devoted to each assignment also has side effects. Putting 
less effort into each task does allow assignments to be completed in less time 
but reduces the Quality of Work, lowering the student’s Grades. When grades fall 



Chapter 5 Causal Loop Diagrams 165 

FIGURE 5-22 The burnout loop 
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relative to the student’s aspirations, there is pressure to boost the effort put into 
each task. The negative Quality Control loop B3 prevents effort and quality from 
falling too far even when work pressure is high (Figure 5-23). However, the effort 
to maintain quality also creates an insidious positive feedback. As work pressure 
forces the workweek up, energy level eventually falls (note the delay), reducing 
grades. The student responds by increasing the effort put into each task in an at- 
tempt to boost grades back up through the quality control loop. But increasing the 
time spent on each task lowers the completion rate. The backlog of work rises, in- 
tensifying work pressure and leading to still more overtime, still lower energy, and 
still lower grades. When the exhausted student is Too Tired to Think, the positive 
loop R2 operates as a vicious cycle-efforts to boost grades only succeed in creat- 
ing more work pressure, longer hours, even lower energy, and still lower quality 
work. 

You may wonder why anyone would keep working when their efforts not only 
yielded diminishing returns but negative returns. Wouldn’t the grasshoppers real- 
ize their efforts were actually counterproductive? It is precisely when people 
are exhausted that their judgment is most impaired. How many times have you 
continued to work on a project when, at least in retrospect, you should have called 
it a day? 
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FIGURE 5-23 The “too tired to think’ loop 
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If all else fails, the exhausted student can appeal to the faculty for relief, gen- 
erating Requests for Extensions (Figure 5-24). Usually, such requests are accom- 
panied by stories of bad luck and hardship beyond the student’s control: “My dog 
ate my homework,” “My hard disk crashed,” “My roommate had a nervous break- 
down.” If the faculty are moved by these tales of tragedy and woe (a big if), the 
due date is slipped, making more time available and reducing work pressure. Be- 
cause faculty rarely give extensions unless there are genuine extenuating circum- 
stances, the negative My Dog Ate My Homework loop B4 is quite weak. Note that 
slipping the deadline, because it lowers work pressure, may actually cause the 
workweek to fall and the effort devoted to each assignment to rise, both reducing 
the completion rate and causing work pressure to build up again. These feedbacks 
are responsible for Parkinson’s (1957) famous law: “Work expands to fill the time 
available for its completion.” 

While there are many other loops you could add to the framework, these six 
feedbacks jointly explain most of the dynamics created by the ant and grasshopper 
strategies. 

5.4.5 Limitations of the Causal Diagram 
Causal diagrams can never be comprehensive (and you shouldn’t try: modeling is 
the art of simplification). They are also never final, but always provisional. The 
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FIGURE 5-24 My dog ate my homework-Parkinson's Law 
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maps evolve as your understanding improves and as the purpose of the modeling 
effort evolves. The account of workload management above is far from perfect. 
Here are some issues to consider: 

First, the diagram does not distinguish between stocks and flows. In particular, 
it would be helpful to show the stock and flow structure of the assignment backlog. 
What other variables in this model are stocks? 

Second, some loops could be specified in more detail. For example, the qual- 
ity control loop assumes that effort increases when grades fall relative to the stu- 
dent's aspirations. It would be clearer to specify those aspirations explicitly, for 
example, by creating a variable Desired Grade Point Average (GPA). Effort would 
then be affected by the student's Satisfaction with Grades, which measures the gap 
between desired and actual grades. An explicit goal for grades makes it easier to 
explore the dynamics for students with different aspirations and attitudes about the 
importance of grades. Making the goal explicit also motivates questions such as 
What determines aspirations for academic achievement?-that is, what feedback 
processes might cause the desired GPA to vary over time? 

A variety of pressures for achievement, external to the workload management 
model, put upward pressure on grade aspirations. Such pressures arise from obser- 
vations of the grades your peers receive (or claim to have received), from parents, 
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FIGURE 5-25 
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or from the (perceived) requirements of future employers or graduate school ad- 
missions officers. Figure 5-25 shows another important determinant of student 
goals: Aspirations adjust to past actual achievement, forming the negative Goal 
Erosion loop. Many people judge what is possible, at least in part, from what has 
been achieved. Eroding your goals in the face of a persistent discrepancy between 
aspiration and achievement is a common way to reduce what Festinger (1957) 
called “cognitive dissonance” and has been amply documented in many situations. 
The goal erosion loop can be an important learning process or may create a harm- 
ful self-fulfilling prophecy. For example, most students admitted to elite universi- 
ties were at the top of their high school class. Once enrolled in the Ivy League or 
MIT, however, half of them will be in the bottom half of their class. The adjust- 
ment of grade aspirations to a new situation prevents perpetual disappointment, 
stress, and self-doubt. On the other hand, overly flexible goals can lead to under- 
achievement. Some grasshoppers, reflecting on how much midnight oil they 
burned at the end of the term and the disappointing grades those hours led to, may 
conclude they aren’t A or even B students and lower their aspirations to relieve the 
dissonance between expectations and achievement. Sadly, this lesson may be en- 
tirely erroneous: Fewer hours of effort, if they were well rested, may easily have 
led to higher grades. 

Policy Analysis with Causal Diagrams 
The boundary of the student workload model could be extended to include many 
other feedback processes. Modify the student workload diagram to include the 
following issues: 

1. Dropping classes in response to high work pressure, low grades, or low energy. 
2. Drinking coffee or taking stimulants to stay awake when energy level is low. 
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3. Cheating on assignments to boost the completion rate and raise grades. 
4. Other loops you believe to be important. 

As you expand the boundary of the model, ask yourself Does the ability of the 
model to explain the dynamics change? Does the response of the model to policies 
change? Are the conclusions of the earlier analysis robust to changes in the bound- 
ary of the model? 

5.5 ADAM SMITH’S INVISIBLE HAND AND THE 
FEEDBACK STRUCTURE OF MARKETS 

Adam Smith’s invisible hand is one of the most famous metaphors in the English 
language. Smith realized that a free market creates powerful negative feedback 
loops that cause prices and profits to be self-regulating. While Smith lacked mod- 
em tools such as causal diagrams and simulation models, the feedback loops in his 
description of the functioning of markets are clear. In The Wealth ofNations Smith 
argued that for any commodity there was a “natural” price which is just “sufficient 
to pay the rent of the land, the wages of the labour, and the profits of the [capital] 
stock employed in raising, preparing, and bringing [the commodity] to market . . .” 
At the natural price, a “commodity is then sold precisely for what it is worth, or for 
what it really costs the person who brings it to market . . .” In contrast, the actual 
market price “may either be above, or below, or exactly the same with its natural 
price”-that is, markets may at any time be out of equilibrium. 

Smith then noted how prices respond to the balance between demand and 
supply: 

The market price of every particular commodity is regulated by the proportion 
between the quantity which is actually brought to market, and the demand of those 
who are willing to pay the natural price of the commodity . . . When the quantity of 
any commodity which is brought to market falls short of the effectual demand, all 
those who are willing to pay the whole value . . . cannot be supplied with the quan- 
tity which they want. Rather than want it altogether, some of them will be willing 
to give more. A competition will immediately begin among them, and the market 
price will rise more or less above the natural price. 

Similarly, when supply exceeds demand, “[tlhe market price will sink more or less 
below the natural price.” 

But supply in turn responds to the market price: 

I f .  . . the quantity brought to market should at any time fall short of the effectual 
demand, some of the component parts of its price must rise above their natural rate. 
If it is rent, the interest of all other landlords will naturally prompt them to prepare 
more land for the raising of this commodity; if it is wages or profit, the interest of 
all other labourers and dealers will soon prompt them to employ more labour and 
stock in preparing and bringing it to market. The quantity brought thither will soon 
be sufficient to supply the effectual demand. All the different parts of its price will 
soon sink to their natural rate, and the whole price to its natural price. 
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A simple representation of the feedback structure Smith describes is shown in Fig- 
ure 5-26. When the price of a commodity rises above the natural price, fewer buy- 
ers “will be willing to give more” and more will be forced to “want it altogether.” 
That is, as price rises relative to the price of substitutes, including all substitute 
uses for the funds available to the buyer, consumers will seek substitutes or find 
themselves simply priced out of the market. As demand falls prices will be bid 
down, forming a negative loop. At the same time, higher prices increase the profit 
suppliers can realize, which attracts new entrants to the market and encourages 
existing producers to increase output. As the supply increases, prices are bid down- 
wards. These two negative feedback loops cause price to adjust until, in the ab- 
sence of further external shocks, the market reaches equilibrium, with production 
equal to consumption and price equal to its natural level. Smith concludes: 

The natural price, therefore, is, as it were, the central price, to which the prices of 
all commodities are continually gravitating. Different accidents may sometimes 
keep them suspended a good deal above it, and sometimes force them down even 
somewhat below it. But whatever may be the obstacles which hinder them from 
settling in this centre of repose and continuance, they are constantly tending 
towards it. 

Smith’s great insight was to realize that when prices rise above the natural level, 
producers who seek to maximize their own gain will continue to enter the market 
until the price is bid down to the point where the return on their capital is no higher 
(today we would add “on a risk adjusted basis”) than that available elsewhere, re- 
sulting in competitive prices and an efficient allocation of resources throughout so- 
ciety. He famously concludes: 

Every individual endeavors to employ his capital so that its produce may be of 
greatest value. He generally neither intends to promote the public interest, nor 
knows how much he is promoting it. He intends only his own security, only his 
own gain. And he is in this led by an invisible hand to promote an end which was 
no part of his intention. By pursuing his own interest he frequently promotes that of 
society more effectually than when he really intends to promote it. 
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Smith was thus one of the first systems thinkers to show how the local, intendedly 
rational self-interested behavior of individual people could, through the feedback 
processes created by their interactions, lead to unanticipated side effects for all. 

Of course, Smith’s concept of the invisible hand is far more famous as the 
credo of modern free market capitalism. It is the core of the faith that markets 
know best. Smith himself, however, was careful to note the limits of the market 
feedbacks in equilibrating demand and supply at the natural price. “This at least 
would be the case” Smith notes, “where there was perfect liberty”-that is, under 
conditions of perfect competition (free entry and exit, free mobility of the factors 
of production, and free exchange of information on demand, supply, costs, and 
profits). Where there are monopolies, trade secrets, government regulations, barri- 
ers to trade, restrictions on immigration and capital mobility, or other feedbacks 
outside the simple negative loops coupling supply and demand, Smith notes that 
prices and profits may rise above the natural level for many years, even decades. 

The feedback structure for competitive markets shown in Figure 5-26 is quite 
useful. Beginning with the general framework, one can disaggregate to show the 
specific adjustment processes at work in any particular market for both demand 
and supply. Additional feedbacks besides the demand and supply loops can be 
added, both positive and negative, and their implications assessed. The time de- 
lays, if any, in the reaction of demand and supply to higher prices can be estimated, 
and the implications for the stability of the market explored. If either the demand 
or supply loop operates strongly and swiftly (high short-run elasticities), then the 
market will rapidly return to equilibrium if perturbed. However, if there are long 
delays or weak responses in the loops (low short-run elasticity and high long-run 
elasticity), then the market will be prone to persistent disequilibrium and instabil- 
ity; random shocks in demand or production will excite the latent oscillatory be- 
havior of the market (see chapters 4 and 20). 

Not all markets clear through price alone. Few products are pure commodities 
for which price is the only consideration: Products and services are increasingly 
differentiated and companies compete to offer the best availability, delivery relia- 
bility, service, functionality, terms of payment, aftermarket support, and so on. In 
many markets prices do not change fast enough to equilibrate supply and demand 
and other competitive variables such as availability become important in clearing 
the market. Prices may be sluggish due to government regulation, the costs and ad- 
ministrative burden of frequent price changes, or considerations of fairness. For 
example, most people consider it unfair for hardware stores to raise the price of 
snow shovels after a storm, even though demand may have increased (see Kahne- 
man, Knetsch, and Thaler 1986; Thaler 1991). 

In many institutional settings price does not mediate markets at all. Most 
organizations, for example, have no price-mediated markets for offices, parking 
spaces, senior management attention, and many other scarce resources. In these 
cases, supply and demand are still coupled via negative feedbacks, but resources 
are allocated on the basis of availability, politics, perceived fairness, lottery, 
or other administrative procedures. Figure 5-27 shows examples of non-price- 
mediated markets. In each case the feedback structure is a set of coupled negative 
loops which regulate the demand for and supply of a resource. As in the case of 
price-mediated markets, there may be substantial delays in the adjustments, lead- 
ing to persistent disequilibria. 
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FIGURE 5-27 

Left: Availability is an important competitive variable in many product markets, and firms regulate 
production in response to inventory adequacy and delivery delay. 
Right: In service settings, higher service quality stimulates demand, but greater demand erodes service 
quality as waiting time increases, and accuracy, friendliness, and other experiential aspects of the 
service encounter deteriorate. 
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The Oil Crises of the 1970s 
In 1973 the first OPEC oil shock stunned the industrial world. Oil prices more than 
tripled in a matter of months as many Arab oil producers embargoed shipments to 
western nations to retaliate for their support of Israel in the Yom Kippur war. Many 
analysts believed market forces would bring the price of oil back to pre-embargo 
levels in a matter of months, or at most a year or two, as demand and supply re- 
acted. Instead, prices remained high, then rose even higher as Iranian production 
fell in the wake of the 1979 revolution. By the early 1980s, many analysts pre- 
dicted that oil prices were headed even higher and would never return to the low 
levels of the early 1970s. But after reaching nearly $50 per barrel (in 1990 dollars), 
the price of oil collapsed in the mid 1980s. Many oil exploration and alternative 
energy projects were canceled; bankruptcy was common. In the US, gasoline 
prices in real terms fell below their pre-embargo level-gasoline in the late 1990s 
was often one-fourth the price of designer water. 

Starting with the basic market feedback structure (Figure 5-26), develop a 
causal diagram to explain (1) the failure of market forces to bring prices back to 
equilibrium soon after the first oil shock (that is, How could prices remain so high 
so long?) and (2) why prices collapsed in the mid 1980s and remained below the 
equilibrium level for so long (that is, Why didn’t prices stay high?). To help, Figure 
5-11 shows some of the causal links on the demand side of the market. Figure 3-4 
shows US petroleum production, consumption, and real prices over the relevant 
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time horizon. Keep your diagram simple and follow the guidelines for causal loop 
diagrams. 

Use your diagram to sketch the pattern of behavior you would expect for the 
rate of oil production and the rate of drilling of new wells from 1970 to 1990. Also 
plot capacity utilization for both activities (that is, what fraction of existing wells 
are pumping, and what fraction of existing drill rigs are operating, at any given 
time). What does your diagram suggest about the likely dynamics of the world oil 
price over the next few decades? 

Speculative Bubbles 
Not all markets consist of negative feedbacks alone. In many markets the locally 
rational behavior of individual entrepreneurs creates positive feedbacks as they in- 
teract with one another and with the physical structure of the system. One common 
example is the speculative bubble. There have been many dozens of major specu- 
lative bubbles in the past few centuries, from the infamous tulip mania of 1636 and 
South Sea bubble of 1720 to the manias and crashes of the past few decades, in- 
cluding gold, silver, real estate, impressionist paintings, and internet stocks.2 

John Stuart Mill distilled the essence of the dynamics of speculation in the fol- 
lowing passage from his famous text Principles of Political Economy, originally 
published in 1848: 

When there is a general impression that the price of some commodity is likely to 
rise, from an extra demand, a short crop, obstructions to importation, or any other 
cause, there is a disposition among dealers to increase their stocks, in order to profit 
by the expected rise. This disposition tends in itself to produce the effect which it 
looks forward to, a rise of price: and if the rise is considerable and progressive, 
other speculators are attracted, who, so long as the price has not begun to fall, are 
willing to believe that it will continue rising. These, by further purchases, produce a 
further advance: and thus a rise of price for which there were originally some ratio- 
nal grounds, is often heightened by merely speculative purchases, until it greatly 
exceeds what the original grounds will justify. After a time this begins to be per- 
ceived; the price ceases to rise, and the holders, thinking it time to realize their 
gains, are anxious to sell. Then the price begins to decline: the holders rush into 
market to avoid a still greater loss, and, few being willing to buy in a falling mar- 
ket, the price falls much more suddenly than it rose. 

Develop a reference mode for Mill’s description of a speculative bubble. Begin- 
ning with the basic two-loop structure for a market (Figure 5-26), develop a causal 
diagram grounded in Mill’s text which explains the dynamics he describes. Explain 
briefly how the feedback structure corresponds to Mill’s description and how it ex- 
plains the behavior. Give examples of the phenomenon. 

2Perhaps the best treatment of speculative bubbles is Charles Kindleberger’s (1978) Manias, 
Panics, and Crushes. See also Galbraith’s (1988) The Great Crush on the 1929 stock market crash. 



174 Part I1 Tools for Systems Thinking 

The Thoroughbred Horse Market 
Figure 5-28 shows the price of top yearling thoroughbreds in the US from 1965 
through 1990. From 1974 to 1984 nominal prices for these elite horses increased 
by almost a factor of 10, to about $450,000. Even after removing the effects of in- 
flation, the real price of a top thoroughbred increased by more than a factor of 4. 
Prices then collapsed, falling by nearly 50% in just 4 years (in real terms). Adapt 
your diagram of speculative bubbles to the thoroughbred horse market. Add suffi- 
cient detail to specify the particular biological and institutional features of the mar- 
ket. For example, what are the motivations for owning a top race horse? (You can 
consider a race horse to be an investment like a common stock, with an uncertain 
future payoff depending on the horse's performance on the track, but this is only 
one of the reasons people own race horses, and expected cash flow rarely justifies 
such a risky investment). How is the supply of horses increased? What time delays 
are involved? 

Use your causal diagram to explain the dynamics of the thoroughbred price 
during the 1970s and 80s. Why did the market rise so dramatically? Why did it 
crash even faster? In 1965 about 18,000 thoroughbreds were born in North Amer- 
ica. Using your model, sketch the likely behavior of the birth rate of North Amer- 
ican thoroughbreds through 1990. 
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5.5.1 Market Fai I ure, Adverse Selection, 
and the Death Spiral 

Many real world markets are imperfect due to limitations of information, costs of 
entry and exit, and inflexibility of resources. These imperfections create feedbacks 
that sometimes overwhelm the negative loops normally balancing supply and de- 
mand, leading to inefficiency or even the complete failure of the market. One 
source of market failure is adverse selection. 

Adverse selection can arise when sellers and buyers in a market have different 
information. A classic example, first developed by Akerlof (1970), considers the 
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used car market. To illustrate how adverse selection works, Akerlof assumed that 
the owners of used cars know the true quality of their cars while potential buyers 
do not. At any given market price, owners, knowing the true quality of their cars, 
will offer for sale only those cars actually worth less than the market price (the 
“lemons”) while keeping any car actually worth more (the “peaches”). Therefore, 
the only cars offered for sale will be lemons. Potential buyers, realizing this, refuse 
to buy. Akerlof showed that in equilibrium no one will be willing to buy a used 
car-the market will not exist, even though there are buyers and sellers who would 
be willing to trade if both knew which were lemons and which were p e a ~ h e s . ~  
Each person, behaving rationally given the information available to them, causes 
an outcome undesirable for all. Akerlof’s result was a breakthrough in economics. 
Not only did his model form the foundation for the important field of information 
economics, a field of immense importance in economics today, but he also demon- 
strated that the workings of free markets were not always benign, even without 
monopoly power or collusive agreements among producers. Adam Smith cele- 
brated market forces for creating an invisible hand leading individuals to “promote 
an end which was no part of [their] intention,” an end which “frequently promotes 
[the interests] of society.” Akerlof showed that rational self-interest could lead 
individuals to promote, though unintentionally, an end harmful to the interests of 
society-and themselves. 

However, Akerlof’s theory, like most economic models, is an equilibrium 
model and does not address the dynamics of the process. To examine the dynam- 
ics of adverse selection in an important public policy context, consider the market 
for health insurance. 

Since the 1950s, health care costs in the US have grown much faster than GDP 
and have long been the highest in the world, both in absolute expenditures per 
capita and as a percent of national income. As costs rose, so too did health insur- 
ance premiums. Federal programs such as Medicare (for the elderly) and Medicaid 
(for the poor) were created to provide a safety net for these groups. But rising 
health care costs soon outstripped federal benefits, and forced the elderly to seek 
private insurance to supplement Medicare. As the costs of private insurance rose, 
however, many were frozen out of the market. To prevent health care from bank- 
rupting them, many states required health insurers to offer so-called medigap in- 
surance to senior citizens in return for the privilege of underwriting other business 
in their state. In Massachusetts, insurers were required to offer at least one medi- 
gap plan providing unlimited coverage for prescription drugs, one of the highest 
costs for the elderly. At first, the program was very successful. In the 1980s, a wide 
range of insurers offered medigap coverage in Massachusetts, capturing a large 
share of the total senior citizen market. The largest program, Medex, offered by 

30f course, there is a used car market. Akerlof’s assumption that buyers have no knowledge of 
quality was a simplifying assumption to make the example clear. The real used car market has 
evolved various means to prevent market failure. Buyers can gain some information on quality 
through test drives and by having their own mechanic look at the car, and regulations such as lemon 
laws and implied warranty doctrine reduce the buyer’s risk. Information on the past quality of cars 
offered by used car dealers deters some from selling lemons to unwitting buyers. The cost (in time 
and money) of these activities is a measure of the impact of the adverse selection problem in the 
used car market. 
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Blue Cross/Blue Shield of Massachusetts, covered about one-third of all senior cit- 
izens in the state in 1987. Premiums were low, about $50/month. In the late 1980s, 
health care cost inflation accelerated, and underwriters had to raise premiums, in- 
cluding the premiums for medigap and Medex. In response, some of the elderly 
were forced to drop their medigap coverage. Others found they could get lower 
rates with other carriers or by signing up for plans offering fewer benefits or which 
capped benefits for items such as prescriptions. However, only the healthiest se- 
niors were eligible for these other, cheaper plans. The sickest of the elderly, those 
suffering from chronic illnesses, those with a history putting them at high risk- 
those with so-called pre-existing conditions-were not eligible for less expensive 
coverage or health maintenance organizations (HMOs) and had no choice but to 
stay with medigap. In many cases, the cost of prescriptions alone for those elderly 
covered by Medex exceeded their premiums by hundreds of dollars each year. As 
medigap losses mounted, premiums grew. But higher premiums forced still more 
of the comparatively healthy elderly to opt out of medigap as they found coverage 
elsewhere or simply did without, bearing the risk of illness themselves. Those re- 
maining with the plan were, on average, sicker and costlier, forcing premiums up 
further. Figure 5-29 shows the evolution of the Medex subscriber base and premi- 
ums. Total subscribers fell from nearly 300,000 in 1988 to about 158,000 in 1997, 
while subscribers of the premium Medex Gold option, which provided unlimited 
coverage for prescriptions, fell even faster, from about 250,000 in 1988 to about 
65,000 in 1997. Over the same 10 years premiums rose from about $50/month to 
$228/month, with further increases projected. As the customer base shrank and 
losses grew, underwriters began to withdraw from the market. In the early 1990s 
half a dozen insurers wrote medigap coverage in Massachusetts; by 1997 only 
Medex remained. A consumer activist lamented, “As healthier people continue to 
drop out and sicker people stay in, premiums continue to go up, and you create a 
death spiral.” (Boston Globe, 20 January 1998, A12). 

1. Develop a causal loop diagram capturing the death spiral as depicted in 
section 5.5.1. Your diagram should explain not only the dynamics of the 
subscriber base and premiums, but also the profitability of the medigap 
market, the number of carriers offering coverage, and the health status of 
those in the program. Note any important delays in your diagram. Use your 
diagram to analyze the impact of the following policies: 
a. Requiring all carriers doing business in the state to insure all qualified 

applicants, regardless of age or health. 
b. Requiring all medigap plans (all the versions of Medex) to provide 

unlimited coverage for prescription drugs. The goal is to pool healthier 
seniors who generally use fewer drugs and choose the less expensive 
Medex plans with the sicker seniors who use more drugs and opt for 
Medex Gold. 
Provide a subsidy to lower medigap premiums, funded by the state. c. 
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d. Allowing BC/BS to drop Medex, effectively eliminating all medigap 
coverage in the state of Massachusetts. 

In assessing the impact of the policies, consider their effects on the insurers, on 
the elderly (insured and uninsured), and on society at large. 

2. What assumptions about information availability and consumer behavior 
underlie the theory captured in your causal loop diagram of the health 
insurance market? How might the validity of these assumptions be altered, 
for example, by advances in information technology which might make a 
person's entire health history available to insurers, or advances in genetic 
screening which might reveal which people were at increased risk for the 
development of particular illnesses? 

3. What other examples of adverse selection can you identify? Map their 
feedback structure. 

death spiral: subscribers and premiums for medigap insurance 
nsurance for the elderly offered by Blue Cross/Blue Shield of Massachusetts. 
unlimited prescription drugs with a small copayment. Other Medex plans limit total 

e for December 1 of each year. * indicates proposed rate for 1998 of $278/month. 
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Source: Boston Globe, 20 January 1998, A1 

5.6 EX P [.AI N I NG Po L I CY R ES I STAN c E : TR A FFI c CON G ESTI o N 
By showing the network of feedback loops in which policies are embedded, causal 
diagrams are often an effective way to show how event-oriented, open-loop men- 
tal models lead to policy resistance. Consider the problem of traffic congestion. 
America's roads are choked with traffic. In 1995 there were nearly 200 million ve- 
hicles registered in the US. The 1990 census reported that about 100 million peo- 
ple, 87% of all workers, traveled to work by motor vehicle, 85% of them alone. 
Only 5% used public transportation. In 1960 64% commuted by motor vehicle. 
Since 1970 the number of registered vehicles grew by 70% and annual vehicle 
miles grew by 90%, both much faster than the growth in population or households, 
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FIGURE 5-30 
More roads, 
more traffic 

while public transportation stagnated (Figure 5-30). More and more of the average 
person's day is spent inside a car: The government estimates Americans spend 
8 billion hours per year stuck in traffic. The cost of driving includes about $6000 
per car per year in direct costs and up to another $9400 in indirect, externalized 
costs. Estimates of lost productivity due to traffic congestion range from $43 to 
$168 billion per year. The economy and culture of the US (and of other auto-rich 
nations) have adapted themselves to the dominance of the auto, from the $40 bil- 
lion spent annually in the US to market automobiles to the rise of drive-through 
fast foods, especially foods you can eat with one hand (while the other steers). 
Road rage is increasingly recognized as a common mental disorder, and frustrated 
drivers have taken to shooting those who cut them off on the so-called freeway. 
What went wrong?4 

5.6.1 Mental Models of the Traffic Problem 
The traditional solution to traffic jams and congestion has been road building. Fig- 
ure 5-3 1 shows the open-loop perspective on the problem: The problem is highway 
congestion; the solution is to build more roads. 

Total Passengers on US Public Transit Systems 

O S  

O i  , . , . , . , , . , . . , . . . , . . , . . . . , . , . . , . . , , . , . . . ~  
1920 1940 1960 1980 2000 

Sources: Historical Statistics of the US; Kurian (1994). 

4Some of these data appear in Kay (1997), whose book Asphalt Nation discusses a broad range 
of social, cultural, economic, and environmental effects of automobile addiction. See also Downs 
(1992), Hansen (1995), and Gibbs (1997). 
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FIGURE 5-31 
Open-loop view of 
traffic congestion 

FIGURE 5-32 
Determinants of 
travel time 

Congestion Build New 
and Delays - Roads 

But what happens when new roads are built? And where should you begin the 
development of a causal diagram to show the feedback effects of road construc- 
tion? It’s usually best to begin by capturing the physical structure of the system. 
Systems consist of both a physical structure and the decision rules used by the peo- 
ple in the system (the behavioral structure). The physical structure is often easier 
to visualize and represent than the decision-making structure. Additionally, con- 
ceptualization is often part of a group process in which people must share their 
own mental models and reach agreement over a single representation. It is usually 
easier to gain agreement about the physical structure. The behavioral structure is 
often more controversial; if you start there your group process may grind to a halt 
before you’ve really begun. 

A good place to start for the traffic congestion case is congestion itself. A good 
model requires a variable that has operational meaning and can be measured. One 
good summary measure of congestion is average travel time (for the typical trip in 
a particular region). What determines travel time? Travel time depends on the bal- 
ance between the capacity of the highways to handle traffic and the number of ve- 
hicles using the roads, denoted Traffic Volume in Figure 5-32. 

As the number of vehicles on the roads increases, given the highway capacity, 
the average trip will take longer. As highway capacity rises, given the vehicle vol- 
ume, the average travel time will fall. Highway capacity is altered by construction 
of new roads. Road construction here includes not only new roads but also im- 
provements to existing roads such as adding lanes or increasing capacity by chang- 
ing the flow of traffic, for example by converting a four-way intersection into a 
cloverleaf. Any project that augments the capacity of the roads to carry traffic 
would be included in the notion of road construction, at least in this first version of 

+I 
Highway 
Capacity 

Traffic 
Volume 



180 Part I1 Tools for Systems Thinking 

FIGURE 5-33 
Congestion 
leads to political 
pressure to build 
more roads, 
reducing con- 
gestion via the 
negative Capacity 
Expansion 
feedback. 

the model (later you could disaggregate the construction of new roads from widen- 
ing of existing roads, if that was deemed to be necessary for the purpose). Since 
highway projects take time, the delay between the initiation of a construction proj- 
ect and the increase in highway capacity is explicitly noted. 

When developing a causal map it is helpful to consider the units of measure for 
the constructs in your diagram. Having consistent units is often a great aid to clear 
thinking about the definitions of and relationships among the variables. Specifying 
units and checking for dimensional consistency is useful even when your model is 
purely conceptual and you do not intend to develop a formal simulation. Travel 
time would be measured in minutes per trip (for the average trip in the region). 
Highway Capacity and Traffic Volume are measured in vehicle-miles per day (a 
vehicle mile is one mile traveled by one vehicle). 

Having specified the physical structure of road building and highway con- 
struction, next ask what drives highway construction programs. The primary moti- 
vation is congestion: as travel time rises, as traffic jams become the norm, as the 
rush hour expands from dawn through dusk, political pressure to build will build. 
Figure 5-33 adds the link from travel time to road construction. 

Congestion creates pressure for new roads; after the new capacity is added, 
travel time falls, relieving the pressure. The Capacity Expansion loop (B 1) acts to 
reduce travel time to acceptable levels. Note that the goal of the loop, the desired 
travel time, has been made explicit. Desired travel time is the travel time driv- 
ers consider acceptable (on average), perhaps 20 minutes for the commute from 
home to work. The 1990 census found average one-way commuting times for all 
modes and all workers of about 22 minutes, though more than 17 million people 
spent more than 40 minutes getting to work and nearly 2 million spent more than 
90 minutes. 

Construction 

Pressure to 
Reduce 

Congestion 

+I 
Highway 
Capacity Capacity 

Expansion 

Traffic 
Volume 



Chapter 5 Causal Loop Diagrams 181 

5.6.2 Compensating Feedback: 
The Response to Decreased Congestion 

So far traffic volume is considered to be exogenous. This assumption is an accu- 
rate reflection of the mental models of many politicians, city planners, and trans- 
portation officials, for whom traffic volume grows as the population of the region 
grows and as the local economy develops. They see their job as building enough 
roads to keep travel time at the acceptable level, so political pressure stays low, so 
they can be reelected, and so they can serve special interests such as construction 
firms, real estate developers, and the business community who benefit from road 
building and who often provide lucrative jobs for them when they leave office. 

If the capacity expansion loop were the only feedback operating in the system, 
then the policy of road building to relieve congestion would work well: whenever 
traffic volume rose, leading to congestion and pressure from the community, a road 
building program would be started and highway capacity would expand until the 
pressure was relieved. 

However, traffic volume is not exogenous. To formulate the causal structure 
determining traffic flow it is again helpful to consider the physics of the system 
and the units of measure for the variables. What determines the volume of traffic? 
To have traffic, there must b e .  . . cars. No cars, no traffic. So the number of cars in 
the region must be a determinant of traffic volume. Traffic volume is measured in 
vehicle-miles per day. Total traffic volume must therefore equal the number of 
vehicles in the region multiplied by the number of miles each vehicle travels per 
day. In turn, the number of miles each vehicle travels per day is the product of 
the number of trips each vehicle makes per day and the length of each trip. Thus, 
averaging over the vehicle population, 

Traffic Volume = Vehicles * Average Trips per Day * Average Trip Length 
Vehicle Milesmay = Vehicles * TripsDay * Milesnrip 

The number of trips per day and the average trip length are not constant but de- 
pend on the level of congestion. If traffic is light, people are more likely to take ad- 
ditional and longer trips. When congestion is heavy, people will forego or defer 
trips and make shorter trips, skipping that quick run to the video shop and buying 
what they need at the closest store rather going on to the mall. Likewise, the num- 
ber of cars in the region is not constant. The number of vehicles in the region can 
be thought of as the product of the population of the region and the number of cars 
per person: The more people in the region (and the more businesses), the more ve- 
hicles there will be. The number of vehicles per person or business in turn is not 
constant but depends on the attractiveness of driving. The attractiveness of driving 
depends on the level of congestion (Figure 5-34). 

Adding these relationships to the model closes three negative feedback loops, 
all of which act to increase congestion whenever new roads are built. Suppose new 
roads are built to relieve congestion. In the short run, travel time falls-the num- 
ber of cars in the region hasn’t changed and people’s habits haven’t adjusted to the 
new, shorter travel times. As people notice that they can now get around much 
faster than before, they will take more Discretionary Trips (loop B2). They will 
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FIGURE 5-34 Traffic volume depends on congestion, closing several negative loops that cause traffic 
to increase whenever new roads are built. 
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also travel Extra Miles (loop B3). Over time, seeing that driving is now much more 
attractive than other modes of transport such as the public transit system, some 
people will give up the bus or subway and buy a car. The number of cars per per- 
son (and business) rises as people ask why they should Take the Bus? (loop B4). 

All three of these loops compensate for any new road construction by increas- 
ing traffic flow. But road construction stimulates other long-term feedbacks. The 
population of the region is not exogenous but is affected by the accessibility of the 
outlying districts. As the road network expands, as new freeways and ring roads 
link the countryside with the center city, the size of the region within a reasonable 
travel time grows. Of course, average travel time has a negative effect on the size 
of the accessible region: The greater the congestion, the smaller the radius accessi- 
ble within, say, a 30-minute drive of the city (Figure 5-35). 

The links to the population of the region close two more feedbacks. People be- 
gin to Move to the Suburbs (B5). As the population of the suburbs grows, the auto 
population rises as well. The roads begin to fill. Traffic volume grows further and 
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FIGURE 5-35 Reduced travel time and an expanded highway network increase the size of the region 
accessible from the center, which expands the population and leads to still more traffic. 
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travel time rises until the resulting congestion makes the suburbs sufficiently unat- 
tractive to stop further inmigration and development. 

The combined effect of the four negative feedbacks B2 through B5 is to com- 
pensate strongly for any decrease in travel time caused by new roads. If new high- 
ways were built and then all construction stopped, there would be an immediate 
drop in travel time. But as people respond to their newfound ease of travel, more, 
longer trips would be taken. More people would abandon the bus and buy cars to 
commute to work. The population of the suburbs would grow. These adjustments 
continue until travel time rises enough to stop the expansion of the suburbs be- 
cause the commute required is too long. The delays in these negative loops could 
cause congestion to overshoot the desirable level. 

But road construction doesn’t stop. As new highways Open the Hinterlands 
(loop Rl) ,  it becomes possible to live in the countryside and commute to work in 
the town or city. What was once remote farm country or woods now becomes a 
20 minute drive from the city, with its jobs, culture, and nightlife. Whole new 
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communities spring up, communities where the people have to drive not only to 
work but also to the market, to school, to the homes of their friends and their chil- 
dren’s friends. The burgeoning population brings new development. Shops, strip 
malls, and other businesses spring up, turning countryside to condo development, 
pasture to parking lot. All the while, the number of cars on the road grows. After 
some years, traffic congestion in these formerly quiet towns becomes a terrible 
problem. Political pressure grows and still more roads are built. 

Route 128, a ring road around Boston built in the 1950s to relieve congestion 
by diverting long-haul traffic around the center city, rapidly attracted local drivers 
and soon proved inadequate. To relieve the congestion it was widened, from four 
to eight, and in places, even more lanes. In stretches the breakdown lane was 
opened to traffic during rush hour (not a few hapless motorists have been killed 
when they had the temerity to use the breakdown lane for a breakdown). Traffic 
soon filled these new lanes, and today during rush hour the cars crawl along 
bumper to bumper through long stretches of route 128. A second ring road, Inter- 
state 495, was then built another 15 to 20 miles farther out. The expanded network 
made even more countryside accessible, and another round of population growth 
and economic development began. This self-reinforcing process leads to more and 
more new roads, pushing ever farther into the countryside, in a vain attempt to ease 
congestion. The story is similar for other cities in the US, including the paradigm 
case of congestion-Los Angeles-as well as London, Paris, Istanbul, Cairo, 
Tokyo, Bangkok, and countless other cities around the world. 

The model clearly shows the futility of attempts to reduce traffic congestion 
through road building. It may take some years, but, in an automotive version of 
Parkinson’s Law, traffic always expands to fill the highways available for its travel. 
Traffic volume grows until congestion is just bad enough to deter people from tak- 
ing that additional trip, from driving to work instead of riding public transit, or 
from moving just a little farther out into the ~uburbs .~  Traffic engineers call this re- 
action “road generated traffic.” Hansen’s (1995) econometric study of US metro- 
politan areas showed that the elasticity of traffic volume with respect to highway 
capacity was 0.9 after just 5 years, that is, a 10% increase in capacity led to a 9% 
increase in traffic within 5 years. Many of the feedbacks identified in the model 
operate over even longer periods, fully negating the effect of road construction on 
congestion. Some analysts even argue that by “adding capacity to a crowded [high- 
way] network you could actually slow things down” (Kay 1997, p. 15), a phenom- 
enon known as Braess’ Law after the operations research analyst who first coined 
it. For example, the M25, London’s ring road, was designed to carry long distance 
traffic around London. Instead, it is actually used primarily for short trips by local 
residents and commuters. It soon became the busiest highway in Europe and has 
long been known as ‘the longest parking lot in the world’, though commuters on 
the Long Island Expressway, Paris’ Peripherique, and the San Diego Freeway 
might disagree. In response, the M25 has been steadily widened, all to no avail. 
Studies typically find, as the London Times reported (10 November 1997), that 

5The analogy with Parhnson’s Law (“work expands to fill the time available for its comple- 
tion”) is more than casual: Parhnson’s Law arises through a negative feedback loop structure quite 
similar to that governing traffic congestion. See section 5.4. 
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Traffic congestion on a widened section of the M25 is now greater than before the 
improvement took place, a motoring survey suggests. The widening of a stretch of 
the motorway at junction 15, west of London, was intended to curb congestion, but 
the survey showed that jams on the stretch were now commonplace, although last 
year traffic was generally free-flowing. 

5.6.3 The Mass Transit Death Spiral 
Standard economic analysis suggests that a decline in the attractiveness of a good 
or service should lead people to switch to substitutes. Why, then, as congestion 
builds up, don’t people turn to mass transit? Part of the answer is shown in Fig- 
ure 5-36. 

As lower travel time caused by new roads increases the attractiveness of driv- 
ing, ridership and revenue of the public transit system fall. Costs don’t fall very 
much, since most of the costs are the fixed costs of providing service: the buses 
must run whether they are full or empty. If the transit authority tries to close its 
deficit by Cost Cutting (loop B6), service and quality erode. Routes are closed and 
the frequency of service is cut. The relative attractiveness of driving rises and mass 
transit ridership falls still more. The deficit widens, leading to still more cuts in the 
public transit network as the self-reinforcing Route Expansion loop R2 operates as 
a vicious cycle of decreasing ridership, greater cuts, and still fewer riders. 

Raising fares to balance the transit authority budget is little better: Higher fares 
increase the relative attractiveness of driving, and more people abandon mass tran- 
sit for cars. Ridership falls, and fares must be raised again, Choking off Ridership 
(loop R3). Because mass transit systems have a high proportion of fixed costs, they 
are highly vulnerable to these self-reinforcing feedbacks. As road construction and 
auto use accelerated in America, particularly after the late 1940s, people aban- 
doned trolleys, trains, and buses. These positive loops became a death spiral of 
higher fares, reduced service, and declining quality until in many cities only the 
poorest people, those who cannot afford to move to the suburbs or own a car, are 
left to ride the public transit system. Attempts to build up the mass transit network 
to offset the positive loops that erode ridership through Mass Transit Capacity Ex- 
pansion (loop B7) often fight a losing battle due to their long delays and high costs. 

One final positive feedback is worth adding: The adequacy of a public transit 
system depends not only on the scope of the network and the frequency of service 
but also on the size and population density of the region. As the countryside is de- 
veloped, the locus of activity shifts away from the area served by existing mass 
transit. As population density falls, fewer and fewer people live near a bus or sub- 
way route. Public transit becomes less and less useful because You Can’t Get There 
on the Bus, leading to still more driving and still lower mass transit ridership, in 
another vicious cycle, loop R4 (Figure 5-37). The suburbs grow and the adequacy 
of public transit falls much faster than mass transit capacity can be added. 

The model above is still incomplete (as all models always are). One could add 
many more feedbacks. For example, the spread of population into the less densely 
populated suburbs increases the average length of trips, forming additional chan- 
nels by which congestion rises to offset any gains caused by new highways. The 
model does not explore other side effects of the automobile’s rise to dominance, 



FIGURE 5-36 The high fixed costs of mass transit lead to a death spiral. 

As mass transit ridership falls, service must be cut and fares raised, further driving people to drive. 
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FGURE 5-37 You can't get there on the bus. 

As the size of the populated region expands, the adequacy of public transit declines. The result is more driving, more congestion, and 
still more road construction rather than an expansion of the public transit network. 
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including the deaths, injuries and costs of accidents, the health effects of smog and 
ozone production, greenhouse gas generation, the solid waste problem posed by 
the discard of millions of vehicles each year (see chapter 6), and the dependence of 
the highly automotive nations on insecure supplies of imported oil. What other 
feedbacks and side effects do you see? 

5.6.4 Policy Analysis: The Impact of Technology 
Despite its limitations and omissions, the model provides a rich explanation for the 
persistent failure of road-building programs to alleviate traffic congestion. You can 
now use the model to assess the likely effect of other policies. 

In the 1970s and 1980s, a popular solution was HOV lanes (high-occupancy 
vehicle, or carpool lanes). These lanes are restricted to cars with at least two occu- 
pants (sometimes only during rush hour). The result? To the extent drivers joined 
carpools, the number of trips per day fell, reducing traffic volume slightly. The re- 
sulting reduction in congestion, however, simply encouraged others to take to the 
roads instead of mass transit, to take additional trips they might otherwise have 
foregone, and to leave for work a little later. The total volume of traffic during rush 
hours didn’t change and more people were now on the highways than before, fur- 
ther eroding mass transit ridership. And some enterprising but immoral motorists 
took to riding with inflatable dummies in the passenger seat to fool the police and 
illegally take advantage of the HOV lane. 

Despite the persistent failure of road building and innovations such as HOV 
lanes, many transportation planners continue to pin their hopes on technological 
solutions to the congestion problem. The latest of these is so-called intelligent 
vehicle-highway systems. Many clever technologies are under development, from 
sensors to detect the distance to the car ahead and automatically adjust your car’s 
speed, to transponders or magnets embedded in the road surface to automatically 
steer your car. Already sensors embedded in some highways transmit real time traf- 
fic data to cars equipped with special receivers. Technologists look forward to the 
day when the internet, GPS, and real time vehicle controls will allow your car to 
pick the optimal route to your destination and drive you there while you relax or 
read a book. Some of these technologies are designed to increase highway safety. 
Many are motivated by the need to increase highway capacity in cities where 
building new roads and adding new lanes is no longer possible: under computer 
control, the technologists promise, cars could zip safely along at 70 miles per hour 
only inches apart, greatly expanding the capacity of existing highways. 

The model shows the futility of these hopes. There is no technological solution 
to the congestion problem. The more effectively these technologies increase high- 
way capacity, the more trips will be taken, the more people will buy cars, the less 
attractive public transit will be, and the more countryside will be developed into 
bedroom communities for commuters. The volume of traffic will swiftly rise to ab- 
sorb all the new capacity technology can yield. We might zip along the freeway at 
seventy, but we’ll be stuck in much longer lines at the entrance ramp and on sec- 
ondary routes. On the roadways of the future we may ride more safely and more 
comfortably, but we won’t ride more swiftly. 
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Economists generally suggest the solution is to charge tolls that increase as 
congestion rises (Downs 1992). While some regions are experimenting with time- 
of-day tolls and congestion-based pricing using real time sensing equipment, there 
is considerable political resistance to the notion of paying for the freeway, and 
some concern over the regressive impact of tolls. Worse, drivers tend to switch to 
secondary roads and city streets where tolls are infeasible. 

Some nations have come to understand these dynamics and are moving to 
reduce traffic and the attendant pollution, accidents, and destruction of open land 
it causes by increasing travel times. In September 1997 Sweden’s parliament 
adopted “Vision Zero”, a policy aimed at eliminating all traffic fatalities by per- 
mitting towns to reduce speed limits to 30 kilometers per hour and install speed 
bumps and other flow restricting devices. The model suggests these policies will, 
in addition to saving lives, encourage people to use other modes such as bus, train, 
and bicycle, thus reducing the pressure for road building and the growth in traffic. 

5.6.5 Compensating Feedback: 
The Source of Policy Resistance 

The feedbacks affecting traffic clearly show that attempts to control congestion 
through road building are vain. Any reduction in congestion leads to more trips and 
more cars, swiftly building congestion back up. What road construction actually 
controls is the size of the metropolitan area and the number of cars on the road. 
Road construction causes the dramatic expansion of the urbanized and suburban- 
ized area, the growth of strip malls and parking lots, and the decline of farm, for- 
est, and field. 

The causal structure of the traffic problem illustrates how policy resistance 
arises in a wide range of complex systems. Road-building programs are typical of 
policies directed at the symptom of difficulty. Policies directed at alleviating the 
symptoms of a problem usually fail because they trigger compensating feedbacks, 
feedbacks that undercut the intended effects of the policy. The compensating loops 
arise because other actors, with their own goals, respond to changes in the state of 
the system in such a way as to offset the intended effects of the policy. While each 
individual loop may be weak, the combined effect can often compensate com- 
pletely for any policy directed at a symptom of a problem. Directing policies at 
the symptoms of a problem is like trying to squeeze a balloon to make it smaller. 
Whenever you squeeze, the air pressure increases, expanding some other part of 
the balloon so its volume remains about the same. 

Why then do so many policies focus on alleviating the symptoms of difficulty? 
We focus on symptoms because so much of our experience is with simple systems 
in which cause and effect are closely related in time and space, in which symptom 
and cause are obvious. Most of our experience is with systems in which there is a 
single, dominant negative feedback, as when you reach out to grasp an object by 
assessing the gap between the position of the object and your hand. We then ex- 
trapolate these everyday experiences with simple systems into the management of 
complex systems. But, as Jay Forrester (1969, pp. 9-10) notes 
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In the crrmplex system the cause of a difficulty may lie far back in time from 
the symptoms, or in a completely different and remote part of the system. In fact, 
causes are usually found, not in prior events, but in the structure and policies of the 
system . . . Conditioned by our training in simple systems, we apply the same intu- 
ition to complex systems and are led into error. As a result we treat symptoms, not 
causes. The outcome lies between ineffective and detrimental . . . If the attempted 
solution intensifies the problem, wrongly attributed to another source, the organiza- 
tion likely will redouble its “corrective” action, producing more difficulty and pres- 
sure for still more remedial action. A destructive spiral becomes established. 

Identifying the Feedback Structure of 
Policy Resistance 

1. Consider the failed Romanian population policy described in chapter 1. 
Develop a causal loop diagram explaining the failure of the government’s 
efforts to increase the birth rate. 

2. Table 1-1 lists a number of common examples of policy resistance in social, 
business, and economic systems. Develop simple causal diagrams for each. 
Use your diagrams to explain why each policy failed. 

5.7 SUMMARY 
Causal diagrams are a powerful tool to map the feedback structure of complex sys- 
tems. Causal diagrams can be helpful to you in the early phases of a project, when 
you need to work with the client team to elicit and capture their mental models. 
They are helpful in presenting the results of your modeling work in a nontechnical 
fashion. To be effective, you should follow the rules for causal diagrams, including 
selection of variable names, layout, and assignment of link and loop polarities. It 
is best to build up diagrams in steps: resist the urge to create a single, comprehen- 
sive diagram. As in learning to read music, practice is everything. Develop your 
skills in mapping the feedback structure of systems by sketching causal diagrams 
to capture the feedbacks you recognize as you read the newspaper or the great 
works of literature. 
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Stocks and Flows 

I’m very good at integral and differential calculus, 
I know the scientific names of beings animalculous; 
In short, in matters vegetable, animal, and mineral, 
I am the very model of a modem Major-General. 

-W. S .  Gilbert, The Pirates of Penzance, Act 1. 

This chapter introduces the concept of stocks and flows, a central idea in dynam- 
ics. It presents the conceptual and mathematical definitions of stocks and flows, the 
diagramming tools for mapping networks of stocks and flows, and case studies of 
the use of stocks and flows in modeling projects including automobile recycling 
and the construction of pulp and paper mills. Developing facility in identifying, 
mapping, and interpreting the stock and flow networks of systems is a critical skill 
for any modern systems modeler. 

6.1 STOCKS, FLOWS, AND ACCUMULATION 
Causal loop diagrams are wonderfully useful in many situations. They are well 
suited to represent interdependencies and feedback processes. They are used ef- 
fectively at the start of a modeling project to capture mental models-both those 
of a client group and your own. They are also used to communicate the results of a 
completed modeling effort. 

However, causal loop diagrams suffer from a number of limitations and can 
easily be abused. Some of these are discussed in chapter 5. One of the most im- 
portant limitations of causal diagrams is their inability to capture the stock and 
flow structure of systems. Stocks and flows, along with feedback, are the two cen- 
tral concepts of dynamic systems theory. 

191 



192 Part I1 Tools for Systems Thinking 

Stocks are accumulations. They characterize the state of the system and gener- 
ate the information upon which decisions and actions are based. Stocks give sys- 
tems inertia and provide them with memory. Stocks create delays by accumulating 
the difference between the inflow to a process and its outflow. By decoupling rates 
of flow, stocks are the source of disequilibrium dynamics in systems. 

Stocks and flows are familiar to all of us. The inventory of a manufacturing 
firm is the stock of product in its warehouses. The number of people employed by 
a business is a stock. The balance in your checking account is a stock. Stocks are 
altered by inflows and outflows. A firm’s inventory is increased by the flow of pro- 
duction and decreased by the flow of shipments (and possibly other outflows due 
to spoilage or shrinkage). The workforce increases via the hiring rate and decreases 
via the rate of quits, layoffs, and retirements. Your bank balance increases with de- 
posits and decreases as you spend. Yet despite everyday experience of stocks and 
flows, all too often people fail to distinguish clearly between them. Is the US fed- 
eral deficit a stock or a flow? Many people, including politicians responsible for 
fiscal policy, are unclear. Failure to understand the difference between stocks and 
flows often leads to underestimation of time delays, a short-term focus, and policy 
resistance. 

6.1.1 Diagramming Notation for Stocks and Flows 
System dynamics uses a particular diagramming notation for stocks and flows 
(Figure 6- 1 1. 

0 

Stocks are represented by rectangles (suggesting a container holding the 
contents of the stock). 
Inflows are represented by a pipe (arrow) pointing into (adding to) the 
stock. 
Outflows are represented by pipes pointing out of (subtracting from) 
the stock. 
Valves control the flows. 
Clouds represent the sources and sinks for the flows. A source represents 
the stock from which a flow originating outside the boundary of the model 
arises; sinks represent the stocks into which flows leaving the model 
boundary drain. Sources and sinks are assumed to have infinite capacity and 
can never constrain the flows they support. 

The structure of all stock and flow structures is composed of these elements. 
As the example in the figure shows, a firm’s inventory is a stock that accumulates 
the inflow of production and is reduced by the outflow of shipments. These are the 
only flows considered in the model: unless explicitly shown, other possible flows 
into or out of the stock, such as inventory shnnkage or spoilage, are assumed to be 
zero. The clouds indicate that the stock of raw materials never starves the produc- 
tion rate and the stock of product shipped to customers never grows so high that it 
blocks the shipment rate. 
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6.1.2 Mathematical Representation of 
Stocks and Flows 

The stock and flow diagramming conventions (originated by Forrester 1961) were 
based on a hydraulic metaphor-the flow of water into and out of reservoirs. 
Indeed, it is helpful to think of stocks as bathtubs of water. The quantity of water 
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FIGURE 6-2 
Four equivalent 
representations 
of stock and 
flow structure 
Each 
representation 
contains 
precisely the 
same 
information. 
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in your bathtub at any time is the accumulation of the water flowing in through the 
tap less the water flowing out through the drain (assume no splashing or evapora- 
tion). In exactly the same way, the quantity of material in any stock is the accumu- 
lation of the flows of material in less the flows of material out. Despite the prosaic 
metaphor the stock and flow diagram has a precise and unambiguous mathemati- 
cal meaning. Stocks accumulate or integrate their flows; the net flow into the stock 
is the rate of change of the stock. Hence the structure represented in Figure 6-1 
above corresponds exactly to the following integral equation: 

Stock(t) = [Inflow(s) - Outflow(s)]ds + Stock(t,) (6-1) JI,' 
where Inflow(s) represents the value of the inflow at any time s between the initial 
time to and the current time t. Equivalently, the net rate of change of any stock, its 
derivative, is the inflow less the outflow, defining the differential equation 

d(Stock)/dt = Inflow(t) - Outflow(t). 

In general, the flows will be functions of the stock and other state variables and pa- 
rameters. Figure 6-2 shows four equivalent representations of the general stock and 
flow structure. The bathtub and stock and flow diagrams may appear to be less rig- 
orous than the integral or differential equation representations, but they are pre- 
cisely equivalent and contain exactly the same information. From any system of 
integral or differential equations we can construct the corresponding stock and 
flow map; from any stock and flow map we can generate the corresponding inte- 
gral or differential equation system. 

Hydraulic Metaphor: 

f 

Stock and Flow Diagram: 

Integral Equation: 
t 

Stock(t) = 1 [Inflow(s) - Outflow(s)]ds + Stock (to) 
to 

Differential Equation: 

d(Stock)/dt = Net Change in Stock = Inflow(t) - Outflow(t) 



Chapter 6 Stocks and Flows 195 

Process Point: Notation for Accumulation 
The traditional notation used in calculus and shown in Figure 6-2 is often con- 
fusing to many people. In this book, I will generally represent the process of accu- 
mulation with the INTEGRAL() function: 

Stock = INTEGRAL(1nflow - Outflow, Stockh) (6-3) 

The INTEGRAL() function is exactly equivalent to equation (6-1) and represents 
the concept that the stock accumulates its inflows less its outflows, beginning with 
an initial value of Stockh. 

6.1.3 The Contribution of Stocks to Dynamics 
Stocks are critical in generating the dynamics of systems for the following reasons 
(Mass 1980): 

1. Stocks characterize the state of the system and provide the basis for 
actions. 
The stocks in a system tell decision makers where they are, providing them 
with the information needed to act. A pilot must know the state of the aircraft 
including position, heading, altitude, and fuel level. Without knowledge of 
these states, the pilot is flying blind and won’t survive long. Likewise, a 
firm can’t set its production schedule appropriately without knowledge of 
the order backlog, the stock of inventory, the parts stocks, the labor force, 
and other stocks. A balance sheet characterizes the financial health of a 
corporation by reporting the values of stocks such as cash, inventory, 
payables, and debt. Information about these stocks affects decisions such as 
issuing new debt, paying dividends, and controlling expenses via layoffs. 

2. Stocks provide systems with inertia and memory. 
Stocks accumulate past events. The content of a stock can only change 
through an inflow or outflow. Without changes in these flows, the past 
accumulation into the stock persists. The stock of lead in the paint of 
America’s inner city housing remains high today even though lead paint was 
banned in 1978. Once the stock of lead paint accumulated, the only way to 
eliminate it is through expensive deleading or the eventual demolition of the 
housing itself. Even then the lead remains, either safely sequestered or more 
likely dispersed into the environment as dust, chips, or lead leaching from 
landfills into water supplies. Likewise, the stock of ozone-destroying 
chlorine generated by CFCs will remain in the atmosphere for decades even 
after the production rate of CFCs falls to zero because the rate at which 
chlorine is scrubbed from the stratosphere is very low. Stocks don’t have to 
be tangible. Memories and beliefs are stocks that characterize your mental 
states. Your beliefs persist over time, generating inertia and continuity in 
your attitudes and behavior. If you have a bad experience on an airline and 
never fly on that carrier again, your belief about the low quality of their 
service remains even if they’ve improved. 
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3. Stocks are the source of delays. 
All delays involve stocks. A delay is a process whose output lags behind its 
input. The difference between the input and output accumulates in a stock of 
material in process. There is a lag between the time you mail a letter and the 
time it is received. During this interval, the letter resides in a stock of letters 
in transit. Even email accumulates in stocks of undelivered packets and 
messages residing in the memory of various computers between the sender 
and receiver. There is a lag of several years between the decision to build 
new office buildings and the time they are ready for occupancy. During this 
interval there is a supply line of buildings under development, including a 
stock of proposed projects and a stock of buildings under construction. 

By definition, when the input to a delay changes, the output lags behind 
and continues at the old rate for some time. During such adjustments, the 
stock accumulating the difference between input and output changes. If you 
mail wedding invitations to 1000 of your closest friends all at once, while the 
rate at which other mail is deposited remains constant, the stock of letters in 
transit jumps by 1000 and remains at the new level as the letters make their 
way to their destinations. Only as the invitations begin to arrive does the 
stock of letters in transit start to fall. The delivery rate exceeds the mailing 
rate, shrinking the stock of mail in transit, until all the invitations have been 
delivered, at which point the delivery rate once again equals the rate at which 
mail is deposited and the stock of letters in transit returns to its original level. 

Perception delays also involve stocks though these stocks do not involve 
any material flows. For example, the belief of managers in a company’s 
Taiwan headquarters about the shipment rate from their Silicon Valley plant 
lags behind the true shipment rate due to measurement and reporting delays. 
Measurement of a rate such as shipments always involves a stock. Due to 
unpredictable variations in customer orders, product availability, and 
transportation, shipments can vary significantly from hour to hour, day to 
day, or over even longer periods. Shipments must be accumulated for some 
period of time such as a day, week, or month to provide a meaningful 
measurement of the rate. If shipments are highly volatile, the firm will have 
to accumulate them over longer intervals to filter out the short-term noise and 
provide a meaningful average managers can use to make decisions. In 
addition there are reporting delays involving a stock of shipment information 
waiting to be uploaded to and downloaded from the firm’s computer system. 
There may be further delays in the adjustment of the executives’ beliefs even 
after they see the latest data. Chapter 11 describes the structure and dynamics 
of delays in detail. 

4. Stocks decouple rates of flow and create disequilibrium dynamics. 
Stocks absorb the differences between inflows and outflows, thus permitting 
the inflows and outflows to a process to differ. In equilibrium, the total 
inflow to a stock equals its total outflow so the level of the stock is 
unchanging. However, inflows and outflows usually differ because they are 
often governed by different decision processes. Disequilibrium is the rule 
rather than the exception. 
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The production of grain depends on the yearly cycle of planting and 
harvest, along with unpredictable natural variations in weather, pest 
populations, and so on. Consumption of grain depends on how many mouths 
there are to feed. The difference between grain production and consumption 
rates accumulates in grain stocks, stored throughout the distribution system 
from field to grain elevator to processor inventories to market to kitchen 
cupboard. Without a stock of grain to buffer the differences between 
production and consumption, consumption would necessarily equal 
production at all times and people would starve between harvests. Thus 
Joseph advised Pharaoh to stockpile grain during the 7 good years in 
anticipation of the 7 lean years during which consumption would exceed 
harvests. While on average the production of grain balances consumption 
(and losses) as farmers respond to market prices and inventory conditions 
in determining how much to plant, and as consumers adjust consumption 
in response to prices and availability, production and consumption are 
rarely equal. 

makers, involve different resources, and are subject to different random 
shocks, a buffer or stock between them must exist, accumulating the 
difference. As these stocks vary, information about the size of the buffer 
will feed back in various ways to influence the inflows and outflows. Often, 
but not always, these feedbacks will operate to bring the stock into balance. 
Whether and how equilibrium is achieved cannot be assumed but is an 
emergent property of the whole system as its many feedback loops interact 
simultaneously. Understanding the nature and stability of these dynamics 
is often the purpose of a system dynamics model. 

Whenever two coupled activities are controlled by different decision 

6.2 Identifying Stocks and Flows 
The distinction between stocks and flows is recognized in many disciplines. 
Table 6-1 shows some common terms used to distinguish between stocks and 
flows in various fields. In mathematics, system dynamics, control theory, and re- 
lated engineering disciplines, stocks are also known as integrals or state variables. 
Flows are also known as rates or derivatives. Chemists speak of reactants and 
reaction products (the stocks) and reaction rates (the flows). In manufacturing 
settings, stocks and flows are also called bufSers and throughput. In economics, 
stocks are also known as levels and flows as rates. For example, the capital stock 
of an economy is its level of wealth (measured in, say, dollars) while the GDP is 
the aggregate rate of national output (measured in $/year). In accounting, balance 
sheet items are stocks, such as cash, the book value of inventory, long-term debt, 
and shareholder equity (all measured in, e.g., dollars). Items appearing on the in- 
come statement or flow of funds report are flows which alter the corresponding 
stocks on the balance sheet, such as net receipts, the cost of goods sold, long-term 
borrowing, and the change in retained earnings. These flows are measured in 
$/year. Physiological models often lump different stocks into a small number of 
compartments or boxes connected by diffusion rates (the flows). For example, the 
stock of glucose in a human can be represented by a three compartment model: 
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Field Stocks Flows 
TABLE 6-1 
Terminology used 
to distinguish Mathematics, physics 
between stocks and engineering 
and flows in 
different 
disciplines 

Chemistry 

Manufacturing 
Economics 
Accounting 

Biology, physiology 
Medicine, 

epidemiology 

Integrals, states, state 
variables, stocks 

Reactants and reaction 
products 

Buffers, inventories 
Levels 
Stocks, balance sheet 

items 

Compartments 
Prevalence, reservoirs 

Derivatives, rates of 
change, flows 

Reaction rates 

Throughput 
Rates 
Flows, cash flow or 

income statement 
items 

Diffusion rates, flows 
Incidence, infection, 

morbidity and 
mortality rates 

glucose in the digestive system, glucose in the bloodstream, and glucose in the in- 
tracellular matrix. In epidemiology, prevalence measures the number or stock of 
people who have a particular condition at any given time, while incidence is the 
rate at which people come down with the disease or condition. In December 1998 
the prevalence of HIV/AIDS worldwide was estimated by the United Nations 
AIDS program to be 33.4 million and the incidence of HIV infection was estimated 
to be 5.8 million/year. That is, a total of 33.4 million people were estimated to be 
HIV-positive or to have AIDS; the rate of addition to this stock was 5.8 million 
people per year (16,000 new infections per day). The net change in the population 
of HIV-positive individuals was estimated to be 3.3 million people per year due to 
the death rate from AIDS, estimated to be 2.5 million people per year in 1998. 

How can you tell which concepts are stocks and which are flows? Stocks are 
quantities of material or other accumulations. They are the states of the system. 
The flows are the rates at which these system states change. Imagine a river flow- 
ing into a reservoir. The quantity of water in the reservoir is a stock (measured in, 
say, cubic meters). If you drew an imaginary line across the point where the river 
enters the reservoir, the flow is the rate at which water passes the line-the rate of 
flow in cubic meters per second. 

6.2.1 Units of Measure in Stock and Flow Networks 
The units of measure can help you distinguish stocks from flows. Stocks are 
usually a quantity such as widgets of inventory, people employed, or Yen in an 
account. The associated flows must be measured in the same units per time period, 
for example, the rate at which widgets are added per week to inventory, the hiring 
rate in people per month, or the rate of expenditure from an account in %/hour. Note 
that the choice of time period is arbitrary. You are free to select any measurement 
system you like as long as you remain consistent. You can measure the flow of pro- 
duction into inventory as widgets per week, widgets per day, or widgets per hour. 
The statement “The current rate of production is 1200 widgets per day” is exactly 
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equivalent to the statement that production is proceeding at a rate of 8400 widgets 
per week, 50 widgets per hour, 5/6 widgets per minute, or even 43,800,000 widgets 
per century. All are statements about how many widgets are being produced right 
now-at this instant. Whether the cumulative number of widgets produced in any 
given interval such as a day, week, or century is equal to 1200,8400, or 43,800,000 
depends on whether the current rate stays constant over that interval (or averages 
out to the current rate). Most likely it won’t. 

6.2.2 The Snapshot Test 
Stocks characterize the state of the system. To identify key stocks in a system, 
imagine freezing the scene with a snapshot. Stocks would be those things you 
could count or measure in the picture, including psychological states and other in- 
tangible variables. You can estimate the stock of water in a reservoir from a set 
of satellite images and topographic data, but you cannot determine whether the 
water level is rising or falling. Your bank statement tells you how much money is 
in your account but not the rate at which you are spending it now. If time stopped, 
it would be possible to determine how much inventory a company has or the price 
of materials but not the net rate of change in inventory or the rate of inflation in 
materials prices. The snapshot test applies also to less tangible stocks. The plant 
manager’s expectation of the customer order rate at any instant or perception of the 
size of inventory are stocks, even though they are mental and not physical stocks. 
A snapshot of people’s mental states, however, does not indicate how fast they are 
revising their beliefs. 

Figure 6-3 lists some common concepts and identifies them as stocks or flows, 
showing their stock and flow structure and units of measure. Population, Employ- 
ees, and Debt are straightforward. Why is the price of a product a stock? Prices 
characterize the state of the system, in this case how much you must pay per unit. 
A price posted on an item remains in effect until it is changed, just as the number 
of widgets in an inventory remains constant until it is changed by a flow of pro- 
duction or shipments. Even the bids and offers called out in a trading pit at a fi- 
nancial market are stocks, albeit short-lived ones: a bid or offer remains in effect 
until the trader withdraws or alters it by crying out another. 

Why is the expected customer order rate for a product a stock? Clearly, the ac- 
tual customer order rate is a flow. The flow of customer orders accumulates in a 
backlog or stock of unfilled orders until the product can be delivered. However, a 
manager’s belief about the rate at which customer orders are booked is a stock-it 
is a state of the system, in this case a mental state. No one knows the true current 
or future order rate. The manager’s belief about orders can, and usually does, dif- 
fer from the true order rate (the belief can be wrong). Managers’ beliefs about the 
customer order rate will tend to remain the same until they become aware of new 
information and update their beliefs. The Change in Expected Order Rate is the 
rate at which the belief is updated. Note the units of measure for the expected or- 
der rate. Like the actual order rate, the expected order rate is measured in widgets 
per time period (say weeks). The units of measure for the rate at which the belief 
about customer orders is updated are (widgets1week)lweek. 
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Note that the rate of price change and the change in the expected order rate can 
be positive or negative (prices and demand forecasts can rise or fall). Any flow into 
or out of a stock can be either positive or negative. The direction of the arrow 
(pointing into or out of a stock) defines the sign convention for the flow. An inflow 
adds to the stock when the flow is positive; if the flow is negative it subtracts from 
the stock. When the outflow is positive, the flow subtracts from the stock. 
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6.2.3 Conservation of Material in 
Stock and Flow Networks 

A major strength of the stock and flow representation is the clear distinction be- 
tween the physical flows through the stock and flow network and the information 
feedbacks that couple the stocks to the flows and close the loops in the system. The 
contents of the stock and flow networks are consewed in the sense that items en- 
tering a stock remain there until they flow out. When an item flows from one stock 
to another the first stock loses precisely as much as the second gains. Consider the 
stock and flow structure representing the accounts receivable of a firm (Figure 
6-4). The stock of receivables is increased by billings and decreased by payments 
received and by defaults. The flow of billings is conserved in the sense that once a 
customer is billed, the invoice remains in the stock of receivables until it explicitly 
flows out when the receivables department records the customer’s payment or ac- 
knowledges that the customer has defaulted and writes off the account. In contrast, 
information about the stock of receivables is not conserved. The corporate ac- 
counting system makes the value of the receivables stock available to many 
throughout the organization. Accessing and using this information does not use it 
up or make it unavailable to others. 

Note also that while the units of accounts payable are dollars and the billing, 
payment, and default flows are measured in dollars per time period, the contents of 
the stock are not actually dollars. Rather, the content of the receivables stock is in- 
formation, specifically, a ledger or database consisting of records of invoices out- 
standing. To see why, imagine trying to exchange your firm’s stock of receivables 
for cash-you can sell them to a collection agency, but only for much less than 100 
cents on the dollar. Though the contents of the stock of receivables is information 
and not a material quantity, it is nevertheless conserved-you cannot sell a given 
stock of receivables more than once (not legally, anyway). Stocks can represent in- 
formation as well as more tangible quantities such as people, money, and materi- 
als. Stocks can also represent intangible variables including psychological states, 
perceptions, and expectations such as employee morale, the expected rate of infla- 
tion, or perceived inventory. 
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FIGURE 6-4 
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6.2.4 State-Determined Systems 
The theory of dynamic systems takes a state-determined system or state variable 
approach. The only way a stock can change is via its inflows and outflows. In turn, 
the stocks determine the flows (Figure 6-5). 

Systems therefore consist of networks of stocks and flows linked by informa- 
tion feedbacks from the stocks to the rates (Figure 6-6). As shown in the figure, the 
determinants of rates include any constants and exogenous variables. These too are 
stocks. Constants are state variables that change so slowly they are considered to 
be constant over the time horizon of interest in the model. Exogenous variables are 
stocks you have chosen not to model explicitly and are therefore outside the model 
boundary. For example, in a model of the demand for a new video game, the size 
of the potential market might depend on the population between, say, ages 4 and 
20. The product life cycle will last a few years at most. Over this time horizon the 
population between 4 and 20 years of age is not likely to change significantly and 
can reasonably be assumed constant. Alternatively, you could model the stock of 
children in the target age group as an exogenous variable, using census data and 
projections to estimate its values. Making population constant or exogenous is ac- 
ceptable in t h s  case since there are no significant feedbacks between sales of video 
games and birth, death, or migration rates. 

6.2.5 Auxiliary Variables 
As illustrated in Figure 6-6, mathematical description of a system requires only the 
stocks and their rates of change. For ease of communication and clarity, however, 
it is often helpful to define intermediate or auxiliary variables. Auxiliaries consist 
of functions of stocks (and constants or exogenous inputs). For example, a popula- 
tion model might represent the net birth rate as depending on population and the 
fractional birth rate; fractional birth rate in turn can be modeled as a function of 
food per capita. The left side of Figure 6-7 shows the structure and equations for 
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FIGURE 6-5 
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the model. The Net Birth Rate accumulates in the Population stock. The auxiliary 
variables Fractional Birth Rate and Food per Capita are neither stocks nor flows. 
They are functions of the stocks (and exogenous inputs, in this case Food). Popu- 
lation participates in two feedback loops: a positive loop (more people, more 
births, more people) and a negative loop (more people, less food per person, lower 
fractional net birth rate, fewer births). The inclusion of the auxiliary variables dis- 
tinguishes the two loops and allows unambiguous assignment of link and loop po- 
larities. 

The auxiliaries can always be eliminated and the model reduced to a set of 
equations consisting only of stocks and their flows. By substituting the equation 
for Food per Capita into the equation for Fractional Birth Rate and then substitut- 
ing the result into the equation for Net Birth Rate, you can eliminate the auxiliaries, 
reducing the model to one with only Net Birth Rate and Population. The right side 
of Figure 6-7 shows this model and its equations. Though the model is mathemat- 
ically equivalent to the model with auxiliaries, it is harder to explain, understand, 
and modify. Note that in the reduced form model population enters the equation for 
the rate of change of population in both the numerator and denominator. The 
polarity of the causal link between Population and Net Births is now ambiguous, 
and it is not possible to distinguish the two feedback loops involving population 
and births. 

The process of creating the reduced form model by substitution of intermedi- 
ate variables into their rates is a general one and can be carried out on any model. 
However, the use of auxiliary variables is critical to effective modeling. Ideally, 
each equation in your models should represent one main idea. Don’t try to econo- 
mize on the number of equations by writing long ones that embed multiple con- 
cepts. These long equations will be hard for others to read and understand. They 
will be hard for you to understand. Finally, equations with multiple components 
and ideas are hard to change if your client disagrees with one of the ideas. 
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FIGURE 6-6 Networks of stocks and flows are coupled by information feedback. 
Stocks accumulate their rates of flow; information about the stocks feeds back to alter the rates, 
closing the loops in the system. Constants are stocks changing too slowly to be modeled explicitly; 
exogenous variables are stocks outside the model boundary (shown by the rectangle with rounded 
corners). 
Equation representation: The derivatives of the stocks in dynamic systems are, in general, nonlinear 
functions of the stocks, the exogenous variables, and any constants. In matrix notation, the rates of 
change dS/dt are a function f ( )  of the state vector S, the exogenous variables U and the constants C: 

dS/dt = f(S, U, C) 

For the diagram below, the equation for the rate of change of S4 is 

dS&t = fq(S3, Sq, U3, C3) 

Exogenous 
Input, 
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6.2.6 Stocks Change Only Through Their Rates 
Stocks change only through their rates of flow. There can be no causal link directly 
into a stock. Consider a model for customer service. Customers arrive at some rate 
and accumulate in a queue of Customers Awaiting Service. The queue could be a 
line at a fast food restaurant, cars awaiting repair at a body shop, or people on hold 
calling for airline reservations. When the service is completed customers depart 
from the queue, decreasing the stock of customers waiting for service. The rate at 
which customers can be processed depends on the number of service personnel, 
their productivity (in customers processed per hour per person), and the number of 
hours they work (the workweek). If the number of people waiting for service 
increases, employees increase their workweek as they stay an extra shift, skip 
lunch, or cut down on breaks. 
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FIGURE 6-7 Auxiliary variables 
Left:A simple population model with auxiliary variables. Fractional Birth Rate and Food per Capita are 
neither stocks nor flows, but intermediate concepts added to the model to aid clarity. 
Right: The same model with the auxiliary variables eliminated by substitution into the rate equation. 
The link from Population to Net Birth Rate now has an ambiguous sign, a poor practice. 
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Fractional Birth Rate = f(Food per Capita) 

Food per Capita = Food/Population 

Population = INTEGRAL(Net Birth Rate, PopulationJ 

Net Birth Rate = Population * f(Food/Population) 

I have often seen people in workshops draw the diagram shown in the top of 
Figure 6-8. They correctly recognize that the rate at which customers are processed 
is the product of Service Staff, Productivity, and Workweek and that higher queues 
of waiting customers lead to longer hours and hiring of additional staff, forming 
two balancing feedbacks. But often people draw information feedbacks directly 
from the workweek and service staff to the stock of Customers Awaiting Service, 
assigning them a negative polarity. They reason that an increase in the workweek 
or staff level decreases the number of customers remaining in the queue, thus clos- 
ing the negative feedback loops. 

The correct diagram is shown in the lower panel of Figure 6-8. The only way 
customers can exit the stock is via the departure rate. The departure rate is the 
product of the number of staff, their workweek, and their productivity. An increase 
in any of these inputs boosts the rate at which customers are processed and leave 
the queue. The balancing feedbacks are still present: A longer queue of waiting 
customers leads to longer hours and more staff and an increase in the processing 
rate. The valve controlling the outflow from the stock of waiting customers opens 
wider, and customers depart the queue at a higher rate. The polarities of the infor- 
mation links in the feedback loop are all positive, but an increase in the customer 
departure rate causes a reduction in the stock of waiting customers because the de- 
parture rate is an outflow from the stock. 
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6.2.7 Continuous Time and Instantaneous Flows 
The stock and flow perspective (and its equivalent integral or differential equation 
structure) represents time as unfolding continuously. That is, as our experience 
suggests, time progresses smoothly and continuously. In system dynamics we 
almost always represent time as continuous. Events can happen at any time; 
change can occur continuously; and time can be divided into intervals as fine as 
one desires.] 

'In numerical simulation time is divided into discrete intervals. However, these intervals must 
be small enough that the numerical solution is a good approximation of the underlying continuous 
dynamics, and model dynamics cannot depend on the length of the solution interval (cutting it in 
half, e.g., should not affect any of your conclusions). In discrete time or difference equation sys- 
tems the time interval is an irreducible minimum time delay in every feedback loop and often has 
a large impact on the dynamics. Appendix A discusses numerical integration and the selection of an 
appropriate time step for your simulations. 
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A flow at any time is defined to be its instantaneous value-the rate at which 
water is flowing into your bathtub right now. Mathematically, the net flow to a 
stock (inflows less outflows) is the instantaneous rate of change of the stock-its 
derivative (this is the meaning of equation 6-2). No one can measure the instanta- 
neous value of any flow. The government does not and cannot report the GDP at a 
particular moment but instead reports the average rate of production over some 
prior, finite interval of time (typically a quarter of a year). Likewise, quarterly re- 
ports of a firm’s sales are the cumulative sales during the quarter, not the instanta- 
neous sales rate at the end of the quarter. During the quarter sales likely varied 
substantially. Sales reports at more frequent intervals such as monthly or even 
daily are better approximations of the instantaneous sales rate but still represent av- 
erages taken over some prior, finite interval. Similarly, the speedometer of a car 
does not measure its instantaneous velocity. Because the components of the veloc- 
ity sensor and instrumentation have inertia, the speedometer indicates an average 
of the velocity over a (short) prior interval. 

As the length of the measurement interval shrinks, the reported average rate 
becomes a better approximation of the instantaneous rate. Most speedometers re- 
spond quickly relative to the rate of change of the car’s true velocity, so for practi- 
cal purposes the average velocity reported on the instrument panel is the same as 
the actual, current velocity. On the other hand, the delays in reporting the state of 
the economy or the profits of a company are often long relative to their rates of 
change and dramatically influence the stability of the system. Though we might 
develop instruments for our physical and social systems that shrink the delays in 
measuring and reporting rates of flow, we can never measure the instantaneous 
value of the flows affecting any stock. 

6.2.8 Continuously Divisible versus 
Quantized Flows 

Just as time can be represented as unfolding continuously or in discrete intervals, 
so too the units flowing into and out of stocks can be thought of either as continu- 
ously divisible or as a discrete numbers of items. Most flows are actually quan- 
tized, meaning they consist of collections of individual items which cannot be 
divided into arbitrarily small units. Oil tankers are commissioned one at a time- 
it is not meaningful to speak of launching half a tanker. Company hiring consists 
of a whole number of people. Even the flow in a river consists of an (astronomi- 
cally large) integer number of water molecules. The stock and flow concept and 
the four equivalent notations shown in Figure 6-2 apply whether the flow is con- 
ceived to be infinitely divisible or quantized. The metaphor of the flow of water 
into a bathtub emphasizes our everyday experience of water as a continuously di- 
visible substance-we aren’t concerned with the identity of the individual water 
molecules. However, if it were important to our purpose, we could just as easily 
imagine that the tub is filled by a lumpy flow of individual ice cubes. Whether con- 
tinuous or quantized, the quantity in the stock is always the accumulation of the in- 
flows to the stock less its outflows. 

In many models it is appropriate and useful to approximate the flow of individ- 
ual items as a continuous stream. In modeling the cash flow of a large organization 
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you usually do not need to track individual payments; it is a perfectly acceptable 
approximation to consider the flow of revenue and expenditures as continuous in 
time and continuously divisible (though of course the accounting department must 
track individual payments). Similarly, though organizations hire discrete, whole in- 
dividuals, it is usually acceptable to assume the flows of people are continuously 
divisible. Some clients are troubled by the fractional people your model will gen- 
erate, but almost always the error is insignificant compared to the measurement er- 
ror in parameters including the number of employees the firm actually has. Since 
people can be hired part time, work in job-sharing situations, or be assigned to 
multiple projects, it is quite meaningful to speak of fractional employees, measured 
in FTE (Full-Time Equivalent) people. 

When the purpose of the model requires tracking the individual people, for ex- 
ample modeling the behavior of people entering the line at the supermarket to de- 
termine the optimal number of checkout counters, then people can be modeled as 
discrete individuals arriving at discrete points; this is a classic modeling paradigm 
in queuing theory (Prabhu 1997; Gross and Harris 1998; Papadopoulos 1993). Yet 
even in many queuing applications, the continuous time, continuous flow approx- 
imation works extremely well and the errors it introduces are often small compared 
to measurement error and parameter uncertainty in the real system. The decision to 
represent stocks and flows as continuous or discrete always depends on the pur- 
pose of the model. For example, if your purpose is to understand the dynamics of 
price and the origin of cycles in the oil tanker market (see chapter 20), it is fine to 
assume that the rates of tanker ordering, construction, and scrappage are continu- 
ous in time and continuously divisible. In contrast, if your purpose were to model 
the arrival and offloading of tankers to optimize port facilities you would have to 
model the ships as discrete entities. 

6.2.9 Which Modeling Approach Should You Use? 
The choice of modeling technique and software will depend on which assumptions 
about the stocks and flows in your system are appropriate to your purpose. In all 
cases make sure your modeling software and method can include the feedback 
processes you consider important. In modeling the behavior of people in line at the 
supermarket, for example, you might choose to use a discrete time, quantized flow 
representation and select a stochastic modeling package, or even use a spreadsheet. 
Be sure, however, that your tools allow you to capture behavioral feedbacks such 
as the feedback from the length of the line to the rate at which people join the line. 
Some models and a great many of the theorems in queuing theory assume that the 
rate of arrivals to a queue such as the checkout line is exogenous. People actually 
choose to enter a line based on its length (more precisely, their estimate of ex- 
pected waiting time). A long line will cause people to switch to another, defer their 
shopping to a less crowded time of day, or even go to a different store. Such balk- 
ing creates a powerful negative feedback loop: The longer the line, the smaller the 
arrival rate. Omitting such feedback processes from your model in the interests of 
analytical tractability or programming convenience will often lead to a fatal flaw 
in your analysis and policy conclusions. 
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6.2.1 0 Process Point: 
Portraying Stocks and Flows in Practice 

Each of the stock and flow representations in Figure 6-2 (the bathtub, stock and 
flow diagram, integral equation, and differential equation) contains precisely the 
same information. They are exactly equivalent. Which should you use to develop 
and present your models, especially when you are working in a team? 

The answer depends on the context of the modeling project you are doing and 
the background of your client team. While many mathematically sophisticated 
modelers scoff at the idea of explaining a complex model using bathtubs and pipes, 
I have many times seen otherwise brilliant modeling efforts founder because the 
analyst tried to explain a model using differential equations and mathematical no- 
tation-or the simulation code-to a client team with little technical background. 
One of the worst things a consultant can do is humiliate the client. Showing off 
your mathematical knowledge by using differential equations, lots of Greek letters, 
and other notation the client never studied or forgot a long time ago is a sure-fire 
way to convince your clients you care more for the elegance of your equations than 
for helping them solve their problem. 

Stock and flow diagrams contain the same information as the more mathemat- 
ically formal notation but are easier to understand and to modify on the fly. Still, 
some team members consider even the stock and flow diagram format to be too ab- 
stract. I have often seen clever graphics of tanks, pipes, and valves used to excel- 
lent effect with client teams. For example, a consulting project with a multinational 
chemicals firm represented the flows of production, inventories, shipments, and 
customer stocks-along with capacity, cash, and even equipment defects-as a se- 
ries of pipes, valves, and tanks. The team members were able to grasp the stock 
and flow structure readily since they were all familiar with the tanks and pipes car- 
rying materials in their plants. In fact, most of the client team were engineers by 
training and had plenty of background in mathematics. Yet several commented that 
they never really understood how the business worked until they saw the chart 
showing its stock and flow structure as tanks and pipes. 

What if your clients have even less technical training than these chemical com- 
pany executives? The bathtub metaphor is often used to good effect, as illustrated 
by the case of automobile leasing (see Figure 2.4). What if the stocks and flows in 
your model aren’t as tangible as barrels of oil or automobiles? Get creative. In a 
management flight simulator of insurance claims processing (Kim 1989; Diehl 
1994), a flow of letters arriving to an inbox represented the addition of new claims 
to the stock of unresolved claims. Letters containing checks flowed out to the cus- 
tomers as claims were settled. Icons of people represented the stock and flow struc- 
ture of claims adjusters (Figure 6-9). Participants in workshops using the model 
were able to understand the system structure much better than if the more abstract 
symbols had been used. 

I am not recommending that you keep the equations or stock and flow dia- 
grams hidden from your client. Never hide your model from a curious client. You 
should always look for and create opportunities for client team members to learn 
more about the modeling process; you should always be prepared to explain the 
workings of your model. 
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Source: Kim 1989. 

And while I caution the mathematically sophisticated modeler against overly 
technical presentation, the opposite problem can also arise: some clients are of- 
fended by what they consider to be simplistic cartoon diagrams and prefer what 
they view as the more professional presentation of stock and flow diagrams or 
even equations. As always, you must get to know your client deeply and early in 
the modeling process. 

Finally, a caution for those with less technical training and mathematical back- 
ground: Clients may not need to understand the deep relationship between their 
bathtub and the mathematics underlying stocks and flows, but you do. While you 
don’t need to be able to solve differential equations to be a successful modeler, you 
do need to understand the structure and dynamics of stocks and flows thoroughly 
and rigorously. 

6.3 MAPPING STOCKS AND FLOWS 

6.3.1 When Should Causal Loop Diagrams Show 
Stock and Flow Structure? 

Causal diagrams can be drawn without showing the stock and flow structure of a 
system. Or, as shown in Figure 6-8, they can include the stock and flow structure 
explicitly. When should you include the stock and flow structure, and when can 
you omit it? Generally, you should include stock and flow structures representing 
physical processes, delays, or stocks whose behavior is important in the dynamics 
you seek to explain. For example, consider the flow of a product through a supply 
chain from producer to consumer. The product travels through a network of stocks 
(inventories) and flows (shipment and delivery rates). The stock and flow repre- 
sentation for this process is shown in the top panel of Figure 6-10. 

Production starts add to the stock of work in process (WIP) Inventory. The 
Production Completion Rate reduces the stock of WIP and increases the stock of 
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Finished Inventory. Shipments to customers deplete Finished Inventory. Equiva- 
lently, the stock of WIP accumulates production starts less completions, and the 
stock of finished inventory accumulates production completions less shipments. 

The causal diagram representation is shown in the bottom panel of Figure 
6- 10. While technically correct, the causal diagram makes it hard to see the physi- 
cal flow of product through the system and the conservation of material in the 
stock and flow chain. It is often confusing to interpret the polarities of the causal 
links when they involve stocks and flows. An increase in the Production Comple- 
tion Rate causes Finished Inventory to rise above what it would have been other- 
wise (it rises at a faster rate), hence the polarity of the link is positive. A decrease 
in production completions, however, does not cause finished inventory to fall. 
Rather, a decrease in the production completion rate causes finished inventory to 
be less than it would have been. You cannot say whether finished inventory will be 
rising or falling based on the behavior of the production rate alone. Inventory will 
rise only when production completions exceed the shipment rate; that is, inventory 
rises only when we add to it faster than we remove units from it. You need to know 
the values of all the flows affecting a stock to determine its behavior. Richardson 
(1986a, 1997) carefully documents the pitfalls of causal diagrams, most of which 
involve the failure of causal diagrams to show the stocWflow distinction. 

CIiALLEMGE Adding Stock and Flow Structure to Causal Diagrams 
Consider the causal loop diagrams in chapter 5. For each, redraw the diagram 
showing the important stock and flow structure along with the feedback structure 
shown in the diagram. In particular, identify the main stocks and flows in the fol- 
lowing conceptualization case studies presented in chapter 5: 
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1. The workload management example. 
2. The oil industry and horse racing examples. 
3. The traffic congestion example. 

In each case, consider whether the explicit representation of the main stocks and 
flows enhances your ability to understand the dynamics of the system or merely 
clutters the diagram. 

Linking Stock and Flow Structure with Feedback 
Often understanding the dynamics of a system requires linking the feedback loop 
structure with the stock and flow structure. As an example, consider the gasoline 
shortages of the 1970s. In 1979 the United States (and some other industrialized 
nations) experienced a severe gasoline shortage. Iran’s exports of oil dropped in 
the wake of the revolution there, and petroleum prices on the world market in- 
creased sharply. Within weeks, a shortage of gasoline began. Some service stations 
found their tanks emptied before the next delivery. Drivers, remembering the first 
oil embargo in 1973 and worried that they wouldn’t be able to get gas, began to top 
off their tanks, instead of filling up only when the gas gauge fell toward empty. 
Soon, long lines of cars were seen idling in front of gas stations, and “Sorry-No 
Gas” signs sprouted along the highways of America as station after station found 
its underground tanks pumped dry. The shortage was the top story on the evening 
news-aerial footage of cars lined up around the block, close-ups of “No Gas” 
signs, and interviews with anxious drivers dominated the news. In some states, 
mandatory rationing was imposed, including limiting purchases to, for example, no 
more than $10 worth of gas. California imposed oddeven purchase rules: Drivers 
were allowed to buy gas only every other day, based on whether their license plate 
number was odd or even. It seemed that the supply of gasoline had been slashed. 

Curiously, the impact of the Iranian revolution on the flow of oil to the US was 
small. True, US oil imports from the Persian Gulf (including Iran) fell by 500,000 
barrels per day between 1978 and 1979, about 3% of US consumption, but imports 
from other nations increased by 640,000 barrels per day, so imports in 1979 actu- 
ally increased by 140,000 barrels per day. Domestic production fell by 150,000 
barrels per day, so total supply was essentially constant, while consumption fell by 
about 330,000 barrels per day, a drop of 2% from 1978. Plainly, for the year as a 
whole, there was no shortage. But if the flow of oil into the US was essentially 
constant, what caused the shortage? Where did the gas go? 

First, develop a stock and flow map for the gasoline distribution system. You 
need not consider the entire supply chain for gasoline but can focus on retail dis- 
tribution. Your diagram should begin with the flow of gasoline to service stations, 
then represent the stock and flow structure for its subsequent storage, sale, and 
eventual combustion. 

Once you’ve mapped the stock and flow structure, identify the information in- 
puts to the rates of flow in your diagram. Assume that the rate at which gasoline is 
delivered to service stations is exogenous. By identifying the information inputs to 
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the flows in your stock and flow map, you will be closing some feedback loops, 
loops which should help explain why the shortage occurred and answer the ques- 
tion, Where did the gas go? Be sure to ask how individual drivers would learn 
about the shortage and what their behavior would then be. 

Finally, using your diagram, assess the likely effectiveness of the maximum 
purchase and odd/even policies. Do policies of this type help ease the shortage or 
make it worse? Why? What policy would you recommend to ease the shortage? 

6.3.2 Aggregation in Stock and Flow Mapping 
The ability to map the stocks and flows in a system is critical to effective model- 
ing. Usually it is wise to identify the main stocks in a system and then the flows 
that alter those stocks. You must select an appropriate level of aggregation and 
boundary for these stock and flow maps. The level of aggregation refers to the 
number of internal categories or stocks represented. The boundary refers to how 
far upstream and downstream one chooses to represent the flows of materials and 
other quantities in the model. 

To illustrate, consider the manufacturing process discussed above in which 
material flows from production starts through WIP inventory to finished inventory 
and finally shipment to the customer. All the various parts, components, and sub- 
assemblies are aggregated together into a single stock of WIP. And though the firm 
may carry tens of thousands of SKUs (stock keeping units), these individual items 
are all aggregated into a single stock of finished inventory. For many purposes the 
aggregate picture is sufficient. However, the model purpose might require more de- 
tail. If the purpose involved a closer look at the manufacturing process, you could 
disaggregate the stock of work in process serially to represent the different stages, 
such as part fabrication, assembly, and testing (Figure 6- 11). 

The sum of the three intermediate stocks is the total work in process inventory, 
but now the model tracks throughput at a finer level of resolution and can represent 
more potential bottlenecks in the production process. Note that in both the original, 
aggregate diagram and in this more detailed diagram there is no provision for re- 
work or scrap. All units started are eventually completed-the flow of widgets 
through the system is conserved. Note also that as material flows through the sys- 
tem it is transformed from parts to finished product. To maintain consistent units 
of measure we might measure parts in widget equivalents-that is, a widget’s 
worth of parts. If necessary for the purpose, you can further disaggregate the stock 
and flow structure. 
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Each of the three stages of WIP identified in Figure 6-11 consists of other steps, 
each with its own stock and flow structure. Suppose you learn that part fabrication 



Chapter 6 Stocks and Flows 21 5 

at the plant you are modeling actually requires several operations: welding, grind- 
ing, and painting. Observation of the grinding operation reveals that workers draw 
parts ready for grinding from a buffer generated by the welding operation. When 
grinding is completed, the parts are placed in a bin which then goes on to the next 
operation (painting). The welding and paint shops are similar. Draw the disaggre- 
gated stock and flow map for the part fabrication step to show the welding, grind- 

Up to now the discussion has focused on serial disaggregation: how finely to 
break down the stages of processing. Throughout, the many different parts and 
products produced by a typical firm are aggregated into a single chain of stocks 
and flows. In many situations the process occurs not only in series but also in- 
volves parallel activities. You could of course replicate the main stock and flow 
chain for each product (many simulation software packages support array struc- 
tures for this purpose). When there are multiple, parallel activities you must make 
a decision not only about the number of stages of the process to represent but also 
how much to aggregate the different parallel processes together. For example, the 
assembly process for automobiles involves integrating the chassis and engine. 
Each subassembly is built on a separate line, often in plants far from the final as- 
sembly point. Suppose the client argues that you can’t aggregate all subcompo- 
nents into a single flow of parts, but must separate chassis and engine fabrication 
(omit the body for simplicity). The stock and flow map for the assembly process 
might be shown as in Figure 6-12. 

There are now three distinct stock and flow chains, one each for engines, chas- 
sis, and assembled cars. Because the three chains are separate, each can be mea- 
sured in different units: engines, chassis, and cars. The three chains are linked 
because each car beginning the final assembly process requires one engine from 
the stock of completed engines and one chassis from the stock of completed chas- 
sis. The information arrows from the assembly rate to the engine and chassis use 
rates show these links. The number of engines and chassis available also determine 
the maximum assembly start rate, which in turn constrains actual assembly starts: 
If either component buffer falls to zero, assembly must cease.2 These links (not 
shown) define two balancing feedbacks that regulate the outflows from the stocks 
of components and couple the stock and flow networks. The diagram does not rep- 
resent many other information flows that must exist in the system (such as the de- 
terminants of the chassis start and completion rates); try adding these to the map. 

You could of course continue to disaggregate. The process can be broken down 
into more steps: The paint process, for example, actually consists of multiple 
activities separated by buffers such as part preparation (solvent bath), drying, 
spraying the first coat, drying in the oven, spraying the second coat, drying, and 
so on, with various inspections along the way. You could also continue the parallel 
disaggregation by splitting the engine or chassis assembly processes into their 

2Firms can sometimes build incomplete units and add the missing components later. When a 
1997 strike shut down a critical supplier, Ford continued to assemble its popular Explorer, storing 
the nearly completed cars until the missing parts became available and could be retrofitted (try 
modifying the diagram in Figure 6-12 to accommodate such retrofitting). 
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FIGURE 6-1 2 Disaggregating parallel activities 
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subassemblies. In the limit each and every part and operation would be represented 
separately. Obviously such a model would be just as complex as the real system, at 
least as hard to understand, and quite useless. 

Where should you stop? How much detail is necessary? This is always a mat- 
ter of judgment to be made by considering the model purpose and the needs of the 
client. If the purpose is representing the lag in the response of the manufacturing 
system to changes in demand as part of a larger model of firm strategy, the simpler 
representation is probably fine. If you seek to reengineer the flow of material 
through the production line, a more detailed representation is required. It is better 
to start with a high-level, aggregate representation and add detail if needed to ad- 
dress the purpose. Beginning with detailed process maps often leads to paralysis 
due to their complexity, data requirements, and rapid obsolescence rates. The ag- 
gregate map showing only production starts, WIP, production, and finished inven- 
tory is quite stable and remains appropriate even as the details of the production 
process change, while a detailed map may become obsolete as new products, tool- 
ing, or process technologies are introduced. 

6.3.3 Guidelines for Aggregation 
When is it appropriate to aggregate different activities together? To determine 
whether activities taking place serially can be aggregated, consider the average 
residence time of items in each stock (the average time between entering and exit- 
ing the stock). Stocks with short residence times relative to the time scale for the 
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dynamics of interest generally do not need to be represented explicitly and can ei- 
ther be omitted or lumped into adjacent stocks. For example, in the long-term plan- 
ning models of the US energy system developed by the US Department of Energy 
(Nail1 1992), various stocks of undiscovered petroleum and known reserves are 
explicitly represented because their lifetimes range from years to decades (at cur- 
rent production rates). However, stocks of crude oil and refined products in the pe- 
troleum supply chain represent only a few months of consumption. In a long-term 
model these stocks are too short-lived to require explicit treatment. They fluctuate 
around their equilibrium values as producers, refiners, and distributors react to 
changes in inventory. In a model of short-term movements in spot petroleum 
prices, however, these stocks are critically important. A good model would repre- 
sent the key stocks in the petroleum supply chain explicitly, perhaps even includ- 
ing a separate stock for the inventory of gasoline at retail service stations and the 
inventory of gasoline in the tanks of cars on the road. On the other hand, a short- 
term spot price model need not include petroleum reserves or undiscovered re- 
sources, as these stocks change too slowly to influence the spot market over a time 
horizon of a year. 

Parallel activities can legitimately be aggregated together if the individual 
flows are governed by similar decision rules and if the time the different items 
spend in the individual stocks is similar. For example, it is often appropriate to ag- 
gregate the many parts required to manufacture a product into a small number of 
categories since they are usually ordered using the same procedures and their de- 
livery lead times and residence times in parts inventories generally don’t differ too 
much. In contrast, plant and equipment sometimes must be disaggregated. Their 
lifetimes are very different, and the decision rules for new green-field facilities dif- 
fer substantially from those used to order equipment for existing facilities due to 
differences in lead times, costs, financing, permitting, and regulatory issues. 

As a rule of thumb, clients generally want to see more detail in a model than 
the modeler thinks is needed, and modelers, in turn, generally overestimate the de- 
tail necessary to capture the dynamics of interest. Of course, the amount of detail 
needed to capture the dynamics relevant to the client’s purpose and the amount of 
detail needed to give the client confidence in the results are two different things. 
Roberts (1977/1978) estimated that clients often require twice as much detail as the 
modeler feels is needed to feel comfortable with and accept a model as a basis for 
action, and in my experience this is often an underestimate. Success requires you 
to include the detail necessary to satisfy the client. But this does not mean you 
should acquiesce to all client demands for more detail-you will end up with an 
expensive and useless black box. You must work with the client to understand why 
excessive detail is often unnecessary. Often, models end up with too much detail, 
but as the client gains confidence and understanding of the important feedbacks 
driving the dynamics, the excess structure can be eliminated, resulting in a simpler, 
more easily maintained, and more useful model (Randers 1980). Still, Roberts is 
correct: “You must provide the level of detail that causes [the client] to be per- 
suaded that you have properly taken into account his issues, his questions, his level 
of concerns. Otherwise he will not believe the model you have built, he will not ac- 
cept it, and he will not use it” (p. SO). 
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6.3.4 System Dynamics in Action: 
Modeling Large-Scale Construction Projects 

Aggregation of multiple serial and parallel activities is well illustrated in a model 
of large construction projects developed by Jack Homer (Homer et al. 1993). The 
client was a multinational forest products company, specifically the division of the 
company that designs and builds pulp and paper mills. Competition for the small 
number of mills built each year was intensifying as the industry globalized, and the 
firm, already a leader, saw that to remain strong they had to dramatically reduce 
the time required to design and build mills. Their goal was to reduce significantly 
the total cycle time, from the handshake with a customer to the handoff of a work- 
ing mill, without increasing costs. They knew traditional project management tech- 
niques were not adequate: the design and construction process is exceedingly 
complex, with tight couplings among the phases, and they had already done all the 
easy things. They decided to develop a system dynamics model of the entire engi- 
neering, procurement, and construction (EPC) process. 

Early meetings of the project team focused on the model boundary and aggre- 
gation, in particular, descriptions of the stock and flow structure of a typical pro- 
ject. Many issues were raised: Is there a typical project? How much detail is 
needed? What activities could be aggregated together? One member of the client 
team argued that the model couldn’t be useful if it didn’t represent every engineer- 
ing drawing, every purchase order, and every component installed at the site. Ob- 
viously, such a model could never be built or made useful. Other members of the 
client team argued for a simpler approach. They already had highly disaggregate 
scheduling and planning models based on traditional project management tools to 
manage the detail complexity of the projects. They lacked a tool to manage the dy- 
namic complexity and interdependencies among the phases and activities of the 
projects. 

After extensive discussion, an initial model boundary and level of aggregation 
were set (Figure 6-13). The figure is a high-level subsystem diagram showing how 
projects were aggregated into a reasonable number of phases. The overall project 
was divided into two main stock and flow chains representing P&E (process and 
equipment) and construction. Each activity goes through design preparation, re- 
view, and design revisions. Next suppliers are selected and purchase orders are is- 
sued. The suppliers then fabricate the materials needed for each activity. On the 
construction side, the client felt it was acceptable to aggregate all construction ma- 
terials (e.g., structural steel, concrete forms, rebar) into a single category. The 
process and equipment side, however, was divided into three categories: reactor 
vessels, major equipment (e.g., large tanks, pipelines, and conveyors), and minor 
equipment (e.g., pumps, motors, valves, and instrumentation). The design, pro- 
curement, and construction of these types of equipment are sufficiently different in 
scope, duration, and cost that they could not reasonably be lumped together. The 
reactor vessels, in particular, had to be modeled in more detail as they are the 
largest subassembly, almost always fall on the critical path, and are frequently a 
bottleneck constraining construction progress. During construction, reactor ves- 
sels, other equipment, and site preparation such as foundations and grading all 
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FIGURE 6-13 

Subsystem diagram showing flows of engineering, procurement, and construction work in a model of 
a pulp mill construction project. The diagram illustrates the sector boundaries and level of aggregation 
without showing all details. Each block represents a project phase, modeled with a generic module with 
roughly the same structure. An internal gate captures the constraints on work available within a phase 
as a function of ,the work completed. For example, foundations cannot be completed until surveying 
and site prepara.tion are done; see section 14.5. 
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Source: Homer et al. (1993). 

must come together, followed by a functionality check out, start-up and, finally, 
handoff to the customer. 

Each block in Figure 6-13 represents a project phase. The model consisted of 
a generic project phase module, replicated for each block and linked as shown. 
Each module contained a stock and flow structure including the flows of tasks 
within the phase along with scheduled deadlines, the labor force dedicated to the 
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FIGURE 6-1 4 
Stock and flow 
structure of tasks 
in a project phase 
Simplified repre- 
sentation of the 
stock and flow 
structure of a 
phase in the pulp 
mill project model. 
Determinants of 
the flows and cou- 
plings among the 
different phases 
are not shown. 
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phase, worker productivity, fatigue levels, error rates, and costs. The stock and 
flow structure for tasks within a phase models the progression of tasks from base- 
work through completion (Figure 6-14). In general the tasks to be completed in a 
phase can only be done as upstream tasks upon which they depend are completed 
(the rate at which basework tasks become available). For example, the reactor ves- 
sels cannot be erected on site until their foundations are completed. Likewise, not 
all tasks within a given phase can be done concurrently. For example, the detailed 
design of conveyors and pipelines between the chippers, reactor vessels, and paper 
machines cannot be done until the high-level physical design of the plant is com- 
pleted. These within- and between-phase dependencies were modeled explicitly. 
The flow of work from the stock of tasks awaiting completion to the stock of tasks 
requiring rework represents those tasks completed incorrectly or rendered obsolete 
by changes in other subsystems. Generally, errors are not detected immediately and 
the delay in the discovery of rework can be substantial, as when a design error is 
not detected until construction in the field is underway. The discovery of rework 
moves tasks thought to be complete back into the stock of tasks awaiting comple- 
tion (see Ford and Sterman 1998b for a detailed and fully documented model of a 
multiphase project similar to the one used here; see also the shipbuilding project 
model described in section 2.3). 

The model was substantially simpler than the client firm’s detailed project 
planning model, which included literally thousands of individual activities (high 
detail complexity) but no feedback loops (no dynamic complexity). It was disag- 
gregated enough to capture important interdependencies among design, procure- 
ment, and construction activities and between construction and the various types of 
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equipment. The model could capture shifts in the critical path that might result 
from policies accelerating the fabrication of the reactor vessels, a policy favored by 
some client team members. 

It is important to note that the process of developing the final level of aggre- 
gation involved a number of iterations and revisions. And though the model repre- 
sents the project at a high level of aggregation, the modeling team developed many 
more detailed diagrams. These more detailed maps helped the modeler and client 
team discover flaws in their thinlung, estimate parameters better, and deepen their 
understanding of the process. And they developed confidence that the more aggre- 
gate representation in the simulation model was acceptable for their purpose so 
these more detailed stock and flow structures did not have to be incorporated into 
the model. 

The level of detail selected also permitted the model to be calibrated against a 
wide range of data collected on one of the company’s current EPC projects. The 
model successfully (that is, to the satisfaction of the client) reproduced all relevant 
project activities, including the various workforces and labor hours, overtime and 
rework rates, purchase order volumes and revision rates, vendor shipments, and the 
progress of vessel erection and construction (Figure 6-15 shows an example). 

While the clients prefer not to disclose the details of policy recommendations, 
they viewed the model as credible and useful and developed confidence, shared 
among the team, that the model did a good job of representing their EPC projects. 
They used the model to analyze many policies and identified several which, while 
previously appearing to be desirable, in fact generated harmful side effects. The 
model also helped identify policies that reduced project delivery times by at least 
30% within a few years. Several of the policies were not apparent to the client team 
or were hotly debated prior to the modeling effort. The modeling process helped 
build understanding of and consensus around these controversial initiatives, help- 
ing the firm successfully implement many of the recommendations. 

FIGURE 6-1 5 !Sample comparison of historical and simulated behavior of the pulp mill model 

P&E = process and equipment. 
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----  Actual 

- Simulated 

-- --  Actual 

- Simulated - Simulated - Simulated 

0 20 40 60 80 100 0 20 40 60 80 100 

Time units Time units 
Note: Time is expressed as time units to protect client confidential information. 
Source: Homer et al. (1 993). 
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6.3.5 Setting the Model Boundary: 
“Challenging the Clouds” 

Mapping the stock and flow structure of a system involves important decisions 
about the boundary of the model. In reality, flows of material, people, and money 
into a stock have to come from somewhere; the flows out have to go somewhere. 
To keep your models manageable, you must truncate these chains using sources 
and sinks, represented in the stock and flow maps by ‘‘clouds’’; see Figure 6-1. 
Sources and sinks represent the stocks supplying material to or absorbing material 
from the modeled system. Sources and sinks are assumed to have infinite capacity 
and can never constrain the flows they support. In the real world, the stocks sup- 
plying or absorbing flows have finite capacity and do influence the flows. When 
you truncate a stock and flow chain with a cloud you are setting the boundary of 
the model-stocks and flows beyond this point are ignored; you exclude all possi- 
ble feedbacks from or interactions with the stocks outside the boundary. 

As a modeler you must critically examine these boundary assumptions; you 
must, in the words of Barry Richmond (1993, p. 132), “challenge the clouds.” Is it 
appropriate for your purpose to exclude the stocks outside the boundary of the 
model? What feedbacks ignored by your model might exist in the real world, and 
might they affect your policy recommendations? Can the sources for the flows be 
depleted and constrain the inflow? Can the sinks be filled and block the outflows, 
backing up the system like a clogged drain? 

Consider the automobile industry. A stock and flow map for automobile pro- 
duction might begin with production starts, WIP inventory, production, finished in- 
ventory, and shipments (Figure 6-16). Drawing the map with a source for the 
production start flow presumes that the supply of parts is unlimited and can never 
constrain the production start rate. Likewise, because shipments flow to a sink, the 
modeler has assumed stocks of product in the hands of dealers and customers have 
no effect on shipments. In challenging the clouds you ask whether these assump- 
tions are reasonable. For the auto industry they are not. Production starts require 
the automaker to have an adequate stock of parts. Yet parts stocks may easily be 
depleted. Suppliers cannot respond instantly to changes in parts orders. Large or- 
ders may outstrip supplier capacity, leading to shortages. A strike at a supplier may 
interrupt the flow of parts to the firm. At the other end, shipments of new cars to 
dealers depend on the size of dealer stocks. Dealers generally try to maintain about 
40 to 60 days of inventory on their lots; this is enough to provide good selection for 
consumers without carrying excessive and costly inventory. If stocks are low rela- 
tive to their targets, dealers order more from the manufacturers; if stocks are high, 
they cut back. Figure 6-17 expands the model boundary to capture these effects. 
The model now represents three distinct organizational entities-suppliers, manu- 
facturers, and dealers. The inventory of parts held by the manufacturer is now ex- 
plicit. The supplier has the same basic structure as the automaker: a stock of 
finished inventory and a stock of work in process. At the shipment end, manufac- 
turer shipments no longer disappear into a sink but flow into dealer stocks, allow- 
ing you to model the purchase rate as a function of the dealer inventory and sales 
to customers. 
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FIGURE 6-1 6 
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You could and should continue to challenge the boundary of the model. The 
model now allows you to represent supplier order processing, inventory manage- 
ment, and delivery, including the possibility that suppliers can become a bottleneck 
and starve automobile production. But now the suppliers are assumed to have un- 
limited parts and raw materials availability. Is this appropriate? It depends on the 
model purpose. You could continue to expand the model boundary by adding the 
suppliers to the suppliers, and their suppliers, and so on, until you reached the point 
where it is acceptable to assume that the supply of materials to the farthest up- 
stream supplier is unlimited. Alternatively, you could represent the entire upstream 
supply chain by a single aggregate supplier stage. 

The map shown in Figure 6-17 also assumes that dealer sales flow into a sink 
so there is no feedback from the stock of cars on the road to purchases of new cars. 
This is obviously a bad assumption: Sales of new cars depend on the number and 
age of the cars people already have relative to their needs. People who have just ac- 
quired a new car are unlikely to buy another for several years, until their loan is 
paid off, their lease expires, or their car is involved in an accident and must be re- 
placed (see section 2.2). Figure 6-18 expands the downstream end of the stock and 
flow map to include the stock of cars on the road. 

You can continue to challenge the model boundary. What happens to the 
cars when they are scrapped? In the current map, they simply disappear. In reality, 
they don’t. In North America some 10 to 12 million vehicles are scrapped per 
year. Roughly 94% are shredded and the steel and some nonferrous metals are 
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FIGURE 6-17 
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recovered, one of the highest recycling fractions of any industry. However, some 
cars end up abandoned as dangerous eyesores on the side of the road. And much of 
the plastic, glass, and other nonmetal materials end up in landfills, constituting a 
significant source of pollution (more than two billion discarded tires, most sitting 
in huge piles across the country, have already accumulated in the US). 
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6.3.6 System Dynamics in Action: 
Automobile Recycling 

By the mid 1990s, as landfills filled and environmental awareness grew, pressure 
built to recycle more of the material in cars. Germany debated a law that would re- 
quire auto manufacturers to take back their old cars when people deregistered 
them. Pushed by these forces, the auto industry, first in Europe and then in the US, 
began to study ways to increase the recovery of parts and the recycling of materi- 
als from cars. 

Pave1 Zamudio-Ramirez (1996) modeled part recovery and the materials recy- 
cling in the US auto industry to help the industry think about a future of enhanced 
auto recycling. Figure 6-19 shows a simplified stock and flow structure adapted 
from the model. Old or wrecked cars can either be scrapped legally (sold to a junk- 
yard or dismantler) or illegally abandoned. The stock of abandoned, often burned- 
out, cars is a blight on the landscape and significant source of pollution. There are 
two outflows from the stock of illegally abandoned cars: Dismantlers will process 
them if the value of the recoverable parts and materials is high enough. Alterna- 
tively, illegally dumped cars can be collected (say by local governments) and taken 
to shredders for proper disposal. Both these flows are relatively small, so the stock 
of abandoned cars can build up to high levels even if the abandonment rate is low. 

Cars held in the dismantlers’ inventories are stripped of those parts whose 
value exceeds the cost of recovery. These parts enter a used parts stock and are 
then sold to repair shops and used to replace worn or damaged parts on operating 
cars. In this map, the part usage rate flows into a sink. In actuality, these parts are 
installed in cars still on the road and eventually flow again through the scrap or 
abandonment rate. Since the number of recovered parts is very small relative to the 
total flow of materials through the system, this omission is probably reasonable. 
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FIGURE 6-1 9 Stock and flow map for a model of automobile recycling 
The stock and flow structure for the development of new vehicle platforms, defining the mass and 
materials composition of cars and level of design for disassembly, is not shown. The model includes a 
parallel stock and flow structure (co-flow) tracking each of these properties as vehicles age and are 
eventually retired, dismantled, and shredded. See chapter 12. 
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After all parts worth recovering are removed, the gutted car, now called a hulk, 
is sold to a shredder. In the mid 1990s there were about 200 shredders in the US 
who processed roughly 94% of all deregistered cars. After shredding, the valuable 
materials (principally steel and some nonferrous metals) are separated out for re- 
cycling. If the prices of the recovered materials don’t justify the cost, shredders can 
take hulks directly to a landfill and cut their purchases from dismantlers. What re- 
mains after shredding and separation is a mixture of plastics, glass, elastomers, and 
some unrecovered metal called automotive shredder residue (ASR) or “fluff,” 
which is then landfilled. ASR is one of the major environmental concerns gener- 
ated by the disposal of old cars. 

The recyclable materials accumulate in an inventory and are eventually sold to 
materials processors such as steel mills. The inventory of raw materials is then 
used to manufacture new products, including automobiles, thus helping to create a 
closed material flow and cutting the use of nonrenewable resources. As in the case 
of parts, the materials usage rate flows into a sink since the flow of recovered ma- 
terials relative to the total flow of virgin materials is small. 

Zamudio-Ramirez’s model included a rich feedback structure representing the 
behavior of the various actors in the system, including the automakers, car owners, 
dismantlers, and shredders. Markets for recovered materials were explicit. The 
stock and flow structure for autos began at the design stage for new models and 
platforms and tracked key properties of the cars including their mass, materials 
composition (ferrous, nonferrous, plastics), and the level of design for disassembly 
built into the design. These attributes were tracked as the cars embodying them 
moved from the design stage to market, age, and are then retired, dismantled, and 
shredded. 

To gather the required data, Zamudio-Ramirez conducted interviews with var- 
ious actors, including carmakers, dismantlers, shredders, and industry analysts and 
made extensive use of various auto and recycling industry databases. Some of the 
data required, such as age-dependent scrap rates for cars, were relatively easy to 
gather. Other key parameters were not. Two critical relationships in the model are 
the supply curves for recovered parts and recovered materials. That is, how will the 
number of parts recovered by dismantlers vary as the price they can get and the 
costs of recovery vary? 

Estimating the parts supply curve is a daunting problem. The principal cost of 
recovery is the labor time required to remove a part. But the time required to re- 
move a given part depends on how many other parts must be removed first. These 
precedence relationships depend on the design of the car and the value of the in- 
tervening parts (can the seat be ripped out quickly to get at a valuable part under it 
or must it be removed carefully? Should workers get at a part from in front or be- 
hind?). To estimate these relationships Zamudio-Ramirez worked at the Vehicle 
Recycling Partnership, a consortium of the Big Three US automakers, dismantlers, 
and the recycling industry. The Vehicle Recycling Partnership assembled a com- 
prehensive database of part removal times by completely disassembling a variety 
of late model cars. Zamudio-Ramirez and his colleague Andrew Spicer then de- 
veloped an optimization model to estimate the supply curve for parts recovery as 
functions of part and materials prices, labor costs, and the design of the vehicles. 
The optimization model determined the number of parts worth recovering and the 
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optimal dismantling order for any set of prices, labor costs, and design parame- 
ters-the supply curve for recovered parts. The results of the optimization model 
were then embedded in the simulation model. As the design parameters for cars 
change and the removal time for key parts falls, the estimated supply curve re- 
sponds by realistically increasing the number and types of parts recovered. 

Though the stock and flow structure in Figure 6-19 is simplified and does not 
show any of the feedback structure determining the various flows from the full 
model, it illustrates the response of the automobile and materials markets to poli- 
cies designed to increase recycling of cars. 

First consider the effect of a design for disassembly (DFD) program designed 
to increase the part recovery rate and reduce the amount of fluff ending up in land- 
fills. DFD can reduce the labor cost of part recovery through better design, differ- 
ent choice of part fasteners, improved selection and labeling of materials, and other 
techniques. The first effect is ... nothing. There is a lag of at least several years be- 
tween the time an automaker starts a DFD program and the time the first cars de- 
signed to those specs roll off the assembly line. The average car in the United 
States stays on the road for about a decade, and new cars have very low scrap rates 
(most of these are wrecks declared total losses by insurance companies). Only af- 
ter a delay of many years will the stock of recycling-ready cars be large enough 
and old enough for them to constitute a significant fraction of the scrapped cars 
purchased by dismantlers. 

What then happens? Manufacturers expected DFD would eventually cause 
part and material recovery to rise, permanently reducing the flow of materials to 
landfills. Instead, the model suggests the next effect will be a glut of used parts, as 
the part recovery rate rises above the used parts usage rate. As parts inventories 
build, the price dismantlers can get for used parts falls. The number of parts that 
can be economically recovered drops, and the dismantling rate drops back. Prices 
continue to fall until the number of parts recovered falls enough to balance the 
used parts usage rate. The part usage rate may rise, stimulated by lower prices, but 
unless the demand for used parts is highly price elastic, the part recovery rate will 
drop back close to its original rate prior to DFD. The demand for used parts is 
likely to be rather insensitive to price. Automakers and third-party producers of re- 
placement parts will be reluctant to lose the lucrative parts market and may be able 
to prohibit the use of recovered parts by authorized service centers or for warranty 
repairs or compete on price. If the demand for used parts is inelastic, the principal 
effect of DFD might simply be to depress the price of used parts, offsetting most 
of the benefit of improved design. 

Now consider the effect of a trend toward smaller, lighter cars with signifi- 
cantly higher plastic content and less steel and metal. Such changes are promoted 
to improve fuel economy, increase part recoverability, and decrease the quantity of 
fluff ending up in landfills. However, the stock and flow structure may cause the 
impact of such policies to be counter to their intent. The auto industry is a signifi- 
cant consumer of steel. When new cars begin to use less, the recovery of steel from 
shredding of old hulks continues at the prior rate. The price of scrap metal will fall, 
reducing shredder profitability. The number of hulks shredded and the quantity of 
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metals recovered may fall, and the volume of fluff disposed in landfills may actu- 
ally rise. Further, once the scrap rate of cars with reduced steel content increases, 
shredder profit can fall further. With less steel and nonferrous content, shredder 
revenue per hulk falls, while the fixed costs of shredding remain the same. Zamu- 
dio-Ramirez found that a sustained increase in the plastic content of cars, as ex- 
pected, would increase the fraction of materials recovered by dismantlers. But cars 
with less recyclable metal could also depress hulk prices enough to cut shredder 
profit, decrease the shredding rate, and actually increase the number of abandoned 
cars and the amount of fluff buried in landfills. 

The stock and flow map helps illustrate the long delays between a change in 
the design of cars and the flows of old cars to landfills. By making the stocks of re- 
covered parts and materials explicit, it is easier to see that there is imperfect coor- 
dination between inflows and outflows, leading to potential imbalances and 
changes in prices that invalidate the assumptions behind recycling programs. In- 
stitutional structures such as requirements that service centers use new replacement 
parts can overwhelm the logic of the market. Market mechanisms, even when pre- 
sent, are not likely to work smoothly, possibly leading to instability and ineffi- 
ciency. Similar dynamics have already been observed in the market for recycled 
paper (Taylor 1999). Supply side steps to increase recyclability alone are not likely 
to be effective unless matched by policies to increase the usage of recovered parts 
and materials. The collection of recyclable materials and the actual recycling of 
those materials aren’t the same thing. 

6.4 SUMMARY 
This chapter introduced the stock and flow concept. Stocks accumulate their in- 
flows less their outflows. Stocks are the states of the system upon which decisions 
and actions are based, are the source of inertia and memory in systems, create de- 
lays, and generate disequilibrium dynamics by decoupling rates of flow. The dia- 
gramming notation for stocks and flows can be used with a wide range of 
audiences and makes it easier to relate a causal diagram to the dynamics of the sys- 
tem. Stocks accumulate (integrate) their inflows less their outflows. Equivalently, 
the rate of change of a stock is the total inflow less the total outflow. Thus a stock 
and flow map corresponds exactly to a system of integral or differential equations. 
However, stock and flow maps are much easier to work with and explain. 

There are several ways to identify the stocks in systems. In the snapshot test 
you imagine freezing the system at a moment of time-the measurable quantities 
(physical, informational, and psychological) are the stocks, while flows are not in- 
stantaneously observable or measurable. Units of measure can also help identify 
stocks and flows. If a stock is measured in units, its flows must be measured in 
units per time period. 

Stocks existing in series in a network can be aggregated together if they are 
short-lived relative to the time horizon and dynamics of interest. Multiple parallel 
activities can be aggregated into a single stock and flow network if the activities 
are governed by similar decision processes and utilize similar resources and if the 
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residence times of the items in the stocks is similar enough for the purpose of your 
model. 

Sources and sinks for the flows in a system have infinite capacity, unlike 
stocks in the real world, and thus represent the boundary of the model. Modelers 
should always challenge these boundary assumptions, asking if the assumption of 
infinite supply for sources and infinite absorption capacity for sinks is appropriate 
relative to the model purpose. 



7 

Dynamics of Stocks and Flows 

Nature laughs at the dificulties of integration. 
-Pierre-Simon de Laplace (1749-1827) 

The successes of the differential equation paradigm were impressive and 
extensive. Many problems, including basic and important ones, led to 
equations that could be solved. A process of self-selection set in, wheveby 
equations that could not be solved were automatically of less interest than 
those that could. 

-Ian Stewart (1989, p. 39). 

Chapter 6 introduced the stock and flow concept and techniques for mapping the 
stock and flow networks of systems. This chapter explores the behavior of stocks 
and flows. Given the dynamics of the flows, what is the behavior of the stock? 
From the dynamics of the stock, can you infer the behavior of the flows? These 
tasks are equivalent to integrating the flows to yield the stock and differentiating 
the stock to yield its net rate of change. For people who have never studied calcu- 
lus, these concepts can seem daunting. In fact, relating the dynamics of stocks and 
flows is actually quite intuitive; it is the use of unfamiliar notation and a focus on 
analytic solutions that deters many people from study of calculus. 

What if you have a strong background in calculus and differential equations? 
It is generally not possible to solve even small models analytically due to their high 
order and nonlinearities, so the mathematical tools many people have studied are 
of little direct use. If you have more mathematical background you will find this 
chapter straightforward but should still do the graphical integration examples and 
challenges to be sure your intuitive understanding is as solid as your technical 
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knowledge. Modelers, no matter how great or small their training in mathematics, 
need to be able to relate the behavior of stocks and flows intuitively, using graphi- 
cal and other nonmathematical techniques. The chapter also illustrates how stock 
and flow dynamics give insight into two important policy issues: global warming 
and the war on drugs. 

7.1 RELATIONSHIP BETWEEN STOCKS AND FLOWS 
Recall the basic definitions of stocks and flows: the net rate of change of a stock is 
the sum of all its inflows less the sum of all its outflows. Stocks accumulate the net 
rate of change. Mathematically, stocks integrate their net flows; the net flow is the 
derivative of the stock. 

7.1 .I Static and Dynamic Equilibrium 
A stock is in equilibrium when it is unchanging (a system is in equilibrium when 
all its stocks are unchanging). For a stock to be in equilibrium the net rate of 
change must be zero, implying the total inflow is just balanced by the total outflow. 
If water drains out of your tub at exactly the rate it flows in, the quantity of water 
in the tub will remain constant and the tub is in equilibrium. Such a state is termed 
a dynamic equilibrium since the water in the tub is always changing. Static equi- 
librium arises when all flows into and out of a stock are zero. Here not only is the 
total volume of water in the tub constant, but the tub contains the same water, hour 
after hour. The number of members of the US senate has been in dynamic equilib- 
rium since 1959 when Hawaii joined the union: the total number of senators re- 
mains constant at 100 even as the membership turns over (albeit slowly). The stock 
of known Bach cantatas is in static equilibrium since we are unlikely to lose the 
ones we know of, the odds of discovering previously unknown cantatas are remote, 
and Bach can’t write any new ones. 

7.1.2 Calculus without Mathematics 
To understand dynamics, you must be able to relate the behavior of the stocks and 
flows in a system. Given the flows into a stock, what must the behavior of the 
stock be? Given the behavior of the stock, what must the net rate of change have 
been? These questions are the domain of the calculus. Calculus provides rules to 
answer these questions mathematically provided you can characterize the behavior 
of the stocks or flows as mathematical functions. Calculus is one of the most beau- 
tiful and useful branches of mathematics but one far too few have studied. Happily, 
the intuition behind the relationship between stocks and flows is straightforward 
and does not require any mathematics. If you are shown a graph of the behavior of 
the flows over time, you can always infer the behavior of the stock. This process is 
known as graphical integration. Likewise, from the trajectory of the stock you can 
always infer its net rate of change, a process known as graphical diflerentiation. 
Integration and differentiation are the two fundamental operations in the calculus. 
Table 7-1 provides the definitions graphically and in plain language. 

The amount added to a stock during any time interval is the area bounded by 
the curve defining its net rate of change. Why? Consider the bathtub metaphor 
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TABLE 7-1 Integration and differentiation: definitions and examples 

Integration Differentiation 

Stocks accurriulate or integrate their net flow. 
The quantity added to a stock over any interval 
is the area bounded by the graph of the net rate 
between the start and end of the interval. The 
final value of Ihe stock is the initial value plus the 
area under the net rate curve between the initial 
and final times. 
In the example below, the value of the stock at 
time tl = Si. E\dding the area under the net rate 
curve between times tl and t2 increases the 
Stock to S2. 

The slope of a line tangent to any point of the 
trajectory of the stock equals the net rate of 
change for the stock at that point. The slope of 
the stock trajectory is the derivative of the stock. 
In the example below, the slope of the stock 
trajectory at time t, is R1, so the net rate at ti = 
R1. At time t2, the slope of the stock is larger, so 
the net rate at t, = R2 is greater than R1. The 
stock rises at an increasing rate, so the net rate 
is positive and increasing. 
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again. How much water is added to the tub in any time interval, such as between 
time tl and t, in Table 7-l? Divide the entire interval into a number of smaller seg- 
ments, each small enough that the net flow of water is not changing significantly 
during the segment (Figure 7-1). The length of each segment is called “dt” for 
“delta time.” How much water flows in during each small interval of duration dt? 
The quantity added is the net flow during the interval, say R, multiplied by 
the length of the interval, that is, the area of the rectangle dt periods wide and 
R unitslperiod high: 

Quantity added during interval of length dt = R * dt 
(Units) = (UnitsRime) (Time) (7-1) 

Note the units of measure: The flow in units per time, accumulated for a period of 
time yields the quantity added to the stock. 

To use a concrete example, suppose tl = 1 minute and t2 = 2 minutes. The 
question is how much water flows into the tub during that minute. Divide the 
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FIGURE 7-1 I 
Graphical 
integration 
Divide time into 
small intervals of 
length dt. Each 
rectangle repre- 
sents the amount 
added during the 
interval dt, assum- 
ing the net rate Ri 
at that time re- 
mains constant 
during the interval. 
The area of each 
rectangle is Ridt. 
The total added to 
the stock between 
t, and t2 is then the 
sum of the areas 
of the rectangles. 
Dividing time into 
smaller increments 
increases the 
accuracy of the 
approxi mation. 

minute up into six 10-second intervals and assume the flow is constant throughout 
each of these intervals. If at the start of the first interval the flow was 6 liters per 
minute (that is, 0.1 liters/second), then the amount added would be (0.1 literdsec- 
ond)(lO seconds) = 1 liter. At the start of the second 10-second interval, the flow 
has increased, perhaps to 7 literdminute, or about 0.117 literdsecond. The area of 
the second rectangle is then 1.17 liters. Calculating the area of all six rectangles 
and adding them together gives an approximation of the total volume of water 
added during the minute. The approximation isn't perfect because the net flow is 
actually changing during each 6-second interval. In Figure 7-1, the flow is actually 
rising, so the calculated value of the stock will be too small. To increase the accu- 
racy of the approximation, simply divide time into even finer intervals, increasing 
the number of rectangles. Computer simulations integrate the stocks in the model 
in precisely this fashion; the modeler must choose the time step dt so that the ap- 
proximation is acceptable for the purp0se.l In the limit, as the time interval be- 
comes infinitesimal, the sum of the areas of all the rectangles becomes equal to the 
total area under the net rate curve. Calculus provides formulas that give the exact 
area under the net rate-provided the net rate can be expressed as a certain type of 
mathematical function. But whether the net rate can be integrated analytically or 
not, the amount added to a stock is always the area under the net rate. Graphical in- 
tegration is the process of estimating that area from a graph of the net rate. 

7.1.3 Graphical Integration 
To illustrate graphical integration, consider the most basic stock and flow system: 
a single stock with one inflow and one outflow. Assume the flows are exogenous- 
there are no feedbacks from the stock to either flow. Suppose the outflow from the 

'The procedure described above is known as Euler integration and is the most commonly used 
method for numerical simulation. Other methods such as Runge-Kutta integration use more sophis- 
ticated methods to estimate the area and select the timt step. See Appendix A. 
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FIGURE 7-2 
Graphical 
integration: 
example 
While the rate 
steps up and steps 
down, the stock 
rises and remains 
at a higher level. 
Note the different 
units of rneasure 
for the rate and 
stock. 
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stock is zero. Suppose also that the inflow to the stock follows the pattern shown 
in Figure 7-2. The inflow begins at zero. At time 10 the inflow suddenly increases 
to 20 unitdsecond, remains at that level for 10 seconds, then steps back down to 
zero. If the initial level of the stock is 100 units, how much is in the stock at time 
30, and what is the behavior of the stock over time? 

Table 7-2 shows the steps involved in graphical integration. Applying these 
steps to Figure 7-2, first make a set of axes for the stock, lined up under the graph 
for the flows. Next calculate the net rate. Since there is only one inflow and one 
outflow, and since the outflow is zero at all times, the net rate of change of the 
stock (Total Inflow - Total Outflow) simply equals the inflow. Initially, the stock 
has a value of 100 units. Between time 0 and time 10, the net flow is zero units/ 
second, so the stock remains constant at its initial value. At time 10, the net rate 
jumps to 20 unitshecond and remains there for 10 seconds. The amount added is 
the area under the net rate curve (between the net rate curve and the zero line). 
Since the rate is constant, the area is a rectangle 20 unitshecond high and 10 sec- 
onds long, so the stock rises by 200 units, giving a total level of 300 units by time 
20. Because the net rate is positive and constant during this interval, the stock rises 
linearly at a rate 20 unitshecond (the slope of the stock is 20 units/second). 

At time 20, the inflow suddenly ceases. The net rate of change is now zero and 
remains constant, and the stock is again unchanging, though now at the level of 
300 units. 

Note how the process of accumulation creates inertia: though the rate rises and 
falls back to its original level, the stock does not return to its original level. Instead, 
it remains at its maximum when the net rate falls back to zero. In this fashion, 
stocks provide a memory of all the past events in a system. The only way for the 
stock to fall is for the net rate to become negative (for the outflow to exceed the in- 
flow). Note also how the process of accumulation changed the shape of the input. 
The input is a rectangular pulse with two discontinuous jumps; the output is a 
smooth, continuous curve. 
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TABLE 7-2 
Steps in graphical 
integration 

1. Calculate and graph the total rate of inflow to the stock (the sum of all 
inflows). Calculate and graph the total rate of outflow from the stock (the 
sum of all outflows). 

2. Calculate and graph the net rate of change of the stock (the total inflow less 
the total outflow). 

3. Make a set of axes to graph the stock. Stocks and their flows have different 
units of measure (if a stock is measured in units its flows are measured in 
units per time period). Therefore stocks and their flows must be graphed on 
separate scales. Make a separate graph for the stock under the graph for 
the flows, with the time axes lined up. 

4. Plot the initial value of the stock on the stock graph. The initial value must 
be specified; it cannot be inferred from the net rate. 

5. Break the net flow into intervals with the same behavior and calculate the 
amount added to the stock during the interval. Segments might be intervals 
in which the net rate is constant, changing linearly, or following some other 
pattern. The amount added to or subtracted from the stock during a 
segment is the area under the net rate curve during that segment. For 
example, does the net flow remain constant from time t, to time t,? If so, 
the rate of change of the stock during that segment is constant, and the 
quantity added to the stock is the area of the rectangle defined by the net 
rate between t, and tp. If the net rate rises linearly in a segment, then the 
amount added is the area of the triangle. Estimate the area under the net 
rate curve for the segment and add it to the value of the stock at the start of 
the segment. The total is the value of the stock at the end of the segment. 
Plot this point on the graph of the stock. 

6. Sketch the trajectory of the stock between the start and end of each 
segment. Find the value of the net rate at the beginning of the segment. 
Is it positive or negative? If the net flow is positive, the stock will be 
increasing at that time. If the net flow is negative, the stock will be 
decreasing. Then ask whether it is rising or falling at an increasing or 
decreasing rate, and sketch the pattern you infer on the graph. 
If the net rate is positive and increasing, the stock increases at an 
increasing rate (the stock accelerates upward). 
If the net rate is positive and decreasing, the stock increases at a 
decreasing rate (the stock is decelerating but still moving upward). 
If the net rate is negative and its magnitude is increasing (the net rate is 
becoming more negative), the stock decreases at an increasing rate. 
If the net rate is negative and its magnitude is decreasing (becoming less 
negative), the stock decreases at a decreasing rate. 

7. Whenever the net rate is zero, the stock is unchanging. Make sure that 
your graph of the stock shows no change in the stock everywhere the net 
rate is zero. If the net rate remains zero for some interval, the stock 
remains constant at whatever value it had when the net rate became zero. 
At points where the net rate changes from positive to negative, the stock 
reaches a maximum as it ceases to rise and starts to fall. At points where 
the net rate changes from negative to positive, the stock reaches a 
minimum as it ceases to fall and starts to rise. 

8. Repeat steps 5 through 7 until done. 
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FIGURE 7-3 
Note the me-quarter cycle lag between the peaks of the net flow and the peaks of the stock. 

The accumulation process creates delays. 
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Now consider the flows specified in the top panel of Figure 7-3. The outflow 
is constant at 100 unitdmonth, but the inflow fluctuates around an average of 100 
with a period of 12 months and an amplitude of +50 unitdmonth. At the start, the 
inflow is at its maximum. Assume the initial value of the stock is 500 units. 

Since the outflow is constant, the net inflow is a fluctuation with amplitude 
F50 unitdmonth and a mean of zero. The stock begins at its initial value of 500 
units, but since the inflow is at its maximum, the stock initially rises with a slope 
of 50 unitdmonth. However, the net flow falls over the first 3 months, so the stock 
increases at a decreasing rate. At month 3 the net flow reaches zero, then goes neg- 
ative. The stock must therefore reach a maximum at month 3 .  The amount added 
to the stock in the first 3 months is the area under the net rate curve. It is not easy 
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to estimate the area from the graph because the net rate curve is constantly chang- 
ing. You could estimate it by approximating the area as a set of rectangles, as de- 
scribed above, though this would take time. Using simulation to carry out the 
accumulation shows that a little less than 100 units are added to the stock by the 
time the net rate falls to zero at month 3. 

From month 3 to month 6, the net rate is negative. The stock is therefore 
falling. Just after month 3, the net rate is just barely negative, so the rate of decline 
of the stock is slight. But the magnitude of the net rate increases, so the stock falls 
at an increasing rate. At 6 months, the net rate has reached its minimum (most neg- 
ative) value of -50 unitslmonth. The stock is declining at its maximum rate; there 
is an inflection point in the trajectory of the stock at month 6. 

How much did the stock lose between month 3 and month 6? Assuming the 
fluctuation in the net rate is symmetrical, the loss just balanced what was gained in 
the first 3 months, reducing the stock back to its initial level of 500 units. 

From month 6 to month 9, the net flow remains negative, so the stock contin- 
ues to fall, but now at a decreasing rate. By month 9 the net flow again reaches 
zero, so the stock ceases to fall and reaches its minimum. Again using the assump- 
tion of symmetry, the quantity lost from months 6 to 9 is equal to the quantity lost 
from months 3 to 6, so the stock falls to a level just above 400 units. 

From months 9 to 12 the net flow is positive, so the stock is rising. During this 
time the net rate rises, so the stock increases at an increasing rate, ending with a 
slope of 50 unitdmonth as the net rate reaches its maximum. Again, the stock gains 
the same amount, recovering its initial level of 500 units exactly at month 12. Be- 
yond month 12 the cycle repeats. 

The example illustrates the way in which the process of accumulation creates 
delays. The input to the system is a fluctuation with a 12-month period reaching its 
peak at time = 0, 12, 24, . . . months. The stock, or output of the system, also fluc- 
tuates with a 12-month period but lags behind the net inflow rate, reaching its 
peaks at t = 3, 15, 27, . . . months. The lag is precisely one-quarter cycle. The lag 
arises because the stock can only decrease when the net flow is negative. If the net 
flow is positive and falls to zero, the stock increases and reaches its maximum. 

Analytical Integration of a Fluctuation 
The example in Figure 7-3 can be made precise using a little basic calculus. The 
stock S is the integral of the net rate R. Assuming the net flow is a cosine with pe- 
riod 12 months and amplitude 50 units/month, R = 50cos(2d12), then 

S = Rdt = 50cos(2~t/12)dt = 50(12/21~)sin(2.rrt/12) + S, (7-2) J J  
The stock follows a sine wave with the same period and amplitude (12/2~r) times 
that of the net flow. The delay caused by the accumulation process is easily seen 
since sin(0) = cos(@ - d 2 ) :  

S = 5 0 ( 1 2 / 2 ~ ) ~ 0 ~ ( 2 d 1 2  - ~ 1 2 )  + S, (7-3) 

The stock follows the same trajectory as the net flow but with a phase lag of d 2  
(one-quarter cycle). Equation (7-2) also shows that the amplitude of the stock is 
(50 unitdmonth) * (12 months/2~) = 96 units, so the stock fluctuates between 
about 404 and 596, as seen in the figure. 
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7.1.4 Graphical Differentiation 
The inverse of integration is differentiation, the calculation of the net rate of 
change of a stock from its trajectory. Given a graph of a stock, it is always possi- 
ble to infer the net rate of change and plot it. As in the case of integration, there are 
analytic methods to calculate the net rate of a stock if the function describing the 
stock’s path is known. However, in most dynamic models no analytic function for 
the stocks is known, so you must develop the skill of graphical differentiation. 

Graphical differentiation is straightforward. Simply estimate the slope of the 
stock at each point in time and plot it on a graph of the net rate. Figure 7-5 provides 
an example. 
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FIGURE 7-5 
Graphical 
differentiation 
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The initial stock is 2000 units. For the first 10 weeks the stock declines lin- 
early, so the net rate during this interval is negative and constant. The stock falls 
from 2000 to 1000 units in 10 weeks, so the net rate (the slope of the stock) is 
- 100 unitdweek. At week 10 the stock suddenly starts increasing. Drawing a line 
tangent to the stock curve at time 10 gives an estimate of the slope of 200 units/ 
week. The net rate therefore steps up from - 100 unitdweek the instant before the 
start of week 10 to +200 unitdweek just after it starts. From weeks 10 to 20 the 
stock increases at a decreasing rate, so the net rate is positive but falling. At time 
20 the stock reaches a maximum so the net rate is zero. There are no kinks or 
bumps in the stock trajectory, implying a steady, linear decline in the net rate from 
200 units/week in week 10 to zero in week 20. From week 20 to week 30 the stock 
is falling. By week 30 it is falling rapidly; the slope of a line tangent to the stock 
trajectory at week 30 has a slope of -200 unitdweek. Again, there are no kinks in 
the trajectory, so the net rate declines linearly from zero in week 20 to -200 units/ 
week in week 30. At week 30 the stock suddenly stops changing and remains con- 
stant afterwards. The net rate suddenly steps up from -200 to zero unitdweek and 
remains at zero thereafter. 

Graphical differentiation of a stock reveals only its net rate of change. If the 
stock has multiple inflows and outflows it is not possible to determine their 
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individual values from the net rate alone: a firm’s stock of cash remains constant 
whether revenues and expenditures both equal $1 million per year or $1 billion 
per year. 

7.2 SYSTEM DYNAMICS IN ACTION: GLOBAL WARMING 
Much of the power of the system dynamics perspective comes from understand- 
ing how the process of accumulation creates dynamics, even before considering 
the feedbacks coupling the stocks and their flows. To illustrate, consider global 
warming. 

Is the earth warming? Is the warming caused by emissions of greenhouse gases 
(GHGs) caused by human activity? How much warming is likely over the next 
century? What changes in climate patterns, rainfall, growing season, storm inci- 
dence and severity, and sea level might ensue, and how much damage would these 
changes cause to humanity and to other species? These questions are difficult to 
answer, and legitimate scientific debates about the impact of anthropogenic GHG 
emissions continue. 

Despite the scientific uncertainty, several facts are not in dispute. The temper- 
ature at the earth’s surface-the land, lower atmosphere, and surface layer of the 
ocean (the so-called mixed layer, the top 50 to 100 meters, where most sea life ex- 
ists)-is primarily determined by the balance of the incoming solar radiation and 
the outgoing reradiated energy. The earth is a warm mass surrounded by the cold 
of space and like all such masses emits so-called black body radiation whose fre- 
quency distribution and intensity depends on its surface temperature. The warmer 
the mass, the more energy it radiates. Incoming solar energy warms the earth. As it 
warms, more energy is radiated back into space. The temperature rises until the 
earth is just warm enough for the energy radiated back to space to balance the in- 
coming solar energy. 
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The amount of energy radiated back into space depends on the composition of 
the atmosphere. GHGs such as carbon dioxide and methane trap some of the en- 
ergy radiated by the earth, instead of allowing it to escape into space. Thus an in- 
crease in GHGs causes the earth to warm. The earth heats up until the energy 
escaping through the atmosphere to space rises enough to again balance the in- 
coming solar energy. Greenhouse gases reduce the emissivity of the atmosphere 
enough to warm the surface of the earth (including the oceans) to a life-sustaining 
average of about 15°C (59°F). Without GHGs in the atmosphere, the mean global 
temperature would be about - 17°C (1°F) and a blanket of ice would perpetually 
cover the earth. 

Natural processes have caused the concentration of carbon dioxide (CO,) in 
the atmosphere to fluctuate significantly over geological time, and surface temper- 
atures have fluctuated with it. Human activity has now reached a scale where it can 
affect these processes. As shown in Figure 7-7, the rate of anthropogenic GHG 
emissions has been growing exponentially since the beginning of the industrial 
age. Atmospheric concentrations of C 0 2  and other GHGs including nitrous oxide 
(N,O), methane (CH,), chlorofluorocarbons (CFCs), hydrofluorocarbons (HFCs), 
perfluorinated carbons (PFCs), and others have been growing exponentially, with 
concentrations of CO,, N,O, and CH, up by 30, 15, and 145%, respectively, since 
1800. Mean global surface temperature has been rising, though not in a steady pat- 
tern. Compared to the late 1800s, average global temperatures are about 0.5 to 1°C 
warmer today. By comparison, the mean global temperature during the last ice age, 
when sheets of ice 1000 feet thick covered much of the northern hemisphere, was 
about 5°C colder than today. 

Debate continues about the dynamics of the global climate system, its response 
to forcing by human activity, and the consequences of a rise in global mean tem- 
perature. The public discussion has been polarized by well-financed campaigns 
to discount the science. Nevertheless, consensus is emerging. In 1995, the UN 
sponsored Intergovernmental Panel on Climate Change (IPCC) concluded that 
global warming was indeed occurring, and that human activity was responsible, 
stating “The balance of evidence suggests a discernible human influence on cli- 
mate” (IPCC 1996). Through the UN Framework Convention on Climate Change 
(UNFCCC) various nations are negotiating limits to GHG emissions, though com- 
pliance remains elusive. 

Simulation models of various types are the primary research tool to explore 
these issues. The enormously detailed general circulation models (GCMs) calcu- 
late climate at finely spaced intervals covering the entire surface of the earth, but 
take GHG emissions as exogenous inputs. At the other extreme, so-called inte- 
grated climate-economy models close some of the feedbacks among the human 
economy, carbon emissions, and global climate but treat the carbon cycle and cli- 
mate as global aggregates with a small number of stocks. Tom Fiddaman (1997) 
analyzed many of the most widely used climate-economy models, identifying a 
number of problems and inconsistencies in them. For example, the widely cited 
DICE model (Nordhaus 1992a, 1992b) violates the law of conservation of mass by 
assuming that a significant fraction of carbon emissions simply disappear (Nord- 
haus assumed they flow into a sink outside the model boundary). Fiddaman (1997) 
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Sources: Data from the Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National 
Laboratory (http://cdiac.esd.ornl.gov/trends/trends.htm). Emissions: Keeling (1 997). Emissions in- 
clude carbon from burning fossil fuels only and excludes other GHGs and changes in carbon flux 
from, e.g., deforestation. COP in atmosphere: Siple Station ice core data (Neftel et al. 1994). Mauna 
Loa gas recorder data (Keeling et al. 1997); concentration in ppmv converted to billion tons in total 
atmosphere. Global mean surface temperature anomaly: Jones, Wigley, and Wright (1 997) and Angell 
(1997); rescaled so 1960-70 = 0.2'C. 

developed a model that corrects these and other defects in common climate- 
economy models and linked it to a model of the economy and energy system. The 
model sectors were based on the relevant scientific knowledge of the global carbon 
cycle and climate system and carefully calibrated to the available data. 



244 Part I1 Tools for Systems Thinking 

Despite the differences among the models, all show the climate system to pos- 
sess enormous inertia. Changes in GHG emissions only slowly show up in changes 
in global temperature and climate, and the changes persist for many decades. To 
illustrate, Figure 7-8 shows an extreme conditions test using Fiddaman’s model. In 
the simulation, anthropogenic CO, emissions follow their historical path through 
the mid 1990s, remain constant until 2000, and then fall to zero after 2000. Sur- 
prisingly, though the rate of CO, emissions falls to zero in the year 2000, mean 
global temperature continues to rise for about three more decades. It then falls 
very slowly. 

The stock and flow structure responsible for the counterintuitive result that 
temperature rises even though emissions fall to zero is shown in Figure 7-9. The 
left side of the figure portrays the global carbon cycle; the right side portrays the 
global heat balance. Burning fossil fuels adds CO, to the atmosphere. There are 
several outflows from the stock of atmospheric CO,. Higher atmospheric CO, con- 
centration increases the rate at which CO, is consumed by aquatic life or dissolves 
into the mixed layer of the ocean. Eventually, CO, taken up by the surface layer 
diffuses to deeper waters, both through ocean currents and as detritus from aquatic 
life sinks. The transfer of carbon to the depths is slow, and mixing between the sur- 
face and abyssal waters is weak, so many carbon cycle models disaggregate the 
water column into a number of distinct states and model the transfer of carbon 
between adjacent layers explicitly. Fiddaman’s model utilizes 10 layers, enough to 
capture the slow adjustment of abyssal C 0 2  concentrations to changes in CO, in 
the mixed layer. 

Increased atmospheric CO, concentration also stimulates uptake of carbon by 
terrestrial plants (the flux of CO, to biomass). Carbon in biomass can be released 
back into the atmosphere through respiration and metabolic activity of animal and 
bacterial life and by fire (natural and human-caused). As biomass decays, the stock 
of carbon stored in soil increases (the flux of carbon from biomass to soil humus). 
The carbon in humus can be taken up directly into biomass as plants grow or can 
be released into the atmosphere through decay. 

Note that the model represents the inflow of CO, to the atmosphere from the 
burning of fossil fuels as flowing from an unlimited source when in fact the flow 
draws down the carbon sequestered in global stocks of fossil fuels. Similarly, the 
model does not capture the conversion of carbon in humus or the abyssal layer of 
the ocean into new stocks of fossil fuels. Although the dynamics of global warm- 
ing will play out over the next several centuries, this time horizon is so short rela- 
tive to the millions of years required to form oil, gas, and coal that these carbon 
flows can be safely ignored. 

The right side of Figure 7-9 shows the stock and flow structure for the heat 
balance of the earth’s surface, atmosphere, and oceans. The surface and atmos- 
phere, including the surface layer of the ocean, absorb incoming solar energy and 
radiate heat back into space. Heat is also transferred between the surface layer and 
the deep ocean, though at slow rates. The rate of heat transfer between surface and 
deep ocean depends on the temperature differential between the different layers, 
creating two negative feedbacks which seek to equilibrate the temperatures of the 
different layers. Similarly, net radiative forcing is the difference between the in- 
coming solar energy and the energy radiated from the warm earth back into space. 
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The warmer the surface, the more energy is radiated back into space, cooling the 
earth and forming another negative loop. The concentration of C02 and other 
GHGs increases net radiative forcing by reducing the rate at which energy is radi- 
ated back into space for any given surface temperature. 

The diagram (though not the full model) deliberately omits many additional 
feedbacks affecting the rates of carbon flow and heat exchange as well as cou- 
plings to other biogeochemical cycles. Knowledge of the nature and strength of 
the many feedbacks coupling climate, carbon cycle, and human activity is still 
evolving. Some of these feedbacks are negative and may offset GHG emissions or 
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FIGURE 7-9 Stock and flow diagram of global carbon cycle and heat balance 

Burning fossil fuels adds C02 to the atmosphere, increasing net radiative forcing until the temperature 
of the land, ocean surface, and atmosphere rises enough to balance reradiation of energy into space 
with incoming insolation. The diagram deliberately omits many of the feedbacks, both positive and 
negative, among the carbon stocks and global mean temperature. Flows with arrowheads at both ends 
can be positive or negative (e.g., Net Radiative Forcing can be an inflow of heat to the atmosphere or 
an outflow). The solid arrowhead indicates the positive direction of two-way flows. 

Flux Biomass 

Flux Humus to 

Insolation 

Flux Atmosphere Flux Ocean b.3 ' ' to Atmosphere to Ocean 

I I 
CO, in 

Mixed Layer 

n 
Net C o p  Fiux 

to Deep Ocean 

CO, in 
Deep Ocean 

Atmosphere 
& Upper Ocean 
Tem perat u re Atmosphere 

& Upper Ocean \ 

f. , Exchange , ;Tempera7 + 

Difference between 
Surface and 
Deep Ocean 

Heat Stored in / 
Deep Ocean 
Temperature 

Deep Ocean 

+ 
Source: Adapted from Fiddaman (1 997). 



Chapter 7 Dynamics of Stocks and Flows 247 

warming. These include increased carbon uptake by biomass, stimulated by higher 
C02 concentrations, and increased cloud cover from enhanced evaporation, re- 
flecting more incoming sunlight to space. Particulate aerosols from fossil fuel con- 
sumption (air pollution and smog) also increase reflection of incoming solar 
radiation and may account for the slower than expected rate of temperature rise ob- 
served in the Northern Hemisphere. 

Among the positive feedbacks driving climate change are changes in surface 
albedo: Warming reduces the winter snow cover and shrinks the highly reflective 
polar ice caps, thus increasing heat absorption and leading to further melting, less 
snow cover, and still greater absorption. Scientists expect this positive loop will 
cause much greater warming at the poles than in the tropics and more warming in 
winter than summer. Thawing of permafrost may release large quantities of 
methane from decay of organic matter, increasing the concentration of GHGs and 
leading to further warming in another positive loop. Increased evaporation from 
warmer land and surface waters may be self-reinforcing since water vapor is a 
powerful GHG. At present it is not known whether the negative or positive feed- 
backs dominate the dynamics nor how the dominance of the loops might change as 
various nonlinearities come into play. However, Goulden et al. (1998) studied the 
northern boreal forest of Canada and found that warming has resulted in net carbon 
flux to the atmosphere as C02 released from decay of thawed biomass outweighed 
increased carbon uptake by plants. For that biome, at least, the positive feedbacks 
appear to dominate the negative loop of increased biotic activity. 

The impact of warming on sea level may also be driven by positive feedback. 
The huge West Antarctic Ice Sheet (WAIS) consists of a floating tongue attached 
to a larger ice mass so heavy it rests on bedrock below sea level. The WAIS holds 
a lot of water: “If it melted away in a greenhouse-warmed world, it would raise all 
the world’s oceans by 5 meters” (Kerr 1998, p. 17). If warmer seas cause the WAIS 
to thin, it will rise farther off the sea bed, exposing more of the ice to melting and 
accelerating thinning in a positive loop. As the edge thins, the higher ice on the 
Antarctic land mass flows faster into the sea, where it is exposed to the warmer wa- 
ters, further speeding melting in another positive feedback. Rignot (1998) notes 
that a glacier with “[tlhis configuration is theoretically unstable because a retreat 
of its grounding line (where the glacier starts to float) would be self-perpetuating 
and irreversible” and shows that the grounding line of the Pine Island glacier feed- 
ing the WAIS is retreating at 1.2 ? 0.3 kilometers per year. Ice cores show that 
within the past 1.3 million years, “at a time perhaps not much warmer than today, 
the WAIS wasted away to a scrap and flooded the world’s coasts” (Kerr 1998, 
p. 17). Ice core data from Greenland also suggest the paleoclimate repeatedly 
warmed and cooled, with corresponding changes in snowfall, over time scales of 
only decades. These rapid changes suggest positive feedbacks may have domi- 
nated climate dynamics in geologically recent times. 

It will take years of research to discover all the feedbacks that drive the climate 
and determine the likely effects of greenhouse warming. Nevertheless, the stock 
and flow structure of the global carbon cycle and heat budget explains some basic 
features of the dynamics. The stock and flow structure shows how it is possible for 
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the global temperature to rise even after human GHG emissions fall to zero. When 
emissions fall to zero the inflows to the stock of atmospheric carbon fall below the 
outflows. Therefore the stock of CO, in the atmosphere peaks and begins to fall. 
The concentration of CO, in the atmosphere falls only slowly, however. First, the 
uptake of carbon by biomass falls as the concentration of CO, in the atmosphere 
declines, while CO, continues to flow into the air from burning and decay of bio- 
mass and humus stocks. Second, as atmospheric C 0 2  falls, the flux of carbon from 
the air to the mixed layer of the ocean falls, while the flux of carbon from the ocean 
to the air increases. These compensatory responses slow the decline of atmospheric 
CO, so that 50 years after human emissions stop completely, the concentration of 
CO, in the model atmosphere has fallen back only to its 1990 level. 

The heat content of the surface layer rises as long as incoming radiation ex- 
ceeds the heat radiated back to space or transferred to the deep ocean. Though 
falling after the year 2000, global atmospheric C 0 2  concentrations remain high 
enough to reduce the energy radiated back to space below incoming insolation. 
Declining atmospheric C 0 2  after 2000 means global mean temperature grows at a 
diminishing rate. By about 2030 the surface has warmed enough and the concen- 
tration of CO, in the atmosphere has fallen enough for insolation to be balanced 
again by the earth’s black-body radiation and the rate of heat transfer to the deep 
ocean. Note that global mean temperature falls only slowly after 2030. First, the 
slow decline of GHG concentrations after 2000 slows the increase in radiative 
emissivity. Second, during the warmest decades when the surface temperature ex- 
ceeded the temperature of the deep ocean, heat flowed from the surface layer to the 
deep. As the surface layer cools, heat stored in the deep ocean now flows back to 
the surface, slowing atmospheric cooling. 

The stock and flow structure of the carbon cycle and heat balance explains the 
seemingly paradoxical result that temperatures can rise even when emissions fall. 
There are several lessons. First, global warming cannot be proven or disproven by 
correlating emissions and temperature: the dynamics are too complex for such 
naive commonsense approaches. Second, the full impact of past emissions has not 
yet been observed. The oceans and terrestrial carbon stocks have been absorbing 
carbon out of the atmosphere at higher rates, suppressing the rise in atmospheric 
CO, concentrations. And as these stocks increase, their absorption capacity dimin- 
ishes. The impact of future emissions on atmospheric CO, may well be larger than 
that observed in the past. Third, the inertia of the system means further warming 
and climate change are already underway. Action to halt warming must be taken 
decades before we can know what the consequences of warming will be and before 
scientific certainty about the dynamics of the global climate can be gained. 

Most important, the stock and flow structure of the global climate means sta- 
bilizing emissions near current rates will not stabilize the climate. Figure 7- 10 
shows a simulation in which emissions are stabilized in 1995. The concentration of 
atmospheric CO, continues to rise, more than doubling by 2300. Global mean sur- 
face temperature rises by about 3°C. Many industrialized nations agreed at the Rio 
conference on the environment to stabilize their GHG emissions at 1990 levels, 
and 38 industrialized nations agreed at the 1997 Kyoto conference of the UNFCCC 
to reduce emissions by 2012 to about 95% of 1990 rates. But the US Senate de- 
clared the treaty dead on arrival. Implementation remains elusive; signing a treaty 
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FIGURE 7-1 0 
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is one thing, actually reducing emissions another. Most troubling, the emissions of 
rapidly developing nations such as China continue to grow at high exponential 
rates. The US Energy Information Administration forecast in 1997 that GHG emis- 
sions from developing nations would nearly double by 2015, accounting for the 
large majority of the world total (Malakoff 1997). 

While different climate models differ in their details and in their estimates of 
future warming, all agree that stabilizing emissions near current levels will not sta- 
bilize the climate. Mitigating the risk of climate change from global warming re- 
quires a substantial decline in the rate of GHG emissions. The world has yet to face 
up to the inexorable logic of the stocks and flows of the global climate system. 
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7.3 SYSTEM DYNAMICS IN ACTION: THE WAR ON DRUGS 
In the 1980s the use of cocaine increased dramatically. As cocaine spread, crime, 
violence, and health problems grew exponentially. The United States declared a 
war on drugs. A new federal agency, the White House Office of National Drug 
Control Policy (ONDCP), headed by the “drug czar,” was appointed to oversee the 
campaign. Penalties for possession, sale and use of drugs were stiffened. Billions 
were spent to increase enforcement, especially to reduce the flow of cocaine into 
the US, estimated by the ONDCP to be 550 to 660 metric tons in 1989. The focus 
of the war on drugs was primarily the supply side: slashing the production of co- 
caine, choking off smuggling into the US, and stiffening penalties for possession 
and sale. On the demand side, kids were told to “Just say NO.” 

Did it work? In the late 1980s the data told a conflicting story. Some drug data 
showed improvement. Through the “National Household Survey” (NHS) and 
“High School Senior Survey” (HSSS), the government regularly asks people about 
their use of alcohol and drugs. To assess trends in incidence and prevalence, the 
surveys ask whether people have ever used cocaine, whether they’ve used it in the 
last year, and whether they’ve used it in the last month. Figure 7-11 shows NHS 
data for the fraction of people responding that they have used cocaine in the past 
month. According to the surveys, cocaine use was falling sharply, with less than 
1% of the population reporting past month cocaine use in 1990, down from 3% in 
1985. The drop in reported use coincided with a sharp increase in the seizure rate, 
to more than 75 metric tons per year (Figure 7-11). The war on drugs seemed to be 
working; citing these data, the administration called for even more money to finish 
the job. 

However, other indicators showed the problem was getting worse. Arrests for 
possession and sale of cocaine, the number of emergency room visits associated 
with cocaine, and the number of cocaine-related deaths all showed exponential in- 
creases, while the purity of cocaine on the street was growing and the street price 
was falling (Figure 7-11). By these measures, cocaine use was up sharply and 
availability was growing. Critics, citing the failure of prohibition in the 1920s and 
1930s, argued that interdiction could never work and called for stronger demand- 
side measures (MacCoun and Reuter 1997 review the debate). Others argued that 
decriminalization would eliminate the crime problem caused by use of illegal 
drugs and allow the government to regulate purity to prevent accidental overdoses. 

Much of the debate focused on which data series were right and which were 
wrong. The stakes were high: Besides the issues of public health and safety, the 
drug war was prosecuted and data series were collected by an alphabet soup of 
federal and state agencies, including the FBI, DEA, SAMHSA, NIJ, NIDA, DEPB, 
ONDCP, and CIA.2 Each argued for the primacy and correctness of its data and 

2Federal Bureau of Investigation, Drug Enforcement Agency, Substance Abuse and Mental 
Health Services Administration of the Department of Health and Human Services, National 
Institute of Justice, National Institute on Drug Abuse, Drug Enforcement Policy Board, Office of 
National Drug Control Policy, and Central Intelligence Agency. 
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drug-enforcement programs as they struggled to gain a larger share of more than 
$10 billion per year devoted to the war on drugs. 

Supporters of the interdiction strategy argued that the survey data directly 
measured what counts-the use of drugs-while other indicators were indirect. 
They argued that rising arrest rates and seizures reflected greater enforcement, not 
greater drug use, and were therefore a sign of success; falling prices, rising purity, 
and the surge in medical emergencies and deaths simply reflected the substitution 
of more potent crack for the less pure powder form. Critics of interdiction and the 
survey data argued that drug users are less likely than law-abiding citizens to be se- 
lected for or participate in the surveys. Many cocaine users are likely to deny they 
use drugs when the government asks. Defenders of the surveys pointed to the so- 
phisticated sampling methods they used to account for possible underrepresenta- 
tion of certain subpopulations. They guaranteed anonymity to survey respondents 
and claimed that while “[tlhe value of self-reports obviously depends on the hon- 
esty and memory of sampled respondents[, rlesearch has supported the validity of 
self-report data in similar contexts” (SAMHSA 1994). 

In the late 1980s the National Institute of Justice commissioned a study to re- 
solve the apparent paradox of declining measures of cocaine use and rising con- 
sumption, crime, arrests, and deaths. As part of the study, a system dynamics 
model was developed to integrate the demand and supply sides of the market 
(Homer 1993, 1997). The full model consisted of several hundred equations and 
included a detailed representation of the stock and flow structure of users, along 
with the feedbacks among different market actors, the market, and the criminal jus- 
tice system. 

Figure 7-12 shows a simplified representation of the stock and flow structure 
for the different categories of drug users represented in the model. The NHS con- 
siders all persons age 12 and over to be potential drug users. As people in this age 
group first experiment with cocaine they move from the “never used” population 
to the stock of active casual users (those who have used cocaine in the past month 
but are not addicted). Some casual users find they cannot control their cocaine con- 
sumption and become compulsive users. Active users, both casual and compulsive, 
can stop, becoming “transitional users” (those who have used cocaine in the past 
year, but not in the past month). Transitional users can relapse, becoming active 
users again. After a year without any cocaine use, transitional users are reclassified 
as ex-users. Some ex-users relapse, becoming active users again. Others quit per- 
manently. There are, of course, death rates out of each stock, both from drug- 
related causes and all other sources. 

The full model has a more complex stock and flow structure than shown 
in Figure 7- 12, explicitly distinguishing between casual and compulsive transi- 
tional and ex-users and between users of powder and crack cocaine. The model 
accounted for escalation from casual to compulsive use and for switching between 
powder and crack. This disaggregation was necessary because the probabilities 
of moving from one state to another depend on the form and intensity of use. 
Compulsive users are less likely to quit and more likely to relapse, and crack users 
are more likely to escalate from casual to compulsive use and suffer higher re- 
lapse rates. 



Chapter 7 Dynamics of Stocks and Flows 253 

FIG~JRE 7-1 2 
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Note that the categories of use in the model can be directly compared to those 
used in the surveys. The total number of active users, both casual and compulsive, 
for both powder and crack, is the number of people who have actually used cocaine 
in the past month. The sum of the active users and the transitional users is the total 
number who actually used cocaine in the past year. Finally, the sum of active, tran- 
sitional, and ex-users is the total number who have ever used cocaine. 

What are the determinants of the initiation rate-what causes people to use co- 
caine for the first time? Studies show most people begin using drugs through peer 
influence-by observing others using drugs and through their membership in so- 
cial networks in which others use drugs (that is, by hanging with the wrong 
crowd). As more people start using cocaine, the social networks of users expand, 
bringing still more nonusers into contact with the drug, in a positive feedback 
process analogous to the spread of an infectious disease (chapter 9). The strength 
of the social exposure feedback depends on the social aura of the drug: how chic 
cocaine is perceived to be (is this the drug the opinion leaders, the beautiful peo- 
ple, are using this year?). The positive feedback also depends on whether current 
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and potential users view the drug as benign-is it perceived to offer a good high 
without negative effects such as addiction, bad trips or the risk of sudden death? 
Price has a comparatively modest effect, at least in higher socioeconomic groups, 
because high price and scarcity confer social status on those who can provide the 
drug for friends at parties or in the workplace. In the mid 1970s, as the cocaine 
epidemic began, cocaine was viewed as a benign, nonaddictive drug posing little 
health risk. It became the in-group drug of choice among certain professional 
elites. The entertainment industry reinforced the chic image of the drug. All these 
self-reinforcing processes are captured by the Word of Mouth loop R1 in Fig- 
ure 7-13. 

The dynamics of the market reinforced the growth of the epidemic. As con- 
sumption increased, the supply side of the market became much more efficient. 
Price declined and purity increased. The growing scale of the industry created huge 
incentives for technological and organizational innovation by producers and smug- 
glers. The introduction of crack cocaine in 1981 was the most important, but far 
from the only, technical innovation in the market. As in many legitimate industries, 
growth led to production and especially distribution scale economies. Horizontal 
and vertical market integration through the cocaine cartels cut costs and led to 
more consistent product quality. Growing experience led to a substantial learning 
curve as harvesting, production, smuggling, distribution, and money laundering 
operations were improved. These scale and learning effects created additional pos- 
itive feedbacks leading to wider availability, greater purity, and lower prices, mak- 
ing cocaine affordable and accessible to all (loop R2). 

As long as people perceived the health and legal risks of cocaine to be small, 
these positive feedbacks dominated the system. Cocaine use mushroomed, spread- 
ing gradually from middle and upper income, trend-conscious populations on the 
east and west coasts to every social and income level in every state of the country. 

Why then did the data show such a large drop in the incidence of current co- 
caine use after 1985? Supporters of the interdiction strategy credited the adminis- 
tration’s supply-side policy. They argued that enhanced enforcement increased the 
fraction of cocaine seized, cutting the availability of the drug (the balancing Sup- 
ply Disruption loop B 1) and that aggressively arresting and incarcerating pushers 
and users helps clean up the Streets (the balancing loop B2). Both these negative 
loops, it was argued, cut drug use, as indicated by the survey data. 

However, stock and flow structure for drug users showed that the survey data 
could not be correct and were substantially understating the prevalence of drug 
use. In addition to asking about past month use, the NHS asks respondents if they 
have used cocaine in the past year and if they have ever used cocaine. Homer care- 
fully disaggregated the user population into stocks corresponding to these cate- 
gories so the model could be directly compared to the data. 

Figure 7-14 shows the NHS data for the fraction of the population who re- 
sponded affirmatively when asked if they had ever used cocaine. Note that the 
reported ever-used-cocaine population peaks in 1982 at about 12% and falls to 
about 10% by 1988. 

The lifetime cocaine prevalence data in Figure 7-14 is the ratio of the ever- 
used population to the total population (those who never used plus those who ever 
used). The inflow to the total stock of people who have actually used cocaine is the 
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initiation rate. The only outflow is death. The only way the stock of people who 
have ever used cocaine can decline is for the death rate of current and past users to 
exceed the initiation rate of new users.3 Yet the survey data reported a 3.2% drop 
in the number of people who have ever used cocaine from 1982 to 1988. Even if 
the rate at which people tried cocaine for the first time fell to zero in 1985-even 
if every man, woman, and child in the US who had never used cocaine just said 
NO !, something not even the administration believed-mortality rates of the ever- 
used population are too small to cause the reported decline in the number of peo- 
ple who have ever tried cocaine. Even with the most optimistic estimates for the 
decline in the initiation rate, it is physically impossible for the stock of people who 
have ever used cocaine to fall as quickly as the surveys ~uggested.~ 

Why then did the reported incidence of use fall so dramatically after 1985? 
There are two main reasons. First, the surveys presume that their samples are prop- 
erly stratified, that is, that the representation and response rates of subpopulations 
(such as different geographic, ethnic, racial, and socioeconomic groups) are ad- 
justed to match the proportion of these groups in the overall population and that 
any underrepresentation is constant through time. Heavy drug users, however, are 
much less likely to be interviewed for the survey. Though the NHS methodology 
attempted to adjust for this underrepresentation, they cautioned that 

Prevalence estimates for specific subgroups are sometimes based on modest to 
small sample sizes, which may lead to substantial sampling error. . . [Tlhis report 
does not present estimates for some segments of the US population that may con- 
tain a substantial proportion of drug users, such as transients not residing in shelters 

31n principle, the lifetime prevalence fraction could fall if those in the ever-used population emi- 
grated from the US to other countries at a rate much higher than that of those who have never used 
cocaine. These rates, however, are negligible. For the survey to be correct the required outmigration 
of drug users would greatly exceed all outmigration from the US. 

lation that has ever used cocaine. The decline in relative lifetime prevalence would require the 
death rate of former cocaine users to greatly exceed the death rate of those who have never used 
cocaine. The difference in death rates, however, is very small, partly due to the low excess mortal- 
ity of active users and largely because most members of the ever-used population no longer use 
cocaine and experience mortality rates about the same as the never-used population. 

4The problem in the survey data is worse. The NHS reported a drop in thefraction of the popu- 
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(e.g., users of soup kitchens or residents of street encampments) and those incarcer- 
ated in county jails or State and Federal prisons (SAMHSA 1994). 

That is, few federal workers are willing to knock on the doors of a crack house to 
ask the occupants whether they use illegal drugs. Consequently, active and espe- 
cially compulsive users are underrepresented in the surveys. Because these popu- 
lations grew rapidly in the 1980s, the surveys systematically underestimated the 
growth in cocaine use. 

Second, and more importantly, increasing legal risks caused a larger fraction 
of current and especially former users to deny they ever used cocaine. In plain lan- 
guage, more people lied about their past cocaine use. The changing distribution of 
cocaine users and declining social acceptance of cocaine led to systematic under- 
estimation of cocaine prevalence in the survey data. 

By integrating all the available data into a consistent and unified framework, 
the model provided more accurate estimates of drug use than were available previ- 
ously. Model estimates of the ever-used population (along with the other categories 
of drug use) were derived to be consistent with other demographic, crime, health, 
price, and purity data, constrained by the stock and flow structure of the population 
and epidemiological and medical data on health risks. Understanding the dynam- 
ics of the stocks and flows of users helps reconcile the apparently contradictory 
data. Figure 7-15 compares the model’s behavior for reported lifetime use against 
the survey data, along with the model’s estimate of the actual ever-used population. 
The actual population of past users must have continued to grow because the num- 
ber of people trying cocaine for the first time exceeded the death rate of those who 
had ever tried it. The availability, purity, and use of cocaine were in fact increasing 
throughout the late 1980s despite the billions spent on enforcement and supply 
reduction. 

In hindsight it seems quite obvious that the stock of people who have ever used 
cocaine cannot decline as rapidly as the data suggested, so the survey data should 
immediately have been challenged. But hindsight is always crystal clear. The fact 
remains that the data were not challenged. Instead, the government used the survey 
data to take credit for winning the drug war, to justify intervention in the affairs of 
other nations, and to lobby for tougher penalties, greater powers for law enforce- 
ment agencies, more prisons, and more resources to defend the borders of the US 
against the threat of foreign drugs. 

Perhaps the administration knew the data overstated the reduction in drug use 
and used it cynically to manipulate public opinion and the congress. Even if true, 
it immediately begs the question of why others in government, along with the me- 
dia, policy analysts, and the public at large did not recognize the flaw in the data. 

The administration, congress, and the media all focused on the data showing 
recent use-the NHS past month or past week data, along with the HSSS-rather 
than lifetime use. Recent use provides a better snapshot of current drug trends, and 
showed the largest decline, making the case most favorable to the administration. 
However, the data showing decline in recent use confounded the actual decline 
in use with the increase in underreporting. The two sources of decline cannot be 
disentangled from the recent-use data because the recent user stock can drop as 
people quit; likewise, past users age out of the high school senior population. It is 
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only by explicitly accounting for the stock and flow structure of drug use-for the 
inexorable accumulation of users into the ever-used population-that the two com- 
peting sources of decline in current use data can be separated. Unfortunately, the 
ability to understand basic stock and flow relationships is far too rare in our soci- 
ety today, even among many professional policy analysts. 

7.3.1 The Cocaine Epidemic after 1990 
The model showed persuasively that the survey data significantly underestimated 
cocaine use and highlighted the failure of the supply-side strategy. As MacCoun 
and Reuter (1997, p. 47) put it, “The probability of a cocaine or heroin seller being 
incarcerated has risen sharply since about 1985 but that has led neither to increased 
price nor reduced availability.” However, a close look at the simulation in Figure 
7-15 shows that by the late 1980s the number of people who had ever used 
cocaine, though still rising, was growing at a diminishing rate. Therefore the ini- 
tiation rate must have been falling. By the mid 1990s, the epidemic began to abate: 
the growth of cocaine-related medical emergencies and deaths slowed; arrests fell 
slightly. The ONDCP estimated net imports in 1995 at between 421 and 5 13 metric 
tons, with 98 metric tons seized, leaving net cocaine available on the streets of 
America at about three-quarters the 1989 level. The model, originally developed 
in the late 1980s, forecast these dramatic shifts in cocaine use quite well (Fig- 
ure 7-16). 

Note that the point-by-point fit of the model in the 1990s isn’t perfect, and you 
should not expect it to be. Simulated arrests are too high, and the model does not 
track the temporary dip in cocaine related medical emergencies in 1990-9 1. Never- 
theless, the model’s ability to capture the turning point in the epidemic, from 
exponential growth to gradual decline, is quite remarkable, considering that the 
simulations shown in Figure 7-16 were based on data available only through 1989. 
The only exogenous inputs affecting model behavior after 1990 are the target 
population (those age 12 and over) and the prevalence of marijuana use (a proxy 
for social tolerance of drugs). Changes in data-reporting systems and definitions 
were not included. 
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Adding additional exogenous inputs could improve the fit to the data. But 
models should not be tuned to fit data by introducing exogenous variables whose 
sole function is to improve the correspondence of model output to data. Exogenous 
variables must be justified by significant real world evidence independent of their 
potential contribution to historical fit. Further, variables involved in any feedback 
loops judged to be potentially significant relative to the model purpose must be 
captured as part of the model's endogenous structure and cannot be used as exoge- 
nous inputs to improve historical fit. 



260 Part I1 Tools for Systems Thinking 

While the model shows that the survey data overestimated the decline in co- 
caine use, model-generated estimates of the actual number of active users, while 
remaining significantly higher than the estimates reported in the surveys, do show 
a decline. The field research and model results showed the drop in cocaine use was 
not caused primarily by the Supply Disruption Loop B 1 in Figure 7-13 or by the 
Clean up the Streets loop B2, as supporters of the interdiction policy claimed. 
Rather, the exponential growth of cocaine use was eventually halted by two nega- 
tive feedbacks involving public perceptions of cocaine’s health and legal risks. 
First, cocaine is not the benign substance it was thought to be in the 1970s. As peo- 
ple began to experience or hear about the Negative Health and Social Effects of the 
drug, they became less likely to start and more likely to stop (balancing loop B3 in 
Figure 7-13). Second, growing legal risks of drug use due to higher arrest rates and 
longer sentences decreased the willingness of people to start and increased the quit 
rate-the Fear of Arrest reduced usage (balancing loop B4). As the population of 
active users began to fall, the social exposure of nonusers also fell, weakening the 
reinforcing Word of Mouth loop (R1). 

Unfortunately, both of these negative loops involve long delays. First, there is 
a lag between growth in cocaine use and the incidence of harmful health and legal 
effects. As the initiation rate grew exponentially, so did the stock of active casual 
users. The stock of compulsive users also rose exponentially, though with a sub- 
stantial lag. The lag in the growth of the compulsive user population is important 
because compulsive users are more likely to experience severe health effects (es- 
pecially as they turn to crack) and more likely to commit drug-related crimes in- 
cluding pushing the drug to finance their own habits. Thus the exponential growth 
in cocaine-related crime, arrests, medical emergencies, and deaths lags behind the 
growth of the casual user population, which in turn lags behind the initiation rate. 

There is a further lag in the perception by the public of the true health effects 
of cocaine. Most people don’t read the New England Journal of Medicine or the 
Annals of Addiction to learn about the health risks of illegal drugs. Instead, public 
perceptions of risk are strongly conditioned by personal experience, personal 
acquaintance with someone harmed by cocaine, and media reports of high-profile 
individuals who were arrested for, injured by, or died from cocaine use, such as the 
comedian Richard Pryor, who was severely burned while freebasing, or the Uni- 
versity of Maryland basketball star Len Bias, who died of acute heart failure while 
doing cocaine to celebrate his selection as a top draft pick by the Boston Celtics of 
the National Basketball Association. 

The strength of all these channels of public awareness therefore lags behind 
the population of active users driving the growth of the epidemic. Exponential 
growth in cocaine use did eventually reduce the social acceptability of the drug and 
thus the initiation rate. However, the stock of active users lags well behind the ini- 
tiation rate. The stock of active users will rise as long as initiation exceeds the rate 
at which people stop using, and the stock of compulsive users increases as long as 
the escalation rate exceeds the rate at which compulsive users stop. The dynamics 
of the stock and flow structure inevitably mean that the population of drug users, 
especially the compulsive users responsible for most of the crime and health ef- 
fects, continues to grow even after the initiation rate peaks and falls. The delay en- 
sures that the reinforcing social exposure and word of mouth feedbacks dominate 
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the negative risk perception loops in the early years of the epidemic, leading to a 
later and higher peak for incidence and prevalence. 

Still, by the late 1980s, 
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most troubling, a resurgence of heroin use, more than 20 years after the last wave 
of heroin crested. This latest heroin epidemic was stimulated by the usual self- 
reinforcing word of mouth and media feedbacks, including the glorification of 
“heroin chic” in popular culture and Calvin Klein underwear ads.5 

SUMMARY 
This chapter showed how stocks and flows generate dynamics. The process of ac- 
cumulation is equivalent to integration in calculus. The amount added to a stock in 
any period is equal to the area swept out by the net rate of change in the stock over 
that period. Conversely, the slope of the trajectory of a stock at any time is its de- 
rivative, the net rate of change. Graphical methods for integration and differentia- 
tion were introduced. Given the behavior over time for the rates affecting any 
stock, you can deduce the behavior of the stock; given the trajectory of the stock 
you can deduce its net rate of change, all without use of calculus. The ability to re- 
late stocks and flows intuitively is essential for all modelers, even those with ex- 
tensive mathematics training, because most realistic models have no analytical 
solutions. Examples show that understanding the dynamics of stocks and flows, 
even without feedback, can yield insight into important problems. 

5Further reading: Shreckengost developed a model for the US CIA to estimate heroin imports 
by integrating prevalence, crime, price, purity, and other data (Gardiner and Shreckengost 1987). 
Shreckengost (1991) applies the framework to cocaine. Levin, Hirsch, and Roberts (1975), in The 
Persistent Poppy, develop a system dynamics model of heroin use and abuse in a community based 
on a case study of the south Bronx. They use the model to explore a variety of policy options in- 
cluding demand-side policies, increased enforcement, and methadone maintenance. See also Levin, 
Hirsch, and Roberts (1978). Richardson (1983) develops a simple model to explain why aggressive 
police effort to seize street supplies of heroin actually increases drug-related crime. Goluke, 
Landeen, and Meadows (1981a, 1981b) developed a model of addictive behavior, focusing on 
alcoholism. Holder and Blose (1987) develop a model of community level policy responses to 
alcoholism. Homer et al. (1982) present a system dynamics model of (tobacco) smoking and 
analyze a variety of policies. 
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Closing the Loop: Dynamics of 
Simple Structures 

A mathematical theory is not to be considered complete until you have made it 
so clear that you can explain it to the first man whom you meet on the street. 

-David Hilbert 

I hope to show. ..that mathematical notation can be kept close to the vocabulary 
of business; that each variable and constant in an equation has individual 
meaning to the practicing manager; that the required mathematics is within the 
reach of almost anyone who can successfully manage a modern corporation. 

-Jay W. Forrester (Industrial Dynamics, 1961, p. 9) 

This chapter formalizes the connection between structure and behavior by linking 
feedback with stock and flow structures. The focus is the simplest feedback sys- 
tems, those with one stock (known as first-order systems). Linear first-order sys- 
tems (defined in this chapter) can generate exponential growth and goal-seeking 
behavior. Nonlinearity in first-order systems causes shifts in the dominant loops, 
leading for example to S-shaped growth. The chapter also introduces the concept 
of a phase plot-a graph showing how the net rate of change of a stock is related 
to the stock itself-and shows how dynamics can be derived from the phase plot 
without calculus or differential equations. 

8.l FIRSFORDER SYSTEMS 
Chapter 4 discussed the basic modes of behavior generated by complex systems 
and the feedback structures responsible for them. The most fundamental modes are 
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FIGURE 8-1 Growth and goal seeking: structure and behavior 
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exponential growth and goal seeking. Positive feedback causes exponential 
growth, and negative feedback causes goal-seeking behavior (Figure 8- 1). 

The simplest system that can generate these behaviors is the first-order, linear 
feedback system. The order of a dynamic system or loop is the number of state 
variables, or stocks, it contains. A first-order system contains only one stock. Lin- 
ear systems are systems in which the rate equations are linear combinations of the 
state variables and any exogenous inputs. 

The term “linear” has a precise meaning in dynamics: in a linear system the 
rate equations (the net inflows to the stocks) are always a weighted sum of the state 
variables (and any exogenous variables, denoted Uj ): 

dS/dt = Net Inflow = alSl + a,S2 + . . . + a$” f blUl + b2U2 + . . . + bmUm (8-1) 

where the coefficients ai and bj are constants. Any other form for the net inflows is 
nonlinear.’ 

8.2 POSITIVE FEEDBACK AND EXPONENTIAL GROWTH 
The simplest feedback system is a first-order positive feedback loop. In a first- 
order system, there is only one state variable (stock), denoted here by s. The state 
of the system accumulates its net inflow rate; in turn, the net inflow depends on the 

‘For example, formulations for the net inflow such as a, * S1 * Sz, a, * Sl/S2. or MAX(0, al * S, )  
are all nonlinear. The term “nonlinear” is often used in other senses, for example to describe the 
nonchronological narrative structure of novels such as Cortizar ’s Hopscotch. The term “nonlinear” 
in these contexts actually means “nonsequential” and has nothing to do with the technical meaning 
of linearity. 
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state of the system (for now, assume no exogenous inputs). In general, the net in- 
flow is a possibly nonlinear function of the state of the system: 

S = INTEGRAL(Net Inflow, S(0)) (8-2) 

Net Inflow = f<S) .  (8-3) 

If the system is linear, the net inflow must be directly proportional to the state of 
the system: 

Net Inflow = gS (8-4) 

where the constant g has units of (Mime) and represents the fractional growth rate 
of the stock.2 

Figure 8-2 shows the structure of this system as a causal diagram and also as a 
set of equations. As examples, consider the accumulation of interest income into a 
bank account or the growth of a population. The principal and prevailing interest 
rate determine the interest payment; population and the fractional net birth rate 
determine the net birth rate.3 

What will the behavior of the system be? Section 8.2.1 uses basic calculus to 
solve the differential equation; the solution is the exponential function 

s(t> = S(O)exp(gt) (8-5) 

where S(0) is the value of S at the initial time t = 0. The state of the system grows 
exponentially from its initial value at a constant fractional rate of g per time unit. 

8.2.1 Analytic Solution for the 
Linear First-Order System 

To solve the differential equation for the first-order linear system, dS/dt = gS, first 
separate variables, to obtain 

dS 
- = gdt 
S 

Now, integrate both sides 

1 f = lgd t  

to get 

ln(S) = gt + c 

where c is a constant. Taking exponentials of both sides gives 

21n the general case of a multistate system, the rates of change, dS/dt, are a functionfo of the 
state vector S and any exogenous variables U: dS/dt = f ( S ,  U). In a linear system, the rates are 
linear combinations of the states and exogenous variables: dS/dt = AS + BU where A and B are 
matrices of coefficients. For good treatments of linear system theory, see, e.g., Ogata (1997) and 
Kamopp, Margolis, and Rosenberg (1990). 

birth and the ability to reproduce, a poor assumption for mammals, but reasonable for many 
unicellular and other small organisms. 

3Representing population growth as a first-order process assumes there is no delay between 
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S = c*exp(gt) (8-9) 
where c* is exp(c). The value of S at the initial time, when exp(gt) = 1, is by defi- 
nition S(O), so c* must equal S(0). Substitution yields equation (8-5). 

8.2.2 Graphical Solution of the 
Linear First-Order Positive Feedback System 

You do not need calculus to solve the equation for the first-order linear system. 
You can also deduce its behavior graphically. Figure 8-3 shows a third representa- 
tion of the structure of the system: a phase plot-a graph showing the net rate as a 
function of the state of the system. The graph shows that the net inflow rate is a 
straight line starting at the origin with positive slope g. 
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FIGURE 8-3 
Pha.se plot for 
the first-order, 
linear positive 
feedback system 
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Note that if the state of the system is zero, the net inflow is also zero. Zero is 
an equilibrium of the system: no savings, no interest income; no people, no births. 
However, the equilibrium is unstable: add any quantity to the stock and there will 
now be a small, positive net inflow, increasing the state of the system a bit. The 
greater state of the system leads now to a slightly greater net inflow and a still 
larger addition to the stock. The slightest departure from the equilibrium leads to 
further movement away from the equilibrium, just as a ball balanced exactly at the 
top of a hill, if disturbed even slightly, will roll ever faster away from the balance 
point. The greater the state of the system, the greater the net inflow: this is pre- 
cisely the meaning of the positive feedback loop coupling the stock and its net in- 
flow. In the general case where the phase plot of a state variable can be nonlinear, 
the state of the system will grow whenever the net rate is an increasing function of 
the stock. An equilibrium is unstable whenever the slope of the net rate at the equi- 
librium point is positive. 

Because the rate equation in the example is linear, the net increase rate grows 
exactly in proportion to the state of the system. Every time the state of the system 
doubles, so too will its absolute rate of increase. Therefore, the trajectory of 
the system in time shows an ever-increasing acceleration. Figure 8-4 shows the tra- 
jectory of the first-order linear positive feedback system on the phase plot and as a 
time series. In the figure, the growth rate g is 0.7%/time period and the initial state 
of the system is 1 unit. The arrows along the phase plot show that the flow of the 
system is away from the unstable equilibrium point. From any nonnegative start- 
ing point, the state of the system grows at an ever-accelerating rate as it moves 
along the line Net Inflow = gS.4 The accelerating growth is easily seen in the time 

V h e  system is symmetric for negative values of the state variable. If S(0) < 0, S will become 
ever more negative at exponential rates. In most systems, however, the state variables are restricted 
to nonnegative values (there can be no negative populations). 
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FIGURE 8-4 Exponential growth: structure (phase plot) and behavior (time plot) 
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domain. The slope of the state variable at every point is exactly proportional to the 
quantity in the stock, and the state of the system doubles every 100 time periods 
(see section 8.2.3). 

Note that changing the fractional growth rate changes the slope of the line Net 
Inflow = gS and therefore the rate of growth, but not the exponential shape of the 
curve. 

8.2.3 The Power of Positive Feedback: 
Doubling Times 

Before continuing, try the following challenge. 

The Rule of 70 
Positive feedback loops are the most powerful processes in the universe. Their 
power arises from the fact that the rate of increase grows as the state of the system 
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grows. When the fractional net increase rate is constant, positive feedback leads to 
exponential growth. Exponential growth has the remarkable property that the state 
of the system doubles in a fixed period of time, no matter how large it is. In the ex- 
ample in Figure 8-4, the state of the system doubles every 100 time periods. It 
takes 100 time periods to grow from the initial value of 1 to 2 units and only 100 
time periods to grow from 1000 to 2000 or from 1 billion to 2 billion. Any quan- 
tity that grows by positive feedback, that doubles in a fixed period of time, gets 
very large after just a few doublings. 

You can readily determine the doubling time for any exponential growth 
process. To do so solve equation (8-5) for the interval of time td that satisfies the 
equation when the stock has reached twice its initial value: 2S(O) = S(0)exp(gtd). 
The result is 

td = ln(2)/g (8-10) 

where td is the doubling time.5 The natural log of 2 = 0.6931 . . . Rounding ln(2) 
to 0.70 and expressing the fractional growth rate in percent per time period gives 
the Rule of 70: 

t, = 70/(100g). (8-11) 

Thus an investment earning 7%/year doubles in value after 10 years.6 As shown in 
Figure 4-2, the average growth rate of real GDP in the US over the past 100 years 
has been 3.4%/year, so the doubling time is roughly 20 years. The past 200 years 
have witnessed 10 doublings, increasing the size of the US economy by roughly a 
factor of one thousand (21° = 1024). 

8.2.4 Misperceptions of Exponential Growth 
While the Rule of 70 is simple and easy to apply, the implications of exponential 
growth are difficult to grasp intuitively. Wagenaar (1978) and Wagenaar and 
Sagaria (1975) studied people's ability to extrapolate exponential growth 
processes. They found people grossly underestimated the rate of growth, tending 
to extrapolate linearly instead of exponentially. That is, we tend to assume a quan- 
tity increases by the same absolute amount per time period, while exponential 
growth doubles the quantity in a fixed period of time. When the growth rate and 
forecast horizon are small, linear extrapolation is a reasonable approximation to 

5Dividing equation (8-5) through by S(0) yields 2 = exp(gtd). That is, the doubling time is in- 
dependent of the initial size of the stock. Taking the natural log of both sides and dividing through 
by g gives td = ln(2)/g. 

6The Rule of 70 is based on the assumption that the growth process is continuous in time. In 
the investment example, the assumption is that interest is compounded continuously. Compounding 
at discrete intervals reduces the effective yield and lengthens the doubling time. In discrete time, 
equation (8-5) no longer holds; instead the state variable is given by S(t) = S(O)(1 +g/p)Pt where 
p is the compounding period (for example, p = 12 for monthly compounding when g is the interest 
rate per year). The doubling time of the discrete time process is given by t, = ln(2)/(pln(l + g/p)). 
Since In( 1 + g/p) = g/p for small g/p, the Rule of 70 remains a good approximation of discrete 
time positive feedback processes as long as the compounding interval is relatively short compared 
to the doubling time. For example, a process growing at a rate of 7%/year compounded only an- 
nually doubles in 10.24 years compared to 9.90 years when compounding is continuous (using the 
exact value of ln(2) to calculate td). In the limit as p -+ m, (1 + g/p)(Pt) = exp(gt). 
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exponential growth. However, as the growth rate increases or the forecast horizon 
lengthens, the errors become huge. 

How thick did you think the sheet of paper would be after folding it 42 times? 
After 100 times? Most people estimate the paper will be less than a meter thick 
(3.3 feet) even after 100 folds. In fact, after 42 folds the paper would be 440,000 
kilometers thick-more than the distance from the earth to the moon! And after 
100 folds, the paper would be an incomprehensibly immense 850 trillion times the 
distance from the earth to the sun!7 

The underestimation of exponential growth is a pervasive and robust phenom- 
enon. Wagenaar and colleagues found that the underestimation was robust to the 
presentation of the data in tabular vs. graphic form. Surprisingly, showing more 
data tends to worsen the underestimation, and training in mathematics did not help 
(Wagenaar and T i m e r s  1979). 

The counterintuitive and insidious character of exponential growth can be seen 
by examining it over different time horizons. Figure 8-5 shows a positive feedback 
process growing exponentially at a constant rate of 0.7%/time period, with four 
different time horizons. By the Rule of 70, the doubling time td = 100 time peri- 
ods. Over a time horizon of one-tenth the doubling time, growth is imperceptible. 
Over a time horizon of one doubling’ time, the growth appears to be close to linear. 
Over 10 doublings, the accelerating character of exponential growth is clearly vis- 
ible. Over 100 doublings, it appears that nothing happens at all until about 90% of 
the time has passed. Many people, examining the behavior over the long time hori- 
zon, conclude that there must have been a dramatic change in the structure of the 
system around time 9000. In fact, the same process of accumulation powered by 
positive feedback is operating throughout the entire history, but only the last few 
doublings are noticeable. 

Of course, no real quantity can grow forever. Because exponential growth dou- 
bles in a fixed time interval, positive feedback processes approach their limits 
rapidly and often unexpectedly. Meadows et al. (1972, p. 29) illustrate with an old 
French riddle: 

Suppose you own a pond on which a water lily is growing. The lily plant doubles 
in size each day. If the lily were allowed to grow unchecked, it would completely 
cover the pond in 30 days, choking off the other forms of life in the water. For a 
long time the lily plant seems small, and so you decide not to worry about cutting 
it back until it covers half the pond. On what day will that be? On the twenty-ninth 
day, of course. You have one day to save your pond.8 

7Each fold doubles the thickness of the paper. A typical sheet of paper is about 0.1 mm thick. 
After two folds it is 0.4 mm thick; after five folds, just 3.2 mm. After 42 doublings the thickness 
has increased by a factor of 242 i= 4.4 trillion. Multiplying by the initial thickness of 0.1 mm and 
converting to kilometers gives a thickness of 440,000 km. After 100 folds the thickness has in- 
creased by a factor of 2Io0 = 1.27 x 
ters, and dividing by the mean earth-solar distance of 93 million miles = 149 million km gives a 
thickness of 852 X lo’* times the mean solar distance-more than 1 billion light-years. Of course, 
you would need a very large sheet of paper to carry the experiment through. 

9.3 X 

Multiplying by the initial thickness, converting to kilome- 

81n fact, the lily pad would be microscopic for much of the 30 days. Initially the lily covers only 
of the pond’s area. It reaches 1% of the area only after the 23rd day. 



7 0 c P r 
cu C 

(D 

co 

-0 
-0 
-0 -co 

-0 
-0 
-0 
-(D 

- 0  
- 0  
-0 
- rr  

0 

If 

271 



272 Part I1 Tools for Systems Thinking 

As various limits are approached, nonlinearities always weaken the positive loops 
and strengthen the negative feedbacks until the exponential growth halts. These 
nonlinear effects are illustrated by another famous story about exponential growth. 
As told by Meadows et al. (1972, p. 29): 

There is an old Persian legend about a clever courtier who presented a beautiful 
chessboard to his king and requested that the king give him in return 1 grain of 
rice for the first square of the board, 2 grains for the second square, 4 grains for the 
third, and so forth. The king readily agreed and ordered rice to be brought from 
his stores. The fourth square of the chessboard required 8 grains, the tenth square 
took 512 grains, the fifteenth required 16,384, and the twenty-first square gave the 
courtier more than a million grains of rice. By the fortieth square a million million 
rice grains had to be brought from the storerooms. The king’s entire rice supply 
was exhausted long before he reached the sixty-fourth square. 

In fact, the total quantity of rice on all 64 squares would have covered all of mod- 
ern day Iran to a depth of more than 5 feet. 

8.2.5 Process Point: Overcoming Overconfidence 
Consider again your answers to the paper folding challenge. Not only do people 
underestimate the thickness of the paper, but the correct answers fall outside their 
95% confidence bounds almost all the time. That is, people are grossly overconfi- 
dent in their judgments. 

Overconfidence is one of the most robust judgmental biases documented in the 
psychological literature. In a careful review, Scott Plous (1993) writes, “No prob- 
lem in judgment and decision making is more prevalent and more potentially cat- 
astrophic than overconfidence.” 

Overconfidence means the confidence bounds people provide around their es- 
timate of an unknown quantity are too narrow, causing an unexpectedly high rate 
of incorrect predictions. Lichtenstein and Fischoff (1977) found that people were 
65% to 70% confident of being right in answering a variety of questions when in 
fact they answered correctly at only about the chance rate of 50%. Such results 
have been replicated in a wide range of tasks and with experts as well as novices. 
Lichtenstein, Fischoff, and Phillips (1982) reviewed studies totaling nearly 15,000 
judgments and found that people’s 98% confidence bounds contained the correct 
response only 68% of the time-an error rate 16 times greater than expected. 

Extensive study of the relevant issue can actually worsen overconfidence. Os- 
kamp (1965) showed that the more information people received about an issue, the 
more confident they became-while accuracy did not improve. Financial incen- 
tives do not reduce overconfidence: In some studies subjects were given the option 
of betting on their answers at the odds they estimated for being correct. They con- 
sistently lost money. 

Situations in which people’s confidence bounds are approximately correct are 
rare. Weather forecasters and professional card players are among the few groups 
whose judgments have been found to be well calibrated. These are narrowly 
bounded contexts where the relevant factors are well known. Thousands of repe- 
titions provide feedback enabling the meteorologist and gambler to learn from 
experience. These conditions do not hold for most dynamically complex settings, 
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including judgments about the likely behavior of feedback systems: the causal 
structure, relevant variables, and parameters are highly uncertain and largely un- 
known (see chapter 1). In most social and business situations the time delays are so 
long there is little or no chance to learn from experience; by the time feedback is 
available it will be too late to take effective action. Many investors and money 
managers during the great bull markets of the 1920s and 1980s-90s never experi- 
enced a market crash and underestimated the likelihood of declining share prices. 
And for issues such as global climate change the world must adopt policies re- 
garding emissions of greenhouse gases decades before the full impact of human 
activity on global climate will be known. Overconfidence means you will proba- 
bly buy too little insurance and are likely to wake up one day to find you have in- 
sufficient coverage. Before the Challenger explosion NASA estimated the risk of 
catastrophic launch failure at 1 in 100,000.9 

As an illustration that experts are far from immune to overconfidence, consider 
the debate over global warming. The economist William Nordhaus (1994) con- 
ducted a survey of distinguished experts on global climate change to assess their 
views on the likely economic effects of global warming. Nordhaus asked the panel 
to estimate the loss of gross world product (GWP) caused by various amounts of 
warming. The results showed a huge gulf between the estimates of the scientists 
compared to the economists. Scientists estimated the probability of a “high- 
consequence event” (a catastrophic change in climate cutting GWP by 25% or 
more) as 20 to 30 times more likely than the economists did. Estimates of the most 
likely reduction in GWP were similarly bimodal, with scientists generally estimat- 
ing large impacts and economists generally estimating small or even positive im- 
pacts of warming on the global economy. No one knows which group is correct. 
What is striking, however, is the small range of uncertainty each expert allowed. 
Each provided 90% confidence bands around their best estimates, yet in many 
cases these ranges were so small they excluded the majority of the other experts’ 
views. Economists, who tended to predict small effects, tended to have the narrow- 
est confidence bands. One economist wrote, “It is impossible to contemplate what 
society will be like a century from now as technology changes” yet estimated that 
a 3°C rise in global mean temperature by 2090 would produce a change in GWP 
ranging from -2% to + 1%, one of the smallest ranges offered by any respondent. 

Overcoming overconfidence requires greater humility about the limits of our 
expertise. Several techniques can help. List all the reasons your opinion could be 
wrong. Try to identify the implicit assumptions of your mental model and consider 
how the outcome might change if different assumptions were used. Because iden- 
tifying the hidden biases in our own mental models is difficult, it is especially valu- 
able to solicit the judgments and opinions of a diverse group of people, especially 
those with opposite views. Your critics will usually be far more effective in help- 
ing you calibrate and improve your judgment than your friends-seek out and wel- 
come their views. You should be especially suspect of statements that something is 
absolutely certain, inevitable, without doubt, or a one in a million chance, espe- 
cially if the situation involves human behavior or if people’s judgments require 

90f  course, NASA’s estimate could have been correct and the Challenger disaster, just 
extraordinarily bad luck. While logically possible, careful studies of the disaster belie that view. 
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mental simulation of dynamically complex systems. When assessing the confi- 
dence intervals provided by formal models or statistical analysis of data, remem- 
ber that the confidence bounds provided by statistical models measure only the 
uncertainty due to sampling error, and not that due to specification error (errors in 
the model boundary and in the maintained hypotheses of the statistical method). 
These latter sources of error are typically much larger than uncertainty due to sam- 
pling error. When formal models are available, conduct extensive sensitivity tests, 
not only of the response to parametric uncertainty but also to uncertainty about the 
model boundary, feedback structure, and other structural assumptions. 

8.3 NEGATIVE FEEDBACK AND EXPONENTIAL DECAY 
First-order linear positive feedback systems generate exponential growth. First- 
order negative feedback systems generate goal-seeking behavior. When the system 
is linear, the behavior is pure exponential decay. 

The feedback structure responsible for exponential decay is shown in Fig- 
ure 8-6. As examples, consider the death rate of a population or the depreciation of 
an asset. In both cases, the net outflow is proportional to the size of the stock. The 
equation for the net rate of change of the stock is 

Net Inflow = -Net Outflow = -dS (8-12) 

where d is the fractional decay rate (its units are Mime). The reciprocal of the frac- 
tional decay rate is the average lifetime of units in the stock (see chapter 11 on de- 
lays for a proof). 

To deduce the behavior of the linear, first-order negative feedback system note 
that equation (8-12) is the same as equation (8-4) except that the negative of the 
fractional decay rate replaces the fractional net increase rate. The solution is there- 
fore given by the same exponential function, with -d replacing g: 

S(t) = S(O)exp(-dt) (8-13) 

Figure 8-7 shows the phase plot for the first-order linear negative loop system. The 
net rate of change of the stock is now a straight line with negative slope -d. As be- 
fore, the point S = 0 is an equilibrium: where there are no people, there can be no 
deaths; when the value of an asset has declined to zero, no further depreciation can 
be taken. Unlike the positive feedback case, the equilibrium is stable. Increasing 
the state of the system increases the decay rate, moving the system back toward 
zero. A system with a stable equilibrium is like an orange resting at the bottom of 
a bowl. If you push the orange up the side of the bowl and release it, it rolls back 
down until it comes to rest again at the bottom. Deviations from the equilibrium 
are self-correcting. 

Figure 8-8 shows the dynamics of the system on both the phase plot and in the 
time domain. The fractional decay rate in the example is 5%/time period, and the 
initial state of the system is 100 units. Initially, the decay rate is -5 units/time pe- 
riod. The decay rate is directly proportional to the state of the system, so as the 
state of the system declines, so too does the decay rate. The flow of the system, de- 
noted by arrows in the phase plot, is always toward the stable equilibrium. The dots 
on the phase plot show the location of the system every 10 time units. Note how 
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FIGURE 8-6 
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FIGURE 8-8 
The fractional decay rate d = 5%/time unit. Initial state of the system = 100 units. 

Exponential decay: structure (phase plot) and behavior (time plot) 
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the adjustment is rapid at first and falls over time. The state of the system falls at a 
diminishing rate as it approaches zero. 

The exponential decay structure is a special case of the first-order linear nega- 
tive feedback system. As discussed in chapter 4, all negative feedback loops have 
goals. In the case of exponential decay, such as the death rate and depreciation ex- 
amples, the goal is implicit and equal to zero. In general, however, the goals of 
negative loops are not zero and should be made explicit. Figure 8-9 shows the gen- 
eral structure for the first-order linear negative feedback system with an explicit 
goal. Examples include the process by which a firm adjusts its inventory or work- 
force to the desired level. Possible delays in changing production or hiring new 
workers are ignored. Including such delays would add additional stocks to the 
model. 

In the general case, the coivective action determining the net inflow to the state 
of the system is a possibly nonlinear function of the state of the system, S, and the 
desired state of the system, S": 

Net Inflow = f ( S ,  S*). (8-14) 

The simplest formulation, however, is for the corrective action to be a constant 
fraction per time period of the discrepancy between the desired and actual state of 
the system: 

Net Inflow = Discrepancy/AT = (S' - S)/AT (8-15) 

where the parameter AT is known as the adjustment time or time constant for the 
loop. Note the units of equation (8-15): the net inflow has dimensions of unitshme 
period. The discrepancy between the desired and actual state of the system has di- 
mensions of units. For example, if the desired inventory of a firm is 100 units and 
current inventory is only 60 units, the discrepancy is 40 units. The adjustment time 
represents how quickly the firm tries to correct the shortfall: if the firm seeks to 
correct the shortfall quickly, the adjustment time would be small. For example, the 
firm may set the adjustment time to AT = 1 week, meaning that they would correct 
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the inventory at an initial rate of 40 units/week. Being more cautious and setting 
AT = 2 weeks would entail an initial net inflow of 20 unitdweek, and an even 
more aggressive firm might set AT = 0.5 weeks, leading to an initial net inflow of 
inventory of 80 unitdweek. Of course, these corrective actions cause the inventory 
shortfall to diminish, reducing the net inflow over time until the discrepancy is 
eliminated. The discrepancy can be negative, as when there is excess inventory; in 
this case the net inflow is negative and the state of the system falls. 
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FIGURE 8-1 0 
Phase plot for 
first-order linear 
negative feedback 
system with 
explicit goal 

FIGURE 8-1 1 
Exponential 
approach to a goal 
The goal is 100 
units. The upper 
curve begins with 
S(0) = 200; the 
lower curve begins 
with S(0) = 0. The 
adjustment time 
in both cases is 
20 time units. 

The reciprocal of the adjustment time has units of Mime and is equivalent to 
the fractional adjustment rate, corresponding to the fractional decay rate in the ex- 
ponential decay case. The phase plot for the system (Figure 8-10) shows that the 
net inflow rate to the state of the system is a straight line with slope (- l/AT) and 
equals 0 when S = S*. The behavior of the negative loop with an explicit goal is 
also exponential decay, but instead of decaying to zero, the state of the system 
reaches equilibrium when S = S". 

If the initial state of the system is less than the desired state, the net inflow is 
positive and the state of the system increases, at a diminishing rate, until S = S*. If 
the state of the system is initially greater than the goal, the net inflow is negative 
and the state of the system falls, at a diminishing rate, until it equals the goal. The 
flow of the system is always toward the stable equilibrium point at S = S* (Fig- 
ure 8-11). 
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8.3.1 Time Constants and Half-Lives 
Just as exponential growth doubles the state of the system in a fixed period of time, 
exponential decay cuts the quantity remaining by half in a fixed period of time. 
The half-life of an exponential decay process is calculated in the same fashion as 
the doubling time. The solution to equation (8-15) is 

S(t) = S* - (S* - S(O))exp(-VAT) (8-16) 

In equation (8-16) S* - S(0) is the initial gap between the desired and actual states 
of the system. The term exp(-t/AT) decays from 1 to 0 as time increases; it is 
the fraction of the initial gap between desired and actual states remaining at any 
time t. The product (S* - S(O))exp( -t/AT) is therefore the current gap remaining 
between the desired and actual states. When the term exp( -t/AT) has decayed to 
zero the state of the system equals the goal (Figure 8-12). 

The half-life is given by the value of time, th, which satisfies 

0.5 = exp(-th/AT) = exp(-dt) (8-17) 

where the fractional decay rate d = UAT. Solving for th yields 

th = ATln(2) = ln(2)/d = 0.70AT = 70/(100d) (8-18) 

The half-life is given by the same Rule of 70 characterizing exponential growth. 
Equivalently, the half-life is given by 70% of the adjustment time.1° 

Each time period equal to AT, the gap remaining falls to exp(-AT/AT) = 37% 
of its initial value, and 1 - exp(-AT/AT) = 63% of the gap is corrected. Why isn’t 
the entire gap corrected after one time constant has passed? From equation (8-15) 
the initial rate of change of the state of the system is (S* - S(O))/AT, that is, the ini- 
tial gap divided by the adjustment time. If the initial rate of adjustment remained 
constant, the entire gap would be eliminated after AT time units (note that the tan- 
gent to the state of the system at time 0 just eliminates the gap after one adjustment 
time; see Figure 8-12). However, the net rate of change of the state of the system 
does not remain constant. As the state of the system approaches the goal, the gap 
remaining falls, and so too does the corrective action. The negative feedback grad- 
ually reduces the adjustment rate as the goal is approached. 

The table at the bottom of Figure 8-12 shows the fraction of the gap remaining 
for different multiples of the adjustment time. After one adjustment time, 63% of 
the initial gap has been corrected. After two adjustment times, the state of the sys- 
tem has moved 86% of the way to the goal. After three adjustment times, the ad- 
justment is 95% complete. Technically, the gap is never fully corrected; there is 
always some small fraction of the gap remaining at any finite time. However, for 
all practical purposes adjustment is complete after three to four adjustment times 
have passed.” 

‘OTaking logs of both sides gives ln(0.5) = -t,,/AT or th = -ln(0.5) * AT = ln(2) * AT. 
“After four adjustment times, the gap remaining is just 2%, a quantity often smaller than the 

accuracy with which the state of the system can be measured. Control engineers speak of a system’s 
settling time, defined as the time required for a system, after a shock, to settle within a small per- 
centage of its equilibrium value. 
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FIGURE 8-12 Relationship between time constant and the fraction of the gap remaining 
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Goal-see ki ng behavior 
Consider the labor force structure in Figure 8-9. Assume the net hiring rate for a 
firm is proportional to the gap between the desired and actual workforce. Without 
using a computer or calculator, sketch the behavior of the workforce and net hiring 
rate for the following situations. 

1. The desired workforce increases from 1000 to 2000 at week 4, then steps 
down to 1500 at week 12 (Figure 8-13). Assume the workforce adjustment 
time AT = 4 weeks and the actual workforce initially equals the desired 
workforce. 

2. Repeat step 1 for the case where the labor force adjustment time AT = 
2 weeks. 

3. Sketch the workforce and net hiring rate for the case where the desired 
workforce increases linearly beginning in week 4 (Figure 8- 14). Assume the 
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labor force adjustment time AT = 4 weeks. Does the workforce eventually 
equal the desired workforce? Why or why not? 
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8.4 MULTIPLE-LOOP SYSTEMS 
The discussion up to now treated positive and negative feedback in isolation. What 
is the behavior of a first-order system when the net rate of change is affected by 
both types of loop? Consider the example of a population (Figure 8-2). Disaggre- 
gate the net birth rate into a birth rate BR and a death rate DR. The net rate of 
change for the system is then 

Population = INTEGRAL(Net Birth Rate, Population(0)) 

Net Birth Rate = BR - DR 

(8-19) 

(8-20) 

Consider the linear case where the fractional birth rate is a constant, denoted b, and 
the fractional death rate is also constant, denoted d. The net birth rate is then 

Net Birth Rate = bP - dP = (b - d)P (8-21) 
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FIGURE 8-1 5 
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Figure 8-15 shows the phase plot for the system. Only three behaviors are pos- 
sible. If the environment contains abundant resources, births will exceed deaths 
(b > d), and the population grows exponentially without limit. Alternatively, births 
and deaths might exactly offset each other (b = d), and population is in equilib- 
rium. Finally, the environment might be so harsh that deaths exceed births (b < d), 
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and population declines exponentially to zero. Because the system is linear, the 
fractional net birth rate is a constant, independent of the size of the population, 
fixed for all time once the values of b and d are chosen. The behavior of the system 
is the sum, or superposition, of the behaviors generated by the individual loops. 
Because the system is linear (b and d are constants), the dominance of the two 
loops can never change. The population will grow without bound, remain constant, 
or decay to extinction. 

The superposition property is true of linear systems of any order and com- 
plexity. As long as all the rate equations in a system are linear, the relative impor- 
tance of the different feedback loops can never change-there can be no shifts in 
loop dominance. Superposition means linear systems can be analyzed by reduction 
to their components. As a result, linear systems, no matter how complex, can be 
solved analytically, a distinct advantage in understanding their dynamics. 

However, realistic systems are far from linear. The behavior of the linear pop- 
ulation growth system shows why. Because the dominance of the feedback loops 
can never change, the population can only grow forever, remain constant, or go ex- 
tinct. Real populations introduced into a new habitat with abundant resources grow 
at first, then stabilize or fluctuate. The relative strength of the positive and negative 
loops must therefore shift as a population grows relative to the carrying capacity of 
the environment. In real systems, there must be shifts in feedback loop dominance, 
and therefore there must be important nonlinearities in all real systems. 

Unfortunately, many modelers have restricted their attention to models that can 
be expressed as linear systems so that they can apply the powerful tools of linear 
systems theory, while making the heroic assumption that the linear approximation 
is reasonable. In fairness, the reliance on linear theory and the avoidance of non- 
linear systems was justifiable prior to the development of computer simulation be- 
cause analytical solutions to nonlinear dynamic systems cannot in general be 
found. Early theorists of dynamic systems made the assumption of linearity be- 
cause it was the only way to make progress. Even after the advent of computer 
simulation, however, too many modelers and mathematicians continued to stress 
linear theory and build linear models. The tendency to treat every system as a lin- 
ear nail because the hammer of linear theory is so powerful has hampered the de- 
velopment of realistic and robust models of complexity. 

Of course, the triumph of linear methods has never been complete. Even prior 
to the computer era several important nonlinear models were developed, most no- 
tably Verhulst’s famous 1844 logistic population growth model (see section 9.1) 
and the equally famous Lotka-Volterra predator-prey model (Lotka 1956). And the 
qualitative theory of dynamic systems developed by Poincare and others to analyze 
the three-body problem in celestial mechanics is fundamentally nonlinear (see 
Diacu and Holmes 1996 for a nontechnical treatment of the history and theory). In 
the past few decades there has been an explosion of interest in, theories of, and 
data supporting the importance of nonlinear behavior in all branches of dynamics 
(the rise of so-called chaos or complexity theory). Still, Yoshisuke Ueda, who dis- 
covered chaos in a nonlinear oscillator as a graduate student in the late 1950s, was 
unable to get his work published for over a decade because his advisors, steeped in 
linear theory, asserted that his measurements and analysis must be wrong because 
they “knew” that systems could not generate the strange nonlinear behavior 
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Nonlinear Birth and Death Rates 
Before continuing, sketch a graph showing the likely shape of the fractional 
birth and death rates for a population as it approaches its carrying capacity (Fig- 
ure 8-17). The carrying capacity is defined as the population that can just be sup- 
ported by the environment. Be sure to consider extreme conditions (that is, what 
will the fractional birth and death rates be for very low or very large populations?). 
From your estimates, draw the fractional net birth rate (the difference between the 
fractional birth and death rates). 

Population/Carrying Capacity 
(dimensionless) 

When population density (the ratio P/C) is small, both fractional birth rate and 
life expectancy should be at their biological maxima. As population grows, re- 
sources per capita decline. Fractional birth rate and life expectancy must fall. Do 
they decline immediately? In some cases, even small reductions in resources per 
capita could cause a decline in fertility and life expectancy. For other resources, 
such as food, individuals cannot consume more than a certain amount, so fractional 
birth and death rates should remain constant as long as resources per capita exceed 
the maximum each individual can consume. Reducing available food from 10 
times more than needed to 5 times more than needed has no impact since each in- 
dividual still gets all they can consume.12 In this case the fractional birth and death 
rates remain constant-up to a point-as P/C increases. Once resources per capita 
fall below a certain level, the fractional birth rate falls and the fractional death rate 
increases. By definition, the carrying capacity is the population that can just be 
supported by the resources available, so the fractional birth rate must equal the 

12The assumption that excess food has no impact on fertility or mortality holds only if the 
organisms in question eat only what they need and do not gorge themselves when a surplus is 
available. For the human population, in contrast, an abundant food supply and diet rich in animal 
protein and fat tends to lead to obesity and significantly higher morbidity and mortality. In such a 
case, the effect of food per capita on the fractional death rate would actually rise when food per 
capita exceeds a certain level. 
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FIGURE 8-18 
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fractional death rate when P/C = 1. If the population were to rise above the carry- 
ing capacity, the birth fraction would continue to fall and the death fraction would 
continue to rise. As P/C continues to increase, the birth fraction must fall to zero 
and the death fraction must rise to a very large value. Therefore, as shown in Fig- 
ure 8-18, the fractional net birth rate will be positive for P < C, equal zero when 
P = C, and fall below zero at an increasing rate when population exceeds the 
carrying capacity of the environment. While the numerical values for these rela- 
tionships would differ for different populations, their qualitative shape is not in 
doubt. 

Next construct the phase plot for the system using these nonlinear fertility and 
life expectancy relationships. The birth and death rates are now curves given by the 
product of the population and fractional birth and death rates (Figure 8-19). First, 
note that the point P = 0 is an equilibrium, as in the linear system. Since the frac- 
tional birth rate remains nearly constant when population is small relative to the 
carrying capacity, the birth rate (in individualdtime period) is nearly linear for 
P 6 C. As population density rises and the fractional birth rate falls, the birth rate, 
while still growing, rises with a shallower and shallower slope. At some point, the 
decline in the fractional birth rate reduces total births more than the increase in 
sheer numbers increases them, and the birth rate reaches a maximum. Since the 
fractional birth rate falls to zero for high population densities, so too the total birth 
rate must approach zero. Likewise, the death rate rises nearly linearly for P < C, 
but as greater population density boosts the fractional death rate, the total death 
rate increases at an increasing rate. 

Turning to the dynamics, imagine the initial population is small relative to the 
carrying capacity. The net birth rate rises nearly linearly for P 6 C. The behavior 
of the system in this regime will be nearly pure exponential growth. As population 
density increases, the net birth rate continues to rise, but at a shallower and shal- 
lower slope. The population continues to grow at an increasing rate, but the frac- 
tional growth rate is steadily diminishing. At some point, the net birth rate reaches 
a maximum. This point comes at a lower population density than the peak in the 
birth rate since deaths are increasing at an increasing rate. The peak of the net birth 
rate curve on the phase plot corresponds to the inflection point in the trajectory of 
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population in the time domain (the point at which the population is rising at its 
maximum rate). Beyond the inflection point, the increase in population density re- 
duces the net birth rate more than the increase in total population size increases it. 
The net birth rate, while still positive, drops, falling to zero just when the popula- 
tion equals the carrying capacity. If the population exceeded the carrying capacity, 
resources per capita would be so scarce that deaths would exceed births, and the 
population would fall back toward the carrying capacity. The equilibrium at P = C 
is therefore stable. 

Figure 8-20 shows the behavior of the system over time for two cases: 
(1) when the initial population is much smaller than the carrying capacity and 
(2) when the initial population is much larger than the carrying capacity. When 
P(0) 4 C, the net birth rate is increasing in the population. As long as the slope of 
the net birth rate curve in the phase plot is positive, the system is dominated by the 
positive feedback loop and population grows exponentially. Unlike the linear sys- 
tem, however, the slope of the net birth rate curve is not constant, so the growth is 
not a pure exponential. Instead, the fractional growth rate falls as population 
grows. Population growth reaches its maximum when the population reaches the 
value denoted (PK),, the inflection point in the trajectory of the population. At 
that point the slope of the net birth rate curve is zero; the positive and negative 
loops exactly offset one another. As population continues to grow, the slope of the 
net birth rate curve in the phase plot becomes negative; for P/C > the sys- 
tem is dominated by negative feedback. Because the net birth rate has a negative 
slope in this region, the equilibrium point at P = C is stable. A population less than 
the carrying capacity will grow at a diminishing rate until it reaches the carrying 
capacity; a population larger than the carrying capacity will fall until it reaches the 
carrying capacity from above. 

8.5.1 Formal Definition of Loop Dominance 
The phase plot shows the origin of the terms positive and negative feedback. Posi- 
tive feedback dominates whenever the rate of change of the state variable is 
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increasing in the state variable, that is, as long as the slope of the net rate of change 
as a function of the state variable is positive. Negative feedback dominates when- 
ever the net rate of change is decreasing in the state variable, that is, as long as the 
slope of the net rate is negative. 

This observation leads to a formal definition of loop dominance for first-order 
systems (Richardson 1986b, 1995): 

> 0 + Positive feedback dominant e{ = 0 =+ No net feedback from state to rate 
as < 0 + Negative feedback dominant 

where 

. dS s = -  
dt 

(8-23) 

Determining whether a system is dominated by positive or negative feedback is 
more difficult in higher-order systems because a loop with time delays can have a 
weak short-run but large long-run effect. Kampmann (1996) provides some meth- 
ods to determine the dominant loops in multiloop, high-order systems; see also N. 
Forrester (1982) and Mojtahedzadeh (1997). 
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8.5.2 First-Order Systems Cannot Oscillate 
As a final observation on the general nonlinear first-order system, consider 
whether a first-order system can oscillate. Section 8.4 demonstrated that the linear 
first-order system can generate only exponential growth, decay, or equilibrium. 
Nonlinear first-order systems generate more complex dynamics, but can never os- 
cillate, no matter the form of the nonlinearity. To see why, consider the phase plot 
for the first-order system in Figure 8-19. To oscillate, the state variable must go 
through periods of increase followed by periods of decrease. Therefore, the net rate 
of change in the phase plot must cross from positive to negative values, at least in 
one place. However, any point where the net rate of change is zero is an equilib- 
rium of the state variable. Since first-order systems have only one state variable, 
every such point is an equilibrium for the system as well. Every equilibrium point 
is either stable (the slope of the net rate curve in the neighborhood of the equilib- 
rium is negative) or unstable (positive slope in the neighborhood of the equilibrium 
point).13 If a first-order system is disturbed from an unstable equilibrium, it will di- 
verge from it, either without bound (not oscillating) or until it approaches a stable 
equilibrium point where all change ceases. Therefore to oscillate, a system must be 
at least second order, meaning there must be a feedback loop with at least two 
stocks in it.14 

SUMMARY 
This chapter explored the dynamics of simple systems, specifically, first-order 
linear systems-systems with only one stock (state variable) and in which the rates 
of flow are linear functions of the system state. These simple systems are the build- 
ing blocks out of which all models are built and from which more complex 
dynamics emerge. First-order linear positive feedback systems produce pure expo- 
nential growth. Exponential growth has the remarkable property that the state of 
the system doubles in a fixed period of time, no matter how large it is. The 
doubling time characterizes the strength of the positive loop. Similarly, first-order 
linear negative feedback systems generate exponential decay to a goal. The decay 
rate is characterized by the half-life, the time required for the gap between the state 
of the system and the goal to be cut in half. The chapter also introduced the phase 

I3If the net rate of change is zero over a finite interval in state space, these points have neutral 
stability; a disturbance (within that range) causes neither a restorative nor divergent change in the 
net rate, just as a ball placed anywhere on a flat surface will remain at that point. 

''Technically, first-order systems cannot oscillate provided time is treated continuously. First- 
order systems in discrete time can oscillate. For example, the logistic map, the first-order nonlinear 
discrete time map x(t + 1) = kx(t)(l - x(t)), where 0 5 k 5 4 and 0 < x(0) < 1, not only oscil- 
lates for certain values of k, but generates period doubling and chaos as well. However, the state- 
ment that oscillation requires a feedback loop with at least two stocks is still valid: in discrete time 
models, the time step between iterations constitutes an irreducible time delay in every feedback 
loop. Every time lag contains a stock which accumulates the inflow to the delay less its outflow. 
Every discrete dynamic system can be converted into an equivalent continuous time system by 
introducing a lag equal to the time step at every state variable, increasing the order of the system 
(see Low 1980 for an example). 
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plot, a useful tool to analyze the dynamics of systems graphically, without the use 
of calculus. 

Analysis of the phase plots for first-order systems shows that in systems with 
more than one feedback loop, the dynamics depend on which loop is dominant. In 
linear systems, the dominance of the different loops can never change. Thus linear 
first-order systems can only exhibit three behaviors: exponential growth (when the 
positive loops dominate), exponential decay (when the negative loops dominate), 
and equilibrium (when the loops exactly offset one another). Nonlinear first-order 
systems can exhibit S-shaped growth because the dominant feedback loops shift as 
the system evolves. As the population approaches its carrying capacity the positive 
loops driving growth weaken and the negative loops restraining growth strengthen, 
until the system is dominated by negative feedback, and the population then 
smoothly approaches a stable equilibrium at the carrying capacity. 
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Everything that rises must converge. 
-Flannery O’Connor 

As seen in chapter 8, positive feedback creates exponential growth. But no real 
quantity can grow forever. Every system initially dominated by positive feedbacks 
eventually approaches the carrying capacity of its environment. As the limits to 
growth approach, there is a nonlinear transition from dominance by positive feed- 
back to dominance by negative feedback. Under certain conditions, the result is 
S-shaped growth, where the growing population smoothly approaches equilibrium. 
This chapter shows how S-shaped growth can be modeled, with applications to the 
diffusion of innovations, the spread of infectious diseases and computer viruses, 
the growth of the market for new products, and others. A variety of important and 
widely used models of S-shaped growth are introduced and analyzed, the use 
of these models for forecasting is discussed, and extensions to the models are 
presented. Cases examined include the spread of mad cow disease and HIV and 
the growth of the markets for high-tech products such as computers and consumer 
services such as cable television. 

295 
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9.1 MODELING S-SHAPED GROWTH 
The nonlinear population model developed in chapter 8 is quite general. The pop- 
ulation in the model can be any quantity that grows in a fixed environment, for ex- 
ample, the number of adopters of an innovation, the number of people infected by 
a disease, the fraction of any group adhering to an idea or purchasing a product, 
and so on. If the population is driven by positive feedback when it is small relative 
to its limits, then the resulting behavior will be S-shaped growth, provided there 
are no significant delays in the negative feedbacks that constrain the population. If 
there are delays in the response of the population to the approaching carrying ca- 
pacity, the behavior will be S-shaped growth with overshoot and oscillation; if the 
carrying capacity is consumed by the growing population, the behavior will be 
overshoot and collapse (see chapter 4). Conversely, whenever you observe a sys- 
tem that has experienced S-shaped growth, you know that initially the behavior 
was dominated by positive feedback loops, but as the system grew, there was a 
nonlinear shift to dominance by negative feedback. 

9.1 .I Logistic Growth 
As illustrated in the nonlinear population growth example in chapter 8, the net 
fractional growth rate of the population P must fall from its initial value, pass 
through zero when the population equals the carrying capacity C, and become neg- 
ative when P > C. Consequently, the phase plot of the net birth rate must have a 
shape roughly like an inverted bowl: Net births are zero when the population is 
zero, rise with increasing population up to a maximum, fall to zero at the carrying 
capacity, and continue to drop, becoming increasingly negative, when population 
exceeds the carrying capacity. However, there are an infinite number of fractional 
net birth rate curves, and hence phase plots, satisfying these general constraints. An 
important special case of S-shaped growth is known as logistic growth, or Verhulst 
growth, after Franqois Verhulst who first published the model in 1838 (see 
Richardson 1991). 

The logistic growth model posits that the net fractional population growth rate 
is a (downward sloping) linear function of the population. That is, 

Net Birth Rate = g(P, C)P = g*(l - P/C)P (9-1) 

where g(P, C), the fractional growth rate, is a function of the population and carry- 
ing capacity and g* is the maximum fractional growth (the fractional growth rate 
when the population is very small). The logistic model conforms to the require- 
ments for S-shaped growth: the fractional net growth rate is positive for P < C ,  
zero when P = C, and negative for P > C. The logistic model has some additional 
characteristics. Rearranging equation (9- 1) gives 

Net Birth Rate = g*(l - P/C)P = g*P - g*pZ/C (9-2) 

The first term g*P is a standard first-order linear positive feedback process; the 
second term, -g*P2/C, is nonlinear in the population and represents the ever- 
stronger negative feedback caused by the approach of the population to its carry- 
ing capacity. 
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When does the net growth rate reach its maximum? In the logistic model the 
net birth rate given by equation (9-2) is an inverted parabola which passes through 
zero at the points P = 0 and P = C. Because a parabola is symmetric around its 
peak, the maximum net birth rate occurs when 

Pi"f = c /2  (9-3) 

where Pinf is the value of population where the net growth rate is at a maximum and 
therefore the inflection point in the trajectory of the population.' The maximum net 
growth rate occurs precisely halfway to the carrying capacity. Figure 9-1 plots the 
fractional growth rate, phase plot, and time domain behavior for the logistic model. 

The logistic model is important for several reasons. First, many S-shaped 
growth processes can be approximated well by the logistic model, despite the re- 
striction that the inflection point occurs at precisely C/2. Second, the logistic model 
can be solved analytically. Finally, the logistic model, though intrinsically non- 
linear, can be transformed into a form that is linear in the parameters so it can be 
estimated by the most common regression technique, ordinary least squares (see 
section 9.3.1). 

9.1.2 Analytic Solution of the Logistic Equation 
Though it is nonlinear, the logistic model shown in equation (9-1) can be solved 
analytically. First separate the variables, then integrate: 

1 dp = 1 g*dt 
(I - g)P  

Rearranging the left-hand side gives 

1 Cdp = 1 [' + -]dP 1 = 1g'dt 
(C - P)P P (C - P) 

(9-4) 

(9-5) 

Integrating both sides yields 

In(P) - ln(C - P) = g*t + c (9-6) 

where c is a constant. Since by definition P(t) = P(0) when t = 0, 

In(€') - ln(C - P) = g*t + ln(P(0)) - ln[C - P(O)]. (9-7) 

Taking exponentials yields 

which can be rearranged as 
17 
L 

P(t) = 

I + ~ - 1 exp(-g*t) 1 (9-9) 

'The maximum net birth rate, and therefore the infection point in the population, occurs when 

d[g(P, C) * Pl/dP = g* - 2g*p/c = 0. 
Solving for P yields Pinf = C/2. 
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or equivalently as 

C 
1 + exp[-g*(t - h)] 

P(t) = 

where h is the time at which the population reaches half its carrying ca- 
pacity; setting P(h) = 0.5C in equation (9-10) and solving for h yields h = 
ln[(C/P(O)) - l]/g*. Equations (9-9) and (9-10) are two forms of the analytic solu- 
tion to the equation for logistic growth given by equation (9-1). 
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9.1.3 Other Common Growth Models 
Due to its simplicity and analytic tractability, the logistic model is the most widely 
used model of S-shaped growth. However, there are many other models of 
S-shaped growth. These models relax the restrictive assumption that the fractional 
growth rate declines linearly in the population. These growth curves are in general 
not symmetric. 

The Richards curve is one commonly used model (Richards 1959). In 
Richards' model the fractional growth rate of the population is nonlinear in the 
population: 

Net Birth Rate = - = ~ 

dt (m - 1) 
(9- 11) 

When m = 2, the Richards model reduces to the logistic. Other values of m cause 
the fractional growth rate to be nonlinear in the population (try sketching the frac- 
tional growth rate as a function of population for different values of m). The solu- 
tion of the Richards model is 

P(t) = C(l - kexp(-g*t))"('-") (9-12) 

where k is a parameter that depends on the initial population relative to the carry- 
ing capacity. 

A special case of the Richards model is the Gompertz curve, given by the 
Richards model in the limit when m = 1. Note that while equation (9-12) is un- 
defined when m = 1, 

(x" - 1) 
lim ~ = ln(x) 
a i 0  a (9-13) 

so the Gompertz curve is given by 

P(t) = Cexp( - kexp( - g*t)). (9- 14) 

In the Gompertz model, the fractional growth rate declines linearly in the loga- 
rithm of the population, and the maximum growth rate occurs at P/C = 0.368. 

Another commonly used growth model is based on the Weibull distribution: 

P(t) = C( 1 - exp[-(th)"]} (9-15) 

where a, b > 0 are known as the shape and scale parameters, respectively. The case 
a = 2 is known as the Rayleigh distribution. 

The Richards and Weibull models provide the modeler with analytically 
tractable growth functions that can represent a variety of nonlinear fractional net 
increase rates. However, there is no guarantee that the data will conform to the as- 
sumptions of any of the analytic growth models. Fortunately, with computer simu- 
lation, you are not restricted to use the logistic, Gompertz, Richards, Weibull, or 
any other analytic model. You can specify any nonlinear relationship for the frac- 
tional birth and death rates supported by the data and then simulate the model to 
explore its behavior over time. 
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9.1.4 Testing the Logistic Model 
To illustrate the use of the logistic model, consider the examples of S-shaped 
growth in Figure 4-9. Figure 9-2 shows the result of fitting the logistic model to the 
data for the growth of sunflowers. The best fit logistic model matches the sun- 
flower data reasonably well, though it underestimates the growth in the first month 
and overestimates it later. These differences suggest a better fit might be gained 
through use of a different growth model, such as the Richards model, in which the 
fractional growth rate is nonlinear in the population. Section 9.3.1 provides addi- 
tional examples. 

9.2 DYNAMICS OF DISEASE: MODELING EPIDEMICS 
Epidemics of infectious diseases often exhibit S-shaped growth. The cumulative 
number of cases follows an S-shaped curve while the rate at which new cases oc- 
cur rises exponentially, peaks, then falls as the epidemic ends. Figure 9-3 shows 
the course of an epidemic of influenza at an English boarding school in 1978. The 
epidemic began with a single infected student (patient zero). The flu spreads 
through contact and by inhalation of virus-laden aerosols released when infected 
individuals cough and sneeze. The flu spread slowly at first, but as more and more 
students fell ill and became infectious, the number they infected grew exponen- 
tially. Due to the close quarters and thus high rate of exposure, about two-thirds of 
the population eventually became ill, and the epidemic ended due to the depletion 
of the pool of susceptible people. Figure 9-3 also shows the course of an epidemic 
of plague in Bombay in 1905-6. The behavior is quite similar, despite the differ- 
ences in time frame, mortality, and other aspects of the situation. The pathogen 
does not have to be a biological agent-epidemics of computer viruses follow sim- 
ilar dynamics. 

9.2.1 A Simple Model of Infectious Disease 
Figure 9-4 shows a simple model of infectious disease. The total population of the 
community or region represented in the model is divided into two categories: those 
susceptible to the disease, S, and those who are infectious, I (for this reason the 
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model is known as the SI model). As people are infected they move from the sus- 
ceptible category to the infectious category. The SI model invokes a number of 
simplifying assumptions; section 9.2.2 develops a more realistic model. First, 
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births, deaths, and migration are ignored. Second, once people are infected, they 
remain infectious indefinitely, that is, the model applies to chronic infections, not 
acute illness such as influenza or plague. 

The SI model contains two loops, the positive Contagion loop and the negative 
Depletion loop. Infectious diseases spread as those who are infectious come into 
contact with and pass the disease to those who are susceptible, increasing the in- 
fectious population still further (the positive loop) while at the same time deplet- 
ing the pool of susceptibles (the negative loop). 

The infectious population I is increased by the infection rate IR while the sus- 
ceptible population S is decreased by it: 

I = INTEGRAL(IR, Io) (9-16) 

S = INTEGRAL( - IR, N - I,) (9-17) 

where N is the total population in the community and Io is the initial number of 
infectious people (a small number or even a single individual). To formulate the 
infection rate, consider the process by which susceptible people become infected. 

People in the community interact at a certain rate (the Contact Rate, c, mea- 
sured in people contacted per person per time period, or l/time period). Thus the 
susceptible population generate Sc encounters per time period. Some of these en- 
counters are with infectious people. If infectious people interact at the same rate as 
susceptible people (they are not quarantined or confined to bed), then the proba- 
bility that any randomly selected encounter is an encounter with an infectious in- 
dividual is VN. Not every encounter with an infectious person results in infection. 
The infectivity, i, of the disease is the probability that a person becomes infected 
after contact with an infectious person. The infection rate is therefore the total 
number of encounters Sc multiplied by the probability that any of those encounters 
is with an infectious individual I/N multiplied by the probability that an encounter 
with an infectious person results in infection: 

IR = (ciS)(I/N) (9-18) 

The dynamics can be determined by noting that without births, deaths, or migra- 
tion, the total population is fixed: 

S + I = N  (9-19) 

Though the system contains two stocks, it is actually a first-order system because 
one of the stocks is completely determined by the other. Substituting N - I for S 
in (9- 18) yields 

IR = (c)(i)I(l - UN) (9-20) 

Equation (9-20) is identical to equation (9-l), the net birth rate in the logistic 
model. An epidemic, in this model, grows exactly like a population in a fixed en- 
vironment. The carrying capacity is the total population, N. In the SI model, once 
an infectious individual arrives in the community, every susceptible person even- 
tually becomes infected, with the infection rate following a bell-shaped curve and 
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the total infected population following the classic S-shaped pattern of the logistic 
curve (Figure 9-1). The higher the contact rate or the greater the infectivity, the 
faster the epidemic progresses. 

The SI model captures the most fundamental feature of infectious diseases: the 
disease spreads through contact between infected and susceptible individuals. It is 
the interaction of these two groups that creates the positive and negative loops 
and the nonlinearity responsible for the shift in loop dominance as the susceptible 
population is depleted. The nonlinearity arises because the two populations are 
multiplied together in equation (9-18); it takes both a susceptible and an infectious 
person to generate a new case. 

9.2.2 Modeling Acute Infection: The SIR Model 
While the SI model captures the basic process of infection, it contains many sim- 
plifying and restrictive assumptions. The model does not represent births, deaths, 
or migration. The population is assumed to be homogeneous: all members of the 
community are assumed to interact at the same average rate (there are no subcul- 
tures or groups that remain isolated from the others in the community or whose be- 
havior is different from others). The disease does not alter people’s lifestyles: 
infectives are assumed to interact at the same average rate as susceptibles. There is 
no possibility of recovery, quarantine, or immunization. 

All these assumptions can be relaxed. The susceptible population can be dis- 
aggregated into several distinct subpopulations, or even represented as distinct in- 
dividuals, each with a specific rate of contact with others. An additional stock can 
be added to represent quarantined or vaccinated individuals. Birth and death rates 
can be added. Random events can be added to simulate the chance nature of con- 
tacts between susceptibles and infectives. 

The most restrictive and unrealistic feature of the logistic model as applied to 
epidemics is the assumption that the disease is chronic, with affected individuals 
remaining infectious indefinitely. Consequently, once even a single infectious in- 
dividual arrives in the community, every susceptible eventually becomes infected. 
While the assumption of chronic infection is reasonable for some diseases (e.g., 
herpes simplex), many infectious diseases produce a period of acute infectiousness 
and illness, followed either by recovery and the development of immunity or by 
death. Most epidemics end before all the susceptibles become infected because 
people recover faster than new cases arise. Kermack and McKendrick (1927) de- 
veloped a model applicable to such acute diseases. The model contains three 
stocks: The Susceptible population, S, the Infectious population, I, and the Recov- 
ered population, R (Figure 9-5). Long known as the SIR model, the Kermack- 
McKendrick formulation is widely used in epidemiology. Those contracting the 
disease become infectious for a certain period of time but then recover and develop 
permanent immunity. The assumption that people recover creates one additional 
feedback-the negative Recovery loop. The greater the number of infectious 
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individuals, the greater the recovery rate and the smaller the number of infectious 
people remaining. All other assumptions of the original SI model are retained.2 

The susceptible population, as in the SI model, is reduced by the infection rate. 
The infectious population now accumulates the infection rate less the recovery rate 
RR and the recovered population R accumulates the recovery rate: 

S = INTEGRAL(-IR, N - Io - Ro) (9-21) 

I = INTEGRAL(1R - RR, Io) (9-22) 

R = INTEGRAL(RR, Ro) (9-23) 

The initial susceptible population is the total population less the initial number of 
infectives and any initially recovered and immune individuals. 

The recovery rate can be modeled several ways. In the SIR model, the average 
duration of infectivity, d, is assumed to be constant and the recovery process is as- 
sumed to follow a first-order negative feedback process: 
RR = Ud. (9-24) 

The average duration of infectivity, d, represents the average length of time people 
are infectious. The assumption that the recovery rate is a first-order process means 

*In the SIR model the recovered population is often termed “Removals” and the recovery rate is 
then called the removal rate. Many applications of the model interpret the removal rate as the sum 
of those recovering from the disease and those who die from it. However, this interpretation is in- 
correct, since those who die reduce the total population, while in the SIR model the total population 
is constant. The aggregation of deaths and recoveries into a single flow of removals and a single 
stock of cumulative removals is usually justified by arguing that mortality is often a small fraction 
of the total population. Even when this is true, it is bad modeling practice to aggregate the living 
with the dead, since their behavior is often quite different. In this case, those who recover continue 
to interact with the remaining susceptible and infectious populations, while those who die usually 
do not. 
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people do not all recover after exactly the same time, but rather a given population 
of infectious individuals will decline exponentially, with some people recovering 
rapidly and others more s10wly.~ The infection rate is formulated exactly as in the 
SI model in equation (9- 18). 

9.2.3 Model Behavior: The Tipping Point 
Unlike the models considered thus far, the system is now second-order (there are 
three stocks, but since they sum to a constant, only two are independent). However, 
it is still possible to analyze its dynamics qualitatively. First, unlike the SI model, 
it is now possible for the disease to die out without causing an epidemic. If the in- 
fection rate is less than the recovery rate, the infectious population will fall. As it 
falls, so too will the infection rate. The infectious population can therefore fall to 
zero before everyone contracts the disease. 

Under what circumstances will the introduction of an infectious individual to 
the population cause an epidemic? Intuitively, for an epidemic to occur, the infec- 
tion rate must exceed the recovery rate; if so, the infectious population will grow, 
leading to still more new cases. If, while each person was infectious they passed 
the disease on to exactly one more person, then the stock of infectives would re- 
main constant since the infection rate would be just offset by the recovery rate. 
Therefore, for an epidemic to occur, each infective must, on average, pass the dis- 
ease on to more than one other person prior to recovering. 

The question of whether an epidemic will occur is really a question about 
which feedback loops are dominant when the disease arrives in a community. If the 
positive contagion loop dominates the recovery and depletion loops, then the in- 
troduction of even a single infective individual to a community triggers an epi- 
demic. The infection rate will exceed the recovery rate, causing the infection rate 
to grow still further, until depletion of the pool of susceptibles finally limits the 
epidemic. If, however, the positive loop is weaker than the negative loops, an epi- 
demic will not occur since infectious people will recover on average faster than 
new cases arise. The number of new cases created by each infective prior to their 
recovery, and therefore the strength of the different loops, depends on the average 
duration of infection and the number of new cases each infective generates per 
time period. The higher the contact rate or the greater the infectivity of the disease, 
the stronger the positive loop. Likewise, the larger the fraction of the total popula- 
tion susceptible to infection, the weaker the depletion loop. Finally, the longer the 

3While the assumption that removals are first-order is reasonable in the simple SIR model, 
the course of many diseases is more complex and the delay between infection and removal is often 
not exponential (if a group were all infected at once, the removal rate would be small initially, then 
build to a peak before tapering off). Chapter 11 discusses how different types of delays can be mod- 
eled in depth and shows how modelers can select robust formulations for delays to match the data 
for different distributions. 
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average duration of infection, the weaker the negative recovery loop and the more 
likely an epidemic will be.4 

For any given population of susceptibles, there is some critical combination of 
contact frequency, infectivity, and disease duration just great enough for the posi- 
tive loop to dominate the negative loops. That threshold is known as the tipping 
point. Below the tipping point, the system is stable: if the disease is introduced into 
the community, there may be a few new cases, but on average, people will recover 
faster than new cases are generated. Negative feedback dominates and the popula- 
tion is resistant to an epidemic. Past the tipping point, the positive loop dominates. 
The system is unstable and once a disease arrives, it can spread like wildfire- 
that is, by positive feedback-limited only by the depletion of the susceptible 
population. 

Figure 9-6 shows a simulation of the model where the system is well past the 
tipping point. The population of the community is 10,000 and initially everyone is 
susceptible to the disease. At time zero, a single infective individual arrives in the 
community. The average duration of infection is 2 days, and infectivity is 25%. 
The average contact frequency is six people per person per day. Each infective 
therefore generates 1.5 new cases per day and an average of three new cases before 
they recover. The positive loop therefore dominates and the epidemic quickly 
spreads. The infection rate peaks at more than 2000 people per day around day 
nine, and at its peak more than one-quarter of the population is infectious. The sus- 
ceptible population falls rapidly, and it is this depletion of potential new cases that 
halts the epidemic. By the tenth day, the number of susceptibles remaining is so 
low that the number of new cases declines. The infectious population peaks and 
falls as people now recover faster than new cases arise. The susceptible population 
continues to fall, though at a slower and slower rate, until the epidemic ends. 
In less than 3 weeks, a single infectious individual led to a massive epidemic in- 
volving nearly the entire community. Note that a few lucky individuals never con- 
tract the disease. Unlike the chronic infection model in which everyone eventually 
contracts the disease, in the SIR model the epidemic ends before the susceptible 
population falls to zero. The stronger the positive loop, however, the fewer sus- 
ceptibles remain at the end of the epidemic. Also note that unlike the logistic 
model, the behavior is not symmetric: the infectious population rises faster than 
it falls. 

4The SI and SIR models were originally formulated as deterministic systems representing the 
average contact rate and abstracting from the individual encounters among members of the popula- 
tion. Keep in mind that the deterministic formulation is a modeling assumption, appropriate in 
some situations and not appropriate in others (particularly, when the populations are small or the 
variance in the distribution of contact rates, infectivity, and recovery time is large). The models are 
easily generalized to incorporate stochastic encounters, infectivity, and recovery, either by adding 
random variation to the rate equations of the SIR model or by representing the members of the pop- 
ulation as discrete individuals and specifying decision rules for their interaction (an agent-based 
model). Incorporating these random effects means there will be a distribution of possible outcomes 
for any set of parameters. The sharp boundary between an epidemic and stability defined by the tip- 
ping point in the deterministic models becomes a probability distribution characterizing the chance 
an epidemic will occur for any given average rates of interaction, infectivity, and recovery. Like- 
wise, the SI and SIR models assume a homogeneous and well-mixed population, while in reality it 
is often important to represent subpopulations and the spatial diffusion of an epidemic. For spatial 
models of the spread of disease and other refinements, see Murray (1993). 
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FIGURE 9-6 
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FIGURE 9-7 
Epidemic: 
dynamics 
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contact rates 
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To illustrate the tipping point, Figure 9-7 shows the susceptible population in 
several simulations of the model with different contact rates. The other parameters 
are idcdical to those in Figure 9-6. At the tipping point (two contacts per person 
per day), the number of new cases each infective generates while infectious is just 
equal to one (2 contacts per person per day * 0.25 probability of infection * 2 days 
of infectivity). Contacts at a rate less than two per person per day do not cause an 
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epidemic. When the contact rate rises above the critical threshold of two, the sys- 
tem become unstable, and an epidemic occurs. The higher the contact rate, the 
stronger the positive contagion loop relative to the negative recovery loop, and the 
faster the epidemic progresses. Further, the stronger the positive loop, the greater 
the population ultimately contracting the disease. Any change that increases the 
strength of the positive loops will yield similar results. An increase in infectivity 
strengthens the positive loop and is identical in impact to an increase in contact fre- 
quency. An increase in the duration of the infectious period weakens the recovery 
loop and also pushes the system farther past the tipping point. 

The exact tipping point in the SIR model can easily be calculated. For an epidemic 
to occur, the infection rate must exceed the recovery rate: 

IR > RR 3 ciS(I/N) > I/d (9-25) 

or equivalently, 

(9-26) 

In equation (9-26), the product of the contact rate and infectivity is the number of 
infectious contacts per time period each infectious person generates. Multiplying 
by the average duration of infection, d, yields the dimensionless ratio cid, known 
as the contact numbeu: However, not all these contacts will be with susceptibles, so 
not all will result in a new case. The number of infectious contacts that actually 
result in the infection of a susceptible person depends on the probability that the 
infectives encounter susceptibles. Assuming the population is homogeneous, the 
probability of encountering a susceptible is given by the prevalence of susceptibles 
in the population, S/N. The expression cid(S/N) is also known as the reproduction 
rate for the epidemic. Equation (9-26) therefore defines the tipping point or thresh- 
old at which an epidemic occurs in a population and is known as the threshold the- 
orem in epidemiology. 

Note that the contact number can be large if infectivity is high or if the dura- 
tion of infection is long. The duration of the infectious period for diseases such as 
measles and chicken pox is very short, a matter of days, but these diseases have 
high contact numbers because they are easily spread through casual contact. In 
contrast, the contact rate and infectivity of HIV are much lower (HIV cannot be 
spread through casual contact but only through sexual contact or exchange of 
blood or blood products). Nevertheless, the contact number for HIV is high among 
those who engage in risky behaviors because the duration of infection is so long. 
The incubation period prior to the development of clinical symptoms of AIDS av- 
erages about 10 years (see section 9.2.7). 
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FIGURE 9-8 
Dependence of: 
the tipping point 
on the contact 
number and 
susceptilble 
population 

Figure 9-8 shows how the tipping point depends on the parameters. The curve 
is the boundary between stable and unstable regimes. To the left of the curve, the 
system is stable and there is no epidemic because the infectivity, contact rate, du- 
ration of infection, and fraction of susceptibles in the population are too low. To the 
right of the curve, the system is unstable, and there is an epidemic. 

9.2.4 Immunization and the Eradication of Smallpox 
The existence of the tipping point (equation (9-26)) means it is theoretically pos- 
sible to completely eradicate a disease. Eradication does not require a perfect 
vaccine and universal immunization but only the weaker condition that the repro- 
duction rate of the disease fall and remain below one so that new cases arise at a 
lower rate than old cases are resolved. The stock of infectious people will then de- 
cline, further reducing the infection rate, until the population becomes disease-free. 
For many diseases, it is difficult or impossible to achieve or maintain this condi- 
tion due to high infectivity, the existence of reservoirs of the disease outside the 
human population (as in malaria or Lyme disease, both of which have animal 
hosts), or the rapid influx of susceptible people through births, migration, or the 
decay of immunity. 

Smallpox, however, is different. Smallpox was once one of the most deadly 
diseases and endemic throughout the world. The infectivity of smallpox is high, 
but the duration of infection is short. Survivors acquired long-lived immunity. 
Most important, the smallpox virus cannot survive outside a human host-there 
are no animal or other reservoirs to harbor the virus. These conditions meant that 
the development of an effective vaccine, deployed sufficiently broadly, could re- 
duce the infection rate below the recovery rate and eliminate the virus, even if not 
every person could be immunized. 

The history of smallpox eradication is well known: Edward Jenner developed 
the first effective vaccine in 1796. Despite the success of Jenner’s vaccine, it took 
many years for vaccination to be accepted; smallpox was still a major cause of 
death at the start of the 20th century. By the 1950s, due to improvements in public 
health programs and in the effectiveness and shelf-life of the vaccine, smallpox 
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had been eradicated in most of the industrialized world. In the mid-l960s, the 
World Health Organization (WHO) coordinated a vigorous worldwide campaign to 
track the disease, immunize the susceptible, and quarantine the sick. The last 
known naturally occurring case was reported in 1977 in Somalia. In 1978, some 
smallpox virus escaped from a research lab in England and caused two cases, one 
fatal. Since then no further cases have been reported, and, in one of the greatest tri- 
umphs in the history of medicine, the nations of the world declared in 1980 that 
smallpox had been eradicated from the earth. 

Almost. During the Cold War, both the US and Soviet Union maintained 
stocks of smallpox virus as part of their biological warfare programs. Though both 
nations signed the 1972 Biological Weapons Convention banning bioweapons and 
biowarfare research, they continued to maintain their stocks of smallpox, and the 
Soviet Union continued biowarfare research in violation of the Convention. While 
these smallpox stocks are maintained in the highest security biocontainment labs, 
there is natural concern that the virus might escape, accidentally, through terrorism, 
or in war. A WHO panel, after long and sometimes acrimonious debate, recom- 
mended in 1994 that all US and Russian stocks of the virus be destroyed by June 
1999. However, many analysts believe terrorists or nations such as Iraq and North 
Korea may have acquired smallpox from the former Soviet Union. Because people 
no longer receive smallpox vaccinations, and because the immunity conferred by 
childhood vaccination decays, much of the world’s population today is susceptible. 
The release of smallpox from these stocks could trigger a massive pandemic. In re- 
sponse, President Clinton ordered US smallpox stocks be preserved for research, 
and WHO suspended its attempt to have declared stocks of smallpox destroyed. 

The Efficacy of Immunization Programs 
Equation (9-26) and Figure 9-8 show how the vulnerability of a population to epi- 
demic depends on the parameters of the SIR model. Many infectious diseases are 
highly contagious and it is not feasible to reduce the contact number. Immuniza- 
tion, where vaccines are available, can be highly effective not only in protecting 
the immunized individuals but also in moving an entire population below the tip- 
ping point. For example, polio has all but vanished in nations with strong public 
health programs and WHO hopes to eradicate it worldwide within a few years. 

1. Effectiveness of immunization. 
The contact number for polio is estimated to be roughly 5 to 7 (Fine 1993). 
What fraction of the population must be vaccinated to ensure that no 
epidemic will occur? Assume the vaccine is 100% effective. Now consider 
measles and pertussis (whooping cough), diseases whose contact numbers 
are estimated to be 12 to 18 (Fine 1993). What fraction of the population 
must be vaccinated to ensure no epidemic will occur? What fraction must be 
vaccinated if the vaccine is only 90% effective? Why do measles and 
pertussis persist while polio has been effectively eliminated? 

i = 0.25, d = 2, N = lO,OOO), but assume that 50% of the population has 
Next, simulate the SIR model with the parameters in Figure 9-6 (c = 6, 
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2. 

3. 

been immunized (set the initial recovered population to half the total 
population). What is the effect on the course of the epidemic? What fraction 
of the population must be immunized to prevent an epidemic? 

Effectiveness of quarantine. 
Examine the effectiveness of quarantine as a policy to prevent an epidemic. 
To do so, modify the SIR model to include a stock of quarantined 
individuals. 

(i) Assume people are quarantined only after they exhibit symptoms, so 
the quarantine rate (the rate of inflow to the quarantined population) 
flows from the infectious population to the quarantined population. 
Formulate the quarantine rate as follows. Assume it takes a certain 
period of time, denoted the Quarantine Time, to identify infectious 
people and move them to a quarantine area. Further, assume only a 
fraction of the infectious population, denoted the Quarantine Fraction, 
is identified as infectious and willing or able to be quarantined. Be 
sure your formulation for the quarantine rate is dimensionally con- 
sistent. Assume quarantined individuals recover from the disease with 
the same average duration of infectivity as those not quarantined. 
Quarantined individuals are not completely removed from contact with 
the rest of the population (during an epidemic of smallpox in 18th cen- 
tury Boston, for example, the sick were quarantined but still permitted 
to attend church on Sunday). Modify the equation for the infection rate 
to include the possibility that quarantined people come in contact with 
susceptibles at a certain rate, denoted the Quarantine Contact Rate. 
Assume the infectivity of quarantined individuals is the same as that 
for other infectives. How does the addition of a stock of quarantined 
individuals alter the feedback structure of the SIR model? 
Assume the Quarantine Time is half a day, and use the parameters for 
the simulation in Figure 9-6 (c = 6, i = 0.25, d = 2, N = 10,000). 
Assume the quarantine is perfect, so that the Quarantine Contact Rate 
is zero. Run the model for various values of the Quarantine Fraction 
and explain the resulting behavior. What fraction of the infectious 
population must be quarantined to prevent an epidemic? Now assume 
that the contact rate of quarantined individuals is half the normal 
contact rate. What fraction must now be sequestered to prevent an 
epidemic and how fast must people be moved to quarantine once they 
become infectious? Explore the response to other parameters, includ- 
ing partial immunization of the population. Compare the efficacy of 
immunization to quarantine in preventing or slowing epidemics. What 
policy considerations would influence your choice of these policies in 
different situations? 

(ii) 

(iii) 

Loss of immunity. 
For some diseases, immunity is not permanent, but decays over time, leaving 
formerly immune people susceptible to reinfection. Modify the model to 
incorporate loss of immunity. Assume immunity decays at a rate determined 
by a constant average duration of immunity. Run the model for different 
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values of the average duration of immunity. What is the impact on the 
dynamics? Under what conditions will the disease become endemic in the 
population? What is the equilibrium reached, and why? What impact does 
loss of immunity have on the effectiveness of immunization? On the ability 
to eradicate a disease? Why? 

9.2.5 Herd Immunity 
In the real world, a population is repeatedly challenged by exposure to different 
diseases. Infectious individuals, unwittingly carrying the disease, may arrive from 
other communities. The spread of the black death in 14th century Europe was ac- 
celerated by extensive trade networks with other regions, the high rate of travel of 
pilgrims, and by the flight of the terrified and unknowingly infected to towns as yet 
unexposed. Susceptible individuals can also come into contact with other reser- 
voirs of the disease, such as contaminated drinking water (as in cholera), or ani- 
mals (bubonic plague is not only transmitted from person to person but by fleas 
who pass the plague bacillus from infected rats to people). Some pathogens mutate 
and cross the so-called species barrier, jumping from animal reservoirs to human 
populations (as occurs in influenza and likely occurred with HIV, outbreaks of the 
Ebola virus, and apparently with Bovine Spongiform Encephalopathy (BSE)- 
mad cow disease). If the contact rate, infectivity, and duration of infection are 
small enough, the system is below the tipping point and stable. Such a situation is 
known as herd immunity (Fine 1993) because the arrival of an infected individual 
does not produce an epidemic (though a few unlucky individuals may come in con- 
tact with any infectious arrivals and contract the disease, the group as a community 
is protected). However, changes in the contact rate, infectivity, or duration of ill- 
ness can push a system past the tipping point. 

Figure 9-9 shows how changes in the reproduction rate can dramatically 
change the response of a population to exposure. In the simulation, the population 
is challenged every 50 days by the arrival of a single infected individual. The pop- 
ulation, infectivity, and duration of infection are identical to those in Figure 9-6 
(10,000, 0.25, and 2 days, respectively). However, the contact rate is assumed to 
increase linearly over time, beginning at zero. The contact rate might increase as 
population density grows or as changes in social structures or cultural practices 
bring people into more frequent contact. The rapid urbanization of the industrial 
revolution, for example, increased the contact rate and incidence of epidemics for 
many diseases. 

During the first 500 days, the reproduction rate (the number of new cases gen- 
erated by each infective prior to recovery) is less than one, the negative loops dom- 
inate, and the system is below the tipping point. There is no epidemic: Every 50 
days an infectious individual arrives, but any people infected by this person re- 
cover before they can replace themselves in the pool of infectives. The population 
enjoys herd immunity. At day 500 the tipping point is crossed. Now the contagion 
loop dominates, and the next infectious person to arrive triggers an epidemic. The 
epidemic ends after the susceptible population falls enough for the depletion and 
recovery loops to overpower the contagion loop. By about day 600 the decline in 
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the susceptible population reduces the reproduction rate below one and the nega- 
tive loops once again dominate the positive contagion loop. Though infected indi- 
viduals continue to arrive at 50-day intervals, the system has become stable again. 
However, the contact rate keeps rising, increasing the strength of the contagion 
loop. By day 800, the contagion loop is once again dominant. The arrival of the 
next infectious person triggers another epidemic. Since there are even fewer sus- 
ceptibles this time around, it is a bit milder. By day 1100 the depletion of the sus- 
ceptible pool has once again overwhelmed the contagion loop and the reproduction 
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rate falls below one. The community is once again resistant to epidemic, until the 
contact rate rises enough to push the reproduction rate above one again, triggering 
the third wave of infection. 

In this simple example the periodic epidemics arise from the assumed steady 
rise in the contact rate. Successive waves of epidemics are in fact observed for 
many infectious diseases, perhaps most notably measles. Prior to the introduction 
of mass immunization in the 1960s, industrialized nations such as the US and UK 
experienced large amplitude measles epidemics about every 2 years. Due to im- 
munization programs, the amplitude of the cycles is much reduced today, but the 
tendency toward cyclic waves of measles persists. In contrast to the example 
above, the contact rate for measles remains reasonably constant. The cyclic char- 
acter of the epidemics arises from the interaction of herd immunity with population 
growth. Each epidemic increases the immune fraction of the population enough to 
confer herd immunity, preventing another epidemic the following year. However, 
during this time the population of susceptibles increases as children are born. 
Eventually, the susceptible fraction of the population rises enough to push the sys- 
tem past the tipping point again, and the next epidemic begins. The SIR model can 
easily be extended to include the age structure of the population, including births 
and deaths (see chapter 12). With realistic parameters these models generate per- 
sistent oscillations in disease incidence as the system repeatedly cycles above and 
below the tipping point. 

The reproduction rate for an infectious disease is not solely a matter of the vir- 
ulence and other biological attributes of the pathogen. It is strongly influenced by 
social structures and the physical infrastructure of a community. The contact rate 
obviously represents the nature of social structures in the community: The contact 
rate in rural communities with low population densities is lower than that of highly 
urbanized populations. The infectivity of a disease is only partly determined by bi- 
ological factors. Casual contact and inhalation can spread influenza, while HIV can 
only be contracted through exchange of blood or other body fluids (a biological 
factor). But infectivity is also strongly affected by social practices and public 
health policies, such as the availability of clean water, the prevalence of hand 
washing, or the frequency of condom use. 

9.2.6 Moving Past the Tipping Point: 
Mad Cow Disease 

The epidemic of BSE or mad cow disease in Great Britain during the 1990s illus- 
trates how changes in technical and social structures can push a population past the 
tipping point. Prior to the epidemic, the incidence of BSE and related degenerative 
neurological diseases such as scrapie (in sheep) and Cruetzfeldt-Jacob Disease 
(CJD, in humans) was extremely low. But between 1985 and 1997, approximately 
170,000 cases of BSE were confirmed in the UK, and almost one million cattle out 
of a total livestock population of about 11 million were estimated to be infected 
(Prusiner 1997). BSE, scrapie, and CJD progressively and, at present, irreversibly 
destroy brain tissue; symptoms include uncontrollable tremor, disorientation, loss 
of motor and cognitive function, and ultimately death. 
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FlGiURE 91-1 O 
Mad cow 
disease--the 
epildemic of 
BSE in the 
United Kingdom 

The cause of BSE is still debated. Most scientists believe BSE is caused by pri- 
ons, abnormal proteins that are hypothesized to replicate even though they do not 
contain any DNA or RNA. Biologist Stanley Prusiner received the 1997 Nobel 
Prize for his pioneering (and still controversial) work on prions (see Prusiner 1997 
for further details on prions and BSE). Others believe BSE, scrapie, and CJD are 
caused by an as yet undetected and possibly novel type of virus. 

Since BSE is not thought to be directly communicable from animal to animal, 
the positive contagion feedback did not exist under traditional animal husbandry 
practices. How then did the epidemic arise? To reduce costs over the past few 
decades, cattle producers began to supplement the diets of their herds with meat 
and bone meal (MBM) prepared from the offal of slaughtered livestock, including 
sheep, cattle, pigs, and chickens. To reduce costs further, a new process for prepa- 
ration of MBM was introduced in the late 1970s. The new process involved lower 
temperatures for rendering offal into feed pellets and left more fat in the product. 
It is thought that this change allowed BSE to enter the UK cattle population 
through MBM made from sheep infected with scrapie. In its search for lower costs 
the livestock industry converted its herds from herbivores to unwitting cannibals 
and created a pathway for infected cattle to “contact” susceptibles, thus closing the 
contagion loop. The practice of feeding MBM to cattle dramatically boosted the re- 
production rate for BSE in the cattle population and pushed it well above the tip- 
ping point. Further, whereas most diseases are communicated only by close contact 
between infected and susceptible individuals so that epidemics tend to be geo- 
graphcally localized, MBM was distributed all over the UK, allowing a single in- 
fected animal to pass BSE to others hundreds of miles away. 

The epidemic (Figure 9- 10) spread rapidly, much faster than medical knowl- 
edge of it or the reactions of public health authorities. By the mid 1980s British 
public health officials knew there was a new disease afflicting the cattle industry. 
BSE was first identified as the culprit only in 1986. There was a further delay of 
several years before the UK banned the use of MBM as a feed supplement. Due to 

First 
Histopathological 

Confirmation 

4000 
5 
p 3000 I 

S 

k 2000 

3 
v) 
8 
u) 1000 

0 

, 

MonthNear of Clinical Onset 
Source: UK Ministry of Agriculture, Fisheries, and Food, <www.maff.gov.u!danirnalh/bse/ 
bse-statistics/level-4-epidem.html>, 3 August 1999. 



31 6 Part I11 The Dynamics of Growth 

the long incubation delay, however, confirmed cases continued to rise through 
1992, declining only as animals in infected herds were destroyed. By then, how- 
ever, British beef was banned by the European Union and shunned throughout the 
world. Worse, many scientists fear that BSE has been passed from contaminated 
beef or milk to the human population. By 1998, 23 confirmed and up to a dozen 
possible cases of a new variant of CJD (nvCJD) had been identified, all in the UK 
or France. The new variant, unlike traditional CJD, primarily strikes young people. 
Because CJD has a very long incubation time (years to decades), it is not yet 
known whether these nvCJD cases represent an isolated group or the first cases of 
a human epidemic caused by consumption of BSE contaminated beef. Many sci- 
entists fear that BSE has crossed over from the livestock to the human population 
and may now begin to spread through exchange of blood products. In July 1998 
the UK government authorized its National Health Service to import blood plasma 
from nations apparently free of BSE after it was discovered that two of the victims 
of nvCJD were blood donors, potentially threatening the integrity of UK blood 
supplies and vaccines prepared from blood products. 

Extending the SIR Model 
The SIR model, useful as it is, invokes a number of restrictive assumptions. Like 
the SI model of chronic infection, the SIR model does not incorporate births, 
deaths, or migration; assumes the population is homogeneous; does not distinguish 
between persons removed from the infectious population by recovery and the de- 
velopment of immunity or by death; and assumes immunity is permanent. 

Most importantly, the model assumes there is no incubation period. Individu- 
als infected with a disease in the SIR model immediately become infectious. In re- 
ality, most diseases have a latency, or incubation period, and people become 
infectious before exhibiting any symptoms of illness. People exposed to chicken 
pox become highly infectious several days prior to the emergence of symptoms, 
some 14 to 21 days after initial exposure. Many people infected with Hepatitis A 
start to exhibit symptoms about a month after infection but become highly infec- 
tious about 2 weeks earlier. The average incubation period for HIV (the time be- 
tween infection with HIV and the development of AIDS) for adults not receiving 
treatment is about 10 years. The latency period between infection and the appear- 
ance of symptoms for Hepatitis C is even longer-averaging perhaps 15 years. 
Some four million people are thought to be infected with Hepatitis C in the US, 
and while about 15% spontaneously recover, in many other cases the disease even- 
tually produces irreversible and often fatal liver damage. Hepatitis C is spread by 
exchange of blood products but only rarely through sexual contact. 

Modify the SIR model by disaggregating the stock of infectious individuals 
into two categories: Asymptomatic Infectives and Symptomatic Infectives. The in- 
fection rate moves people from the susceptible category into the asymptomatic 
infective population, that is, people who are infected with the disease but do 
not yet exhibit any symptoms. After the incubation period, people begin to exhibit 
symptoms (typically while remaining infectious) and move into the symptomatic 
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infective category. Assume that the rate at which people become sick is a first- 
order process with a constant average incubation period. 

Susceptible people can contract the disease by coming into contact with either 
symptomatic or asymptomatic infectives. The contact rate and infectivity for 
asymptomatic and symptomatic individuals often differ. Once people fall ill (be- 
come symptomatic) they often reduce their contact rate with the outside world, ei- 
ther to avoid infecting others or simply because they are too sick to follow their 
normal routine. Asymptomatic individuals, in contrast, usually do not know they 
are infected, do not exhibit any symptoms, and continue to contact others at their 
normal rate. Similarly, the infectivity of a disease prior to the emergence of symp- 
toms is often different from the infectivity after symptoms appear. In measles, 
for example, people are most infectious from 5 days prior to 5 days after the ap- 
pearance of the characteristic rash. Modify the formulation for the infection rate to 
capture the differing contact rates and infectivities of the symptomatic and asymp- 
tomatic infective populations. 

Run the model for a hypothetical disease with an incubation period similar to 
chicken pox. Because the incubation period for chicken pox is 14 to 21 days, as- 
sume an average of 18 days. Assume the average duration of illness is 4 days. Set 
the contact rate for asymptomatic infectives to four per person per day, but because 
those exhibiting symptoms remain in bed in self-imposed quarantine, set the con- 
tact rate for the symptomatic population to only one per person per day. Assume in- 
fectivity is 0.25 for both asymptomatic and symptomatic populations. Also assume 
an initial population of 10,000, all of whom are initially susceptible except for one 
asymptomatic infective per son. 

Run the model and describe the results. How does the inclusion of an incuba- 
tion period affect the dynamics? By the time 1 % of the population exhibits symp- 
toms, what fraction of the susceptible population remains uninfected? How many 
susceptibles remain by the time 10% of the population has become sick? What is 
the impact of an incubation period on the effectiveness of quarantine? You can 
simulate a perfect quarantine policy by setting the contact rate for the symptomatic 
population to zero or include the quarantine structure developed above. Explore 
the response of the epidemic to different incubation times and infectivities. What 
is the effect of a long incubation period on the course of an epidemic and the abil- 
ity of a population to enjoy herd immunity? 

Policy Analysis: Just-in- Time Immunization 
Evaluate the effectiveness of a policy of “just-in-time (JIT) vaccination,” that is, 
vaccinating people only after evidence of an epidemic appears. Many people only 
get flu shots when they believe the flu in their area is particularly severe that year. 
Similarly, some vaccines are so expensive relative to the incidence of infection that 
they are not routinely given. When previously unknown diseases strike, vaccines 
cannot be made until after the disease emerges and is identified. The appearance 
of new computer viruses leads to frantic efforts by programmers to come up 
with countermeasures, but the resulting “vaccines” are not available until after the 
virus is identified. The British government’s ban on the use of MBM as a feed 
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supplement for cattle is roughly equivalent to a policy of JIT immunization. The 
ban reduced the number of infectious contacts by removing the vector for BSE 
from the diet of the cattle at risk only after the scientific evidence that MBM was 
the source of the epidemic became compelling enough, and the public outcry great 
enough, to overcome the political resistance of the cattle industry. 

To model a JIT vaccination policy, create an Immunization Rate that transfers 
people from the susceptible population to a new stock, the Immunized Population. 
(Keeping the immunized population separate from the recovered population makes 
it easy to determine how many people ultimately get the disease.) Formulate the 
immunization rate so that the vaccination program is deployed only after a certain 
number of cases have been diagnosed: 

0 if Symptomatic Population < 
Immunization - 
Rate 

Threshold for Vaccination Program (9-27) 
Rate * Vaccine Effectiveness otherwise 

Susceptible Population 
Time to Deploy Vaccine 

Vaccination Rate = Fraction Vaccinated * (9-28) 

The immunization rate (the actual rate at which people develop immunity from the 
vaccine) differs from the vaccination rate by the effectiveness of the vaccine. Once 
the program is deployed, it takes a certain amount of time, the Time to Deploy Vac- 
cine, to carry out the program. The vaccination program may only reach a fraction 
of the population as well. Note that because the susceptibles cannot be distin- 
guished from the asymptomatic infectives or recovered populations, the entire 
population would have to be immunized (with the possible exception of the symp- 
tomatic infectives for whom vaccination would not be effective). Consequently, 
the costs of the program depend on the total number vaccinated. However, those 
who have already recovered from the disease remain immune so they stay in the 
pool of recovered individuals. The formulation also assumes that the vaccine is 
ineffective for those who have already been infected, so there is no flow from the 
asymptomatic infective population to the immunized population. 

To test the effectiveness of a JIT immunization program, make the strong as- 
sumptions that a vaccine with 100% effectiveness is available and that the fraction 
of the population vaccinated is 100%. Further, assume that the entire population 
can be vaccinated in just 2 days, once the threshold has been reached and the deci- 
sion to deploy the vaccine has been made. These conditions are unlikely to be 
achieved in reality but provide a strong test of the potential for JIT vaccination 
strategies to address acute infectious disease. 

Explore the effectiveness of the JIT vaccination policy by running the model 
for various thresholds, starting with a threshold of 5% of the total population. What 
fraction of the total population eventually gets the disease? How does that compare 
to the case without JIT vaccination? What if the threshold were just 1 % of the to- 
tal population (100 cases)? What is the effectiveness of JIT vaccination when the 
vaccine is only 95% effective, only 80% of the population is immunized, and if the 
delay in deploying the vaccination program is 1 week? Comment on the types of 
diseases for which JIT vaccination is likely to be effective and those situations in 
which it will be ineffective. Be sure to consider the social as well as biological de- 
terminants of compliance with a crash vaccination program. 
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9.2.7 Modeling the HIWAIDS Epidemic 
So far the hypothetical diseases examined have been highly infectious, acute in- 
fections (similar to chicken pox or measles) that generate rapid, short-lived epi- 
demics. Over the course of such an epidemic, it is reasonable to assume that the 
contact rate and other parameters are constants-the epidemic develops too fast for 
significant changes in people’s behavior or for research on prevention or treatment 
to come to fruition. These assumptions are not appropriate for diseases such as 
HIV/AIDS where the incubation time is long. Figure 9-11 shows the incidence and 
mortality of AIDS in the US from 1984 through 1996; Figure 9-12 shows the 
prevalence of AIDS among adults in the US5  

The data show important shifts in the dynamics of the epidemic in the US. In- 
cidence of clinical AIDS (indicated by the AIDS-01 curve in Figure 9-11) grew 
steadily until about 1995 and has declined significantly since. Mortality closely 
follows incidence and exhibits an even larger decline. The decline in mortality ex- 
ceeds that in incidence due to the development of therapies including AZT and, 
most importantly, the so-called multidrug cocktails or HAART (highly active anti- 
retroviral therapy). Overall incidence has declined due to a reduction in new cases 
transmitted by male homosexual contact and sharing of dirty needles by intra- 
venous drug users (incidence among women and due to heterosexual contact was 
still rising as I wrote this). Note that even before the introduction of HAART, how- 
ever, the growth of the epidemic was not a pure exponential, as would be expected 
if the contact rate or infectivity were constant. Instead, the fractional growth rate 
of AIDS incidence declined as the epidemic spread. 

Despite the great strides in treatments, the improving outlook for the HIV epi- 
demic in the wealthy nations is only part of the story. There is as yet no effective 
vaccine, and the long-run effectiveness and side effects of HAART remain un- 
known. More importantly, HAART is exceedingly costly and, in many nations, 
simply unavailable. The incidence of HIV infection globally continues to rise and 
in many nations has long since passed the crisis point. The scale of the epidemic is 
almost impossible to comprehend. The WHO estimated that in 1997 about one- 
quarter of the entire population of Zimbabwe was infected with HIV, incidence in 
much of Africa and some other developing nations is estimated to exceed 10%. Ten 
million people have already died of AIDS in sub-Saharan Africa, and without dra- 
matic changes in access to treatment and drugs, 20 million more people are pro- 
jected to die. Mortality and morbidity from HIV and AIDS in many of these 
nations have overwhelmed the health care systems. The WHO estimates that in 
1990 there were fewer than 200 hospitals and 1400 doctors in all of Zimbabwe, a 
nation of more than 11 million. Life expectancy is falling. Despite the decline in 
AIDS-related mortality in some of the affluent nations of the world, the HIV/AIDS 
pandemic is far from over. The WHO reported that in 1998 AIDS was the fourth 
largest cause of death worldwide, up from seventh in 1997. 

5Despite the massive effort and careful work of the CDC, the data are highly uncertain and are 
adjusted in several ways to overcome various limitations in the US surveillance and reporting 
system. The definitions of AIDS have changed over the years as understanding of the disease has 
improved. Data on HIV incidence and prevalence are even less complete and reliable. Readers are 
urged to consult the full HIV/AIDS Surveillance Reports and references therein for details. 
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FIGURE 9-1 1 
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Source: US Centers for Disease Control and Prevention, HMAIDS Surveillance Report, Midyear 
1997 edition, vol. 9 (no. l ) ,  figure 6 and caption, p. 19. 

To interpret the data and develop a model, it is useful to review the nature and 
course of HIV and AIDS. The progression of HIV/AIDS can be divided roughly 
into the following categories: After initial infection with HIV, the virus replicates 
rapidly, stimulating an immune response including the production of HIV-specific 
antibodies. The common clinical test for HIV does not detect the presence of the 
virus itself but rather the antibodies indicating the presence of sufficient virus to 
trigger the immune response. There is a delay of several weeks to 6 months before 
the body produces sufficient antibodies to yield a positive result from an HIV test. 
Prior to seroconversion (the point at which an infected person begins to test posi- 
tive), infected people can transmit the virus to others but will not test positive. Af- 
ter seroconversion, there is a long latency period during which there are no clinical 
symptoms. The length of the incubation period varies widely. The median incuba- 
tion period is estimated to be about 10 years in previously healthy adults, though it 
is shorter for children, the elderly, and those with prior health problems (Cooley, 
Myers, and Hamill 1996). Eventually, the virus compromises the immune system 
so severely that the patient begins to suffer from a wide range of opportunistic in- 
fections such as pnuemocystis pnuemonia and Kaposi’s sarcoma, which lead to the 
diagnosis of AIDS. 

Prior to the development of HAART, the mortality rate was extremely high. 
About 93% of all those diagnosed prior to 1986 in the US had died by the end of 
1996. The mean survival time from the time of diagnosis, in the absence of treat- 
ment with HAART, is about 10 to 12 months, though, as with incubation, survival 
times vary widely.6 The long-run effectiveness of HAART is still unknown. While 
it can reduce the viral load below detectable levels in some patients, HAART does 

6The clinical and epidemiological literature on HIV/AIDS is enormous and evolves rapidly. 
A good source of information and references is available at the HIV InSite website developed by 
the University of California at San Francisco, <http://hivinsite.ucsf.edu>. 
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FIGURE 9-12 
Prevalence of 
AIDS in the 
United States 
“Adults/ 
adolescents 
living with AIDS, 
by quarter, 
January 1988 
through June 
1996, adjusted for 
reporting delay:;, 
United States” 

cn 200,000 
d * 160,000 5 
‘5 
E 120,000 .- > 
-I 
Q, 

.- 
80,000 - 

P 

Source: US Centers for Disease Control and Prevention, HIWADS SL. eillance 
Report, 1996, vol. 8 (no. 2), p. 1 .  

not completely eliminate HIV from the body (Cohen 1998). People who discover 
they are HIV+ can begin HAART and other treatments prior to the emergence of 
symptoms and are more likely to alter their behavior. Not all those who are at risk 
are tested, of course, so for many people the first indication that they are HIV+ 
comes when they develop symptoms of AIDS. 

M ode1 i n g H IVIA I DS 

A. Stock and flow structure of the HIV/AIDS epidemic. 
Based on the description above, develop a stock and flow diagram 
representing the progression of individuals from susceptible through the 
various stages of HIV infection and AIDS. Include a stock of cumulative 
deaths. In the SIR model the population is assumed to be homogeneous, a 
very poor assumption for modeling HIV/AIDS. Many epidemiological 
models of HIV/AIDS disaggregate the population into several categories that 
represent the different modes of transmission (primarily homosexual contact, 
heterosexual contact, and intravenous drug use), as well as gender, age, 
socioeconomic status, region, and perhaps other ~ategories.~ These groups 
overlap and interact, creating an intricate feedback structure and a very 
complex model. For the purpose of this challenge, do not disaggregate the 
population. After you develop a single aggregate model, you can consider 
disaggregation to capture the different risky behaviors and their interactions. 

7There are dozens of published epidemiological models of HIV/AIDS and other sexually 
transmitted diseases. Good starting points include Anderson (1994), Garnett and Anderson (1996), 
Heidenberger and Roth (1998), and Roberts and Dangerfield (1990). The entire May-June 1998 
issue of Interfaces (28[3]) was devoted to modeling AIDS, including policy issues such as needle 
exchanges, vaccine development, and HIV screening. 
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B. Feedback structure of the HIV/AIDS epidemic. 
Once you have developed the stock and flow map, add the feedback structure 
for the rates by following the assumptions of the extended SIR model above, 
including the infection rate, rate of seroconversion, AIDS diagnosis rate, and 
death rate. 

Over the time frame for the development of the AIDS epidemic, the 
parameters of the SIR model such as the mortality rate and the contact rate 
between susceptibles and the various categories of HIV+ individuals cannot 
be considered constant. Modify your causal diagram to incorporate feedbacks 
you believe are important. Be sure to consider the following: 

1. The average contact rate may fall as people become aware of the risk of 
HIV and the ways in which it can be transmitted; that is, some people may 
reduce or abstain from use of intravenous drugs or sexual contact. 

2. The infectivity of contacts depends on people’s behavior. Safer sex 
practices and the use of clean needles by IV drug users can reduce the 
infectivity of those contacts that do occur. The use of safer sex practices 
and clean needles in turn depends on people’s awareness of the risk of HIV 
infection and its consequences and on the availability of information and 
resources about these practices. In turn, the availability of information about 
safer sex and the importance of needle cleaning, along with condoms and 
clean needles, depends on social attitudes and public health programs in 
the media, schools, and other community organizations. 

3. Research and development into treatments such as HAART can reduce 
the mortality rate. The availability of these treatments depends on the 
extent to which they are reimbursable through health insurance and on 
the willingness of people to get tested for HIV. Many people are unwilling 
to be tested even if they know they are at risk, out of fear, frequently well 
founded, that they may be stigmatized, including the possibility they might 
lose their jobs, homes, and friends. 
In representing changes in people’s behavior (e.g., changes in contact rates 
and infectivity), consider how people might become aware of the existence, 
severity, and risks of HIV and different behaviors. Do they read the New 
England Journal ofMedicine or get their information through word of 
mouth or personal acquaintance with someone suffering from AIDS? How 
do people judge the risk of infection and the consequences of infection? 
People are much more likely to contract the common cold than HIV, but a 
cold does not inspire the dread HIV does. What information sources are 
ordinary people exposed to, and how persuasive are these in inducing 
changes in behavior? What is the role of social attitudes toward the 
behaviors through which HIV can be transmitted? What is the role of 
government policies? Be sure to consider the time delays in the feedbacks 
you identify. 

Use your causal diagram to explain the dynamics of the AIDS 
epidemic in the US. In particular, explain, in terms of the feedback structure 
of the system, why the fractional growth rate of the epidemic fell in the 
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early years. Explain the decline in incidence beginning about 1995 and the 
even steeper decline in mortality. Explain why the number of people living 
with AIDS continues to increase (Figure 9- 12). 

from a death sentence to a chronic infection with low mortality. Based on 
your diagram, what changes in behavior might arise as a side effect of the 
development of HAART? How might these changes affect the contact rate 
or infectivity? Would these feedbacks increase or decrease the incidence of 
HIV infection? Explain. What are the public health implications of 
successful treatments such as HAART? 

Treatments such as HAART hold the promise to convert HIV infection 

C. Simulating the HIV/AIDS epidemic. 
Develop a formal model of the HIV/AIDS epidemic based on the structure you 
identify above. To do so you will need to use a number of nonlinear behavioral 
functions (e.g., to capture the way perceptions of risk alter the contact rate or 
infectivity). Guidelines for the development of such nonlinear functions are 
found in chapter 14. Work (at least initially) with a single aggregate stock and 
flow structure, and do not disaggregate your model into subpopulations. Sim- 
ulate your model under at least two conditions: (1) on the assumption of no be- 
havioral change and no improvement in treatments and (2) including the 
feedbacks you identified in part B that might lead to changes in the contact 
rate, in infectivity, and in mortality. Explain the results. Test the policy recom- 
mendations you identified in part B. Discuss the policy implications.8 

9.,3 INNCWATION DIFFUSION AS INFECTION: 
MODELING NEW IDEAS AND NEW PRODUCTS 

The diffusion and adoption of new ideas and new products often follows S-shaped 
growth patterns. What are the positive feedbacks that generate the initial exponen- 
tial growth of a successful innovation, and what are the negative feedbacks that 
limit its growth? Consider the spread of cable television (Figure 4-9). The growth 
of the population of cable television subscribers cannot be explained by the birth 
of children to existing cable subscribers, though the offspring of heavy TV view- 
ers do tend to grow up to be couch potatoes. What then are the positive loops re- 
sponsible for the growth of the cable industry? 

The spread of rumors and new ideas, the adoption of new technologies, and the 
growth of new products can all be viewed as epidemics spreading by positive feed- 
back as those who have adopted the innovation “infect” those who have not. The 
concept of positive feedback as a driver of adoption and diffusion is very general 
and can be applied to many domains of social contagion (e.g., the feedback struc- 
ture of the cocaine epidemic described in section 7.3). A rumor spreads as those 
who have heard it tell those who have not, who then go on to tell still others. New 
ideas spread as those who believe them come into contact with those who do not 

*For the purpose of this challenge it is acceptable to model the transitions from one category of 
infected individual to the next as first-order processes. More realistic models represent the incuba- 
tion and mortality distributions derived from empirical studies more accurately through the use of 
higher-order delays (see chapter 11). 
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and persuade them to adopt the new belief. The new believers in turn then persuade 
others. As early adopters of new technology and early purchasers of a new product 
expose their friends, families, and acquaintances to it, some are persuaded to try it 
or buy it themselves. In all these cases, those who have already adopted the prod- 
uct, idea or technology come into contact with those who have not, exposing them 
to it and infecting some of them with the idea, or the desire to buy the new product 
and further increasing the population of adopters. Any situation in which people 
imitate the behavior, beliefs, or purchases of others, any situation in which people 
jump on the bandwagon, describes a situation of positive feedback by social con- 
tagion. Of course, once the population of potential adopters has been depleted, the 
adoption (infection) rate falls to zero.9 

In the cable television case, important factors in a household’s decision to sub- 
scribe (assuming cable is available in the community) include favorable word of 
mouth from those who already subscribe and positive experiences viewing cable at 
the homes of friends and family. People hear about programs only available on ca- 
ble and feel they must subscribe to be hip and knowledgeable among their peers in 
school or at the workplace. Additionally, people may subscribe to keep up with the 
Joneses, that is, to maintain or enhance their status (or their perception of their sta- 
tus) among their peer group. All of these channels of awareness and motivations 
for adoption create positive feedbacks analogous to the contagion loop in the basic 
epidemic model. 

Figure 9-13 adapts the SI epidemic model (section 9.2.1) to the case of inno- 
vation diffusion. The infectious population now becomes the population of 
adopters, A-those who have adopted the new idea or purchased the new product. 
The susceptible population becomes the pool of potential adopters, P. Adopters and 
potential adopters encounter one another with a frequency determined by the con- 
tact rate, c. Unlike infectious diseases, word of mouth encounters that might lead 
to adoption could occur by telephone, mail, email, or other remote means and do 
not require physical proximity. As in infectious disease, not every encounter results 
in infection. The proportion of contacts that are sufficiently persuasive to induce 
the potential adopter to adopt the innovation is termed here the adoption fraction 
and denoted i (since the adoption fraction is analogous to the infectivity of a dis- 
ease in the epidemic model). 

The equations for the simple innovation diffusion model are identical to those 
for the SI model of chronic infection described in 9.2.1. Using the terminology in 
Figure 9-13, the model is 

A = INTEGRAL(AR, A,) (9-29) 

P rz INTEGRAL(-AR, N - A,) (9-30) 

AR = ciP(A/N) (9-3 1) 

As in the SI model, the total population N is constant: 

P + A = N  (9-32) 

9The literature on diffusion of new products and of social and technical innovations is huge. 
A good place to start is Everett Rogers (1995), Diffusion of Innovations, a classic originally 
published in 1962. For diffusion models applied to the sales of new products, see Parker (1994) 
and Mahajan, Muller, and Bass (1990). 
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FIGURE 9-1 3 
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The interpretation is the same as in the SI model. People in the relevant com- 
munity come into contact at a rate of c people per person per day. The total rate at 
which contacts are generated by the potential adopter pool is then cP. The propor- 
tion of adopters in the total population, AN,  gives the probability that any of these 
contacts is with an adopter who can provide word of mouth about the innovation. 
Finally, the adoption fraction, i, is the probability of adoption given a contact with 
an adopter. As before, these equations constitute an example of the logistic growth 
model discussed in section 9.1.1. The behavior of the model is the classic S-shaped 
growth of the logistic curve (Figure 9- 1). 

9.3.1 The Logistic Model of Innovation Diffusion: 
Examples 

The diffusion of many new products follow roughly logistic trajectories. As an ex- 
ample, Figure 9-14 shows sales of the Digital Equipment Corporation VAX 11/750 
minicomputer in Europe (Modis 1992). The VAX series was a very successful line 
of minicomputers. They sold for about $100,000 to $150,000 a unit, depending on 
which peripherals (such as tape drives) were included, an excellent value com- 
pared to the mainframes of the day. Typical customers were large companies, 
research organizations, and universities, who used them for data processing appli- 
cations and to support scientific and engineering computation in R&D labs, prod- 
uct development departments, and academic research. The 11/750 was introduced 
in 1981. Sales follow the classic bell-shaped product life cycle, peaking in mid 
1984. The product was withdrawn from the market around 1989. Accumulated 
sales follow an S-shaped path. Since the useful lifetime of the VAX is long com- 
pared to the time horizon for the product life cycle, it is reasonable to assume that 
few units were discarded prior to 1989 when the product was withdrawn from the 
market. Therefore cumulative sales is a good measure of the installed base. 

To fit the logistic product diffusion model to the VAX sales data, assume the 
total population N = cumulative sales by 1989 (about 7600 units). The remaining 
parameter of the model, representing the product of the contact rate and adoption 
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FIGURE 9-1 4 
Sales of the 
Digital Equipment 
Corporation VAX 
31/750 in Europe 
Top: Sales rate 
(quarterly data 
at annual rates). 
Bottom: Cumula- 
tive sales (roughly 
equal to the 
installed base). 
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fraction (ci), can be estimated easily by linear regression.1° First, recall from equa- 
tion (9-8) that the solution to the logistic equation can be expressed (using the vari- 
able names for the innovation diffusion model above) as 

(9-33) 

where A is the number of adopters (the installed base), A, is the initial installed 
base, N is the total equilibrium or final value of adopters, and go is the initial frac- 
tional growth rate of the installed base, which at the initial time when there are 
very few adopters is equal to the number of infective contacts (ci). Taking the nat- 
ural log of both sides, 

(9-34) 

yields a relationship that is linear in the parameters and can be estimated by ordi- 
nary least squares. Note that since N - A = P (the difference between the total 

'OSince the adoption rate depends on the product of the contact rate and infectivity, ci, these 
parameters cannot be estimated separately from sales data. However, market research techniques 
such as test markets, focus groups, surveys, and so on can help the modeler develop estimates of 
the adoption fraction and contact rate. For forecasting purposes, only the product ci is needed. 
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population and the number of adopters is the number of potential adopters), equa- 
tion (9-34) can be written more intuitively as a function of the ratio of adopters to 
potential adopters (A/P): 

In - = In - + got t) (9-35) 

Equation (9-34) or (9-35) is known as the logistic (or simply, logit) transformation. 
Figure 9-15 shows the logit transformation of the VAX sales data, along with the 
estimated linear regression. The data are close to linear, which indicates excellent 
correspondence to the logistic model. The bottom panels of Figure 9-15 compare 
the estimated logistic curve to the sales and installed base data. 

While the logistic innovation diffusion model fits the VAX sales data quite 
well, the estimation of the model was retrospective: the entire sales history was 
used, and the estimation method required knowledge of the final value of the in- 
stalled base. In most business situations, however, the clients want to know the 
likely growth path prospectively, when the market potential is not known, so they 
can decide whether the market will be big enough to justify entry and plan strategy 
for capacity acquisition, pricing, marketing, and so on. One way to fit the logistic 
growth model to data prior to saturation is to estimate the rate at which the frac- 
tional growth rate declines with growing population. Recall from equation (9- 1) 
that the fractional growth rate of the logistic model declines linearly as the popu- 
lation grows. Figure 9-16 shows the fractional growth rate in cable television sub- 
scribers in the US, along with the best linear fit (calculated by ordinary least 
squares). As expected, the fractional growth rate declines as the population grows, 
though there is considerable variation around the best linear fit. The logistic growth 
path implied by these parameters fits the data well through 1994 and predicts 
a maximum of about 74 million households subscribing to cable, reached shortly 
after 2010. 

There is, however, considerable uncertainty in this prediction. First, there is 
uncertainty regarding the best fitting linear fractional growth rate. The actual frac- 
tional growth rate varies substantially around the best fit; other parameters for the 
straight line will fit nearly as well yet yield large differences in the maximum num- 
ber of subscribers and time to saturation. Second, the best fit was estimated for the 
period 1969-1994; prior to 1969 the fractional growth rate was much higher. This 
is typical of growth processes: The fractional growth rate early in the history of a 
new product or innovation is often very high since the population of adopters is so 
small (and of course, when a new product is introduced the growth rate for the first 
reporting period is infinite). Changing the historical period over which the logistic 
model is estimated will therefore change the best fit parameters and the forecast. 
Third, the logistic model presumes a linear decline in the fractional growth rate as 
the population grows. There is, however, no compelling theoretical basis for lin- 
earity. Other shapes for the fractional growth rate curve will yield very different 
predictions. To illustrate, Figure 9-17 shows the cable television data against the 
best fit of both the logistic and Gompertz curves (equation (9-14)). The Gompertz 
curve fits the data about as well as the logistic curve but suggests continued growth 
to nearly 150 million subscribers in 2020, double the final level predicted by the 
logistic model. 
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FIGURE 9-1 5 
Fitting the logistic 
model of 
innovation 
diffusion 
Top: Applying the 
logit transforma- 
tion (equation 
(9-35)) shows that 
the log of the ratio 
of adopters to po- 
tential adopters 
over time is very 
close to linear. The 
best fit is found by 
linear regression. 
Middle: Estimated 
and actual in- 
stalled base 
(adopters) using 
the estimated pa- 
rameters. Bottom: 
Estimated and 
actual sales 
(adoption rate) 
using the esti- 
mated parameters. 
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9.3.2 Process Point: Historical Fit and Model Validity 
The logistic model is widely used to explain and predict the diffusion of innova- 
tions, the growth of populations, and many other phenomena. Marchetti (1980) and 
Modis (1992), among many others, have fit the logistic curve to a wide range of 
data, from the compositions of Mozart to the construction of Gothic cathedrals. 
The logistic curve can fit data for a wide range of growth processes reasonably 
well. But you should not use the logistic model-or any model-as a curve fitting 
procedure for black box (atheoretical) forecasting. The logistic model often works 
well because it includes the two feedback processes fundamental to every growth 
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process: a positive loop that generates the initial period of accelerating growth and 
a negative feedback that causes the growth to slow as the carrying capacity is ap- 
proached. Any system growing by positive feedback must include these two types 
of loops, coupled nonlinearly; any growth model must be characterized by a frac- 
tional growth rate that ultimately declines to zero as the population approaches its 
carrying capacity. However, as discussed above, the logistic model makes restric- 
tive assumptions about the nature of the growth process. Advocates of the logistic 
model often present evidence selectively to show how well the model fits certain 
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data but omit the many other growth processes for which it does not. The same 
considerations apply to all other single equation growth models such as the 
Richards or Weibull family. 

The ability of the logistic model to fit a wide range of growth processes also 
illustrates several important lessons about the validity of models in general. First, 
the contrast between the forecasts of the logistic and Gompertz models for the ca- 
ble television case shown in Figure 9-17 shows that different diffusion models can 
produce wildly different predictions while fitting the data equally well. The ability 
to fit the historical data does not, therefore, provide a strong basis for selecting 
among alternative hypotheses about the nature or strength of different feedbacks 
that might be responsible for a system’s dynamics. 

Second, getting more data does not solve the problem. Estimating the parame- 
ters of different growth models, and hence the trajectory of growth, by economet- 
ric techniques requires a long enough set of time series data to provide stable 
parameter estimates and to discriminate among the different growth models. In a 
review of innovation diffusion models for new product sales forecasting, Mahajan, 
Muller, and Bass (1990) note that “by the time sufficient observations have devel- 
oped for reliable estimation, it is too late to use the estimates for forecasting pur- 
poses.” By the time cable television has progressed far enough to discriminate 
between the logistic and Gompertz (and possibly other) models, so much of the 
diffusion life cycle will be past that the model will no longer be useful. The wildly 
different forecasts of cable diffusion are generated 40 years after the introduction 
of cable, after about half the households in the US had already adopted it, and well 
after the entry to the industry of formidable competitors. 

Third, a main purpose of modeling is to design and test policies for improve- 
ment. To do so, the client must have confidence that the model will respond to poli- 
cies the same way the real system would. Fitting the logistic curve (or any model) 
to a data set does not identify the specific feedback processes responsible for the 
dynamics. The ability of a model to fit the historical data by itself provides no in- 
formation at all about whether its response to policies will be correct. 

To illustrate, note that the logistic model, like all first-order growth models, 
presumes that the adopter population or installed base moves steadily upward. The 
number of adopters can never decline. Yet the history of new products and new 
technologies is replete with innovations whose pattern of emergence is boom and 
bust or fluctuation. It is easy to imagine credible scenarios in which, for example, 
cable television use declines, including rising prices, declining quality of pro- 
gramming, increasing competition from new technologies such as digital satellite 
broadcasts and the internet, and even a decline in television viewing (well, perhaps 
that last one isn’t credible). Yet the logistic model, and all first order models, can 
never generate anything but growth. These models do not include the rich feedback 
structure needed to generate more complex and realistic patterns such as overshoot 
and oscillation or overshoot and collapse. 

Innovation diffusion usually involves many positive feedbacks driving growth 
besides word of mouth (see chapter 10 for examples). For example, the availability 
of third-party software is a powerful driver of product attractiveness for computers. 
In turn, third-party developers will write software for those platforms they believe 
have the greatest market potential. Thus the larger the installed base of a particular 
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computer (such as the VAX), the more software will be written for it, the more at- 
tractive it becomes to potential customers, and the larger the installed base will be. 
The positive software availability loop (and many others) can stimulate growth just 
as the word of mouth loop can. Because these other positive loops are omitted from 
the simple innovation diffusion model, statistical estimates of the strength of the 
word of mouth loop will reflect the impact of all positive loops contributing to the 
growth. The importance of word of mouth will be greatly overestimated while at 
the same time the strength of all the omitted loops is assumed to be zero. The 
model would indicate that a good policy to stimulate the early growth of the mar- 
ket would be to strengthen word of mouth (say, by sponsoring conferences or hir- 
ing key opinion leaders as spokespeople). However, the best policy may actually 
be to stimulate software availability by partnering with third-party developers. 
Such a model will not yield reliable policy recommendations despite the excellent 
historical fit. A model may fit the data perfectly for the wrong reasons. 

Is it difficult to overemphasize the implications for modelers and clients. The 
ability of a model to replicate historical data does not, by itself, indicate that the 
model is useful. And failure to replicate historical data does not necessarily mean 
a model should be dismissed. The utility of a model cannot be judged by historical 
fit alone but requires the modeler to decide whether the structure and decision rules 
of the model correspond to the actual structure and decision rules used by the real 
people with sufficient fidelity for the client’s purpose. To do so requires the mod- 
eler and client to examine the assumptions of the model in detail, to conduct field 
studies of decision making, and to explore the sensitivity of model results to plau- 
sible alternative assumptions (among other tests). Determining whether a model 
provides a sound basis for decision making is never a matter only of statistical test- 
ing or historical fit but is essentially and unavoidably a value judgment the mod- 
eler and client must make. 

Unfortunately, clients and modelers frequently give historical fit too much 
weight. Judging the appropriateness of the model’s structure, its robustness, and its 
sensitivity to assumptions takes time, while historical fit can be demonstrated 
quickly. Graphs showing a close fit between data and model are dramatic and 
compelling. Clients are too easily swayed by such graphs and by impressive tables 
of R2 and other statistics. Modelers, even when they know better, too often over- 
emphasize statistics showing how well their models fit the data to persuade the au- 
dience that the strong historical fit of the model means it must be correct. 

You should not conclude from this discussion that historical fit is unimportant 
or that you do not need to compare your models to the numerical data. On the con- 
trary, comparing model output to numerical data is a powerful way to identify lim- 
itations or flaws in model formulations. But there is a profound difference between 
using historical data to identify flaws so your models can be improved and using 
historical fit to assert the validity of your model. In the latter case, showing how 
well the model fits the data is a defensive maneuver designed to protect a model 
and the modeler from criticism and seals the client-and modeler-off from learn- 
ing. In the former case, the historical fit is used to find problems and stimulate 
learning. Examining historical fit should be part of a larger process of testing and 
model improvement designed to yield a model suitable for policy design and deci- 
sion making (see chapter 21). 
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9.3.3 The Bass Diffusion Model 
One of the flaws in the logistic model of innovation diffusion is the startup prob- 
lem. In the logistic (and the other simple growth models including the Richards 
and Weibull families), zero is an equilibrium: the logistic model cannot explain the 
genesis of the initial adopters. Prior to the introduction of cable television, the 
number of cable subscribers was zero; prior to the first sales of the VAX minicom- 
puter, the installed base was zero. When growth processes begin, positive feed- 
backs depending on the installed base are absent or weak because there are no or 
only a few adopters. Initial growth is driven by other feedbacks outside the bound- 
ary of the simple diffusion models. There are several channels of awareness that 
can stimulate early adoption of new innovations besides word of mouth and related 
feedback effects that depend on the size of the adopter population. These include 
advertising, media reports, and direct sales efforts. 

Frank Bass (1969) developed a model for the diffusion of innovations that 
overcomes the startup problem. The Bass diffusion model has become one of the 
most popular models for new product growth and is widely used in marketing, 
strategy, management of technology, and other fields. Bass solved the startup prob- 
lem by assuming that potential adopters become aware of the innovation through 
external information sources whose magnitude and persuasiveness are roughly 
constant over time. 

The original Bass model was introduced primarily as a tool for forecasting 
sales of new products, and Bass did not specify the nature of the feedbacks at the 
operational level. The positive feedback is usually interpreted as word of mouth 
(social exposure and imitation) and the external sources of awareness and adoption 
are usually interpreted as the effect of advertising (Figure 9-18 shows the feedback 
structure of the model with this interpretation). l1 

In Figure 9-18 the total adoption rate is the sum of adoptions resulting from 
word of mouth (and implicitly other positive feedbacks driven by the population of 
adopters or the installed base of the product) and adoptions resulting from adver- 
tising and any other external influences. Adoptions from word of mouth are for- 
mulated exactly as in the logistic innovation diffusion model (equation (9-3 1)). 
Bass assumed the probability that a potential adopter will adopt as the result of ex- 
posure to a given amount of advertising and the volume of advertising and other 
external influences each period are constant. Therefore the external influences 
cause a constant fraction of the potential adopter population to adopt each time pe- 
riod. Hence the adoption rate, AR, is 

AR = Adoption from Advertising + Adoption from Word of Mouth 

Adoption from Advertising = aP 

(9-36) 

(9-37) 

"The original model, in continuous time, was specified as dNdt  = AR = aP + bPA, where 
a and b were parameters to be estimated statistically from the data on sales or adopters. Bass (1969) 
did not explicitly discuss the feedback loop structure of the model or specify what the processes of 
adoption were operationally, instead calling them innovation and imitation. Others refer to the two 
loops as external and internal influences on adoption. The model was also criticized for omitting 
economic and other variables that affect the adoption decision such as price or advertising effort 
(see the challenges below; see also Bass, Krishnan, and Jain 1994). 
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FIGURE 9-18 
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Adoption from Word of Mouth = ciPA/N (9-38) 

where the parameter a, advertising effectiveness, is the fractional adoption rate 
from advertising (l/time period). 

The two sources of adoption are assumed to be independent. Collecting terms, 
the model can be expressed more compactly as 

AR = aP + ciPA/N (9-39) 

When an innovation is introduced and the adopter population is zero, the only 
source of adoption will be external influences such as advertising. The advertising 
effect will be largest at the start of the diffusion process and steadily diminish as 
the pool of potential adopters is depleted. 

__ _-_ 

Phase Space of the Bass Diffusion Model 
Like the logistic growth model, the Bass model has two stocks. However, because 
P + A = N, only one of these stocks is independent, and the model is actually first- 
order. Using the fact that P = N - A, express equation (9-39) in terms of the 
adopter population A. Draw the phase plot for the model (a graph showing the 
adoption rate as a function of the adopter population). Draw the phase plot for three 
conditions: (i) advertising effectiveness is zero and all adoption occurs through 
word of mouth, (ii) word of mouth is zero (ci = 0) and all adoption occurs through 
advertising, and (iii) both advertising and word of mouth contribute to adoption. 

Without using simulation, use the phase plot to sketch the behavior over time 
of the adopter population, potential adopter population, and adoption rate for each 
of the three cases above. How does advertising alter the point at which loop dom- 
inance shifts from positive to negative feedback? How does advertising affect the 
timing, symmetry, and other aspects of the dynamics compared to the logistic 
model? 
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After you have answered these questions, build and simulate the model to test 
your intuition. Run the model for the three cases above, and try other combinations 

9.3.4 Behavior of the Bass Model 
The Bass model solves the startup problem of the logistic innovation diffusion 
model because the adoption rate from advertising does not depend on the adopter 
population. When the innovation or new product is introduced, the adoption rate 
consists entirely of people who learned about the innovation from external sources 
of information such as advertising. As the pool of potential adopters declines while 
the adopter population grows, the contribution of advertising to the total adoption 
rate falls while the contribution of word of mouth rises. Soon, word of mouth dom- 
inates, and the diffusion process plays out as in the logistic diffusion model. 

As an example, consider again the VAX 11/750 sales data (Figure 9-14). To 
model the VAX product life cycle with the logistic diffusion model it was neces- 
sary to start the simulation after the product was introduced, so that there was a 
nonzero installed base. A close look at Figure 9-15 shows that the pure logistic 
model underestimates sales during the first year and a half, and overestimates sales 
at the peak, consistent with the hypothesis that initial adoptions were stimulated 
not by word of mouth or other positive feedbacks but by external sources of aware- 
ness such as marketing effort. Figure 9-19 compares the behavior of the Bass 
model to the logistic diffusion model and the VAX sales data. As in the simulation 
of the logistic model, the total population N is assumed to be 7600 units. Advertis- 
ing effectiveness, a, and the number of contacts resulting in adoption from word of 
mouth, ci, were estimated by regression to be 0.01 1 per year and 1.33 per year, re- 
spectively. The contribution of sales from advertising to total sales is small after 
the first year, as seen in the bottom panel of Figure 9-19. Nevertheless, this mod- 
est change in the feedback structure of the diffusion process improves the model’s 
ability to fit the sales data, both in the first 2 years and at the peak. Most important, 
the inclusion of the advertising effect solves the startup problem of the logistic 
model. 

The Bass model is a significant and useful extension of the basic logistic 
model of innovation diffusion. The model itself, or variants of it, is broadly ap- 
plicable to a wide range of diffusion and growth phenomena, and there is a large 
literature applying the Bass model and related models to innovation diffusion and 
sales of new products (see, e.g., Mahajan, Muller, and Bass 1990 and Parker 1994 
for reviews). 
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Extending the Bass Model 
As noted above, the Bass model assumes the total size of the market (total popula- 
tion, N) is constant. In general, the population of a community or the number of 
households in a market grows over time through births, deaths, and migration. In 
the context of innovations with very short life cycles (e.g., the latest generation of 
video games) or acute diseases such as measles, the assumption of constant popu- 
lation is reasonable. But for innovations or diseases whose life cycles extend over 
many years (e.g., the diffusion of cable television or the AIDS epidemic), popula- 
tion growth can be significant. 
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A. 

B. 

Revise the Bass model to incorporate growth in the size of the 
total market. 
Assume the total population size is a stock increased by a Net Population 
Increase Rate that aggregates births, deaths, and net migration (it is easy, but 
not necessary, to represent explicit birth, death, and net migration rates 
separately; see chapter 12). The Net Population Increase Rate is given by the 
total population and the Fractional Net Increase Rate, which can be assumed 
constant. Now you must decide how the increase in population is partitioned 
between potential adopters and adopters. The simplest assumption is that all 
increases in population size add to the pool of potential adopters. Recalling 
that all people or households in the population are either potential or actual 
adopters, reformulate the potential adopter population as P = N - A. Even 
though the potential adopter population is a stock, it is fully determined by 
the total population and adopter population and so can be represented as an 
auxiliary variable. 

Apply your extended model to the cable television industry. The unit 
of adoption for cable television is not the individual, but households (and 
possibly businesses). The cable television industry in the US began in the 
early 1950s. At that time the number of households was about 40 million. 
By the late 1990s, there were nearly 100 million households, an average 
household formation growth rate of about 1.9%/year. Select parameters for 
advertising effectiveness and word of mouth that approximately replicate the 
pattern of cable adoption (Figure 9-16). It is not necessary to match the data 
exactly; an approximate fit is sufficient. Explore the sensitivity of the model 
to different population growth rates. What is the impact of variable 
population size on the dynamics? 

Response of total market size to price. 
In most markets, only a fraction of the total population will ever adopt a new 
innovation. The fraction of the population that might ever adopt typically 
depends on the benefits of the innovation relative to its cost (its price and any 
other associated costs, e.g., switching costs, costs of complementary assets, 
training costs, etc.; see Rogers 1995). Innovations are not static: their 
benefits often increase over time as research and product development lead 
to improvements in features, functionality, quality, and other attributes of 
product attractiveness. Similarly, the price of new products often falls 
significantly over time through learning curves, scale economies, and other 
feedbacks (see chapter 10). Modify the model you developed in part A to 
include the effect of product price on the size of the potential adopter pool. 
Assume the potential adopter population is a fraction of the total population, 
less the current number of adopters: 

P = Fraction Willing to Adopt * N - A (9-40) 

where, in general, the Fraction Willing to Adopt depends on the overall 
attractiveness of the innovation or product (its benefits relative to costs): 

Fraction Willing to Adopt = f(1nnovation Attractiveness) (9-41) 
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C. 

D. 

To keep the model simple, assume that the only feature of the innovation that 
varies is the price. A simple assumption is that the demand curve for the 
product is linear. For the case of cable television, assume that demand is a 
linear function of the monthly cost (ignore installation charges). Since nearly 
all US households have television, assume the Fraction Willing to Adopt 
would be 100% when cable is free and would fall to zero if the cost were 
$2OO/month. 

To test the model, assume price is exogenous. First, run the model with 
price constant at an initial value of $100/month. To focus on the dynamics of 
the price effect alone, assume the Fractional Net Increase Rate for the total 
population is zero. Since price is constant, the total population should be 
constant, and the model reduces to the original Bass formulation. Simulate 
your model to check that it behaves appropriately when the price is constant. 

Now test the impact of varying prices by assuming the price of cable 
falls over time. First, test the effect of a sudden drop in price, to, say, 
$25/month. Try the price drop at different points in the diffusion life cycle. 

Is your model robust? 
Typically, prices fall over the life cycle of a successful new product or 
innovation. But models must be robust and behave appropriately under 
all potential circumstances, not only the historical or expected behavior. 
A common and important way to test for robustness is the extreme condi- 
tions test (chapter 21). In an extreme conditions test, an input to a model is 
assumed to suddenly take on extreme values. The model must continue to 
behave appropriately even if that extreme value will never arise in reality. 
For example, suddenly destroying all inventory in a model of a manu- 
facturing firm must force the shipment rate immediately to zero. If shipments 
do not fall to zero, the modeler (and client) immediately know there is a basic 
flaw in the model. As an extreme conditions test in your model, suddenly 
raise the price to a very large number (such as $1 million per month). If 
prices were to rise that much, what must happen to the potential adopter 
population? To the population of subscribers? Implement the price rise at 
various points in the life cycle. Does your model behave appropriately? What 
problem or problems are revealed by the test? Propose, implement, and test 
revisions that correct any problems you identify. 

Interaction of diffusion and the learning curve. 
The prices of many new products and services fall over time as learning, 
scale economies, and other effects lower costs and as competition intensifies. 
Make the product price an endogenous part of the model structure by 
incorporating a learning curve. Learning or experience curves capture the 
way in which producers, distributors, and others in the value chain learn to 
produce at lower costs as they gain experience. Usually costs are assumed 
to fall as cumulative experience with the product or service grows. In 
a manufacturing setting, cumulative experience is usually proxied by 
cumulative production. In a service industry, cumulative experience might 
better be represented as depending on the cumulative number of transactions 
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and will depend on the adopter population and the number of transactions 
each adopter generates per time period. Typically, unit costs fall by a fixed 
percentage with every doubling of experience. Cost reductions of 10% to 
30% per doubling of cumulative experience have been documented in a wide 
range of industries (see, e.g., Teplitz 1991; Gruber 1992; Argote and Epple 
1990). To incorporate a learning curve into your innovation diffusion model, 
first assume that any cost reductions are fully passed into price: 

Price = Initial Price * Effect of Learning on Price (9-42) 

(9-43) 
Cumulative Experience 

Initial Cumulative Experience 
Effect of Learning on Price = 

(9-44) 

The exponent c determines how strong the learning curve is and should 

Cumulative Experience = INTEGRAL(Adopti0n Rate, 
Initial Cumulative Experience) 

be negative (costs fall as cumulative experience grows). To represent a 
learning curve in which costs fall 30% for each doubling of experience, 
set c = log2(0.7) = -0.51.12 

new consumer durable product in the year 2000. The product has high market 
potential. Set the following parameters: Assume that 100% of the total 
population of 100 million households will purchase the product if it is free 
but that demand falls to zero if the price is $2500 per unit. Set the initial 
price to $2000/unit, and set initial experience to 10 million units (reflecting 
learning gained on prior products and prototypes). Research on consumer 
durables shows typical product life cycles last from about a year to as long 
as 20 years or more (Parker 1994), depending on the cost, benefits, size, 
trialability, novelty, and other attributes of the product, along with the role of 
complementary assets and other infrastructure (computers aren’t valuable 
without software; a television is useless without programming people want to 
watch and networks or cable operators to distribute it). To capture the range, 
define the following two scenarios for the diffusion of the product: a Slow 
scenario, in which the product of the contact rate and adoption fraction (ci) 
is 1 .O/year, and a Fast scenario, in which the product of the contact rate and 
adoption fraction ci is 3 .O/year. Assume for both scenarios that 1 % of the 
potential adopter pool will purchase as the result of advertising per year. 

Test your model for a hypothetical manufacturing firm that introduces a 

I2For a learning curve where costs C fall by a fixed fraction per doubling of experience E, costs 
are given by 

C = C,(E/E,)C. 
When E has doubled, costs have fallen by a fraction f, so 

(1 - f)Co = Co(2EdEo)C 
or 

c = ln(1 - f)/ln(2) = log,(l - f). 

For a learning curve with f = 0.30, c = 0.5146. Since f, the fractional cost reduction per doubling 
of experience, has a more intuitive meaning than the exponent c, it is convenient to formulate c in 
the model as a computed constant, c = ln(1 - f)/ln(2) and then specify the cost reduction fraction f 
as a constant. 
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Before running your model, draw a causal diagram showing the feedback 
structure created by the learning curve and how it interacts with the structure 
of diffusion. Without simulation, sketch the dynamics you expect for the 
fraction of the market willing to adopt, the potential adopter population, 
adoption rate, and adopter population. Also sketch the path of revenues you 
expect. Assume the product is purchased, not leased, and ignore revenues 
that may derive from sale of services or aftermarket products to the adopters 
(revenue depends only on the adoption rate and price). 

After sketching the dynamics you expect, run the model for both the Fast 
and Slow cases. Describe the dynamics, and compare to your intuitive esti- 
mates. Experiment with different strengths for the learning curve relative to the 
diffusion process. How do diffusion processes and learning curves interact to 
determine the growth of a new product? What are the implications of very 
rapid diffusion for revenues, capacity planning, and new product develop- 
ment? What implications for strategy (pricing, capacity acquisition, and mar- 
keting) do you draw? 

9.3.5 Fad and Fashion: 
Modeling the Abandonment of an Innovation 

The Bass diffusion model is analogous to the SI model of chronic infection. Every- 
one eventually adopts the product and adopters never abandon the innovation or 
discontinue use of the product. These assumptions are appropriate for some inno- 
vations but do not apply to the huge category of fashions and fads. 

A fad, by definition, involves the temporary adoption of a new idea or product, 
followed by its abandonment. In a fad, those who adopt sooner or later (usually 
sooner) discontinue their use of the product and no longer generate word of mouth 
that might lead to further adoption. Though many baby boomers wore Nehru jack- 
ets or granny dresses in the 1960s, polyester leisure suits or rainbow-colored plat- 
form shoes in the 1970s, and power suits with yellow ties or shoulder pads in the 
1980s, few are seen wearing them today.13 Fad and fashion are of course common 
in the apparel industry but also arise in nearly every other domain, from home fur- 
nishings, vacation destinations, cuisines, automobiles, and investments to styles in 
the arts and music, academic theories in the sciences and humanities, and hot new 
buzzwords and gurus in corporate strategy, organizational theory, and management 
consulting. 

The Bass model cannot capture the dynamics of fads in part because adopters 
never discontinue their use of the innovation. Further, because the contact rate and 
adoption fraction are constant, the earliest adopters are just as likely to infect po- 
tential adopters as those who just purchased the product. For many innovations 
(not only fads), however, people's propensity to generate word of mouth, and their 
enthusiasm and persuasiveness, vary over time. Usually, word of mouth decays as 
people become habituated to the innovation. Those who have recently embraced a 

I3The fashion industry frequently reintroduces old fashions. The fashions of the 70s were 
recycled in the late 90s, including platform shoes and bellbottoms, but thankfully not polyester 
leisure suits. 
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new idea or purchased a new item are much more likely to talk about it than those 
who have long since adopted the innovation even if they continue to use it. Indoor 
plumbing can hardly be considered a passing fad, yet people do not rush out to tell 
their friends how wonderful flush toilets are. 

In the 1980s Selchow and Righter sold tens of millions of copies of the game 
Trivial Pursuit. Sales boomed as Trivial Pursuit became one of the hottest products 
in the toy and game market. The boom was fed largely by word of mouth and so- 
cial exposure as people played it at the homes of their friends. After a few years, 
however, sales slumped. Much of the decline can be attributed to the familiar mar- 
ket saturation loop: the game was so successful the company depleted the pool of 
people who had not yet purchased a copy. But the fading novelty of the game was 
also a factor. The population of adopters is still large in the sense that many people 
still own a copy of Trivial Pursuit. However, most of these copies are in attics and 
closets. The population of active adopters, those who still play the game and gen- 
erate word of mouth contacts with others, is small. 

Discontinuation of use and the decay of word of mouth can easily be incorpo- 
rated in the innovation diffusion framework by disaggregating the adopter popula- 
tion into different categories, each representing different degrees of use and 
propensities to generate word of mouth. The simplest extension of the model is to 
divide the total adopter population into two categories, Active Adopters and For- 
mer Adopters. The discontinuation rate (the rate at which active adopters b-ecome 
former adopters) depends on the average duration of use for the innovation (the 
simplest assumption is that the discontinuation rate is a first-order process). Word 
of mouth and hence the adoption rate would be generated only by the population 
of active adopters. 

The revised model is analogous to the SIR epidemic model. Now only active 
adopters (analogous to the infectious population) generate word of mouth that 
might induce additional adoption. Former adopters are analogous to the population 
of recovered individuals. Having purchased the product but no longer actively us- 
ing it, the former adopters are no longer infectious to others and are also immune 
to reinfection-exposure to advertising or word of mouth from active adopters 
won't induce aging baby boomers to buy another leisure suit.14 

The key insight from the SIR epidemic model is the concept of the tipping 
point: exposure to infectious individuals will not produce an epidemic if people re- 
cover and develop immunity faster than they can infect others. Similarly, new in- 
novations might fail to take hold even if they generate positive word of mouth 
because active adopters discontinue usage faster than they persuade others to 
adopt. Though a distressingly large number of bizarre fashions and useless prod- 
ucts are embraced by eager consumers who mindlessly allow marketers to manip- 
ulate their tastes, many more fail to take hold. 

In the SIR model, the tipping point is defined by a reproduction rate of one. 
The reproduction rate is the number of new cases generated by each infective prior 

I4As in the extended SIR models developed in section 9.2, the population of adopters could be 
disaggregated further, for example, into cohorts of people who adopted the innovation 1,2, . . . , n 
time periods ago, to capture situations where the contact rate and adoption fraction decay gradually 
rather than in a first-order pattern (chapter 12). 
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to recovery and is defined by the product of the contact number (the number of in- 
fectious contacts generated by each infective prior to recovery) and the probability 
of contacting a susceptible individual (equation (9-26)). Using the terminology of 
the innovation diffusion framework, the reproduction rate is the product of the 
number of persuasive word of mouth contacts generated by each active adopter 
prior to discontinuation and the probability of encountering a potential adopter: 

(9-45) 

where c is the contact rate, i is the adoption fraction, d is the average duration of 
active use for the innovation, P is the population of potential adopters, and N is the 
total population. 

If the reproduction rate is greater than one, the positive word of mouth feed- 
back dominates the system and a fad is born. The fad ends when the pool of po- 
tential adopters falls enough to bring the reproduction rate below one. If the 
reproduction rate is less than one, the positive word of mouth loop is dominated by 
the negative feedbacks and there will be no epidemic of adoption. 

However, unlike the SIR model, adoption in the Bass innovation diffusion 
framework also arises from advertising and other external influences. In the sim- 
ple Bass model the effectiveness of advertising is a constant, implying that the ad- 
vertising budget is constant through time. Even when the system is below the 
tipping point, everyone will eventually adopt the innovation (though it may take a 
very long time). 

In the real world, advertising is expensive and does not persist indefinitely. 
The marketing plan for most new products includes a certain amount for a kickoff 
ad campaign and other initial marketing efforts. If the product is successful, further 
advertising can be supported out of the revenues the product generates. If, how- 
ever, the product does not take off, the marketing budget is soon exhausted and ex- 
ternal sources of adoption fall. Advertising is not exogenous, as in the Bass model, 
but is part of the feedback structure of the system. There is a tipping point for ideas 
and new products no less than for diseases. 

Modeling Fads 
A. Modify the Bass model (or your extensions of it developed in section 9.3.4) by 
disaggregating the adopter population into active adopters and former adopters. 
Assume word of mouth is only generated by active adopters. Calibrate your model 
to represent a fad. Assume the total population is 100 million households, that the 
average duration of active use is 1 year, and that 1% of the potential adopters will 
adopt as the result of advertising each year. Assume a contact rate of 100 per per- 
son per year. Run the model for three cases: a strong word of mouth case where the 
adoption fraction is 0.025, an intermediate case where the adoption fraction is 0.01, 
and a weak case where the adoption fraction is 0.001. Contrast the behavior of the 
model in the three cases. How does the inclusion of adoption from advertising 
cause the behavior of the model to differ from the pure SIR model? Can a firm 
compensate for weak word of mouth by a massive advertising campaign? 
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B. How do most organizations set their advertising budgets? Draw a causal dia- 
gram that captures your understanding of the way in which advertising is deter- 
mined. What feedback loops are created by the typical budgeting process? How 
might they affect the dynamics of adoption? How might such an advertising policy 
affect the nature of the tipping point for adoption of a new product? 
C. What other processes and information sources might contribute to the dynam- 
ics of a fad? Develop a causal diagram capturing your ideas. What additional feed- 
back loops are created? How might they affect the dynamics? Give examples. 

9.3.6 Replacement Purchases 
The Bass diffusion model is often described as a first-purchase model because it 
does not capture situations where the product is consumed, discarded, or upgraded, 
all of which lead to repeat purchases. 

One popular way to model repeat purchase behavior is to assume that adopters 
move back into the population of potential adopters when their first unit is dis- 
carded or consumed. The rate at which the product is discarded and therefore the 
rate at which people move from the adopter population to the pool of potential 
adopters depends on the number of adopters and the average life of the product 
(Figure 9-20). Modeling replacement demand in this fashion is analogous to the 
loss of immunity to a disease. Now, instead of falling to zero, the potential adopter 
population is constantly replenished as adopters discard the product and reenter the 
market (Figure 9-21). The adoption rate (sales rate for a product) rises, peaks, and 
falls to a rate that depends on the average life of the product and the parameters de- 
termining the adoption rate. Discards mean there is always some fraction of the 
population in the potential customer pool. By varying the product life and strength 
of the word of mouth feedback, the rate of diffusion, including the height of the 
sales peak and the depth of the bust when the market saturates, can be varied. The 
model shown in Figure 9-20 assumes a first-order discard process but can easily be 
modified to represent any distribution of discards around the average product life 
using higher-order delays (chapter 11). 

Because those discarding the product reenter the potential customer pool, they 
are treated exactly like first-time buyers and must go through another process of 
becoming aware of and being persuaded to buy the product through advertising or 
word of mouth. In some cases the lifetime of the product is so long and the attri- 
butes of the product change so much over this span that prior experience is largely 
irrelevant and repeat purchase decisions are reasonably similar to initial pur- 
chase decisions. But for most products, the customer has already made the decision 
to continue using the product and simply purchases a new one. In such cases the 
initial and repeat purchase decisions must be represented separately, as shown in 
Figure 9-22. Here the adoption process is separated from the flow of purchases. 
The total sales rate is the sum of initial purchases and repeat purchases. The repeat 
purchase rate is the product of the number of adopters and the average number of 
units purchased by each adopter per time period. Figure 9-23 shows typical model 
behavior. 
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Modeling the Life Cycle of Durable Products 
The model in Figure 9-22 does not explicitly represent the stock of product held by 
the adopter population. Repeat purchases are modeled as depending on the current 
adopter population. This formulation is appropriate for nondurable consumables 
such as food, where the lifetime of the product is very short relative to the diffu- 
sion process and the acquisition and consumption or discard of the product do not 
need to be represented separately. For durable products, however, it is usually im- 
portant to represent the stock of product and the discard rate explicitly. 

Modify the model shown in Figure 9-22 to represent the adoption and installed 
base of a consumer durable such as video cassette recorders (VCRs). You may use 
either the simple Bass formulation or the extended model you developed in section 
9.3.4 including the effect of price on the size of the market and the learning curve 
(when VCRs were introduced, the average price was about $2000/unit, but by the 
1990s the average price had fallen to $200/unit). 

The discard rate for durable products is often strongly age dependent and is not 
well approximated by a first-order process. To model the installed base of VCRs, 
create two stocks, New VCRs and Old VCRs. The stock of new VCRs is increased 
by the Purchase Rate. As VCRs age, they move into the stock of old VCRs. As- 
sume the average VCR remains new for 3 years and that the aging rate is a first- 
order process. Though some new VCRs do break down and are discarded, for 
simplicity assume the discard rate of new VCRs is zero. Assume the average life- 
time of old VCRs is 5 years, giving a total average life of 8 years. 

What determines the purchase rate? First, households that have adopted the 
VCR will seek to replace those that break down and are discarded (or discard a us- 
able unit to buy a new one with better features). Second, those households will buy 
more than the discard rate when the number of VCRs they collectively desire ex- 
ceeds the number they actually have (and will buy less than the discard rate should 
they find they have more than they desire). The purchase rate is then the sum of the 
discard rate and an adjustment for installed base. The adjustment for the installed 
base is most simply formulated as a simple first-order negative feedback process: 

(Desired VCRs - Total VCRs) 
Stock Adjustment Time Adjustment for Installed Base = (9-46) 

where the total number of VCRs is the sum of the new and old VCR stocks, and the 
Stock Adjustment Time represents the average time required for people to shop for 
and purchase a VCR. Define the desired stock of VCRs as depending on the num- 
ber of households that have adopted the VCR and the average number of VCRs de- 
sired per household. The challenge to extend the Bass model in section 9.3,4 
introduced the notion that the fraction of the population willing to adopt the prod- 
uct depends on its overall attractiveness, including price. The growth of markets 
for many important products involves both a process of adoption by an increasing 
fraction of the population and a gradual increase in the number of units owned by 
each household as real prices fall and as household income rises. When they were 
first introduced, households “made do” with just one car, phone, TV, and computer. 
As prices fell, quality rose, and the importance of these products in daily life grew, 
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the number per household grew. By explicitly representing the number of units de- 
sired per adopter the model can represent situations where adopters increase the 
number of units they desire as their income grows, as price declines, or as other at- 
tributes of product attractiveness improve. For now, assume the number of VCRs 
desired by each adopter household is one. 

Note that if the desired stock of VCRs increases above the actual stock (say 
because prices fall so more adopting households decide to buy a second VCR), the 
purchase rate will rise above the discard rate and the stock will increase until 
the gap is closed. Should the desired stock of VCRs fall, the purchase rate will fall 
below the discard rate and the stock of VCRs will gradually fall. 

Test the robustness of your formulation for the purchase rate. Implement an 
extreme conditions test in which the desired stock of VCRs suddenly falls to zero 
from an initial situation in which the desired and actual stocks are equal and large. 
Modify your formulation for the purchase rate to ensure that it behaves appropri- 
ately even if there are many more VCRs than desired. 

VCRs for the home market were introduced by Sony in 1975. By the early 
1990s approximately 80% of US households had at least one VCR. Select parame- 
ters for your model that are roughly consistent with these data. Use your judgment 
to estimate the other parameters such as the stock adjustment time. For simplicity, 
assume the total number of households in the US is 100 million and constant. Sim- 
ulate the model and discuss the results. In particular, what is the pattern of adop- 
tion? What is the pattern of sales? 

Since the introduction of the VCR the average duration of product life cycles 
for consumer electronics, computers, and many other products has shrunk. Life cy- 
cles of just a few years or even less are common. Simulate the model assuming the 
word of mouth feedback is three times as strong as the value you selected for the 
VCR case. How long does it now take for 80% of households to adopt the product? 
What are the implications for sales? Why? What difficulties do short product life 
cycles pose for firms? 

9.4 SUMMARY 
S-shaped growth arises through the nonlinear interaction of positive and negative 
feedback loops. Any growing quantity can be thought of as a population growing 
in an ecological niche with a certain carrying capacity. S-shaped growth arises 
when the carrying capacity is fixed and when there are no significant delays in the 
reaction of the population’s growth rate as the carrying capacity is approached. 

The structure underlying S-shaped growth applies to a wide range of growth 
processes, not only population growth. These include the adoption and diffusion of 
new ideas, the growth of demand for new products, the spread of information in a 
community, and the spread of diseases, including biological pathogens and com- 
puter viruses. 
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A number of analytically tractable models of S-shaped growth were intro- 
duced, including the logistic growth model, the SIR epidemic model, and the Bass 
diffusion model. Important extensions to the basic epidemic and innovation diffu- 
sion models were developed to illustrate how modelers can identify the restrictive 
assumptions of a model, both explicit and implicit, and reformulate the model to 
be more realistic. 

The logistic, epidemic, and innovation diffusion models can be fit to historical 
data, and the fit is often excellent. However, though nonlinear growth models such 
as the logistic and Bass models are widely used and often fit certain data sets quite 
well, you should not use these (or any) models as black boxes for forecasting. 

To create realistic and useful models of product diffusion and innovation adop- 
tion you must explicitly portray the feedback structure of adoption and growth, in- 
cluding the sources of attractiveness for the new idea or product, the competition, 
technical innovation, changing criteria of use, and other factors that influence 
adoption and growth. Many rich and insightful system dynamics models of inno- 
vation diffusion have been developed and are used successfully to anticipate 
growth and design policies for success (see, e.g., Homer (1987) for a model of 
emerging medical technologies and Urban, Hauser and Roberts (1990) for feed- 
back models for prelaunch forecasting of new automobile models). 

The historical fit of a model does not show that the model is “valid.” Many 
models, each with different assumptions about the feedback structure and each 
generating different dynamics, can fit any set of data equally well. Ground your 
models in careful investigation of the physical and institutional structures and de- 
cision-making processes of the actors in the system and don’t force-fit data into the 
assumptions of any preselected functional form or model. Models should not be 
used as exercises in curve fitting using the aggregate data. Only models that cap- 
ture the causal structure of the system will respond accurately as conditions change 
and policies are implemented. 
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Path Dependence and 
Positive Feedback 

FOP unto every one that hath shall be given, and he shall have abundance; but 
from him that hath not shall be taken away even that which he hath. 

-Matthew XXV: 29 

This chapter explores path dependence, a pattern of behavior in which small, ran- 
dom events early in the history of a system determine the ultimate end state, even 
when all end states are equally likely at the beginning. Path dependence arises in 
systems whose dynamics are dominated by positive feedback processes. The chap- 
ter explores the circumstances in which positive feedback can create path depen- 
dence, the role of random events early in the history of a path-dependent system, 
and the ways in which a path-dependent system can lock in to a particular equilib- 
rium. Feedback theories of path dependence and lock in are developed for a num- 
ber of important examples in business, technology, and economics. 

1 o.1 PATH DEPENDENCE 
Why do clocks go clockwise? Why do people in most nations drive on the right? 
Why is the diamond business in New York concentrated into the area around west 
47th Street? Why do nearly all typists learn the inefficient QWERTY keyboard lay- 
out? How did Microsoft’s Windows and Intel’s processors come to dominate the 
market for personal computers? Why are there so many winner-take-all markets- 

349 
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situations where success accrues to the successful, where the rich get richer and the 
poor get poorer? And what do these questions have to do with each other? All are 
examples of systems exhibiting path dependence. Path dependence is a pattern of 
behavior in which the ultimate equilibrium depends on the initial conditions and 
random shocks as the system evolves. In a path-dependent system, small, unpre- 
dictable events early in the history of the system can decisively determine its ulti- 
mate fate. 

The eventual end state of a path-dependent system depends on the starting 
point and on small, unpredictable perturbations early in its history. Even when all 
paths are initially equally attractive, the symmetry is broken by microscopic noise 
and external perturbations. Positive feedback processes then amplify these smaII 
initial differences until they reach macroscopic significance. Once a dominant de- 
sign or standard has emerged, the costs of switching become prohibitive, so the 
equilibrium is self-enforcing: the system has locked in. 

The exact gauge of a railroad is of little consequence (within broad limits). At 
the start of the rail age, no one gauge was a better choice than any other. Yet the 
standard gauge used in the US and most of the world is 1.44 meters (4 feet 8.5 
inches). How did this convergence arise? Early railroads, each unconnected to the 
others, utilized a wide range of different gauges (one early line used a 7 foot 
gauge!). Rolling stock was specific to each network and could not be used on lines 
with a different gauge. But as rail networks grew, compatibility became more and 
more important (when gauges differed, goods transshipped from one line to an- 
other had to be unloaded from one train and reloaded on another, greatly raising 
costs and slowing delivery). Railroads offering compatibility enjoyed a huge cost 
advantage since the same rolling stock could use any part of the network. Gradu- 
ally, the smaller railroads adopted the gauge used by the largest networks. The at- 
tractiveness of that gauge was then increased still further, forming a positive 
feedback. Smaller railroads using incompatible gauges lost business or converted 
their road and rolling stock to be compatible. Soon a single gauge-with the un- 
likely dimensions of 1.44 meters-emerged as the dominant standard. By the 
1860s, the costs of switching to another gauge (Abraham Lincoln is reported to 
have argued for 5 feet) were prohibitive: the system had locked in to the standard.' 

Similar positive feedbacks are responsible for other examples of path depen- 
dence: The more typewriters with the QWERTY keyboard were sold, the more 
people learned to type with that layout, and the more successful QWERTY ma- 
chines became, while makers of alternative keyboards lost business. As the market 
share of Wintel computers grew, more software was written for that platform and 
less developed for other platforms and operating systems. The more software 
available for a particular operating system, the greater the demand for computers 
compatible with that system, increasing Wintel market share still further. 

'Some claim that the standard gauge emerged because it was the width of jigs designed origi- 
nally for wagons, which in turn had those dimensions to fit the ruts on the roads, which in turn were 
determined by the ruts in Roman roads, which were set by the width of Roman chariots and wag- 
ons, which in turn were sized to accommodate the width of two Roman horses. If true, it illustrates 
the way in which positive feedback can cause a standard to persist long after the initial rationale for 
its selection has vanished. 
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What causes some systems to exhibit path dependence but not others? Path de- 
pendence arises in systems dominated by positive feedback. Figure 10- l illustrates 
the difference between a system dominated by negative feedback and a path-de- 
pendent system dominated by positive feedback. First, imagine a smooth-sided 
bowl. The lowest point of the bowl is an equilibrium-a marble placed there will 
remain there. The equilibrium is stable: pushing the marble off the equilibrium cre- 
ates a force opposing the displacement. A marble dropped anywhere in the bowl 
will eventually come to rest at the bottom (though it may roll around a while first). 
The equilibrium is not path dependent: the marble comes to rest at the same spot 
no matter where it is dropped and no matter its initial velocity (as long as it stays 
within the bowl-the equilibrium is only locally stable). A stable equilibrium is 
also called an attractor because all points are attracted to it. Technically, because 
the equilibrium is locally and not globally stable it is an attractor only for points 
within its basin of attraction. The basin of attraction is the bowl. Inside it, all 
points lead to the attractor at the bottom. Outside the bowl, the dynamics are dif- 
ferent. The Dead Sea and Great Salt Lake are examples: Rain falling anywhere 
over these watersheds ends up in their salty brine. Rain falling over other water- 
sheds flows to the sea. 

FIGURE I I  0-1 Path dependence arises in systems with locally unstable equilibria. 

L e k  A locally stable equilibrium. The system is governed by negative feedback: the greater 
the displacement of the ball from the equilibrium P*, the greater the force pushing it back toward the 
center and equilibrium. A ball placed anywhere in the bowl eventually comes to rest at the bottom; 
perturbations don’t affect the equilibrium reached. 
Right: A locally unstable equilibrium. The system is governed by positive feedback: the greater 
the displacement of the ball, the steeper the hill and the greater the force pulling it away from the 
equilibrium at P*. The slightest disturbance causes the ball to fall off the peak. The initial perturbation 
determines the path taken by the ball and perhaps the ultimate destination-the system is path 
dependent. 
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Now turn the bowl upside down. The top of the bowl is still an equilibrium- 
if the marble is balanced exactly at the top it will remain there. However, the equi- 
librium is now unstable. The slightest perturbation will cause the marble to move 
slightly downhill. As the slope increases, the downward force on the marble in- 
creases and it moves still further downhill, in a positive feedback. (An unstable 
equilibrium is also termed a repellor because nearby trajectories are forced away 
from it.) The system is path dependent because the direction taken by the ball de- 
pends on the initial perturbation: A small nudge to the left and the marble rolls to 
the left; an equally small shock to the right and it moves farther right. Of course, 
though the equilibrium at the top of the bowl is locally unstable, the system as a 
whole must be globally stable. The marble eventually comes to rest. But the path- 
dependent nature of the ball’s motion near the equilibrium point means it can come 
to rest anywhere on the floor, and the particular spot it reaches depends on that 
small, initial disturbance. 

Imagine rain falling near the continental divide of North America. Two rain- 
drops fall a few inches apart, one just to the east of the divide and one just to the 
west. The difference in landing spot might be due to small, unobservable differ- 
ences in the wind as the two drops fall from the clouds. Though they begin only 
inches apart, one ends up in the Pacific; the other, thousands of miles away in the 
Gulf of Mexico. Microscopic differences in initial conditions lead to macroscopic 
differences in outcomes. 

The inverted bowl illustrates another important feature of path-dependent sys- 
tems: lock in. When the ball is balanced at the top of the bowl, all equilibrium po- 
sitions are equally likely. You can influence where the marble comes to rest with 
the slightest effort: Blow gently to the left and the marble ends up on one side of 
the room; blow the other way and the marble rolls to the other side. Once the ball 
has started to move down the slope a bit, however, it takes a great deal more energy 
to push it back to the top and over the other way. The farther the ball has moved 
and the faster it is going, the harder it is to alter its course. 

At the dawn of the automobile age it didn’t matter which side of the road peo- 
ple drove on. But as traffic density increased, the importance of a consistent stan- 
dard grew. The more people drove on one side, the more likely it was new drivers 
in adjacent regions would drive on the same side, increasing the attractiveness of 
that side still further, in a positive loop. Most nations rapidly converged to one of 
the two standards, with Great Britain and her colonies, along with Japan and a few 
other nations, electing left-hand drive while most of the rest of the world con- 
verged to right-hand drive. Initially, the Swedes elected to drive on the left, as in 
Great Britain. As traffic and trade with the rest of Europe grew, and as the Swedish 
auto industry sought to increase sales in the larger right-hand drive market, it be- 
came increasingly inconvenient and costly for the Swedish system to be at odds 
with the prevailing standard in Europe and North America. Seeing that the Swedish 
road and auto system was rapidly locking in, the Swedes engineered a remarkable 
change. At 5 AM on September 3 ,  1967, the entire nation began to drive on the 
right. Sweden’s ability to effect the switch smoothly was partly due to massive 
prior education and a huge public works effort to change road signage. But the suc- 
cess of the switch also depended on the small size and low density of the popula- 
tion, both human and automobile. In 1967 the total population of Sweden was less 
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than 8 million, and there were only about 2 million cars, or 46 people and 12 cars 
per square mile. Most of the growth in Sweden's auto population and highway net- 
work lay ahead; the disruption and costs of the switch were small compared to the 
benefits. Imagine what it would cost today to switch from left- to right-hand drive 
in Japan. Though Japan is only about 80% as large as Sweden, in the mid 1990s it 
was home to about 126 million people and 40 million cars, more than 870 people 
and 275 cars per square mile. The disruption and cost would far outweigh any 
benefits. Japan has long since locked in to left-hand drive. 

Path-dependent systems are more common than many of us imagine. The 
choice of standards such as the shape of electrical plugs, the location of the prime 
meridian, and the length of the standard meter in Paris are all arbitrary, but once a 
given choice becomes accepted, the system locks in to that choice, even though 
other alternatives were just as attractive early on. Path dependence and lock in are 
not restricted to economic, technical, or human systems. Complex organic mole- 
cules such as amino acids and the sugars in DNA can exist in two different forms, 
identical except each is the mirror image of the other. These enantiomers are 
known as the L (levo, or left-handed) and D (dextro, or right-handed) forms. The 
chirality (handedness) of the enantiomers does not matter in isolation-the physi- 
cal properties of L and D molecules are the same. Yet the proteins in essentially all 
life on earth have levo chirality. Positive feedback and lock-in are responsible. Just 
as you cannot put a right handed glove on your left hand, the different three-di- 
mensional structures of the two types mean the D-amino acids are physically in- 
compatible with proteins built of the left-handed form. Most chemical reactions 
tend to produce different enantiomers in equal proportions, leading many scientists 
to conjecture that both left and right amino and nucleic acids were equally com- 
mon in the primordial soup of the early oceans. By chance, the proteins that be- 
came the basis for life on earth were formed from left-handed amino acids. As new 
organisms evolved from their left-handed ancestors, the web of left-handed life 
grew in magnitude and complexity, while any right-handed forms became extinct. 
Life on earth has remained locked in to the left-handed forms ever since.2 

'RNA and DNA are also chiral (one form twists left, one, right). But only the right-handed 
forms are stereoscopically compatible with the L-amino acids, so essentially all natural terrestrial 
nucleic acids have the same right-twisting chirality. Some physicists conjecture that the initial push 
favoring the left-handed amino acids derived from parity violations of the weak nuclear force, in 
which certain radioactive decay reactions favor one chiral form. However, a mechanism for prefer- 
ential selection of the L-form by the weak force or other physical processes such as polarized light 
has not yet been demonstrated. 



354 Part I11 The Dynamics of Growth 

10.2 A SIMPLE MODEL OF PATH DEPENDENCE: 
THE POLYA PROCESS 

You can easily construct a simple and compelling example of path dependence. 
Imagine a jar filled with small stones. There are black stones and white stones. 
Stones are added to the jar one at a time. The color of the stone added each period 
is determined by chance. The probability of selecting a black stone is equal to the 
proportion of black stones already in the jar. It is this last assumption that gives the 
system its unique character and creates path dependence. Suppose the jar initially 
contains one black and one white stone. The probability the next stone you choose 
will be black is then 1/2. Suppose it turns out to be black. Now there are two black 
and one white stones in the jar. The probability of picking black on the next draw 
is now 2/3. Suppose it is black. Now 3/4 of the stones are black. The preponder- 
ance of black stones means it is more likely than not that still more black stones 
will be added, and the jar is likely to end up with more black than white stones. But 
suppose on the first draw a white stone had been chosen. The likelihood of draw- 
ing a black stone on the second round would then have been 1/3 instead of 2/3. The 
jar is then likely to end up with more white than black stones. The trajectory of the 
system, and the ultimate mix of stones in the jar, depends on its history, on the par- 
ticular sequence of random events. Figure 10-2 shows a causal diagram of this sys- 
tem, known as a Polya process after its inventor, the mathematician George Polya 

The Polya system contains two feedback loops, one positive and one negative, 
for each type of stone.3 The greater the number of black stones, the greater the 
chance of adding another black stone (a positive loop). At the same time, the 
greater the number of black stones, the greater the total number of stones and so 
the smaller the impact of any new black stone added to the jar on the proportion of 
black stones (a negative loop). 

Figure 10-3 shows 10 simulations of the Polya process. Each is 200 periods 
long. At first, each stone added to the jar has a large influence on the probability of 
choosing the next stone (the first stone added determines whether the probability 
of choosing a black stone is 2/3 or U3).  The positive loop dominates. But as the 
number of stones grows, each new stone has a smaller and smaller effect on the 
proportions. The positive loop weakens relative to the negative loop. Eventually, 
the number of stones is so large that the next stone added has a negligible effect on 
the proportion of each color in the jar. The positive and negative loops are exactly 
balanced at that point. The proportion of each color will then stabilize, since on 
average stones will be added in the future in the same proportion as those already 
in the jar. 

The ratio of black to white stones eventually reaches equilibrium, but that ratio 
depends on the history of the colors selected. Small random events early in the 

(1887-1985). 

3The process can easily be generalized to any number of colors. The probability the next stone 
added is any color Ci then equals the proportion of that color in the jar, CiEjCj (only one color is 
added per period). 
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FIGURE 10-2 The Polya process 

Every period one stone is added to the total. The probability of choosing a stone of a given color 
equals the proportion of that color in the total population. 
The rule lor adding stones of a given color is 

1 if Random Draw < Proportion of Black Stones 
0 otherwise Black !stones Added per Period = 

1 if (1 - Random Draw) < Proportion of White Stones 
\Nhite Stones Added per Period = 

where the Random Draw is a number drawn at random from a uniform distribution on the interval [0,1]. 
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history of the system tip it toward one path rather than another. The equilibrium 
is path dependent. The accumulation of stones eventually locks the system in to 
equilibrium at a particular proportion of each color. To reverse the proportion of 
black stones from 2: 1 to 1:2 when there are three stones in the jar requires drawing 
three white stones in a row, an event with a probability of 10% [P(Three White 
Stones12 Black, 1 White) = (1/3)(2/4)(3/5)]. But to move from a ratio of 2:l to 1:2 
when there are 200 black and 100 white stones requires drawing 300 white stones 
in a row, an event with a vanishingly small probability (8.3 X to be precise). 
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FIGURE 10-4 
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The more stones, the less likely there will be any movement away from the current 
proportion: the system locks in to whatever balance emerges from its early history. 

Polya proved that the process will always converge to a fixed proportion of 
black stones, and that the particular proportion depends on the history of the 
random events along the way. Polya also proved the remarkable result that the dis- 
tribution of final proportions is uniform, that is, the final fraction of black stones is 
equally likely to be anywhere between 0 and 1.4 Figure 10-4 shows the distribution 
of the proportion of black stones after 500 periods in a set of 10,000 simulations. 
The distribution is nearly uniform: All proportions of black stones are equally 
likely in the long run (see Arthur 1994 for further examples). 

4The distribution is uniform only for the special case where the number of stones added per 
period is one and the jar initially contains one white and one black stone. Other initial conditions 
or rules for selecting the number and type of the stones added lead to different equilibrium distri- 
butions. Johnson and Kotz (1977) provide a comprehensive treatment of urn models of this type. 
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FIGiURE 10-5 
Phase plot 
for the linear 
Polya process 
The line shows 
the probability o'f 
adding a black 
stone as a func1:ion 
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10.2.1 Generalizing the Model: 
Nonlinear Polya Processes 

The Polya process illustrates how path dependence comes about, but it is a very 
special model with a number of restrictive and unrealistic assumptions. First, the 
dynamics depend on the fact that the flows are quantized: Though stones are added 
with probabilities in proportion to their prevalence in the jar, each stone is either all 
black or all white. Each period the proportion of each color must change. Instead 
of a jar of stones, imagine filling the jar with black and white paint mixed in pro- 
portion to the current shade of gray in the jar. The shade of gray would never 
change, no matter what it was initially (you can approximate the continuous time, 
continuous flow situation in the model shown in Figure 10-2 by allowing fractional 
stones to be added per period or reducing the time step between periods). Second, 
the probability of adding a particular color is linear in the proportion of that color 
(Figure 10-5). The function defining the probability of adding a ball of a given 
color lies exactly on the 45" line, so every point on the line is an equilibrium. In 
general, however, the decision rules determining the flows in path-dependent sys- 
tems are nonlinear functions of the state variables. 

If the probability of adding a stone of a given color is a nonlinear function of 
the proportion with that color, the number, location and stability of equilibria, and 
the dynamics all change. 

Suppose the probability of choosing a black stone is characterized by the non- 
linear function in Figure 10-6. The system now has only three equilibria (points 
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FIGURE 10-6 
Nonlinear Polya 
process 
The probability of 
choosing a black 
stone is now a 
nonlinear function 
of the proportion 
of black stones 
in the jar. The 
system has three 
equilibria. 
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where the proportion of black stones and the probability of adding a black stone 
are equal): 0, 0.50, and 1. The points zero and 100% are equilibria: If the jar is all 
black or all white, it will remain so. Likewise, when the proportion of black stones 
is one-half, the probability of choosing a black stone is one-half, so (on average) 
the proportion of stones remains constant. When the proportion of black stones 
rises above half, however, the probability of choosing black increases more than 
proportionately, and when it is less than one-half, it falls more than proportionately. 
The equilibrium at 0.50 is unstable: If the first stone added is black, the probabil- 
ity of adding more black stones increases dramatically, moving the system (on av- 
erage) toward the stable equilibrium at 100% black stones. Similarly, if the first 
stone is white, the probability of drawing more white stones increases sharply, and 
the system will tend toward the stable equilibrium of all white stones. Of course, 
since the system is stochastic, sometimes a run of one color will move the state of 
the system back across the ratio 1 : 1. 

Figure 10-7 shows 10 realizations of the nonlinear Polya process shown in Fig- 
ure 10-6. All trajectories move rapidly away from the initial ratio of 1: 1, and after 
200 periods, the jar is nearly all one color or the other. Where the linear Polya 
process has an infinite number of equilibria, this nonlinear process has only three; 
of these, only two are stable. Yet the system is still strongly path dependent: which 
of the two stable equilibria dominates depends entirely on the history of the ran- 
dom events as the system evolves. Like the linear process, the system locks in to 
whichever equilibrium the positive loop reinforces, as determined by the chance 
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FIGURE 10-7 
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events early on. Note the trajectory in Figure 10-7 (shown as a bold line) where the 
jar is mostly white in the beginning, but due to a run of black stones, the ratio re- 
verses after about 30 periods. The positive feedbacks then favor black stones, and 
the jar soon locks in to the predominantly black equilibrium. 

Lock in is much swifter and stronger in the nonlinear system. In the linear 
case, the system has neutral stability: Every point is an equilibrium, and none of 
the points is better than any other. In the nonlinear example here, the two stable 
equilibria are strong attractors. The positive feedback continues to dominate the 
dynamics even as the proportion of a given color increases. Like the two rain drops 
falling on either side of the continental divide, trajectories on either side of the 
50% point are attracted on average toward one of the stable equilibrium points. 
The jar ends up nearly all one color-winner take all. 

PATH DEPENDENCE IN THE ECONOMY: VHS VERSUS BETAMAX 
Videocassette recorders (VCRs) are ubiquitous in homes, businesses, and  school^.^ 
You can buy or rent videos at nearly every mall and main street. The film industry 
earns significant revenue from sales of video rights, and many films are made 
directly for the home video market, never enjoying theatrical release. Much of this 
success depends on the common format used by the vast majority of VCRs, known 
as VHS, which ensures machines made by different companies are compatible 
with one another and with the tapes available in the market.6 How did VHS 
become the standard? 

5The VCR industry data and history presented here are based in part on data collected and a 
model developed by Ed Anderson (personal communication, 1996). I’m grateful to Ed for permis- 
sion to use his data and materials. 

6While VHS is now the standard for 112 inch VCRs around the world, different regions do 
use incompatible signal formats. North America uses the NTSC format while Europe uses the 
PAL format. 
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VHS was actually a latecomer to the home videorecorder market. Home video 
recording technology came of age in 1975 when Sony introduced the Betamax sys- 
tem. Offering ordinary people the chance to record television broadcasts and play 
movies in the comfort of their own homes, VCRs soon became the hot home elec- 
tronics product of the late 1970s and early 80s (Figure 10-8). As is common in con- 
sumer electronics, larger production volumes, learning effects, and increasing 
competition led to huge price drops for VCRs even as their features and function- 
ality increased. Demand soared. By 1994, about 85% of US households owned at 
least one VCR, and sales had reached 13 million units per year in the US alone. 
VCR adoption in Europe and the rest of the world followed similar dynamics. 

When VCRs first became available, a prime use was “time shifting”-the 
recording of broadcasts to be played back at a more convenient time. Time shifting 
also made it possible to fast-forward through commercials. Within a few years, 
however, the principal use of VCRs became the playing of prerecorded tapes- 
films, music videos, exercise tapes, and so on. Sales of prerecorded tapes in the US 
exploded to more than 80 million per year by 1994, and the video rental industry 
took off (Figure 10-8). 

The data for the aggregate VCR market conceal the fight for dominance 
among different VCR formats. Sony’s proprietary Betamax technology was the 
first cassette-based home video technology to reach the market, some 18 months 
ahead of its principal rival, the VHS standard launched by a consortium of Mat- 
sushita, JVC, and RCA (Cusumano, Mylonadis, and Rosenbloom 1992). Though 
Betamax and VHS technologies cost about the same, the tapes and machines were 
not compatible. Consumers had to choose which standard to adopt. The attractive- 
ness of each format depends on various factors, including price, picture quality, 
play time, and machine features such as programmability, ease of use, size, and re- 
mote control, among others. 

The most important determinant of product attractiveness is compatibility. To 
swap tapes with their friends and families people had to have compatible ma- 
chines. As the installed base of machines of a given format increased, the attrac- 
tiveness of that format to potential new buyers increased, which in turn increased 
the market share of that format and boosted the installed base even further. Even 
more importantly, people tended to buy machines compatible with the broadest se- 
lection of prerecorded tapes. Video rental shops chose to stock tapes in the most 
common format since these would rent more often and yield more profit. Movie 
studios, in turn, chose to offer their films in the format compatible with the most 
popular technology and the orders placed by the video stores. 

These positive feedbacks mean that the format with the largest installed base 
of machines, all else equal, will be the most attractive to consumers and content 
providers. Unchecked by other loops or outside events, these positive feedbacks 
confer greater and greater market share advantage to the leader, until one format 
completely dominates the market and the other disappears. As shown in Figure 
10-9, this is precisely what happened. By the late 1970s VHS had gained a mar- 
ket share advantage over Betamax. Soon the majority of prerecorded tapes were 
also coming out in the VHS format. VHS market share and sales continued to 
grow while the Betamax share steadily shrank. By 1988 the triumph of VHS was 
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FIGURE 10-8 
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complete. Sony was forced to abandon Betamax technology for the home market 
and in 1988 announced that it was switching its product line to the VHS format. 

The strong effect of compatibility on product attractiveness explains how VHS 
rapidly achieved dominance over Betamax-once it achieved a lead in market 
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FIGURE 10-9 
Betamax vs. 
VHS formats 
in the home 
VCR market 
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share and in the share of the installed base. But the existence of strong positive net- 
work and compatibility effects does not explain how VHS first achieved that lead. 
A close look at the data in Figure 10-9 shows that from its introduction through 
1980, a period of 5 years, Betamax was the market share leader. As the first prod- 
uct to market, Betamax should have been able to use the positive network and 
compatibility feedbacks, along with learning curves, scale economies, and other 
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positive feedbacks favoring the early leader, to gain a commanding advantage and 
prevent later entrants from succeeding. What happened? 

In the Polya model of path dependence, random events early in the history of 
a system can tip the system toward one outcome. As seen in Figure 10-7, these ran- 
dom events can sometimes reverse the ratio of colored stones in the jar. Perhaps 
Beta’s failure was just bad luck; perhaps chance led to a run of events favoring 
VHS, destroying Sony’s early lead. Such an explanation is unsatisfying. Unlike the 
random selection of stones in the Polya process, electronics makers did not flip 
coins to determine which type of VCR to make and customers did not spin a wheel 
of fortune to decide which format to buy. The random shocks in a path-dependent 
system stand for events outside the boundary of the model-that is, those events 
for which we have no causal theory. A goal of modeling is to expand the boundary 
of our models so that more and more of the unexplained variation in the behavior 
of a system is resolved into the theory. 

There are many theories to explain how Betamax lost its early lead. Klopfen- 
stein (1989) notes that VHS offered longer play and record time (originally the 
VHS playtime was 2 hours to 1 hour for Betamax; by 1988 the ratio was 8 hours 
for VHS to 5.5 hours for Betamax). Longer play time, Klopfenstein argues, gave 
VHS the early edge. In contrast, Arthur (1994) argues that Betamax had a sharper 
picture than VHS and was actually the superior technology. 

An early VHS price advantage is another theory but data supporting it are 
weak. Price data are hard to get, but suggest that while VHS machines were about 
7% cheaper than Betamax machines in 1978, they were actually more expensive 
than Beta machines the following 3 years. Price does not seem to be a decisive fac- 
tor in explaining how VHS overtook Betamax. 

Cusumano, Mylonadis, and Rosenbloom (1992) point to the different business 
strategies employed by Sony and Matsushita. Sony, seeking to profit from their 
proprietary technology, was reluctant to license Betamax to other firms. In con- 
trast, JVC and its parent Matsushita aggressively sought partners among other 
manufacturers, set lower licensing fees than Sony, and even delayed the introduc- 
tion of VHS until they and their allies could agree on common technical standards. 
Matsushita also built VCRs sold under the label of other firms, speeding produc- 
tion ramp up. Matsushita thus gained access to the distribution channels of these 
firms, and also gained larger production volume than if they had kept their tech- 
nology proprietary. Consequently, Matsushita enjoyed greater scale economies in 
distribution and production and gained experience that moved it down the learning 
curve more rapidly. 

The development of the prerecorded tape industry played a key role. Prior to 
1977, the majority of prerecorded tapes were aimed at the adult entertainment sec- 
tor (similar to the early days of the worldwide web). RCA, Matsushita’s largest 
customer in the US, sought to jump-start the market for general audience videos 
and thus VCR sales by offering two free VHS tapes with each VCR it sold. RCA 
also encouraged firms such as Magnetic Video to invest in VHS equipment to sup- 
ply prerecorded tapes for the US market. Large scale production of prerecorded 
Betamax tapes lagged behind by about a year (Cusumano, Mylonadis, and Rosen- 
bloom 1992). Note from Figure 10-9 that the VHS share of prerecorded tape pro- 
duction actually exceeds VHS’s share of the installed base until 1983, which 
further increased the attractiveness of VHS to video rental stores and customers. 
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10.4 

Formulating a Dynamic Hypothesis for 
the VCR Industry 

1. 

2. 

3 .  

4. 

5. 

Using the information above (and any additional sources you wish) develop 
a causal loop diagram to explain the dominance of VHS in the home VCR 
market. Your diagram should be simple but should capture the important 
feedbacks described above, both positive and negative. 
Use your diagram to explain why the market converged to a single format, 
and why VHS won the format battle. 
How might Sony have altered its strategy to prevent VHS from becoming 
dominant? 
Sony’s Betamax format lost to VHS in the 1/2 inch home VCR market but 
remains the market leader in the market for professional quality 3/4 inch 
equipment used by television and news organizations. How do the feedback 
structure and strength of the various loops differ in the professional market 
compared to the home market? What impact do these differences have on 
effective strategy? 
Since VHS became the dominant standard, other tape formats and video 
technologies have been introduced for the home market, especially 
inexpensive camcorders. A variety of camcorder tape and cassette formats 
coexist, including 8 mm, super or hi 8 mm, Panasonic’s cassette technology, 
and others. None of these has become dominant. How do the uses of 
camcorders and the determinants of camcorder attractiveness differ 
compared to the home VCR market? How do these differences affect the 
strength of the feedback loops in your model? What is the likely impact of 
these differences on the dynamics and on strategies for success in the 
camcorder market? 

POSITIVE FEEDBACK: THE ENGINE OF CORPORATE GROWTH 
The network and complementary goods effects that dominated the evolution of the 
VCR market are but two of many positive feedbacks that can drive the growth of a 
business. This section surveys some of the important positive feedbacks that can 
cause a firm to grow. Since path dependence arises when positive feedbacks dom- 
inate a system, the prevalence of positive loops in corporate growth means that the 
potential for path dependence in the evolution of corporations, industries, and the 
economy as a whole is great. 

The diagrams below present the loops in a highly simplified format, focusing 
on the sales of a single firm in an industry. The diagrams do not explicitly show the 
competitors, but all firms in a particular market are linked through competition for 
market share and through materials and labor markets, financial markets, distribu- 
tion networks, the media, and the social fabric in general. The diagrams also omit 
the many negative feedbacks that can halt the growth of the firm. 
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10.4.1 Product Awareness 
How do potential customers become aware of a firm’s products? There are four 
principal channels: advertising, direct sales effort, word of mouth, and media 
attention. Each of these channels creates positive feedbacks (Figures 10- 10 and 

In most firms the advertising budget (supporting ads, trade shows, and the like) 
grows roughly as the company and revenue grow. Larger advertising budgets have 
two effects: (1) more potential customers are made aware of the product and 
choose to enter the market (loop Rl); (2) to the extent the advertising is effective, 
more of those who are aware and in the market are likely to buy the product of- 
fered by the company (R2). Similarly, the larger the revenue of the firm, the greater 
the sales budget. The more sales representatives, and the greater their skill and ex- 
perience, the more calls they can make, the more time they can spend with cus- 
tomers, and the more effective their calls will be, increasing both total industry 
demand (R3) and the share of the total demand won by the firm (R4). 

While a firm controls its advertising and sales budgets, word of mouth and me- 
dia attention are largely outside the firm’s direct control (Figure 10- 11). As sales 
boost the installed base and the number of customers who have experience with the 
product, favorable word of mouth increases awareness, increasing total demand 
(R5) and also persuading more people to purchase the products of the firm (R6). 
A hot product or company will also attract media attention, which, if favorable, 
stimulates additional awareness and boosts market share still more (R7-9). There 
are many processes by which a firm or product can become hot (popular) and 
attract unsolicited media attention. Strongly favorable word of mouth can stimu- 
late media coverage, especially for highly innovative new products and products 

10-11). 

FIGURE 10-1 0 Advertising and direct sales effort drive awareness of the product. 
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FIGURE 10-11 How word of mouth and media reports create a hot product 
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that show well on television. Rapid growth of sales, revenue, profit, or stock price 
can also attract media attention and turn the product into a social phenomenon. 
Amazon.com provides a prominent example from the late 1990s. 

Product shortages-and the price gouging, profiteering, and near riots they can 
create-also attract media attention. Shortages are especially important in creating 
the impression a product is hot for consumer goods such as toys (recent examples 
include Beanie Babies and Furbies). Footage of frenzied shoppers trampling each 
other to get the last Tickle Me Elmo the week before Christmas can multiply the 
crowds at the mall exponentially. 

The strength of these loops depends of course on the attractiveness of the prod- 
uct; an excellent product offered at a good price will be easier to sell and will 
generate more favorable word of mouth than an overpriced, poor quality product. 
Which of these channels of awareness dominates depends on the particular prod- 
uct and market, and not all firms utilize all three channels. Fast food chains do not 
have a direct sales force and rely instead on advertising (and word of mouth); 
specialty toolmakers focus their resources on direct sales effort and advertise 
much less. 

The time delays and stock and flow structure of these four channels of aware- 
ness also differ. The delays in starting and stopping advertising campaigns are 
short relative to building a competent and skilled sales force. Word of mouth is 
weak when a new product is first launched but can grow rapidly and dominate the 
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FIGURE 10-1 2 Spreading fixed costs over a larger volume lowers price and leads to larger volumes. 
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sources of information available to the market as the installed base grows. The me- 
dia spotlight tends to burn very bright for a short while, then fades as the attention 
of editors and audience moves on to the next object of desire. 

Further, while the strength of the advertising and direct sales loops are under 
the direct control of the firm, the word of mouth and media loops are not. Word of 
mouth (favorable and unfavorable) is difficult for a firm to control, though firms 
can stimulate communication among current and potential customers by sponsor- 
ing users’ groups and conferences and by hiring opinion leaders as spokespeople. 
Similarly, though many firms today are highly skilled in media relations, there is 
no sure-fire way to get your product featured on a network magazine show or a list 
of hot web sites. 

10.4.2 Unit Development Costs 
Many products and services involve considerable up-front development and ca- 
pacity acquisition costs. The greater the expected lifetime sales of the product, the 
lower the fixed price per unit, and the lower price can be while still achieving the 
required return on investment (Figure 10-12). Lower prices stimulate industry de- 
mand (RlO) and lead to a greater share of that total (R1 l), boosting sales and cut- 
ting fixed costs per unit still more. 

The larger the up-front costs of product development and production capacity, 
the stronger these loops will be. In a labor- and materials-intensive industry such 
as subsistence agriculture, fixed costs are small. In technology- and knowledge-in- 
tensive industries involving significant product development effort, nearly all the 
costs are incurred prior to production of the first unit. Developing a new automo- 
bile or commercial aircraft costs several billion dollars; all the design and devel- 
opment costs and all the costs for capacity, tooling, training, and marketing must 
be borne before job one rolls off the line. There’s a saying in the semiconductor 
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industry that it costs a few billion to make the first chip, but then all the rest are 
free. Software development is the paradigm case: As the internet expands, the mar- 
ginal cost of distribution is rapidly approaching zero, while up-front development 
costs are rising. 

The industries powering the world economy are increasingly knowledge 
based, and up-front costs capture a growing share of the total costs of production. 
In a world dominated by these positive loops, traditional rules of thumb for pricing 
no longer apply. Note how fixed cost per unit depends on expected volume. When 
these loops dominate the dynamics, expectations about how large lifetime volume 
will be can be strongly self-fulfilling. Imagine two firms with identical costs 
launching identical products at the same time. One expects to win about half the 
market and estimates market potential conservatively, believing it can lower prices 
as volume expands. The other expects to win the dominant share of the market and 
believes lower prices will greatly expand total demand for the category. The ag- 
gressive firm therefore sets prices much lower than the conservative firm and 
might even initially sell at a loss. The aggressive firm wins the largest share of the 
market, which allows it to lower prices still further, while the conservative firm 
finds sales of its product are disappointing. The expectations of both firms are ful- 
filled and their mental models are reinforced: The aggressive firm learns that pric- 
ing low, even below current unit costs, can lead to market dominance and huge 
profits, while managers at the conservative firm learn to be even more cautious 
about projecting sales; a classic example of a self-fulfilling prophecy (Merton 
1948/1968). 

Though not shown in the diagram, expectations of lifetime volume can depend 
not only on current sales, but also on forecasts of potential industry demand, mar- 
ket research, and knowledge about the development of complementary goods. 
Many of these other possible inputs to a firm’s belief about market potential also 
close positive loops. Software sales forecasts rise as technical progress in computer 
hardware leads to faster and cheaper computers; lower software prices, in turn, 
stimulate the demand for hardware that helps make that belief a reality. 

10.4.3 Price and Production Cost 
Spreading up-front development costs over a larger volume is not the only way to 
lower unit costs. Figure 10-13 shows the positive loops created by economies of 
scale in production, economies of scope, learning curves, and process innovation. 

Economies of scale differ from the development cost loops discussed above. In 
many industries, unit costs fall as the scale of production rises (at least up to a 
point). Larger paper mills, oil refineries, and thermal power plants are often more 
efficient than smaller ones. There are both thermodynamic and organizational rea- 
sons. Larger boilers (e.g., in a coal-fired power plant) have a larger ratio of volume 
to surface area and therefore higher thermal efficiency. In addition, every paper 
mill, oil refinery, and power plant requires instrumentation, safety systems, logis- 
tics capacity to handle incoming and outgoing materials, and other facilities; sim- 
ilarly every business must have a certain minimal amount of administrative staff 
and overhead. The cost of these activities usually does not rise as quickly as pro- 
duction volume, so firms can lower prices as they grow, which creates opportuni- 
ties to increase the scale of operations further (R12). The opportunity to realize 
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FIGURE 10-1 3 Scale and scope economies, learning curves, and process improvement 

Each effect creates two positive loops: One increases sales through market share gains, and one 
increases sales through expansion of the total size of the market. 

Investment in 
Process 

Improvement 

Operations Product Line 

Economies 

Process 
Improvement Attractiveness 

+ 

such economies of scale by consolidating general, administrative, and overhead 
functions is a powerful driver of mergers and acquisitions (see section 10.4.8). An- 
other powerful source of scale economies arises from division of labor. Larger or- 
ganizations can afford to divide the work into increasingly specialized tasks. It has 
long been observed (at least since Adam Smith’s famous discussion of a pin fac- 
tory in The Wealth of Nations) that division of labor boosts individual productivity 
and leads to lower unit costs (see section 10.5). 

Economies of scope (R13) arise when a firm is able to share capacity, labor, 
technical know-how, and other resources across multiple product lines and busi- 
ness units. Cable television companies can offer high-speed internet access using 
the same cable network with low incremental capital costs. Shopping malls and so- 
called category killers in office supplies, toys, hardware, and other retail markets 
reduced unit costs dramatically by offering a huge range of products under one 
very large roof. These “big box” retailers also reduced search costs for their 
customers by providing one-stop shopping just off the freeway, which boosted 
product attractiveness and market share at the expense of the smaller stores on 
Main Street.7 

Learning curves also create positive loops favoring the leading firm. Learning 
(or experience) curves have been documented in a wide range of industries, from 
commercial aircraft to broiler chickens (Teplitz 1991). The learning curve arises as 
workers and firms learn from experience. As experience grows, workers find ways 
to work faster and reduce errors. Typically, the unit costs of production fall by a 

7The costs of malls, in terms of traffic congestion, decay of the central business district, and so 
on are all externalized, lowering their apparent costs below their true costs to the community. 
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fixed percentage every time cumulative production experience doubles.8 For ex- 
ample, costs might fall 30% with each doubling of cumulative output. Learning 
curves with 10-30% improvement per doubling of experience are typical in many 
industries. Lower unit costs enable lower prices, increasing both market share and 
industry demand (R14) and boosting sales still more. 

Finally, the larger the firm, the greater its investment in research and develop- 
ment leading to process innovations that lower costs (R15). Such research can in- 
clude the development of more highly automated tooling, more reliable machines, 
and more efficient plant layout. It can also include training in process improvement 
techniques such as total quality management which enhance the ability of workers 
to detect and correct the sources of defects, thus boosting productivity and lower- 
ing costs. 

The delays and stock and flow structure of scale and scope economies differ 
from learning curves and process improvement. Scale and scope economies de- 
pend on the current volume of sales and breadth of the firm’s activities. An acqui- 
sition, for example, can quickly boost scale and scope. Similarly, if the firm 
shrinks, its scale and scope economies are quickly lost and the positive feedbacks 
reverse, speeding the decline in the firm’s attractiveness. Learning by doing, R&D, 
and the results of process improvement are embedded in the organization’s capital 
stock, worker knowledge, and routines. They are slower to develop. And if sales 
turn down, cumulative experience and process productivity tend to persist, decay- 
ing much more slowly (though to be sure, know-how and experience are often lost, 
depending on how the firm downsizes). 

10.4.4 Network Effects and Complementary Goods 
As illustrated by the VCR industry, the utility of a product often depends on how 
many others are also using it (the network effect; R16 in Figure 10-14) and on 
the availability of compatible products to use with it (the complementary good 
effect; R17). 

Compatibility and network effects boost product attractiveness and thus ex- 
pand the total size of the market Gust as the growth of the internet made computer 
ownership more attractive, leading more people to use the internet). These loops 
tend to favor the market share leader within an industry, assuming competing prod- 
ucts are incompatible. Besides VCRs, the classic example of these loops in the 
1980s and 90s was the battle for control of personal computer operating systems, 
particularly the eclipse of the technically superior Macintosh architecture by the 
Wintel platform. 

Just as in the case of fixed costs (section 10.4.2), the decision by third parties 
to produce complementary goods for a particular product depends on their expec- 
tation of the market potential, and hence the expected profitability, of that platform. 
Firms can shape those expectations in a variety of ways, including early sharing of 
technical specifications with potential third party developers and subsidies for 
adoption of the platform. Other strategies include consortia and joint ventures with 

8Sometimes the learning curve is formulated as depending on cumulative investment rather than 
cumulative production, as in Arrow (1962). 
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FIGURE 10-1 4 Network and compatibility effects 

Each effect creates two positive loops: one increases sales through market share gains, and one 
increases sales through expansion of the total size of the market. 
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third parties (e.g . , the formation by Matsushita of the VHS consortium), horizontal 
and vertical expansion into the markets for complementary products (e&, Sony’s 
purchase of film studios to control content and media for their hardware products, 
or IBM’s purchase of Lotus), and free distribution of complementary goods (e&, 
Netscape’s decision to give away its web browser to stimulate sales of its server 
software, a strategy soon imitated by Microsoft). In the software industry, some 
firms strategically time the announcement of new products to preempt their rivals 
and influence third party developers, sometimes even announcing the near avail- 
ability of vaporware (products that don’t yet exist even in prototype form). When 
the network and complementary goods loops are strong, expectations about which 
platform will ultimately triumph can be strongly self-fulfilling. 

10.4.5 Product Differentiation 
Another set of positive feedbacks arises from the ability of firms to invest in prod- 
uct differentiation (Figure 10-15). As firms grow, they can invest more in activities 
that improve the attractiveness of their products to customers. Most products can 
be differentiated from those of competitors through enhanced features, function- 
ality, design, quality, reliability, and suitability to the current and latent needs of 
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FIGURE 10-15 Product differentiation 
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customers. Firms can also invest in superior service and customer support infra- 
structure. To the extent these investments increase the attractiveness of the prod- 
ucts in the eyes of customers the firm can gain market share, boosting revenue and 
enabling still more investment in differentiation (R18). More capable and useful 
products also increase total demand (R19). Finally, companies offering clearly su- 
perior products can often charge a price premium without choking off growth. The 
higher margins enabled by such a price premium enable the firm to increase its in- 
vestment in differentiation still further (R20). 

Many high-tech firms are engaged in a technology race in which competition 
is primarily focused on the earliest introduction of the fastest, most powerful prod- 
uct with the most features. But differentiation does not have to focus on technol- 
ogy and product features. IBM successfully pursued the differentiation strategy for 
decades and dominated the computer industry from its inception through the per- 
sonal computer revolution in the 1980s. IBM’s differentiation investments, how- 
ever, focused on product reliability and especially on customer service and 
support. Tom Watson, Jr., like his father, understood that the most important deter- 
minant of product attractiveness for their core market-middle managers in large 
corporations-was peace of mind. Especially when computers and data processing 
were novel, in the 1950s and 60s, these organizations were reluctant to invest in 
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FIGURE 10-1 6 
New product 
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creates new 
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computing unless they were sure it would be highly reliable and that when some- 
thing went wrong they could get it fixed quickly. 

IBM focused its differentiation strategy on product quality and reliability, 
building the largest and most responsive sales and service organization in the busi- 
ness. Its success not only enabled it to gain market share and increase the size of 
the data processing market but also to charge the highest prices in the industry. 
Other firms entered the mainframe business, some created by former IBM people 
(e.g., Amdahl), but could never gain much market share, even though they offered 
lower prices for machines of comparable performance. IBM maintained its domi- 
nance of the mainframe industry by continuously investing huge sums in further 
development and articulation of its service and support infrastructure, even while 
generating consistently strong profit growth for its shareholders. Of course, while 
IBM’s differentiation strategy was spectacularly successful for decades, all posi- 
tive loops eventually encounter limits, and the company stumbled badly in the 
1980s when it failed to anticipate the fundamental changes in the computer indus- 
try caused by the microprocessor and personal computer revolution. 

10.4.6 New Product Development 
The development of entirely new products is a core engine of growth for many 
firms (Figure 10-16). The greater the revenue of a firm, the larger and more effec- 
tive the new product development effort can be. New products create new demand, 
boosting revenue and increasing investment in new product development still more 
(R21). And just as differentiation enables firms to charge higher prices, firms that 
bring novel and important products to market can often command a price premium 
until imitators arrive. Higher prices further increase the resources available to fund 
the development of still more new products (R22), so the firm can stay ahead of 
competitors. 
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Intel has successfully used these new product development loops to fend off 
competition from clone makers such as AMD and Cyrix who develop chips com- 
patible with but cheaper than Intel’s. Intel invests about 10% of its revenue in R&D 
(more than $2.3 billion in 1997), which enables it to offer the fastest and best PC- 
compatible chip at any time and leads to more sales growth and more R&D. Power 
hungry computer users are willing to pay a substantial price premium for the lat- 
est, fastest, most powerful chip. 

The firms profiting most from the new uses, new needs and price premium 
loops are those best able to identify the latent needs of potential customers. They 
understand what people don’t yet know they want or create a need people did not 
have before-and then bring products addressing those needs to market quickly, 
effectively, and at low cost. The capability to do so is not simply a matter of the 
R&D budget but depends on the size of the installed base of users and the firm’s 
ability to collect and act on their suggestions. It is a competence built up over time 
through experience and through investment in product development process im- 
provement. 

The strength of these loops also depends on the ability to protect innovative 
new products from imitation by competitors. Patents offer an obvious method to 
protect such innovations and are critical to the success of the new product devel- 
opment loops in the pharmaceutical industry, among others. More important, how- 
ever, is the ability to weaken competitors’ ability to use the same loops. Intel not 
only charges a price premium for its latest, fastest chip but also uses the margins 
from these top of the line chips to lower prices on older processors as, or even be- 
fore, the clone makers bring their chips to market. By cutting prices for older chips, 
Intel limits the margins of the clone makers, weakening their ability to use the 
positive differentiation loops to erode Intel’s lead. 

10.4.7 Market Power 
The larger a firm, the more clout it has with its suppliers, workers, and customers. 
Such old-fashioned monopoly power enables firms to lower their unit costs and 
prices, leading to larger market share and sales and still more bargaining power 
(R23-25 in Figure 10-17). 

The benefits of monopoly power do not show up only in the firm’s unit costs. 
Suppliers will give-or be forced to give-preferential treatment to their large cus- 
tomers on delivery terms and payment schedules, to share technical knowledge, to 
respond to customer change requests, and to make other accommodations that give 
the firm an advantage over its smaller rivals who get the short end of the stick in 
terms of supplier attention and resources. For the smaller firms, the positive loops 
act as vicious cycles. Large firms can often receive preferential treatment from 
their distribution channels and customers, as for example, when the large consumer 
products firms demand the best shelf space in retail outlets. 

Similarly, the larger a firm’s share of total jobs in a community, the fewer op- 
portunities for alternative employment there are, so job turnover may fall, reduc- 
ing training costs. Firms whose workers have no alternative sources of 
employment not only can pay lower wages and benefits but can also save money 
by scrimping on investments in worker health and safety. Sweatshops are all too 
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FIGURE 10-1 7 Monopoly power over customers, suppliers, and workers is self-reinforcing. 

Each effect creates two loops: one increases market share and one increases total demand. 
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common in many industries, including the apparel industry, and not only in In- 
donesian sneaker plants. The company town of the 19th century was the ultimate 
expression of this process, where, for example, a steel or mining company not only 
paid low wages but also owned all the housing and stores and charged exorbitant 
rents and prices. Workers often fell deeply in debt, trapping them in what 
amounted to de facto slavery. These dominant firms also used the extra profit gen- 
erated from their power over workers to hire Pinkertons and other private security 
forces to put down efforts to organize or strike (a strategy Andrew Carnegie em- 
ployed effectively in his Pittsburgh steel mills). Such practices still exist today, in 
the sugar cane industry, for example. Large firms also have the resources to import 
workers from other regions to ensure the balance of supply and demand in the 
labor market continues to favor the employer, even as the firm grows. In the 19th 
century, the robber barons brought Chinese laborers to the American West to keep 
wages low while they built the railroads; today large agribusinesses import work- 
ers to harvest crops at low wages. 

10.4.8 Mergers and Acquisitions 
Growth can be powered by acquisitions of rival firms (horizontal expansion) and 
of suppliers and customers (vertical integration). The larger a firm, the more capi- 
tal it can raise to finance mergers and acquisitions. If acquisitions consolidate the 
firm's dominant position, profits may rise through the exercise of monopoly power 
over labor, suppliers, and customers, enabling the firm to buy still more of its rivals 
(R26 in Figure 10-18). If vertical integration enables the firm to lower its costs, it 
can gain further market share and stimulate industry demand and grow still more 
(R27). Acquisitions can also enhance economies of scale and scope or permit firms 
to guarantee a steady flow of complementary products (see sections 10.4.3 and 
10.4.4), a process important in the convergence of the film, television, entertain- 
ment, and news industries. Disney's purchase of Capital CitiedABC in the mid 
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FIGURE 10-1 8 Self-reinforcing growth through acquisition 

Each effect creates two loops: one increases market share and one increases total demand. 
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1990s provided ABC with access to content for its entertainment programming 
while at the same time giving Disney access to ABC’s news and magazine shows 
to market their products, along with a network of television stations to broadcast 
their films, videos, and promotional specials. 

Of course, the synergy often touted as the rationale for mergers can be elusive. 
Many acquisitions fail to lower unit costs, stimulate economies of scope, or build 
monopoly power. Negative loops arising from incompatible corporate cultures, 
overcentralization, or loss of focus can dilute the earnings of the combined firm ul- 
timately leading to the divestiture of the disparate business units. 

The consolidation of market dominance through the acquisition of weaker ri- 
vals has long been a common strategy, most famously used in the late 19th and 
early 20th centuries by the great trusts such as US Steel, Consolidated Tobacco, 
Amalgamated Copper, American Smelting and Refining, Northern Securities, and 
of course, Standard Oil. In 1909, according to the Census Bureau, 44% of all goods 
in the US were made by just 1% of the industrial firms. Many of these controlled 
more than half the total market in their industries. The pace of merger, acquisition, 
and consolidation in the late 19th century has been surpassed only in the 1980s and 
1990s. The rise of the trusts in the late 19th century led to a backlash in the form of 
the Sherman antitrust act and trustbusters like Teddy Roosevelt (see, e.g., Mowry 
1958). It remains to be seen whether these same negative feedbacks will arise once 
again in response to the growing consolidation of market power in the global econ- 
omy today. 

10.4.9 Workforce Quality and Loyalty 
The ability of a firm to offer superior products and service depends on the com- 
mitment, skill, experience, and quality of its employees. The more profitable a 
firm, the higher the wages and benefits it can pay to recruit and retain the best and 
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FIGURE 10-1 9 

Each effect creates two loops: one increases market share and one increases total demand. 
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the brightest (R28 in Figure 10-19). And the faster a company grows, the greater 
the career opportunities and job security for employees (R29). 

The strength of the wage premium loop has increased greatly in recent years as 
firms, especially firms with bright growth prospects, have increasingly turned to 
stock options as a form of compensation. Employees whose compensation is tied 
to profit sharing or the company’s stock often work harder and longer than those 
on straight salary. Stock options, bonuses, and profit sharing allow firms to recruit 
highly qualified people while reducing base salaries, freeing additional resources 
that can be invested in strengthening other feedbacks driving growth, such as new 
product development, differentiation, or acquisitions. As growth accelerates and 
the stock price soars the company can pay people even less up-front. 

The positive feedbacks in Figure 10-19 are highly nonlinear. It takes many 
years to build up a loyal, skilled, high-quality workforce, but a firm can destroy 
that capability very quickly. When growth stalls or the firm downsizes, opportuni- 
ties for advancement and promotion quickly disappear. The best and most capable 
are the first to leave as they have the brightest prospects and best outside opportu- 
nities. The loss of these above-average employees further erodes the firm’s capa- 
bility to deliver attractive products or services, leading to still more downsizing 
and attrition in a vicious cycle. Firms that rely heavily on stock options are espe- 
cially vulnerable to a slowdown. If the growth prospects of the company dim and 
the price/earnings multiple falls, people’s options may become worthless, leading 
to demands for higher cash compensation that steal resources needed to promote 
growth just when they are needed most. These positive loops can speed the implo- 
sion of a declining organization. 

IBM again provides an example. For decades IBM’s success enabled it to offer 
excellent salaries and benefits, de facto lifetime employment, and excellent oppor- 
tunities for promotion. Consequently, the firm was able to recruit the cream of the 
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crop and its employees were renowned for their loyalty and commitment, qualities 
that greatly strengthened IBM’s ability to provide the service and support its cus- 
tomers required. When the rise of the personal computer eviscerated the main- 
frame industry and growth stalled, opportunities for promotion dried up. Hiring 
plummeted. The company was much less successful in attracting top candidates for 
the few new jobs they did offer. In an attempt to preserve the decades-old no-lay- 
off practice, there were several early retirement programs, during which many top 
people left for greener pastures; their departures further eroded the capabilities of 
the organization. Even these generous programs proved inadequate, and soon lay- 
offs and massive reorganizations began. Morale sank further and productivity suf- 
fered as employees and managers worked to protect their job or find a new one, 
leaving less time and energy for the bus ine~s .~  The loss of loyalty, experience, and 
skill deepened and prolonged the crisis. 

10.4.10 The Cost of Capital 
Profitable growth leads to higher expectations of future earnings and a higher mar- 
ket value for the firm. The higher the market value and stock price, the lower the 
cost of raising new capital through the equity market (Figure 10-20). Similarly, 
though not shown in the figure, the greater a firm’s profits and cash flow and the 
higher market value relative to book value, the lower the risk of default, so the 
lower the cost of debt as the premium over the prime interest rate falls. The lower 
the cost of capital, the lower the firm’s costs of development and production. 
Lower costs increase profits and cash flow still further, leading to even higher mar- 
ket value and a still lower cost of capital (R30). As lower unit costs permit lower 
prices while maintaining healthy profit margins, market share and industry demand 
rise, leading to even greater market value and further cutting the cost of capital 
(R3 1 j. A lower cost of capital also allows the firm to increase its investment in ca- 
pacity, R&D and new product development, service and support infrastructure, hu- 
man resources, acquisitions, and other resources that strengthen the positive 
feedbacks driving growth (R32). Finally, as the capital markets respond to the 
greater growth rate of the firm by raising expectations of future earnings, the mar- 
ket value will rise even higher, further lowering the cost of capital (R33). 

These loops are often quite powerful for rapidly growing high-tech firms. Ini- 
tial public offerings (IPOs) of internet companies in the mid 1990s provide an 
example. Many of these firms were able to raise substantial capital at relatively 
low cost (i.e., by selling only a small fraction of their equity) relative to the risk, 

9There are many examples of firms experiencing this death spiral. Sastry (1997) develops a sys- 
tem dynamics model addressing these issues and shows how another death spiral can be created by 
too-frequent reorganizations in response to poor business performance, Masuch (1985) describes a 
feedback model of organizations in which positive loops can lead to downsizing and decline. Case 
studies of these dynamics include Doman, Glucksman, and Mass (1995), who show how positive 
feedbacks led to different fates for two initially similar UK insurance companies; Risch, Troyano- 
Bermudez, and Sterman (1995), who show how these positive loops defeated a new strategy for a 
maker of specialty paper; and Sterman, Repenning, and Kofman’s (1997) simulation model of a 
high-tech company where path dependence and positive feedback led to unanticipated side effects 
in the firm’s quality improvement program. 
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FIGURE 10-20 Profitable growth lowers the cost of capital, stimulating further growth. 

Each effect creates two loops: one increases market share and one increases total demand. 
Comparable loops for debt financing are not shown. 
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even though many had never made any money. Among the more established firms 
enjoying rapid growth, many are able to pay no dividends as investors prefer to let 
the firm reinvest its earnings in additional growth. 

Because the market value of a firm is quite sensitive to recent profits and es- 
pecially growth rates, the strength of these loops can change quickly. A drop in 
growth expectations for any reason (a sales slowdown, the entry of a strong com- 
petitor to the market) can swiftly reduce market value, effectively locking the firm 
out of the equity market for new capital. As market value and cash flow fall rela- 
tive to current obligations, the perceived risk of debt increases, and the bond mar- 
ket will require a higher risk premium on any new borrowing. While these loops 
can give a healthy, growing firm still greater advantage over its slower growing, 
less profitable rivals, they can swiftly become a death spiral for an organization in 
financial distress. 
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FIGURE 10-21 
The golden rule: 
Whoever 
has the gold 
makes the rules. 
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10.4.11 The Rules of the Game 
The larger and more successful an organization, the more it can influence the in- 
stitutional and political context in which it operates. Large organizations can 
change the rules of the game in their favor, leading to still more success-and 
more power. Figure 10-21 shows the resulting golden rule loop R34. The golden 
rule loop manifests in many forms. Through campaign contributions and lobbying, 
large firms and their trade associations can shape legislation and public policy to 
give them favorable tax treatment, subsidies for their activities, protection for their 
markets, price guarantees, and exemptions from liability. Through overlapping 
boards, the revolving door between industry and government, and control of me- 
dia outlets, influential and powerful organizations gain even more influence and 
power. In nations without a tradition of democratic government, these loops lead 
to self-perpetuating oligarchies where a tightly knit elite controls a huge share of 
the nation’s wealth and income while the vast majority of people remain impover- 
ished (e.g., the Philippines under Marcos, Indonesia under Suharto, and countless 
others). The elite further consolidates its control by subsidizing the military and se- 
cret police and buying high-tech weaponry and technical assistance from the de- 
veloped world to keep the restive masses in check. Even in nations with strong 
democratic traditions these positive loops can overwhelm the checks and balances 
designed to ensure government of, by, and for the people. 

10.4.1 2 Ambition and Aspirations 
Another powerful positive feedback arises from the aspirations and ambitions of a 
firm’s founders and leaders (Figure 10-22). All organizations must choose whether 
to eat their seed corn or plant it to seek an even larger crop next season: Firms can 
pay out their profits to shareholders in the form of dividends, or they can invest in 
the further growth of the enterprise. Which course they take depends on their aspi- 
rations for growth. Growth aspirations themselves are frequently flexible and adapt 
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to actual accomplishment (see chapter 13; Cyert and March 1963/1992; Forrester 
1975b; Lant 1992). 

By constantly revising aspirations upward, the leadership of an organization 
can create perpetual pressure for greater achievement. Many top managers believe 
the proper way to motivate their troops is by setting aggressive stretch objectives- 
goals that are far above current achievement (see, e.€., Hamel and Prahalad's 1993 
concept of strategy as stretch). As the organization responds and actual achieve- 
ment rises, the bar is raised further. Thus business units are often given aggressive 
sales and profit growth goals for the coming fiscal year. These high-level goals are 
then translated into specific targets for the individual activities within each unit, 
each based on recent performance but adjusted by a stretch factor. For example, 
each function in the business unit might be required to cut costs by 15% next quar- 
ter while raising the quota for each sales representative 20%. 

The use of floating goals based on recent performance plus a stretch factor can 
be highly effective. Setting goals out in front of actual accomplishment often helps 
people reach their ultimate potential. Athletes seek to exceed their personal best or 
break the most recent record; when the record falls, the goal shifts as well. As stu- 
dents master a subject or concept, they are given more difficult tasks. Managers set 
their sights on the next promotion. Politicians aspire to the next highest office. 

But there are dangers. Lifting goals as accomplishment rises means there will 
always be tension and dissatisfaction-a hunger for more. That hunger can be a 
powerful motivator but it can also lead to burnout, frustration, and feelings of in- 
adequacy (see, e.€., Homer 1985 for models of worker burnout under stretch ob- 
jectives; also see Simon 1982). And it can lead to monomaniacal behavior, in 
which people sacrifice their friends, family, and ethics in endless pursuit of the 
next level. 

The ability of leaders to articulate their vision and spur the best efforts of their 
employees depends not only on their personal charisma, but also on the size of the 

FIGURE '1 0-22 Floating goals and stretch objectives 
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organization and the integrity of its culture, traditions, and folklore. The larger the 
organization and the less cohesive its culture, the harder it is for leaders to project 
their goals and motivate employees, creating negative feedbacks that can limit the 
ability of stretch objectives to generate growth. lo 

10.4.1 3 Creating Synergy for Corporate Growth 
The preceding sections identified more than three dozen positive loops that can 
drive the growth of a business enterprise. How important are they? If these loops 
are significant, the firms (or industry groups) most successful in exploiting them 
should exhibit growth rates, profitability, and market shares significantly higher 
than average over extended periods of time. Firms where the positive loops oper- 
ate as vicious cycles should yield persistently lower returns. However, traditional 
economic theory suggests that markets are dominated by negative feedbacks: If 
profits in an industry were significantly higher than average, existing firms would 
expand and new firms would enter the market, expanding production and pushing 
prices down until profits were no higher, on average, than in any other industry or 
for any other firm (on a risk-adjusted basis). 

The existence of persistent differences in profitability across firms and indus- 
tries has been studied intensively. Mueller (1977, 1986) examined a large sample 
of the biggest US industrial firms and found significantly different rates of profit 
across firms, even for firms within the same industry group, and that these differ- 
ences persist over very long time periods (at least several decades). Cubbin and 
Geroski (1 987) document similar results for UK firms and concluded that “Whilst 
two-thirds of our sample converged towards a common profitability level, a solid 
core of firms appear able to maintain some independence from market forces more 
or less indefinitely.” Mueller also examined the dynamics of profitability. Presnm- 
ably if the negative feedbacks of traditional economics dominate, firms whose 
profits are far from average at any time (due to transient shocks) would tend to- 
ward the average, while those near average would tend to remain there. Mueller 
found just the opposite: Firms with average profitability were, over time, more 
likely to migrate to states of either significantly higher or significantly lower 
profits. Firms with high profits had higher than expected probabilities of continu- 
ing to generate high profits; the performance of firms with low profits was more 
likely than expected to remain disappointing. These dynamics are consistent with 
the differentiating, disequilibrium effects of the many positive feedbacks discussed 
above. 

What determines whether the positive loops will operate as virtuous cycles 
leading to growth and high profitability or vicious cycles trapping a firm in a self- 
reinforcing cycle of decline and low profit? In the most successful firms many of 
these loops act in concert, generating substantial synergies. Achi et al. (1995) ex- 
amined the performance of the fastest growing and most profitable firms in the 
US-so-called growth tigers-to see if the feedbacks driving their growth could be 
identified. They defined a growth tiger as a firm whose sales growth rate over the 

‘OForrester (1975b) develops a model exploring the dynamics of goal formation in organizations 
addressing these issues of leadership and growth. 
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prior 10 years was three times greater than the average of the S&P 500 and which 
outperformed the S&P 500 in total return to shareholders over the prior 5 years. In 
a sample of more than 1200 firms, 97 met these criteria. The growth tigers were 
not all small startups: 1994 sales ranged from $130 million to $12.5 billion. Nor 
were they all high-tech firms: though 28% of the tigers were in the computer sec- 
tor (including Intel, Microsoft, Compaq, 3Com, and Sun), the remainder included 
firms in such low-tech, mature industries as industrial equipment, business and fi- 
nancial services, retail, distribution and wholesaling, apparel, fashion and sports, 
and health care (e.g., Nike, The Home Depot, US Healthcare, Williams-Sonoma, 
United Asset Management, Werner Enterprises, and Nautica). Sustained growth 
and profitability are not merely a function of being in a hot industry (of course hot 
industries are hot because the positive loops driving their growth are strong). 

The growth tigers generate a disproportionate share of the growth in the econ- 
omy as a whole. While comprising just 8% of the firms in the sample, they created 
15% of the total sales growth, 28% of the job growth, and 47% of the profit 
growth. Close examination showed that the tigers did not rely on any single posi- 
tive loop to drive their growth but successfully used many of the positive feed- 
backs discussed above to create synergy. Microsoft is the paradigm case. The costs 
of producing software are almost entirely up-front development costs, so the re- 
duction in unit costs as the software market exploded is a very powerful growth 
driver. Similarly, Microsoft’s expansion from operating systems to applications, 
the internet, news networks, publishing, automotive computing, and other markets 
creates powerful scale and scope economies. Microsoft also benefits from learning 
curves and from substantial investment in process improvement focused on im- 
proving customer needs assessment and speeding software development. It invests 
heavily in product differentiation and new product development. Microsoft’s fi- 
nancial clout enables it to preempt competition by acquiring rivals and potential ri- 
vals, often buying software start-ups and incorporating their products into 
Microsoft’s own applications and operating systems. Microsoft’s market power en- 
ables it to negotiate favorable distribution agreements and prices with computer 
makers. Its growth allows it to recruit the best programmers and managers and 
compensate them with stock options, which builds a dedicated and productive 
workforce and frees up resources for other investments. Microsoft’s positive cash 
flow and high price/earnings multiple cut its cost of capital far below that of 
weaker rivals and risky startups. And growth is powerfully driven by the expansive 
aspirations of Bill Gates, a vision he has, through a well-funded public relations 
effort, successfully articulated not only within Microsoft but in society at large 
through ghost-written books and media appearances. 

Most of all, Microsoft’s success stems from powerful network and comple- 
mentary goods effects. These feedbacks operate through many channels, linking 
hardware architecture and operating systems, operating systems and applications, 
applications and users, and software and programmers. The larger the installed 
base of Microsoft products, the more attractive are computers compatible with 
those products (powered by Intel and Intel-compatible chips). The more personal 
computers sold with Intel Inside, the larger Microsoft’s installed base. The larger 
the installed base of Microsoft operating systems, the more software will be de- 
veloped for those systems by third-party developers, and the more third-party 
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software there is the greater the attractiveness of the Wintel platform. The larger 
the number of people using Microsoft’s applications, the more important it is for 
others to have compatible software to exchange documents with colleagues and 
friends, so the greater the attractiveness of Microsoft’s applications. And the larger 
Microsoft’s share of the installed base, the greater the number and higher the qual- 
ity of programmers, support personnel, and IT managers trained in those systems 
and the scarcer are those familiar with other operating systems and applications. 

Powered by these positive feedbacks, Microsoft grew from its 1975 founding 
to a firm with 1997 revenues of $11.3 billion. By August 1999 its market capi- 
talization was nearly $500 billion; by comparison, General Electric, with about 
7 times more revenue and 9 times more employees than Microsoft, was worth less 
than $400 billion. 

Bill Gates is quite aware of these positive feedbacks and their role in his suc- 
cess (Table 10-1). 

Of course, growth cannot continue forever. Ultimately, as the limits to growth 
are approached, various negative feedbacks must grow stronger until they over- 
whelm the positive loops. If Microsoft continues to grow at its historical rate, its 
sales would exceed the gross domestic product of the United States by 2018, when 
Bill Gates will be only 63 years old, even if the US economy keeps growing at its 
historical rate.l’ 

Some of the negative feedbacks were already apparent by the mid 1990s. Con- 
cern over Microsoft’s ability to use the positive feedbacks driving growth to dom- 
inate the software market prompted its competitors to join together to promote 
Sun’s Java. Microsoft has proven to be adept at blunting these moves through what 
Bill Gates calls “embracing and extending” the innovations of its competitors. It 
was precisely concern over Microsoft’s ability to embrace and extend, to use the 
positive loops to dominate the emerging digital economy, that prompted the US 
Justice Department’s 1998 antitrust suit over the bundling of Microsoft’s Internet 
Explorer with the Windows operating system. 

Not all the positive feedbacks that can drive corporate growth are compatible 
with one another. Pursuing the differentiation strategy by charging higher prices 
based on the superiority of your products and support capabilities conflicts with 
using low initial prices to drive the scale economy, learning curve, and network/ 
complementary goods effects. Many long-successful firms stumbled when the pos- 
itive loops driving growth in their industry changed while their strategy did not. 
For example, the failure of Sony’s Betamax can be traced to a mismatch between 
their strategy and the dominant loops in the home VCR market. Sony had long pur- 
sued a strategy emphasizing product differentiation and innovation, and Sony 
products typically commanded a significant price premium relative to those of 
competitors. Sony’s strategy worked very well in markets where standards were 
already established (such as television, stereo amplifiers, and cassette tape players) 
but was ineffective in a market where network effects and complementary assets 

~ 

“From 1985 through 1997 Microsoft sales grew from $140 million to $11.36 billiodyear, a 
compound growth rate of 37%/year. Over the same period, nominal US GDP grew from $4181 bil- 
lion to $8079 billion, a compound growth rate of 5.5%/year. At these growth rates, the two curves 
intersect after 2 1.1 years. 
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Positive Feedbacks TA,BLE 10-1 
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(the installed base and availability of tapes), rather than features, quality, or repu- 
tation, were the most important determinants of product attractiveness. Managers 
and entrepreneurs must design their growth strategy by identifying those positive 
loops likely to be most important in their markets, most compatible with one an- 
other, and most consistent with the capabilities and resources the firm either has or 
can develop. 

POSITIVE FEEDBACK, INCREASING RETURNS, 
AND ECONOMIC GROWTH 

The many positive feedbacks discussed in section 10.4 not only drive the growth 
of individual corporations but power the growth of entire industries and of the 
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economy as a whole. The recognition that positive feedback is the engine of eco- 
nomic growth can be traced back at least to Adam Smith’s Wealth of Nations. 
Smith and the other classical economists did not draw causal diagrams, but the 
various feedbacks are clearly seen in their writings. Smith focused on division of 
labor as the principal source of productivity growth. As a process is divided into a 
larger number of routinized operations, productivity grows because specialization 
enables people to learn faster, to customize their tools and capital to the specific 
task, and to eliminate the wasted effort that comes from moving from one opera- 
tion to another. Smith noted that “the division of labor is limited by the extent of 
the market,” recognizing the positive feedback by which economic growth enables 
greater specialization, which in turn leads to greater productivity and still more 
economic growth. 

Economists generally refer to these positive loops as increasing returns. The 
term denotes a situation in which the output of a process increases more than pro- 
portionately as its inputs grow, in contrast to the usual situation of diminishing re- 
turns, where output saturates as inputs grow (as in agriculture, where harvests are 
limited by the extent and fertility of the land no matter how much fertilizer or la- 
bor are applied). Besides Adam Smith other early theories of increasing returns 
were developed by Alfred Marshall (in 1890) and Allyn Young (in 1928; see 
Buchanan and Yoon 1994 for an excellent collection of key works in the econom- 
ics of increasing returns). Formal models embodying positive feedbacks include 
Paul Krugman’s (1979) models of international trade and Paul Romer’s (1990) 
models of endogenous economic growth. 

Krugman, for example, noted that in the traditional economic theory of trade, 
dominated by diminishing returns (negative feedbacks), two identical economies 
would have no incentive to trade, since the greater transportation costs of trade 
would make it more efficient for each to produce the goods they need locally. 
However, in the presence of positive feedback it becomes advantageous for the two 
economies to trade even though they have identical resources, technologies, and 
consumer preferences. The apparently paradoxical result arises because both 
economies can produce more if each specializes in the production of one class of 
goods and trades with the other for the rest they desire-specialization boosts pro- 
ductivity, hence total output increases. Interestingly, in the case of initially identi- 
cal economies, it doesn’t matter which subset of goods each chooses to produce as 
long as they specialize; in practice the choice would be determined by chance 
events early in the history of trading relations, leading to the classical path depen- 
dence analyzed above. 

The implications of positive feedback apply not only to nations engaged in in- 
ternational trade but also to any distinct economic entities that can exchange goods 
with others, including regions within a single nation, cities and towns within a re- 
gion, neighborhoods within a city, or even the members of a family. When the pos- 
itive feedbacks created by division of labor, scale and scope economies, learning 
by doing, and so on are strong, specialization and trade can quickly transform an 
initially identical geography into a highly variegated landscape with specialized 
centers of industry such as silicon valley or the New York diamond district. 

Romer showed how growth for an economy as a whole could arise from some 
of the positive loops described above, particularly those relating to research and 
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development, learning by doing, and other investments in human capital. Increas- 
ing returns arise because the knowledge created by R&D or employee training, for 
example, cannot be kept fully private. While a machine tool can only be used in 
one place at a time, knowledge of how to design a machine tool can be used by 
more than one firm at a time; knowledge is not consumed by usage the way mate- 
rial goods are. Consequently, a firm’s investments in R&D and training, for exam- 
ple, not only benefit the firm but also spill over to benefit other firms. In the 
language of economics, these spillovers create externalities, that is, benefits exter- 
nal to the firm. These externalities speed economic growth because they benefit 
many besides the firm undertaking the investment, increasing the total size of the 
market and further strengthening the many positive loops that depend on the scale 
of activity in an industry or region. Romer also showed that because individual 
firms generally don’t understand and can’t take advantage of the benefits their 
knowledge investments create for the economy as a whole, there is a tendency for 
firms to underinvest in human capital and R&D. 

THE ECONOMY LOCK IN TO INFERIOR TECHNOLOGIES? 
One consequence of path dependence is that random events early in the evolution 
of a system can push it down one path or another. These random shocks can be 
small and might go unnoticed at the time, or even in hindsight. They can involve 
chance events within the firms in the industry or spillovers from unrelated politi- 
cal, technical, or social events in the world at large. The positive feedbacks amplify 
the differences among the contenders until one emerges as the standard and domi- 
nates the industry. Success begets success. As the winner emerges, the costs of 
switching from one standard to another become greater and greater until the sys- 
tem locks in to that equilibrium. The Polya process described in section 10.2 shows 
how path dependence and lock in can occur when all equilibria are initially equally 
attractive. It doesn’t matter whether we drive on the right or left or whether clocks 
go clockwise or counterclockwise, so long as we all choose the same direction. 
More controversial is the notion that path dependence can lead the economy to 
lock in to equilibria-to products, technologies, and ways of life-that are inferior 
to others that might have been chosen (see, e.g., Arthur 1994). 

If the dominant determinant of product attractiveness is compatibility and the 
availability of complementary goods (e.g., VCRs, personal computers, keyboard 
layouts), then a firm might become the market leader even though its technology 
is inferior. Many argue that the VCR industry provides an example of lock in to an 
inferior technology, pointing out that Betamax offered superior picture quality and 
is today the standard for professional video equipment (others focus on VHS’s 
longer play time to argue that it was after all the superior technology). The Macin- 
tosh operating system was clearly superior to Microsoft’s DOS and early versions 
of Windows, yet Microsoft’s systems became the standard while the Macintosh 
steadily lost market share. The QWERTY keyboard invented by Christopher 
Sholes in the 1870s is widely considered to be inferior to the 1936 Dvorak key- 
board in terms of training time, typing speed, error rates, balance between the left 
and right hands, and comfort, yet nearly everyone continues to learn the QWERTY 
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layout.12 The irrational English system of measurement, with its feet, yards, 
pounds, gallons, and acres, is clearly inferior to the metric system yet continues to 
be used in the US. 

The likelihood of locking in to an inferior technology increases with the 
strength of the positive loops that confer advantage to the market leader indepen- 
dent of the attributes of the technology itself. The stronger the network, compati- 
bility, development cost, market power, and golden rule loops, the more likely it is 
the ultimate winner will be determined by factors unrelated to product quality, 
functionality, and features. Continued lock in to the QWERTY keyboard is due 
to the great importance of complementary assets, specifically, typists trained 
in QWERTY. The switching costs of retraining the huge installed base of typists in 
the Dvorak system outweigh the advantage of Dvorak, perpetuating the dominance 
ofQWERTY.I3 

The prevalence of positive feedbacks in the economy does occasionally cause 
lock in to inferior technologies. But the issue is considerably more complex. Tech- 
nologies evolve. An initially inferior technology might win the battle for market 
share and emerge as a new standard, but later improvements might overcome its 
initial deficiencies. Microsoft again provides an example. The DOS operating sys- 
tem was unquestionably inferior to the Macintosh, yet Microsoft became the in- 
dustry standard while the Mac withered. Microsoft was then able to imitate the 
graphical interface of the Mac, incorporating many of its features in the Windows 
operating system. The first versions of Windows, through Windows 3.1, were still 
clearly inferior to the Macintosh. But Microsoft’s dominance allowed it to invest 
heavily in further improvements. Windows 95 and 98, in the judgment of many, 
closed most of the gap, and further innovation will no doubt lead to still greater 
functionality. While the network and complementary goods loops did lead the soft- 
ware industry to lock in to a technology that was inferior at the time, the new prod- 
uct development and differentiation loops gradually erased the deficit. Of course, 
the Macintosh operating system would presumably have evolved at a higher rate 
had it won the battle and become the standard. It is entirely possible that computer 
users would have been better off if the initially superior technology had won. It is 
not possible to answer such questions definitively because we can never know how 
much better the losers might have become. 

A more subtle issue concerns the coevolution of people’s tastes with technol- 
ogy. People’s preferences are not static; they evolve and change with experience. 
Your likes and dislikes adapt to your circumstances. The amount of salt or hot 
pepper people consider palatable, the amount of personal space people require, the 

’*The relative merits of QWERTY and Dvorak are still debated. Liebowitz and Margolis (1990) 
argue that many of the studies showing the superiority of the Dvorak layout are flawed. The pre- 
ponderance of the evidence, however, suggests Dvorak’s layout is more efficient than QWERTY. 

I3As another example, Moxnes (1992) develops a model showing how an economy can lock 
in to an inferior energy supply system; see also Fiddaman (1997). Sterman and Wittenberg (1999) 
develop a model of scientific revolution whose dynamics exhibit strong path dependence and find 
that the probability a given theory rises to dominance in its discipline is only weakly related to its 
intrinsic explanatory power while strongly determined by environmental conditions at the time of 
its founding. 
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amount of leisure time and access to open space people desire all vary widely 
across cultures. Habituation is a powerful process. 

Similarly, people’s evaluation of a technology can differ over time even though 
the technology itself may not change. Many city dwellers live more or less happily 
in environments noisier, more crowded, and more polluted than any their ancestors 
could have imagined or tolerated. Our evaluations of the attractiveness and desir- 
ability of the ensemble of technologies and social structures modern society has 
been locked into for the past 50 years differ from the way we would have evaluated 
them in 1950. Because people’s preferences, tastes, and standards are malleable, 
technology and our assessments and reactions to it coevolve. Garud and Rappa 
(1994) show how such coevolution shaped the emergence of cochlear implants, a 
technology to provide hearing for the profoundly deaf. Rival technologies led to 
competing notions of what success would mean for patients receiving the technol- 
ogy (e.g., the ability to decode speech at a lower cost or to hear a wider spectrum 
of sound at a higher cost), ultimately affecting government regulations and stan- 
dards for the technology. 

10.7 LIMITS TO LOCK IN 
The Polya model and examples of path dependence suggest that path dependent 
systems rapidly lock in to a stable equilibrium, which then persists indefinitely. 
The clockwise convention was established by the 1500s. The prime meridian con- 
tinues to be located in Greenwich though the sun has long since set on the British 
empire. And the QWERTY keyboard has been the bane of typing students for over 
a century. Are all path-dependent systems perpetually trapped in the equilibria to 
which chance events lead them? Is there no escape? 

There are many examples in which a dominant standard was overthrown. Such 
revolutions usually occur when the system in which the standard is dominant be- 
comes obsolete or is itself overthrown. The dinosaurs ruled the earth for millions 
of years, but after a catastrophic asteroid impact caused mass extinctions through- 
out the plant and animal kingdoms, dinosaurs did not reemerge. The impact de- 
stroyed the ecosystem in which the dinosaurs had become the dominant standard. 
In terms of the Polya process, the mass extinction event removed most of the 
stones (species) from the jar (available ecological niches), so that the selection of 
new stones (the evolution of new species) was once again strongly influenced by 
random events. Life filled the jar once again, but different forms of life became 
dominant.I4 

In a process Schumpeter famously dubbed creative destruction, economic de- 
pressions can unfreeze an economy that has locked in to certain technologies. 
Every economy needs basic technologies for energy, transportation, and commu- 
nications. An ensemble of technologies and infrastructure built around coal, steam, 
rail, and the telegraph dominated the industrialized world in the late 19th and early 
20th centuries. Populations and industry were concentrated in large cities sur- 
rounded by farm and forest. These technologies and settlement patterns were self- 
reinforcing. Coal has a fairly low energy density and is difficult to handle, which 

14See Gould (1990) for discussion of path dependence in evolution. 
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favors centralized settlement patterns and transport modes like rail and steamship. 
Telegraph lines were often strung along the railroad right of way, lowering the cost 
of infrastructure and maintenance. The coal-steam-rail-telegraph ensemble re- 
mained dominant until the Great Depression of the 1930s. The depression 
bankrupted many of the firms in these industries, their physical infrastructure de- 
teriorated, and the power of their leaders waned. 

When the economy began to recover from the depression in earnest after 
WWII, new investment did not recreate and refurbish the old networks and tech- 
nologies but focused instead on a new ensemble of basic technologies. The new 
economy of the postwar era was built around oil, natural gas, and electricity for 
energy; internal combustion and electric motors for mechanical power; auto- 
mobiles and aircraft for transportation; and telephone, radio, and television for 
communication. The suburbs emerged and industrial location patterns became less 
centralized. These technologies were also mutually reinforcing: catalytic cracking 
enabled crude oil to be refined into gasoline at low cost; gasoline is an energy- 
dense, easily handled fuel suitable for a large fleet of small vehicles and decentral- 
ized settlement patterns; internal combustion engines are small and powerful 
enough to use in aircraft; and so on. All these technologies were invented well be- 
fore the 1930s, but the costs of switching were prohibitive because they were in- 
compatible with the existing ensemble of technologies and social structures. 
Despite their great potential, the new inventions could not achieve widespread use 
until the old infrastructure-physical, social, and political-was swept away by the 
Great Depression and Second World War. The depression and war functioned as 
a mass extinction event that erased the basis for the old technologies and the 
firms that dominated them. Just as new forms of life evolve after every mass 
extinction, a new and different economy emerges with the recovery from every 
major depression.15 

Great upheavals such as depressions or wars are not needed to unfreeze a sys- 
tem that has locked in to a particular equilibrium. Shifts in technological archi- 
tecture often undermine the basis for the dominance of a particular technology, 
standard, or firm. The transistor made vacuum tubes obsolete, and none of the 
leaders in the vacuum tube industry were able to translate their dominance in the 
old technology into a leadership role in the solid-state world. Henderson and Clark 
(1990) show that dominant firms (at least in some industries) rarely maintain their 
leadership positions, or even survive, after such changes in product architecture. 
The same positive loops that confer cumulative advantage to a firm by building up 
networks of skills, relationships, and know-how specific to the firm’s technology 
and market also create inertia and rigidity that make it difficult to adopt a radical 
and incompatible new technology (see Sastry 1997). 

The architectural shifts that undermine the dominant design and dominant 
firms in an industry often arise from innovations created by those very firms. The 
computer industry provides another example. Firms such as IBM and Digital 
Equipment became hugely successful through exploitation of many of the positive 

~ 

I5For further discussion of the interaction between economic cycles and the evolution of basic 
technologies, see Graham and Senge (1980) and Sterman (1986). 
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feedbacks described above, especially the differentiation and innovation loops 
(sections 10.4.5 and 10.4.6). By providing superior service and support (IBM) and 
technically excellent products (Digital), these firms were able to charge compara- 
tively high prices; in turn, high margins provided the resources for further invest- 
ment in differentiation and innovation. These differentiation strategies worked very 
well during the early years of the computer industry when the costs of computers 
were very high, volumes were small, development and capacity costs were a mod- 
est fraction of total costs, and computers were used for a limited set of specialized 
functions in central data processing centers. 

As computers became cheaper, more widely available, and easier to use, ser- 
vice and support became less important. When people buy a new PC every 2 years 
to keep up with technical progress, warranty terms and service capability are less 
important; when applications use a point and click interface, training and support 
are less important as employees teach themselves and each other. As the cost of 
manufacturing fell while the complexity of designs increased, up-front develop- 
ment costs became more and more important. As computing costs fell, computing 
became decentralized. Instead of a multimillion dollar mainframe sequestered in a 
cold, clean room, the employees now had a computer on their desk. Networking 
and compatibility became much more important. The exploding number of com- 
puters in use created lucrative markets for applications that induced third parties to 
enter the software market, both greatly strengthening the complementary goods 
feedback and reducing the hardware makers’ control over these complementary 
goods. 

The very success of the computer industry in exploiting the positive innovation 
and product differentiation loops caused these feedbacks to weaken, destroying the 
effectiveness of the strategies that had created that success. Differentiation became 
less and less important, while compatibility and software availability became more 
and more important. Success in a market dominated by compatibility, software 
availability, and economies of scale required aggressively lower prices to generate 
the volume required to offset high development costs and win the battle for market 
share. Mainframe and minicomputer makers like IBM, Digital Equipment, Wang 
Laboratories, Data General, and Prime Computer failed to recognize the shift in 
loop dominance they themselves helped to bring about. These firms suddenly 
found themselves with capabilities, resources, strategies, and cost structures 
grossly out of alignment with the requirements for success. Where once they rode 
the positive differentiation feedbacks to greater and greater success, now these 
loops became death spirals leading to faster and faster collapse. Some of these for- 
mer industry giants survive as mere shadows while many vanished altogether. 

MODELING PATH DEPENDENCE AND STANDARDS FORMATION 
The linear and nonlinear Polya processes above provide simple illustrations of 
path-dependent systems but they do not provide realistic models of path depen- 
dence in economic or social systems such as the competition between Betamax and 
VHS or the triumph of the Wintel architecture over the Macintosh. This section 
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develops a simple model of path dependence in the economy, a model with more 
realistic formulations for the decision rules and which can be elaborated to include 
the many positive feedbacks described above. 

10.8.1 Model Structure 
The battle for dominance between Betamax and VHS is typical of standards for- 
mation for new products in markets where the utility of the product depends on the 
size of the installed base and the network of users. One fax machine is not useful- 
fax machines only become useful when there is a network of other compatible ma- 
chines. Many products depend on the availability of complementary resources: 
personal computers are not useful without compatible software; automobiles are 
not useful without networks of roads, gasoline stations, and other auto-friendly in- 
frastructure. In such markets, the attractiveness of a product based on a given stan- 
dard depends on its installed base, and market share will depend on the relative 
attractiveness of the different competing standards. Figure 10-23 shows the struc- 
ture of a simple model to capture these feedbacks. The diagram represents two 
products competing to be the standard in a market. The products are assumed to be 
incompatible. To keep the model as simple as possible, only the most basic posi- 
tive feedback, through the installed base, is represented explicitly. Prices and other 
determinants of product attractiveness are deliberately excluded. The challenge at 
the end of this section invites you to extend the model to include these variables 
and other important loops such as the process by which developers of complemen- 
tary products choose which format to adopt. 

The installed base of each firm is increased by the sales of each firm’s product 
(two firms i = 1, 2 are assumed in the simulations below, but the model can 
accommodate any number of firms). For simplicity, assume no discards and no 
repeat purchases, so there is no outflow from the installed base. 

Installed Base Product i = INTEGRAL(Sa1es of Product i, 
Initial Installed Base of Product i) (10-1) 

The sales rate of each firm is the product of industry demand and its market share: 

Sales of Product i = Total Demand * Market Share Product i (10-2) 

For now, assume industry demand is exogenous and constant. In reality of course 
there are many feedbacks to industry demand (section 10.4). 

Market share is determined by the attractiveness of each firm’s products rela- 
tive to the attractiveness of the other firms’ products. The formulation for market 
share must meet several criteria. First, market share should be increasing as the 
attractiveness of the firm’s product rises and decreasing as the attractiveness of 
competitors’ products rises. Second, market share must be bounded between 0 and 
100%. Finally, the sum of the market shares of all firms must equal 100% at all 
times. A useful formulation that meets these requirements is 

Attractiveness of Product i 
Total Attractiveness of All Products 

Market Share Product i = 

n 

j = l  
‘Total Attractiveness of All Products = C Attractiveness of Product j 

(10-3) 

(10-4) 



FIGURE 10-23 Structure for a simple model of network effects 
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where n is the total number of firms. Total attractiveness is the sum of the attrac- 
tiveness levels of all products in the marketplace. 

How should attractiveness be specified? Attractiveness depends on a wide 
range of variables, including price, availability, quality, service, features, and so 
on. In this simple model, overall attractiveness is the product of two terms: the ef- 
fect of compatibility on attractiveness (the network effect) and the effect of all 
other factors of attractiveness. The formulation aggregates the effects of price, fea- 
tures, availability, and so on into a single factor, which in this simple model is as- 
sumed to be exogenous. 

Attractiveness of - Effect of Compatibility on Attractiveness of Product i 
* Effect of Other Factors on Attractiveness of Product i - (10-5) Product i 

The effect of compatibility on attractiveness captures the network and compatibil- 
ity effects: the larger the installed base, the greater the attractiveness of that prod- 
uct. There are a number of plausible shapes for the relationship between installed 
base and attractiveness. One commonly used relationship is given by the exponen- 
tial function 

Installed Base 

Threshold for 

Effect of Compatibility 

of Product i 
on Attractiveness = EXP (10-6) 

In this equation, attractiveness rises exponentially as the installed base grows rela- 
tive to the Threshold for Compatibility Effects. The parameter Sensitivity of At- 
tractiveness to Installed Base controls the strength of the effect. The threshold is a 
scaling factor that represents the size of the installed base above which network ef- 
fects become important.16 The exponential curve for attractiveness is plausible: 
When there were only two telephones in the United States, the utility of the phone 
was not very great to the third potential buyer, but when there were 100 million, 
the utility of the telephone to the next buyer was much, much greater. The expo- 
nential function means attractiveness rises at an increasing rate as the installed base 
grows.I7 The larger the threshold for compatibility effects, the larger the installed 
base must be before its effect on attractiveness begins to outweigh the effects of 
other factors of attractiveness. 

For example, Betamax, as the first home VCR format to reach the mar- 
ket, had a large relative advantage in installed base in the early years. But even 
though there were many more Betamax machines than VHS machines early on, the 
effect of this relative advantage was slight: so few people had machines that 

16Mathematically, only the ratio of the sensitivity to the threshold matters. Nevertheless, they are 
conceptually distinct. Applying the sensitivity to the normalized ratio of installed base makes it 
much easier to interpret the model and parameters. 

17The exponential function is simple and convenient analytically but is not robust. With the 
exponential function for attractiveness the increase in attractiveness from adding another unit to 
the installed base is always greater than that of the unit before. A more realistic function would 
saturate for high levels of the installed base, representing the eventual dominance of diminishing 
returns as the installed base becomes very large. Chapter 14 discusses the construction of such 
nonlinear functions. 
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compatibility was not yet an issue for most potential purchasers. As the installed 
base grew, however, compatibility began to loom large in people’s assessments of 
product attractiveness. 

In this simple model the other factors of attractiveness are exogenous and as- 
sumed to vary randomly around the neutral value of one: 

Standard Deviation Noise Seed for 
(10-7) i on Attractiveness = NORMAL of Random Effects, Random Effects on 

on Attractivenes Attractiveness of Product i 

Effect of Other Factors 

ol  Product i 

where the NORMAL(mean, standard deviation, noise seed) function samples from 
a normal distribution with a mean and standard deviation set by the modeler. The 
noise seed is different for each product to ensure that the random effects for each 
product are independent. l8 

The formulation for market share meets all three criteria for a good formula- 
tion. The greater the attractiveness of firm i, the greater its market share will be. 
Market share is zero if the attractiveness of the firm’s products is zero and 100% if 
the competitors’ products are completely unattractive. The sum of the market 
shares for all firms will always equal 100% for any number of firms. These prop- 
erties hold for any functions relating product attributes to attractiveness. Many 
shapes for the individual attractiveness functions are plausible. The exponential 
function used here is especially convenient because it can be transformed into a 
form in which market shares can be expressed as a linear function of the attributes 
of product attractiveness, allowing the attractiveness functions to be estimated by 
standard regression techniques. When product attractiveness is specified as the 
product of exponential functions of each attribute, the formulation for market share 
is known as a logit function, because market share as a function of product attrib- 
utes follows a logistic curve.19 

Figure 10-24 illustrates the logit model for various values of the parameters. 
The graph shows the market share of firm 1 in a two-firm market as its installed 
base varies. The installed base of firm 2 is assumed to be constant and equal to the 
threshold for compatibility effects. The graph shows the resulting market share of 
firm 1 for different values of the sensitivity of attractiveness to installed base. In all 
cases, when the installed bases of the two products are equal (along with all other 
factors of attractiveness), each firm receives half the market. Market share follows 
the logistic curve as installed base varies. Note that the marginal impact of an 
increase in installed base on market share diminishes as installed base becomes 
very large: once market share approaches loo%, further increases in attractiveness 

‘*The formulation for the random effects on attractiveness used here selects a new random draw 
every time step in the simulation. This is technically not correct, since changing the time step for 
updating the states of the model will dramatically alter the random shocks affecting the system. 
“Random” shocks in real systems are correlated, especially over short time frames, since real sys- 
tems have inertia that prevents very large changes in the values of variables from one moment to 
the next. A more appropriate model of the noise process would be so-called pink noise, that is, 
noise that is serially correlated. See appendix B for models of pink noise suitable for use in 
continuous time simulations. 

in many statistics texts, e.g., Aldrich and Nelson (1984). 
19The properties and estimation issues for logit models and other models of choice are discussed 
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have a smaller and smaller effect since there is simply less additional market share 
to gain. The greater the sensitivity of attractiveness to the installed base, the 
sharper and steeper the logistic curve, and the more rapidly share approaches its 
extreme values as installed base varies. 

10.8.2 Model Behavior 
To simulate the model the parameters were set as shown in Table 10-2. In particu- 
lar, the sensitivity of attractiveness to installed base is set to 2, representing a mod- 
est network effect. If, early in the history of the market, the installed base of 
product 1 is 20% of the threshold while that of the competitor is lo%, the market 
share of firm 1 will be only 55%, even though it enjoys a 2: 1 advantage in installed 
base. If the competitor had 100% of the threshold while firm 1 had 200% as much 
(still a 2: 1 advantage), the market share of firm 1 would then be 88%, reflecting the 
greater impact of a large installed base on attractiveness. 

The simulation begins with a level playing field: the parameters for both firms 
are identical. The only difference between the firms arises through the random 
variations in the attractiveness of each product from other factors. These random 
effects are assumed to have a very small standard deviation, just 1 %. 

Figure 10-25 shows 20 simulations of the model. Prior to the introduction of 
any random variations in product attractiveness the two firms have the same over- 
all attractiveness, and market share remains at the initial equilibrium of 50%. 
When the random effects begin, at time zero, the network effect is weak, so mar- 
ket share fluctuates randomly in the neighborhood of 50%. As the installed base of 
each firm grows, however, the positive network feedback gains in strength and am- 
plifies any small advantage in installed base created by the random shocks in prod- 
uct attractiveness. As the installed base advantage of one firm grows, the positive 
network feedback gains even more strength, further boosting the market share of 
the leader until share approaches 100%. There are only two stable equilibria: com- 
plete market dominance or extinction. Given the parameters in the simulation, the 
system locks in to one of these equilibria quite rapidly. 

Figure 10-26 shows the distribution of market shares for firm 1 at various 
times in a sample of 5000 simulations. Prior to year 0, there are no random effects 
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Total Demand 1 million units/year TABLE 10-2 
Parameters for 

Sensitivity of Attractiveness from Installed Base sirriulatioln of 
installed base Threshold for Compatibility Effects 1 million units 
model Standard Deviation of Random Effects 

Initial Installed Base Product i 
Initial Time -1 years 
Time Step for Simulation 

2 (dimensionless) 

on Attractiveness 0.01 (dimensionless) 
1 unit 

0.25 years 
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and the system is balanced on the unstable equilibrium of 50% market share. At 
time zero, the first random shocks begin to perturb the system, but the positive 
feedbacks have not yet begun to operate. Market share is tightly clustered between 
about 49% and 51%, and the distribution of market shares is normal (bell shaped). 
The distribution changes only slightly for the first few years, even after the feed- 
backs in the system begin to operate. By year 4 the variance of the distribution of 
market shares has grown substantially, but the distribution still appears to be 
roughly normal, with a single peak at 50% market share. By year 6, the distribu- 
tion has spread still further and has begun to bifurcate into two modes. The posi- 
tive network feedback now rapidly differentiates the two firms from one another, 
until one gains 100% of the market and the other is wiped out. By year 10, the 
market share of the winning firm in nearly all simulations is greater than 95%. 

The behavior of the model is similar to the nonlinear Polya process in section 
10.2. However, the model relaxes the restrictive assumptions of the Polya model. 
First, the model is formulated in continuous time. Second, where the Polya process 
selects only one stone per period, either black or white, here total sales are divided 
into simultaneous and continuous flows of sales for each product. Where the Polya 
process chooses which color to add based on a single random event, the model here 
includes multiple sources of random variation in consumer choices. 

Most importantly, the attractiveness of each product depends not on the size of 
the installed base relative to that of other products but on the absolute size of each 
product’s installed base. In the Polya process, the probability of selecting a given 
color depends only on the proportion of stones with that color already in the jar. 
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FIGURE 10-26 Evolution of the distribution of market share 

The distribution of market share for Firm 1 in 5000 simulations, shown every 2 years. Vertical axis is 
the proportion of simulations falling within each 5% increment of market share. 
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This assumption is not realistic for products with compatibility and network 
effects. First, consumers are not likely to know the installed base of each product, 
and the decision rules in models should not use information the real decision mak- 
ers do not have. Second, the Polya assumption means the effect of compatibility on 
market share is the same for a given ratio of the installed bases of the different 
products, no matter how large the installed base. A 2: 1 installed base advantage for 
VHS would yield the same market share advantage whether the installed base was 
20 VHS to 10 Betamax machines or 20 million to 10 million. 

People's decisions are influenced by compatibility with the machines owned 
by others in their social network. The larger the installed base of each product, the 
greater the chance that any potential buyer will have friends and family who al- 
ready own that format. Clearly, when the installed base of products is very low, 
compatibility is not yet a factor for prospective purchasers. As the total installed 
base grows and more of the people a potential buyer interacts with have the prod- 
uct, compatibility becomes progressively more important. The formulation for 
product attractiveness meets this criterion because it depends on the size of the in- 
stalled base of each product (scaled by the Threshold for compatibility Effects). 
The exponential function for attractiveness reduces the effect of differences in in- 
stalled base when the total installed base is very small and amplifies the difference 
as the total installed base grows. 

As a result, the strength of the positive network feedback increases as the mar- 
ket grows. These shifts in loop dominance can be illustrated by constructing the 
phase plot for the model. The phase plot shows how market share for a given prod- 
uct depends on that product's share of the total installed base. The phase plot is 
analogous to the phase plot for the nonlinear Polya process shown in Figure 10-6. 
The fraction of the installed base of a given product is analogous to the proportion 
of stones of a given color already in the jar. Market share is analogous to the prob- 
ability of adding a stone of a given color to the jar. 

As in the prior phase plots, the fixed points (points where the phase plot 
crosses the 45" line) are equilibria for market share (Figure 10-27). Whenever the 
curve defining market share lies above the 45" line, market share for firm 1 ex- 
ceeds firm 1's share of the installed base, causing firm 1's share of the installed 
base to rise. The trajectory of the system flows along the market share curve to the 
right, toward a higher share of the installed base, until share reaches equilibrium at 
a fixed point where it meets the 45" line. Conversely, when the phase plot lies be- 
low the 45" line, firm l 's  market share is less than its current share of the installed 
base, so its share of the installed base will fall. The trajectory of the system flows 
along the phase plot to the left until it comes to another equilibrium where it meets 
the 45" line. 

Because the share of installed base rises whenever market share is above the 
45" line and falls whenever market share is below it, the stability of any equilib- 
rium point is easily determined from the phase plot. If the slope of the phase plot 
at an equilibrium point is greater than 1, that equilibrium point is unstable. A slight 
increase in the product's share of installed base causes an even greater increase in 
market share, further boosting the product's share of the installed base and pro- 
gressively moving the system away from the equilibrium. A slight decrease in the 
product's share of installed base causes a larger drop in market share, further re- 
ducing the share of installed base and moving the system farther to the left, away 
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FIGURE 10-27 
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from the equilibrium point. When the slope of the phase plot is greater than unity, 
the system’s dynamics are dominated by the positive feedbacks. When, however, 
the slope of the phase plot at an equilibrium point is less than 1, then a slight drop 
in product 1’s share of the installed base causes a smaller drop in market share. 
Since market share exceeds the current share of the installed base, the share of the 
installed base will increase, raising market share and moving the system back to- 
ward the equilibrium point. An increase in installed base has a similar compen- 
satory effect because the market share rises by less than the installed base, diluting 
the installed base until the system returns to the original equilibrium. 

When the slope of the phase plot is less than unity, the system’s dynamics are 
dominated by negative feedback. Because in general the phase plot is nonlinear, its 
slope varies, and as it does, so too does the relative importance of the positive and 
negative loops in the system. Points where the slope of the phase plot shifts from 
less than 1 to greater than 1 mark shifts in loop dominance from net negative to net 
positive feedback. 

Figure 10-28 shows the phase plot for the market share model. The phase plot 
shows the market share of firm 1 as a function of the proportion of product 1 in the 
total installed base. However, unlike the nonlinear Polya process (Figure 10-6), the 
strength of the positive network effect loop grows as the total installed base grows. 
Therefore the shape of the phase plot relating firm 1’s market share to its fraction 
of the total installed base changes as the total installed base grows. The figure 
shows four of these curves, for situations where the competitor’s installed base is 
0.10, 0.50, 1, and 2 times the size of the threshold for compatibility effects. The 
system always has an equilibrium where the market share and share of the total 
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FIGURE 10-28 
Phase plot for network effects 
model 
The phase plot shows the market 
share of firm 1 as a function of its 
share of the total installed base. 
Thle function depends on the size of 
the installed base of the competitor 
and is shown for four values of the 
competitor’s installed base relative 
to the threshold for compatibility 
effects (13, = Inlstalled Base 
Product 2Rhreshold for 
Compatibility Effects). The arrows 
show the direction of flow for each 
curve. 
To derive the phase plot, note that 
market share for firm 1 is given by 
the logit model 

MS1 = Ai/(Al + A2) 

where MS is market share and A is 
the attractiveness of each product. 
Assuming the other effects on 
attractiveness have a neutral effect, 
attractiveness is determined only by 
the netwlork effect: 

A, = exp(s6,) 

where s = Sensitivity of 
Attractiveness from Compatibility 
and Bi is the installed base of 
product i relative to the threshold 
for compatibility effects. The ratio 
of the installed base of product 1 to 
the total iinstalled base, R, is 

R = B1 /(Bl + B,). 

Expressing B, ELS B,R/( 1 - R) and 
substituting into the equation for 
attractiveness yields market share 
for product 1 as a function of 
product 1’s share of the total 
installed Ibase: 

IMS1 = exp[s(R/(l - R))B,]/ 
(exp[s(R/(l - R))B,] + exp[sB,]}. 

The four curves in the figure 
assume U2 = 0.1, 0.5, 1, and 2. 
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installed base are 50%. However, the shape of the curves, and the 
number and stability of equilibria, change dramatically as the 
market grows. 

When the total installed base of the industry is small, the net- 
work effect is weak. The curve in Figure 10-28 labeled B, = 0.1 
shows how market share evolves when the competitor’s installed 
base is just 10% of the threshold for compatibility effects. When 
the installed base is very small, the network effect is so weak that 
the equilibrium at 50% of the installed base is stable (the phase 
plot crosses the 45” line at 50% share with a slope less than 1). 
Over a wide range, random shocks affecting market share are 
self-correcting: to the extent a shock moves the system away 
from 50%, market share adjusts to compensate, gradually return- 
ing the installed base to a ratio of 1: 1.  Note that there are two ad- 
ditional equilibria: an unstable point when the share of installed 
base is about 90% and a stable point when the share of in- 
stalled base is 100%. To dominate the market when the total 
installed base is small, firm 1 would have to have at least 90% of 
the installed base. 

As the total installed base rises, the positive network effect 
loop grows stronger. The slope of the phase plot at the 50% point 
rises, and the unstable equilibrium point at 90% share moves to 
the left. When the competitor’s installed base is half the threshold 
(the curve labeled B, = O S ) ,  the slope of the phase plot at the 
50% equilibrium is just about equal to 1. At this point, the initial 
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50% equilibrium is bistable: market share now always lies above the 45” line. If 
the share of installed base for firm 1 drops, market share rises, compensating for 
the disturbance and returning the share of installed base to 50%, but an increase in 
installed base causes an even greater rise in share, moving the system away from 
the 50% equilibrium. If random shocks initially give firm 1 a small advantage in 
installed base, market share will tend to rise further until firm 1 dominates the mar- 
ket and reaches the stable equilibrium at 100% of the installed base. 

Further growth in the total installed base continues to increase the strength of 
the positive network effect loop until it dominates the dynamics of the system. 
When the competitor’s installed base is equal to the threshold (the curve labeled 
B2 = l), the slope of the phase plot at the 50% equilibrium is greater than 1, and 
the equilibrium at 50% is unstable. There are now two stable equilibria: one at 
100% of the installed base and one at about 20%. The positive loops dominate the 
system. The firm that gains the largest share of the installed base wins an even 
larger share of the market and begins to consolidate its dominance of the industry 
while those finding themselves with the smallest shares of the installed base fall 
farther and farther behind. 

As growth continues, the strength of the positive network loop rises still more, 
further accelerating the leader’s rise to dominance. By the time the competitor’s in- 
stalled base has reached twice the threshold (the curve labeled B2 = 2), the phase 
plot is quite steep around the 50% equilibrium and the two stable equilibria have 
moved closer to 0 and 100%. The positive loops are now so strong that lock in to a 
single standard is quite rapid and the chance that any random shocks or policies 
might reverse the outcome is vanishingly small. 

10.8.3 Policy Implications 
The model results have clear implications for firms seeking to use positive feed- 
backs such as network effects to gain a decisive market share advantage and elim- 
inate their competitors. When a new product is first introduced to a market where 
no prior standards have been established, the network effect is likely to be quite 
weak. Market share will be determined primarily by other product attributes such 
as quality, price, features, and so on. During this period, a late entrant might, by of- 
fering a superior product, aggressive pricing, joint ventures with providers of com- 
plementary assets, and other means, overcome the first mover’s advantage in 
installed base and take leadership of the industry. The window of opportunity for 
such action is limited, however. As the market grows, network effects and the 
availability of complementary products (e.g., compatible prerecorded tapes for 
VCRs, compatible software for computers) grow in importance. A firm that estab- 
lishes a lead in installed base, in the availability of complementary assets, and in 
the perception that it is the market leader is likely to gain an edge in market share 
that leads to further gains in a self-fulfilling prophecy. As the installed base grows 
and the network effects become even stronger, the chance that a late entrant can 
overcome the advantage of the first mover declines rapidly, both because the total 
installed base is growing (requiring the upstart to sell more units) and because 
compatibility becomes a more and more important determinant of customer pur- 
chase decisions (giving the current leader more of an edge). 
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These dynamics describe what happened in the VCR industry and help explain 
why Sony, as the first mover, was unable to convert its early lead into market dom- 
inance despite the large number of positive feedbacks conferring cumulative ad- 
vantage to the leader. When VHS was introduced, the installed base of VCRs was 
so small that compatibility was not yet an issue for most customers. Other attributes 
of product attractiveness dominated in the purchase decision. Whereas Sony, hop- 
ing to monopolize the format they believed would become the industry standard, 
kept tight control of the technology, thus restricting its availability and keeping the 
price relatively high, Matsushita decided to license VHS widely and cheaply. The 
VHS consortium, though the later entrant to the market, was able to gain the largest 
share of the market just at the point where total sales growth exploded and rapidly 
overcame the initial installed base advantage of Betamax. VHS became the leader 
around the time film studios began to issue films for the home video market. Once 
the film studios decided to produce tapes for the home market, compatibility 
became the dominant attribute of attractiveness in the purchase decision of most 
customers, and film studios chose to issue tapes in the most prevalent format. 
Matsushita’s strategy gave them the lead in share of VHS tapes just at the time 
compatibility became critical. Though Sony tried to fight back by lowering prices 
and encouraging production of Betamax format tapes, the window of opportunity 
had shut. The growth of the installed base had strengthened the network effects so 
much that VHS’s lead could not be overcome. The fate of Betamax was sealed. 

Policy Analysis 
Use the model developed in section 10.8 to explore the policies suggested below. 
In these tests, start your simulations at time zero, with the parameters described in 
Table 10-2. However, you should eliminate the random shocks by setting the stan- 
dard deviation of random effects on attractiveness to zero. 

1. Suppose firm 1 attempts to gain initial advantage by seeding the 
marketplace with some free units, so that at the start of the simulation the 
installed base of firm 1 is 10,000 units, while firm 2’s initial installed base 
remains 1 unit. Run the model. What is the initial market share of firm l?  
What happens to market share over time, and why? 

2. Suppose firm 2 attempts to counter firm 1’s effort to win the market by 
doling out 10,000 free units of its own product. However, it takes time for 
firm 2 to react, so the free units of firm 2’s product don’t begin to reach the 
market until 6 months have passed. Suppose further that it takes 1 year to 
distribute all 10,000 units. 
To implement this policy, modify the equation for Sales of Product 2 as 
follows: 

Sales of Product 2 = Total Demand * Market Share Product 2 + Extra Sales of 
Product 2 * PULSE(Extra Sales Start Time, Duration of Extra Sales) 

Extra Sales Start Time = 0.5 

( 10-2a) Duration of Extra Sales = 1 
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where 

1 if Start Time d Time 5 Start Time + Duration 
( IO-2a) Duration 0 otherwise 

3. 

4. 

5. 

6. 

The PULSE function is zero until the Start Time, then takes a value of 1 for 
Duration time units, and returns to zero thereafter. 
The modified equation therefore increases sales of product 2 at a rate of 
10,000 units per year for 1 year starting at time 0.5 years, increasing the in- 
stalled base of product 2 exactly 10,000 units, all else equal. 
Does firm 2’s policy of seeding the market with 10,000 extra units to 
counter firm 1’s initial 10,000 unit advantage work? Why/why not? 
How many units must firm 2 add to its sales rate over the course of a year 
starting at time 0.5 to overcome firm 1’s initial advantage and win the mar- 
ket? Estimating this quantity to the nearest 1000 unitdyear is sufficient pre- 
cision. 
Suppose firm 2 waits until year 5 to counter firm 1’s advantage (again, 
firm 1 starts with an initial installed base of 10,000 units and firm 2 starts 
with 1 unit). How many units must firm 2 now add to its installed base over 
the course of 1 year to overcome the lead of firm 1 and capture the market? 
Why? Estimating this quantity to the nearest 10,000 units per year is suffi- 
cient precision. 
What do you conclude about the optimal strategy for a firm in markets char- 
acterized by strong positive network effects? How would you implement 
the winning strategy? What considerations might temper or reverse this 
conclusion? 
What other strategies besides free distribution of product might a firm use to 
counter the initial advantage of a rival? Give examples. 

Extending the Model 
This challenge invites you to relax some of the model’s simplifying assumptions to 
explore the sensitivity of the results to alternative representations of industry and 
firm structure. 

1.  Turnover of the installed base: In the simple model there is no outflow 
from the installed base of product. In reality, products such as VCRs and 
computers wear out or are replaced by improved products. Revise the model 
to include product discards and turnover of the installed base. Assume the 
average lifetime of both products is the same and equal to 5 years. Also 
assume the discard process is first-order, that is, that the discard rate equals 
the installed base of each product divided by the average lifetime. 
Assume every person or household discarding the product purchases a 
replacement. You will therefore need to modify the equation for total 
demand to include the replacement demand, consisting of the sum of the 
individual discard rates. 
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2. 

Explore the behavior of the revised model for different values of the 
product lifetime (setting the average lifetime of the product to a very large 
number [such as one trillion] gives you the base case of the original model). 
What is the effect of discards on the rate at which the system locks in to a 
standard? Explain in terms of the feedback structure. Hint: Plot the market 
share and share of installed base for firm 1. How does their relationship 
change as the average lifetime of the product changes? 
The simple model aggregates many positive feedbacks into a single effect 
of installed base on product attractiveness. However, the network effect 
is only one of many important positive loops. The availability of comple- 
mentary resources is often even more important. VCRs without compatible 
tapes and computers without compatible software are useless; the Dvorak 
typewriter keyboard is faster than the QWERTY keyboard but is useless 
without Dvorak-trained typists. Aggregating the effect of complementary 
products into the network effect is not generally appropriate because these 
two loops operate with different time delays and involve decisions made 
by different groups (complementary products can be produced by third 
parties). 
Modify the model to include the availability of complementary products 
explicitly. To do so, make the following assumptions: 
a. The total production of complementary products is divided into pro- 

duction of goods compatible with product 1 and production of goods 
compatible with product 2. 
The total production of complementary goods should be proportional to 
the total installed base of product 1 and product 2. The bigger the size 
of the market, the greater the output of complementary products (e.g., 
videotapes, software, typists) will be. 
Use the logit formulation to determine the share of total complemen- 
tary good production going to each product. The share of complemen- 
tary goods produced for each format is given by the attractiveness of 
that format relative to the attractiveness of all format options. The at- 
tractiveness of a given format to a producer of complementary goods 
depends on the size of the installed base of products using that format. 
Aggregate the effects of all other considerations into an exogenous 
term, “attractiveness of product i to third parties from other factors.” 
Production of each type of complementary good accumulates in a 
stock. Assume complementary goods have an average useful life of 
5 years (assume a first-order discard process). Unlike part 1 above, dis- 
cards of complementary goods are not automatically replaced (that is, 
the total production of complementary goods does not include the total 
discard rate). Assume the initial installed base of each type of comple- 
mentary good is zero (you may vary this as a policy later). 
Modify the formulation for the attractiveness of each product (equation 
(10-5)) to include an effect of the availability of complementary goods. 
The effect should be formulated analogously to the network effect. Se- 
lect parameters you think are reasonable (use the VCR case as a guide, 

b. 

c. 

d. 

e. 



406 Part I11 The Dynamics of Growth 

but don’t try to replicate the history of the VCR industry exactly-you 
are trying to build a general model). In particular, set parameters so that 
both the network and complementary goods effects are important and 
so the relative importance of the network effect and availability of 
complementary goods are reasonable in your judgment. Document 
your model (see chapter 21); include brief justification for your selec- 
tion of parameters. 
Test your model, refining the parameters if necessary. What is the im- 
pact of an explicit representation of complementary goods on the dy- 
namics of standard formation? Explain in terms of the feedback 
structure. Explore the sensitivity of the system to parameters. Explore 
the response of the system to policies, including 
i. Seeding the market with free units, as in the previous Challenge. 
ii. Seeding the market for complementary goods by ensuring there is 

an installed base of complementary goods compatible with your 
format when your product is launched. 
Entering into joint ventures or other agreements that increase the 
attractiveness of your format to producers of complementary 

f. 

... 
111. 

10.9 SUMMARY 
Path dependence is a common phenomenon in natural and human systems. Path 
dependence arises in systems dominated by positive feedback. Even when all paths 
are initially equally attractive, the symmetry is broken by microscopic noise and 
external perturbations. The positive feedbacks then amplify these small initial dif- 
ferences to macroscopic significance. Once a dominant design or standard has 
emerged, the costs of switching become prohibitive, so the equilibrium is self-en- 
forcing: the system has locked in. Lock in persists until an architectural shift or 
large external shock renders the dominant design obsolete. A wide range of posi- 
tive feedbacks drives the growth of businesses. The evidence suggests that the 
profitability of individual firms and the evolution of the economy as a whole is 
strongly influenced by these positive loops and exhibits path-dependent behavior. 
Successful firms are able to strengthen several of the positive loops that can drive 
growth to create synergies that leads to cumulative success. 

Path dependence in the economy is common because the growth of business 
enterprises is driven by a host of positive feedbacks. These feedbacks involve scale 
economies, learning, network effects, market power, and many other processes. 
The most successful firms are able to create synergy by using ensembles of these 
feedbacks to create a mutually consistent strategy. However, success with one set 
of these positive loops can lead to inertia and rigidity that prevent a firm that dom- 
inates in one regime from maintaining its dominance as the technical, economic, 
political, or social environment changes. 
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Delays 

Delay always breeds danger: 
-Miguel de Cervantes (Don Quixote, Book iv, Chap. ii.) 

Never do today what you can put off till tomorrow. Delay may give clearer 
light as to what is best to be done. 

-Aaron Burr 

Delays are a critical source of dynamics in nearly all systems. Some delays breed 
danger by creating instability and oscillation. Others provide a clearer light by 
filtering out unwanted variability and enabling managers to separate signals from 
noise. In this chapter you will explore the structure and behavior of delays, develop 
various models of delays, and test their response to a range of inputs. The chapter 
will help you understand the dynamics of delays so that you can use them 
appropriately in more complex models. The chapter also presents case studies 
highlighting the use of delays in various contexts, including capital invest- 
ment in the macroeconomy and forecasting demand at a successful semiconductor 
manufacturer. 

11 .I DEILAYS: AN INTRODUCTION 

Before considering how to model delays, reflect on some delays in common 
processes. Answer the following questions without using outside references or any 
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computer simulations; give your best intuitive estimate. Don’t spend more than a 
few minutes on this challenge. 

1. 

2. 

3. 

4. 

5.  

6. 

7. 

8. 

9. 

Manufacturing firms determine the amount of plant and equipment they 
need based on the demand they expect for their products as well as the 
expected profitability of the new equipment. Suppose there is a sudden, 
unanticipated 10% increase in orders for the firm’s product. How long does 
it take, on average, before the firm’s production capacity increases to the 
new level? Assume investments in new capacity are expected to yield the 
firm’s required return on investment. 
Suppose there is a sudden, unanticipated increase of 10% in the total 
demand for manufactured goods throughout the economy. How long does it 
take for the economy as a whole to increase total manufacturing capacity to 
the new rate of aggregate orders? 
Consider the market for agricultural commodities such as pork. What is the 
average delay between a rise in the price of pork and the resulting increase 
in pork supply? 
How long does it take economic forecasters to revise their estimates of 
inflation? That is, if there is an unanticipated increase in the inflation rate, 
how long will it take for the forecasts of the experts to adjust to the new 
rate? 
How long does it take a nation like the United States to respond to an 
environmental challenge such as air or water pollution? That is, what is 
the time required to recognize high levels of pollutants, such as carbon 
monoxide emitted by automobiles, and reduce them within safe limits? 
Consider the post office. Suppose you deposit a mass mailing of 1000 
letters-all sent first class-to various destinations around the country. 
Sketch the pattern of deliveries you expect, assuming no letters get lost. 
Consider a firm’s forecast of the order rate for its product. Suppose the 
actual order rate and the forecast have been equal for a long time. Now 
suppose the actual order rate suddenly and unexpectedly increases by 50% 
and remains at the new rate. Sketch the response of the forecast. 
Suppose it takes 5 days for a manufacturer to receive parts from a supplier. 
If the firm orders 10,000 units per day, how many units arc in the stock of 
parts on order? Suppose the parts order rate suddenly and unexpectedly 
increases to 20,000 per day and remains at the higher rate. Sketch the 
response of the delivery rate and of the stock of parts on order. 
Suppose the part order rate for the firm in question 8 remains constant at 
10,000 unitdday. Suddenly the time required to deliver the parts perma- 
nently increases from 5 to 10 days. Sketch the response of the delivery rate 
and the stock of parts on order. 
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Many delays represent the gradual adjustment of perceptions or beliefs; these 
are information delays. The delay between a change in the order rate for your com- 
pany’s products and your belief about the likely future order rate is an example of 
an information delay. Suppose orders for your product have been steady at 1000 
units per day, and you expect them to continue at that rate. Suddenly orders jump 
to 2000 unitdday. You are unlikely to immediately increase your belief about to- 
morrow’s orders to 2000 units. But if the order rate remains at 2000 unitdday, day 
after day, you will gradually increase your expectation of future orders until it 
eventually reaches the new rate. There is a delay between the receipt of new infor- 
mation and the updating of your beliefs. Though there is no physical flow of mate- 
rial, information delays still involve stocks. In the example, the stock in the delay 
is your belief about future orders, a psychological state residing in your mental 
model. In general, any belief or perception involves an information delay because 
we cannot instantaneously update our mental models as new information is re- 
ceived. Other examples of information delays include averages such as the average 
production rate of a product. As shown below, information delays do not involve 
conserved flows and cannot be modeled with the same structures used for material 
delays. 

11.2 MATERIAL DELAYS: STRUCTURE AND BEHAVIOR 
Having defined the stock and flow structure for a material delay (Figure 11-l), it is 
necessary to formulate a decision rule (equation) for the outflow rate. In many sit- 
uations the outflows from stocks are constrained by various resources and you 
must explicitly model the way these resources determine the outflow (see chapters 
13 and 14). Production cannot occur without labor, materials, capital, and other re- 
sources. The capacity of the delay is sometimes high enough relative to the inflow 
rates that you can assume the outflow depends only on the past inflows. In model- 
ing the commercial real estate market of a city you might conclude that the capac- 
ity of the construction industry in the region is ample, or sufficiently flexible, and 
model the construction delay for new buildings as a constant. You might model the 
diffusion of dioxin through a town’s groundwater supply as a pure delay with a 
constant delay time based on the characteristics of the soil and subsurface mor- 
phology. In such pure delays the process governing the outflow from the stock of 
material in transit depends only on how much material is in transit and how long 
it’s been there, not on any external resources. Tlie delay time is independent of the 
input or stock in transit, and the process is linear. Such pure delays are modeled as 
uncapacitated queuing processes. 

The assumption that a delay is not capacity constrained is always an approxi- 
mation and holds only over a certain range of inputs. If the real estate market in the 
city booms, orders for new buildings may outstrip the capacity of the construction 
industry, and the average delay between commissioning a new building and its 
completion will increase. In these cases the resources constraining the capacity of 
the process must be modeled explicitly. 

You must answer two principal questions for every delay. First, what is the av- 
erage length of the delay? Second, what is the distribution of the output around the 
average delay time? 
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FIGURE 11 -2 
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11.2.1 What Is the Average Length of the Delay? 
How long, on average, does it take items to flow through the delay? Equivalently, 
what is the average residence time for a unit in the delay (how long on average 
does a unit stay in the stock of material in transit)? 

For the US post office, the average delay for domestic first class mail might be 
on the order of 2 days. For email, the average delay between sending and receiv- 
ing messages via the internet might be on the order of a few seconds. (In what 
stock(s) do your emails reside between the time you send them and the time they 
are received?) In any application, the length of the delay is an empirical issue to be 
investigated by data collection and field study (see section 11 3. 

11.2.2 What Is the Distribution of the Output 
around the Average Delay Time? 

What happens once items enter the delay? Are they processed first-come, first- 
served or is there some mixing and reshuffling? Do all units spend the same time 
in the delay, or is there some variation around the average, with some units flow- 
ing through the delay faster and some slower than average? Figure 11-2 shows 
some possibilities for the outflow from a delay. 

The figure shows the response of several different delays to a pulse input. 
A pulse input is analogous to a mass mailing of a large number of letters: a certain 
quantity of material is injected into the delay at a single instant.' The figure shows 

'The pulse function, also known as the Dirac delta function S(t), is the limit of a rectangular 
pulse starting at time T, with duration (width) W and height I/&', as the duration of the pulse goes 
to zero: 

0 for t 5 T 

0 fort > T + W 
S(t, T) = limS(t, T, W) = for T < t 5 T + W 

w-0 

The pulse function has an area of unity; thus an arbitrary pulse input of Q units at time T is given 
by QS(t, T). In simulation models, QS(t, T) is approximated by a rectangular pulse with a duration 
equal to the simulation time step DT and a height of Q/DT. 
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the output of the delay as a percent per time period of the total quantity input to the 
delay at time zero. In all four cases the average processing time is the same. One 
possibility (Outflow A) is that the items entering the delay all proceed through the 
delay in exactly the same order and exit after exactly the same time. In this case, 
the output of the delay is also a pulse exiting the delay exactly 1 delay time after 
the pulse input. An automobile assembly line approximates a pipeline delay. The 
cars move down the line in sequence, each exiting in the same order they entered. 
When the line is running smoothly the delay time or residence time in the delay is 
the same for all and the order of entry determines the order of exit. In the language 
of queuing theory, the service discipline of the assembly line is FIFO (first in, 
first out). 

The term service discipline refers to the decision rule for choosing which of 
the units in the stock of material in transit will be processed and exit first. Other 
types of service discipline include LIFO (last in, first out), a common situation in 
my kitchen pantry, where the most recently purchased items are often placed at the 
front of the shelves and are then used first because they block the older items be- 
hind them. When you rotate your stock to reduce spoilage you are shifting from 
LIFO to FIFO discipline. Many other rules are possible, including random selec- 
tion or selection based on some other attribute, as when candidates for organ trans- 
plants are selected based on how sick they are or the chances of success rather than 
on how long they’ve been on the waiting list.2 

When large numbers of items or multiple servers are aggregated together, ser- 
vice discipline is often neither strictly FIFO nor LIFO. If you mail a large number 
of letters all at once, they will not all be delivered at once. There will be a distrib- 
ution around the average delivery time, with some letters arriving sooner than av- 
erage and some arriving later. The variation arises because the letters are destined 
for different recipients, and the travel times to each destination differ. More im- 
portant, unlike car bodies on the assembly line, letters are not processed in the 
same order they are mailed. During the various stages of processing, the letters are 
mixed with others. Sorting the letters by destination so they can be routed properly 
causes some of the mixing. Some is inadvertent as when the contents of a corner 
mailbox are dumped into a bin for transport to the local branch. 

The consequence of mixing is some randomization of the processing order. 
Another source of dispersion in the outflow distribution is caused by random vari- 
ations in the processing time itself. Consider the checkout delay at a supermarket. 
You might choose to model the checkout process as a single material delay where 
the inflow rate is the rate at which shoppers join a checkout line and the outflow 
rate is the rate at which they leave the market. Variations in the amount of food in 
each shopper’s basket and in the speed of the clerks mean the processing time for 
each customer and each checkout lane can differ. Customers joining the checkout 
line next to yours after you do sometimes leave before you do, so the order of exit 
is not the same as the order in which people queue (as everyone knows, the line 
you are in is always the slowest). 

*Zenios, Chertow, and Wein (forthcoming) develop a dynamic model to evaluate various 
policies for allocating kidneys to transplant candidates. 



Chapter 11 Delays 41 5 

These sources of dispersion mean that in general, when many items are intro- 
duced into a delay at one time, some items will exit earlier than others, spreading 
out the distribution of the delivery rate. The response of a delay to a pulse input 
such as shown in Figure 11-2 can be thought of as the probability distribution de- 
scribing the likelihood that any given item is delivered at a particular time. Distri- 
bution A has no variability in delivery times. Distributions B-D have different 
degrees of mixing; of these, distribution B has the most variability in delivery 
times, while distribution D has the least. All four distributions A-D have the same 
average delay time, and all conserve the inflow, so the area under each distribution 
is the same (100% of the inflow eventually exits from the stock of material in tran- 
sit, or, equivalently, the probability that any given letter is eventually delivered 
is 100%). 

In specifying delays, you must consider not only the average length of the de- 
lay but also the distribution of deliveries around the mean delay. Sometimes you 
can estimate the output distribution from the data. Other times you must estimate 
it by direct inspection of the delay process to see whether there is mixing or strict 
FWO discipline and whether the processing time of individual items is constant or 
varies randomly from item to item. 

11.2.3 Pipeline Delay 
As in the example of the auto assembly line, you sometimes need to model a delay 
in which the delay time is constant and in which the order of exit from the delay is 
precisely the same as the order of entry. To do so requires apipeline delay, also 
known as transportation lag (the metaphor is an assembly line in which items are 
transported in order and at a constant rate; Figure 11-3). 

In the presentation below the inflow to the delays will be exogenous. Explor- 
ing the response of different delays to idealized exogenous inputs such as a pulse, 
step, ramp, and fluctuation helps develop your intuition for their behavior so 
you can select the appropriate type in any modeling situation. Of course, in your 
models the inputs to delays will in general be an endogenous part of the feedback 
structure. 

The stock of material in transit for any material delay is given by 

Material in Transit = INTEGRAL(Inflow(t) - Outflow(t), Material in Transit(0)) 
(11-1) 

For the pipeline delay, the outflow is simply the inflow lagged by the average de- 
lay time D: 

Outflow(t) = Inflow(t - D) (11-2) 

Distribution A in Figure 11-2 is a pipeline delay: When the inflow is a pulse, the 
outflow is a pulse exactly D time units later. There is no mixing in the processing 
order, nor any variation in individual processing times; the delay time for each item 
equals the average delay time. 

11.2.4 First-Order Material Delay 
Many delays do not approximate a pipeline delay; there is mixing and variation 
in the individual processing times, causing some variance in the distribution of 
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In a pipeline delay individual items exit the delay in the same order and after exactly the same time, 
like widgets moving down an assembly line at a constant speed. 

Inflow Rate I Material in Transit I Outflow Rate 

Material in Transit(t) = INTEGRAL(InfIow(t) - Outflow(t), Material in Transit(0)) 
Outflow(t) = Inflow(t - Average Delay Time) 

deliveries. Consider an example at the opposite extreme from a pipeline delay, say, 
water draining from a sink. Further imagine that the water in the sink is thoroughly 
mixed at all times (Figure 11-4). 

In the case of perfect mixing, the probability that any particular water mole- 
cule is the next to flow out of the sink is the same for all the molecules in the sink, 
independent of how long that molecule has been in the sink. Perfect mixing means 
the order of entry is irrelevant to the order of exit. Put another way, perfect mixing 
destroys all information about the order of entry. 

The outflow from a first-order material delay is always proportional to the 
stock of material in transit: 

Outflow = Material in TransitD (11-3) 

where D is again the average delay time. Note that the only inputs to the outflow 
rate are the stock of material in transit and the delay time; information about 
the order of entry of individual items to the stock is not used to determine the out- 
flow rate. 

Equation (1 1-3) is the familiar linear first-order negative feedback system 
(chapter 8). The outflow rate forms a negative feedback loop since the greater the 
stock of material in transit, the greater the outflow, lowering the stock. Distribu- 
tion B in Figure 11-2 shows the response of a first-order material delay to a pulse 
input. The response is the familiar pattern of exponential decay (Figure 11-5): 
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FIGURE 11-4 , 
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Immediately after the pulse, the stock of material in transit jumps up to 100% of 
the quantity added by the pulse input. The outflow rate immediately rises to 
lOO%/D units per time period. Since the outflow now exceeds the inflow, the stock 
of material in transit starts to fall. As it falls, so too does the outflow rate, so the 
stock of material in transit and outflow rate fall at diminishing rates. The initial 
outflow rate would deplete the stock in transit in 1 delay time, but as the stock in 
transit falls, so does the outflow rate. After 1 delay time has passed the stock in 
transit has fallen by 63%; after 2D periods, 86% of the items have been delivered; 
and after 3D periods, 95% have been del i~ered.~ 

11.2.5 Higher-Order Material Delays 
Pipeline delays, with their rigid FIFO service discipline, are good models for some 
processes such as assembly lines. First-order delays, with their assumption of per- 
fect mixing, are reasonable models of other delay processes, such as chemical and 
heat diffusion in physical and biological systems, and some analogous diffusion 
processes in social systems. Between these extremes lie many intermediate cases 
where there is some mixing in the processing order. In these cases the outflow 

3Recall that exponential decay is given by S = Soexp(-t/D) so when t = D, the stock S has 
fallen to exp(- 1) = 0.37 of its initial level. See chapter 8. 
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gradually rises, reaches a peak, and then tails off to zero, similar to distributions 
C and D in Figure 11-2. Consider again the post office. Letters do not all arrive at 
one time, as in a pipeline delay, but neither is the delivery rate greatest immediately 
after your letters are mailed. Though letters are not processed in lockstep, neither 
is the order of delivery independent of the order of mailing. There is partial mix- 
ing. Partial mixing can arise when a delay consists of multiple stages of processing 
in which items flow sequentially from one stage to the next, but where each stage 
introduces some mixing. 

For the case of the post office, you can easily identify many stages of process- 
ing. Letters first go into the corner mailbox; then onto the truck that collects the 
mail; then into bins at the local post office; then, after sorting, onto trucks for de- 
livery to the central post office; then through more stages of sorting and process- 
ing; then onto trucks, trains, or planes for transport to the destination cities; then to 
the local post offices in the destination communities; and so on until they arrive at 
the mailboxes of the recipients. Each stage introduces some mixing and variability 
in individual processing times. If the purpose of your model was to reengineer the 
post office workflow system you might have to represent all these stages separately 
and explicitly account for the different delay times and capacities of each stage. 
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You would have a very detailed model indeed. For other purposes, such detail 
would not be necessary and a pure delay might be appropriate. 

In many settings the stages of processing in such a system can be approxi- 
mated well by cascading several first-order material delays together in series. For 
example, a second-order material delay consists of two first-order delays in which 
the input to the second stage is the output of the first stage (Figure 11-6). 
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The total stock in transit is the sum of the stock in transit at each stage. The av- 
erage total delay from inflow to outflow is the sum of the average delays of the in- 
dividual stages. In this fashion you can construct delays with an arbitrary number 
of stages. Delay times for the individual stages can differ, if the data and model 
purpose warrant it, though often it is fine to assume each stage has the same delay 
time. A delay with n stages, each with l/n of the total delay time, is known as an 
nth-order material delay. The equations for the nth-order material delay, denoted 
by the function DELAYn, are 

Outflow = DELAYn(Inflow, D): 

Total Material in Transit = 

Material in Transit, = INTEGRAL(Net Inflowi, Material in Transit,(O)) 

Material in Transiti(0) = Inflow * D/n 

I1 

Material in Transit, 
i = I  

Inflow - Exit Rate Stage, 

Exit Rate Stage,-, - Outflow 

for i  = 1 
Net Inflow rate, = Exit Rate Stagei-, - Exit Rate Stage, for i  E (2, . . . , n - 1) 

for i  = n 

Exit Rate Stage, = Material in Transiti/(D/n) for i E (1, . . . , n - 1) 

Outflow = Material in Transit,,/(D/n) 
(11-4) 

The initial condition Material in Transiti = Inflow * D/n initializes the delay in 
equilibrium so that the initial outflow equals the initial inflow. 

Distributions C and D in Figure 11-2 show the response to a unit pulse for a 
third- and twelfth-order delay, respectively. The higher the order of the delay, the 
less mixing and the smaller the variance of the output. In the limit, an infinite-or- 
der delay consists of an infinite number of stages each with an infinitesimal delay 
time. Such a delay provides one bin or stock of material in transit for all items en- 
tering at a given instant and moves them from one stage to the next before the next 
set of items, entering in the next instant, are added. Thus an infinite-order delay 
preserves the order of entry and permits no mixing: it is equivalent to a pipeline 
delay. 

Figure 11-7 shows the pulse response of a third-order delay; Figure 11-8 shows 
the stocks and flows for the intermediate stages of processing. Immediately after 
the pulse, the stock of material in stage 1 jumps to 100% of the quantity added. 
Each stage of the delay is a first-order delay; in a third-order delay the average de- 
lay for each stage is one-third of the total delay. Thus the stage l exit rate is expo- 
nential decay with a time constant of D/3. The exit rate from stage 1 is the input to 
stage 2. The stock of material in transit in stage 2 rises as long as its input exceeds 
its output. At about time = 0.34D, the stock in stage 2 has risen enough for the exit 
rate of stage 2 to equal its inflow from stage 1. The stock in stage 2 peaks. From 
then on the stage 2 exit rate exceeds the inflow to stage 2, so the stage 2 stock in 
transit falls and with it, the stage 2 exit rate. Similarly, the stage 2 exit rate is the 
input to stage 3. The stage 3 stock in transit rises until its outflow equals the inflow, 
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which occurs at about t = 0.67D, then gradually falls off as the outflow from the 
delay exceeds the inflow to stage 3. 

Similar dynamics apply to delays with order higher than 3.  Referring back to 
Figure 11-2, note that, except for the pipeline delay, the peak response of material 
delays of order n precedes the mean delay and there is a long tail in the distribution 
of deliveries: many items are delivered earlier than average, but some are delivered 
much later. Note also that as the order of the delay increases, and hence as the de- 
gree of mixing decreases, the delivery distribution tightens up: fewer items are de- 
livered earlier than average, more are delivered near the average delay time, and 
fewer are delivered much later than average. The higher the order of the delay, the 
smaller the variance in the delivery distribution. 

11.2.6 How Much Is in the Delay? Little’s Law 
The stock of material in transit accumulates the difference between the inflow and 
outflow to the delay. It’s important to know how big the stock in transit will be for 



422 Part IV Tools for Modeling Dynamic Systems 

FIGURE 11 -8 
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any given delay and inflow. Suppose the inflow has been constant long enough for 
the delay to reach equilibrium. How big is the stock in transit? Consider the 
pipeline delay with input I, output 0, and delay time D: O(t) = I(t - D). Suppose 
the inflow and stock in transit are initially zero. At time zero the inflow suddenly 
increases to a constant level I. The outflow will continue to be zero until D periods 
have passed. During this time, the stock in transit S is increased by I units each 
period. After D periods, 0 = I and the stock of material in transit reaches equilib- 
rium. The equilibrium quantity in transit is therefore DI units.4 

4The stock in transit for any delay with input I and output 0 is 

S(t) = [I(s) - O(S)]~S + S(0) ld 
For a pipeline delay with S(0) = 0 and a step increase in the input from 0 to I unitdperiod at time 
zero, O(t) = 0 for t < D and I for t 2 D, so the equilibrium value of the stock in transit S, is 

S, = hD [I - O]ds + lDW[I - I]ds = DI 
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Now consider a first-order delay (equation (1 1-3)). The outflow of a first-order 
delay is 0 = S/D. Since in equilibrium the inflow and outflow are equal, the 
equilibrium stock in transit is DI units, the same as that for the pipeline delay. In 
fact, the equilibrium stock in transit for a delay is always DI units, regardless of 
the probability distribution of the outjlow. This remarkable property is known as 
Little’s Law, after John Little, an MIT professor of operations research who first 
proved it. Little’s Law means that in equilibrium, the stock in transit is fully 
characterized by the average delay time and inflow rate. By Little’s Law, a firm 
ordering 10,000 widgets per day from a supplier requiring 5 days to deliver 
will, in equilibrium, have 50,000 widgets on order, independent of the delivery 
distribution. 

Little’s Law helps explain how delays give systems inertia. If business goes 
sour and the company cuts part orders to zero, its widget inventory will still swell 
by an additional 50,000 units before deliveries from the supplier can be cut off (as- 
suming no order cancellations are possible). 

Little’s Law can also be used to estimate the average length of a delay from 
knowledge of the stock in transit and flows through the delay. In equilibrium, the 
average residence time of items in the delay is given by the ratio of the stock in 
transit to the outflow rate, D = S/O = S/I. Thus if an insurance company has a 
pending pool of 50,000 unresolved claims and settles an average of 25,000 per 
month, the average time claimants wait to receive payment is 2 months. Again, this 
measure of delivery time holds strictly only in equilibrium. 

Example: Construction Delays in the Electric Utility Industry 
Little’s Law has dramatic implications for the cash flow and financing require- 
ments of a business. Consider the electric power industry. Up through the early 
1970s typical lead times for new plants were about 5 years and the average service 
life of plants was about 20 years. If the demand for power was constant, an in- 
vestor-owned utility with 10 gigawatts (gw, billion watts) of capacity would there- 
fore need to add an average of 0.5 gw of capacity per year to replace retirements of 
old plants. With a 5-year construction delay, the utility would have to have-and 
finance-2.5 gw of capacity under construction at all times, one-quarter of its 
existing capacity. In the 1970s, lead times for large plants increased as utilities 
built larger and larger plants in a search for returns to scale and as environmental 
and regulatory constraints lengthened permitting delays. Lead times rose to about 
10 years for large coal plants and even longer for nuclear plants. To offset the re- 
tirement of old plants when the lead time is 10 years, construction work in progress 
must double to 5 gw, half of capacity. 

In reality, the situation was far worse, since the demand for power was grow- 
ing at about 7%/year through the early 1970s. To offset the retirement of old plants 
and increase capacity 7%/year, a 10 gw utility would need to complete construc- 
tion of 1.2 gw that year. With a 5-year construction delay, the utility would need to 
start construction of 1.8 gw of capacity and would have to finance the construction 
of about 7.2 gw of capacity under construction. 

When the construction time doubles to 10 years, the required completion rate 
of 1.2 gw forces the utility to start construction of 2.4 gw of new capacity and 
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finance more than 17.4 gw of capacity under construction-a 240% increase and 
an investment greatly exceeding the book value of existing ~ a p a c i t y . ~  Orders for 
power plants surged in the mid 1970s, as utilities tried to respond to the rising lead 
times. Huge debts were taken on to finance the ever-greater stock of construction 
work in progress. In many cases, electric power rates were raised to enable utilities 
to service these debts. However, as higher rates (and lower than expected eco- 
nomic growth) caused power demand to fall, the utilities suddenly found them- 
selves carrying debt for power plants they didn’t need. Orders for new plants 
plummeted, and many were canceled, but as the huge stock of plants under con- 
struction continued to come on line, the industry found itself with excess capacity. 
Profits fell and rates rose still more. In some regions, the higher rates led to even 
lower growth in power demand, forcing rates even higher, in what many analysts 
called the “spiral of impossibility.” A number of major utilities went bankrupt dur- 
ing this period, especially those building large, long lead-time plants. The excess 
capacity lasted through most of the 1980s. Many forward-thinking utilities realized 
that power plants with short planning, permitting, and construction times were a 
better investment even though their costs per kilowatt of capacity were higher: In 
an environment of uncertain demand growth, the value of improved cash flow and 
lower risks of having the wrong capacity exceed the generation cost savings of- 
fered by larger, long lead time plants (Ford 1997). 

5This example is adapted from Ford (1997). Note that Little’s Law holds only in equilibrium. 
When the inflow to a delay is growing the steady state size of the stock in transit is not indepen- 
dent of the outflow distribution. The calculations in the text assume the construction process for 
power plants is characterized by a pipeline delay. In this case, the construction completion rate 
C(t) = S(t - D), where S is the construction start rate and D is the construction delay. In the steady 
state of exponential growth at fractional rate g/year, the start rate must therefore be Cexp(gD). 
Given a 5-year construction delay and 7%/year demand growth rate, completion of 1.2 gw/year 
requires the start rate to be 1.2exp(0.07 * 5 )  = 1.70 gw/year; and a 10-year completion time yields 
S = 1.2exp(0.07 * 10) = 2.42 gw/year. At any time t the stock of capacity under construction 
CUC is 

CUC = fm[S(s) - C(s)]ds 

Without loss of generality, assume the construction completion rate is C, gw/year at time zero. In 
the steady state of exponential growth, the stock of capacity under construction at time zero is then 

C(t)]dt = [exp(gD) - 

With C, = 1.2 gw/year and g = 0.07, a 5-year construction delay requires construction work in 
progress to be 1.2[exp(0.07 * 5 )  - 1]/0.07 = 7.18 gw; with a 10-year delay construction in progress 
rises to 1.2[exp(0.07 * 10) - 1]/0.07 = 17.38 gw. To test the sensitivity of this calculation to the as- 
sumed distribution of power plant deliveries, consider the extreme assumption that the construction 
delay for power plants is first-order (the actual distribution of the delay outflow must be much 
closer to a pipeline delay). Then a construction completion rate of C, gw/year requires COD gw 
under construction, or 6 gw for a 5-year delay and 12 gw for a 10-year delay. For the stock of 
capacity under construction to grow at fractional rate g requires 

dCUC = S - C, = gCUC - S - Co = gC,D 3 S = C,(1 + gD) dt 

implying S = 1.62 gw/year for a 5-year delay and S = 2.04 gw/year for a 10-year delay. 
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Example: Accumulation of Toxic Compounds in the Food Chain 
Little’s Law also helps explain why toxins such as dioxin accumulate in the food 
chain and in humans and may cause significant health problems even though their 
concentration in the environment is very low. The dioxin family (including some 
furans and PCBs [polychlorinated biphenyls]) are widely considered to be among 
the most potent carcinogens known. They are also estrogen mimics that may dis- 
rupt endocrine and reproductive function and have been associated with learning 
disabilities. Dioxins and other chlorinated hydrocarbons commonly used in pes- 
ticides and herbicides are soluble in fat and persist in the body for years. The 
half-life of dioxin and related toxins in fatty tissue has been estimated to be 7 to 
11 years, corresponding to average residence times of 10 to 16 years.6 By Little’s 
Law, the equilibrium concentration of dioxin in any level of the food chain would 
be 10 to 16 years’ worth of average intake. Predators consuming those organisms 
would then ingest much higher concentrations than their prey. At each level of the 
food chain, the accumulation of toxins caused by the long degradation delay am- 
plifies the concentration of toxins. Some species of fish have dioxin concentrations 
100,000 times that of the surrounding water. 

While typical human intake rates of dioxin are very small, concentrations can 
build up to higher levels over a lifetime. Average daily exposure is estimated at 
3 to 6 picograms of dioxin toxic equivalent per kilogram of body weight per day 
(3 - 6 pg TEQ/kg/day), most of which we ingest in our diet.7 How can such small 
intake rates have any effect on human health? Besides the extreme toxicity of 
dioxin, the answer is the long residence time for dioxin in the body. Assuming a 
16-year half-life, the equilibrium concentration of dioxin in humans ingesting 6 pg 
TEQ/kg/day would be 35,000 pg TEQ per kilogram of body mass. This value is 
roughly consistent with, though somewhat smaller than, estimates of average loads 
of 40,000 to 100,000 pg TEQkg body mass, suggesting either the half-lives are 
longer or the intake rates are higher than currently thought. Note that Little’s Law 
applies only in equilibrium. In the dioxin example, it would take 40 to 64 years to 
reach the equilibrium level assuming a constant intake rate (a first-order delay ad- 
justs 98% of the way to equilibrium after 4 time constants), further suggesting that 
estimates of dioxin ingestion rates or its half-life in the human body are too low. 

Response of Material Delays to Steps, Ramps, 
and Cycles 
The discussion so far described the response of material delays to a pulse input, 
analogous to a single mass mailing of letters. Other common inputs used to test 
systems are the step (a sudden, permanent increase in the input from one rate to 

6Recall from chapter 8 that the half-life of an exponential decay process with time constant D is 

7A picogram is a trillionth of a gram (one part in 1OI2). A toxic equivalent converts the toxicity 
ln(2)D = 0.7D. 

of different dioxin-like compounds into the equivalent quantity of the parent compound in the 
dioxin family, 2,3,7&tetrachlorinated dibenzo-p-dioxin (2,3,7,8-TCDD). Sources for dioxin infor- 
mation: US EPA (1994); see also <www.epa.gov/futures/risk/nccr/dioxin.txt.html>. 
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another), the ramp (a sudden transition from a constant level to linear growth), ex- 
ponential growth, and cycles. To test your understanding of delays, do the follow- 
ing challenge before proceeding. 

1. Without using computer simulation, sketch the response of a first-order 
material delay with an average delay time of 5 days to the inputs shown in 
Figure 11-9. In all cases assume that prior to time zero the delay is in 
equilibrium with the outflow and inflow both equal to 100 unitdday. 
a. Step input. At time zero the inflow steps up to 200 unitdday and 

remains at the higher rate. 
b. Ramp input. At time zero the inflow starts to rise linearly at a rate of 5 

unitdday. 
Exponential growth. At time zero the input starts to grow 
exponentially at 5%/day. 
Oscillation. At time zero the input begins to fluctuate with an 
amplitude of i 100 units/day and a period of 10 days. 

c. 

d. 

2. After you have sketched your intuitive estimate of the response of the delay 
to these inputs, test your understanding by building a model of a first-order 
delay and simulating its response to these inputs. Were you correct? 

3 .  Repeat steps 1 and 2 for a third-order delay and for a pipeline delay. How 
does the order of the delay affect the response to the different types of 
inputs? Does the steady state response of the different delays differ? The 
steady state response is the behavior after a long time has passed and the 
relationship of input and output is no longer changing. How does the 
transient (short run) response of the different delays vary? 

4. Explore how the response of the different delays to the different inputs is 
affected by changes in the delay time. In particular, explore the response of 
the different delays to the fluctuating input for different delay times. 

11.3 INFORMATION DELAYS: STRUCTURE AND BEHAVIOR 
The discussion so far examines material delays in which the input to the delay is a 
physical inflow of items to a stock of units in transit and the outflow is the physi- 
cal flow of items exiting the stock. However, many delays exist in channels of in- 
formation feedback, for example in the measurement or perception of a variable, 
or in the updating of beliefs and forecasts, such as the perceived order rate for a 
firm’s product or management’s belief about future inflation rates. 

Why do perceptions and forecasts inevitably involve delays? All beliefs, ex- 
pectations, forecasts, and projections are based on information available to the de- 
cision maker at the time, which means information about the past. It takes time to 
gather the information needed to form judgments, and people don’t change their 
minds immediately on the receipt of new information. Reflection and deliberation 
often take considerable time. We often need still more time to adjust emotionally 
to a new situation before our beliefs and behavior can change. 
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FIGURE 11-10 
Feedback 
structure of 
adaptive 
expectations 
The perceived 
value of the input 
adjusts to the 
actual input in 
proportion to the 
size of the error 
in your belief. 
The adjustment 
time determines 
how rapidly beliefs 
respond to error. 

Information delays cannot be modeled with the same structure used for mate- 
rial delays because there is no physical inflow to a stock of material in transit. The 
inputs and outputs of material delays are conserved; for example, a strike at the 
post office lengthens the delay in delivering mail, reducing the delivery rate and 
causing the stock of mail in transit to build up. In contrast, information such as per- 
ceptions and beliefs is not conserved. Consider a firm’s forecast of the order rate 
for its products. The expected order rate responds with a delay to changes in actual 
market conditions. The physical order rate does not flow into the delay; rather in- 
formation about the order rate enters the delay. Because information, unlike mate- 
rial flows, is not conserved, a different structure is needed to capture information 
delays. 

11.3.1 Modeling Perceptions: Adaptive Expectations 
and Exponential Smoothing 

The simplest information delay and one of the most widely used models of belief 
adjustment and forecasting is called exponential smoothing or adaptive expecta- 
tions. Adaptive expectations mean the belief gradually adjusts to the actual value 
of the variable. If your belief is persistently wrong, you are likely to revise it until 
the error is eliminated. Figure 11-10 shows the feedback structure of adaptive 
expectations. 

In adaptive expectations the belief or perceived value of the input, X, is a 
stock: 

X = INTEGRAL(Change in Perceived Value, k(0)) (11-5) 

Input: 
Reported 
Value of 
Va r i a b I e 

(XI 

output: 

Change in 
Adjustment A Perceived 

Time Value 
(D) 

Error J 
(Reported Value 

- Perceived Value) 

h 

X = lNTEGRAL(Change in Perceived Value, ^x(O)) 
Change in Perceived Value = Error/D = (X - %)/D 
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FIGURE 11 -1 1 
Response of 
adaptive 
expectations to 
a step change 
in the input 
The response 
to a permanent 
change in the 
input variable 
is exponential 
adjustment to 
the new level. 

The rate of change in the belief is proportional to the gap between the current value 
of the input, X, and the perceived value: 

Change in Perceived Value = (X - X)/D (11-6) 

In a material delay the stock is the quantity of material in transit and the output of 
the delay is a flow. In information delays the belief itself, X, is a stock. Why? A 
perception or belief is a state of the system, in this case a state of mind. Your belief 
about the value of some quantity tends to remain at its current value until there is 
some reason to change it. In adaptive expectations, a belief changes when it is in 
error, that is, when the actual state of affairs differs from the perceived state of af- 
fairs. The larger the error, the greater the rate of adjustment in your belief. You 
should recognize this structure as another example of the familiar first-order linear 
negative feedback system (chapter 8). The state of the system adjusts in response 
to the gap between your current belief and the actual value of the variable. This 
structure is known as afirst-order information delay, or as first-order exponential 
smoothing. 

Figure 11-11 shows the response of first-order smoothing to a permanent 
change in the input, starting from an initial equilibrium in which the perceived and 
actual values of the variable are equal. The response is classic exponential goal- 
seeking behavior. The rate of belief updating is greatest immediately after the 
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change in the actual value of the variable, when the error in the belief is greatest. 
As the belief is updated, the error falls, and subsequent adjustments diminish, until, 
after about four time constants have passed, the belief is once again correct. 

A firm's forecasts of incoming orders illustrate. Firms must forecast demand 
because it is costly and time consuming to alter production rates. Inventories and 
backlogs should buffer short-term differences between orders and production. A 
good forecasting procedure should filter out short-term random changes in incom- 
ing orders to avoid costly changes in output (setups, changeovers, hiring and fir- 
ing, overtime, etc.) while still responding quickly to changes in trends to avoid 
costly stockouts or excess inventories. The challenge is to be responsive without 
overreacting to noise, that is, to tell which change in demand is the beginning of a 
new trend and which is a mere random blip. 

Exponential smoothing is widely used in forecasting due to its simplicity and 
low cost of computation. Additionally, exponential smoothing has the desirable 
property that it automatically attempts to eliminate forecast errors. Figure 11-12 
shows the response of adaptive expectations to a simulated order stream for a prod- 
uct. The simulated order rate in this example follows a random walk, varying 
widely from day to day, week to week, and month to month. The expected order 
rate is formed by adaptive expectations with a 7-day time constant. Exponential 
smoothing does a good job of smoothing out the short-term, high-frequency noise 
while still following the slower movements in orders such as the rise from about 
600 unitdday around day 50 to about 1300 unitdday around day 120. Note that the 
peaks and troughs in the expected order rate lag the turning points in the actual or- 
der rate: the process of smoothing inevitably introduces a delay. 

To see why exponential smoothing introduces a delay, notice the role of the ad- 
justment time constant D in the negative feedback structure of adaptive expecta- 
tions. The negative loop functions to eliminate the error in the forecast but does so 
gradually, so as not to overreact to temporary changes in the input. Your belief is a 
weighted average of the current value of the variable and your past belief, which in 
turn reflects the prior history of the variable.8 

The analogy with a weighted average can be made exact. Consider again the 
problem of forecasting a firm's order rate. A common way to filter out high-fre- 
quency noise is with a moving average. For example, a 7-day moving average of 
daily sales would be 1/7 of the sum of the daily sales for the past week. Every day, 
the average would be updated. In general a moving average, X, can be represented 
as a weighted sum of all past values of the variable X: 

CC 

X(t) = 2 wiX(t - i) (11-7) 
i = O  

*Recall the analytic solution of the first-order linear negative feedback loop sy?tem (chapter 8). 

2(t) = X" - (x* - X(o))exp(-t/D) = w2(0) + (1 - W)X* 

When the input is a constant X', the current value of the state of the system, here X, is given by 

where the weight w = exp(-t/q). That is, the current value of the perception is a weighted average 
of the initial value of the belief X(0) and the actual value of the variable X*. The weight on the 
initial value of the belief declines exponentially at a rate determined by the time constant D. 
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FIGURE 11-12 
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where the weights wi must sum to 1. In the case of a 7-day moving average of 
daily values, the weights are 1/7 for the seven most recent values and zero for all 
prior values. Suppose sales had been constant for at least a week at a rate of 
X* unitdday. The sales forecast would equal the actual sales rate: X = X*. Now 
suppose sales suddenly doubled and remained at the higher level. On the next day 
the moving average forecast would only rise by 14%: X = (X* + X*+ X* + X* + 
X* + X*+ 2X*)/7 = (8/7) X*. Each day the average would increase by another % 
until after a week the forecast X would finally equal the new sales rate 2X*. The 
process of averaging necessarily introduces a delay because new values are 
weighted in with the old values. 

The weights in a moving average indicate the relative importance of each past 
observation in forming the current perception or belief. In the case of a 7-day mov- 
ing average, yesterday’s sales are given just as much weight as the week-old sales 
rate, while all sales data prior to last week are ignored. There is usually no strong 
reason to assume a sudden discontinuity in the importance of the past. A more rea- 
sonable model is to assume the importance of the data decline with age. First-or- 
der smoothing is a moving average where the weights wi decline exponentially. 
The most recent value gets the most weight, with older values getting progres- 
sively less. 

Adaptive expectations are a very simple model of expectation formation. 
Smoothing uses just a single input, rather than drawing on many sources of data. 
That single cue is then processed in a simple fashion. Can such a simple procedure 
actually be used to model the way firms form forecasts or the way people adjust 
their beliefs and expectations? Surprisingly, the answer is often yes. Surveys of 
forecasting methods show exponential smoothing is one of the most common fore- 
casting tools used. Smoothing is especially popular when a firm must forecast the 
demand for thousands of distinct items. In these cases the simplicity, low cost, and 
error-correcting properties of smoothing make it an excellent choice. 

Many studies show that first-order adaptive expectations are often an excellent 
model of the way people forecast and update beliefs. In a justly famous study, 
Makridakis et al. (1982, 1984) ran a competition to identify the best time-series 
forecasting methods. They compared the forecasting performance of 2 1 forecast- 
ing techniques, from naive forecasts (tomorrow will be like today) to sophisticated 
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methods such as ARIMA models. The methods were compared across 1001 data 
series, encompassing a wide range of systems, time horizons, sampling frequen- 
cies, and patterns of behavior. In general, first-order exponential smoothing per- 
formed extremely well. A second competition (Makridakis et al. 1993) examined 
judgmental forecasting methods, finding many judgmental forecasts are well ap- 
proximated by simple smoothing. Armstrong (1985) provides a comprehensive re- 
view of forecasting methods and documents the extensive literature showing the 
wide use and comparative accuracy of exponential smoothing in many contexts 
(see also chapter 16). 

11.3.2 Higher-Order Information Delays 
Just as there are cases where first-order material delays are not appropriate, so too 
there are situations where exponential smoothing is not the best model of an infor- 
mation delay. In a first-order information delay, like the first-order material delay, 
the output responds immediately to a change in the input. In many cases, however, 
beliefs begin to respond only after some time has passed. 

In these cases, the weights on past information are initially low, then build up 
to a peak before declining. Recent values of the input might receive low weight for 
several reasons. Often the delay intervening between the actual state of a system 
and the decisions that alter it involves multiple stages. The current values of the in- 
put may simply be unavailable due to measurement and reporting delays. Once 
data are reported there may be administrative delays (reported information may not 
be taken up for consideration immediately). Finally, there may be cognitive and 
decision-making delays-it takes time for decision makers to revise their beliefs 
and further time to finalize a judgment and act on it. Information delays in which 
there are multiple stages are analogous to the multiple stages in material delays and 
require analogous higher-order delays. 

One way to model a higher-order information delay is with the pipeline delay 
structure in which the output is simply the input lagged by a constant time period. 
Such a delay might be used to model the measurement and reporting processes, 
where the reported value available to decision makers is the actual value some pe- 
riod of time in the past: 

Reported Value(t) = Actual Value (t - D) (1 1-8) 

where D is the reporting delay. Such a delay is analogous to the infinite-order ma- 
terial delay or pipeline delay discussed above. The output of the delay tracks the 
input exactly but is shifted D units in time. 

More often, the measurement and reporting of information involves multiple 
stages, and each stage involves some averaging or smoothing. Firms cannot report 
the instantaneous value of flows, such as the rate at which orders are being placed 
this instant, but must average (sum up, or accumulate) sales over some finite time 
period to filter out short-term variations and provide a meaningful estimate. Gen- 
erating a forecast might actually involve several stages of information processing. 
First, order rates for a recent period such as a day or week are reported by indi- 
vidual sales representatives, introducing a reporting delay. Then the weekly sales 
figures are aggregated and reported to management, introducing another delay. 
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Management periodically reviews the sales figures and then applies a forecasting 
procedure such as smoothing (either formally or judgmentally). These estimates 
can then be used to set production schedules. Further delays are introduced as the 
information is processed for use in other decisions, such as budgets or earnings es- 
timates prepared by market analysts. 

In some cases the purpose of the model might require you to portray each of 
these steps explicitly. Usually it is sufficient to aggregate them together into a sin- 
gle information delay. Just as first-order material delays can be cascaded in series 
to generate higher-order delays with more realistic response rates, so too you can 
cascade first-order smoothing structures to generate a family of higher-order in- 
formation delays (Figure 11-13). 

An nth-order information delay, denoted by the SMOOTHn function, consists 
of n first-order information delays cascaded in series. The perceived value of each 
stage is the input to the next stage, and the output of the delay is the perceived 
value of the final stage. Each stage has the same delay time, equal to l/n of the 
total delay D: 

Output = SMOOTHn(Input, D): 

output = s, 
Si = INTEGRAL(Change in Stagei, Si(0))  

Si(0) = Input 

(Input - S,)/(D/n) 
(Si-l - Si)/(D/n) 

fori  = 1 
fori E (2, . . . , n) 

Change in Stagei = 

FIGURE 11 -1 3 Structure of the third-order information delay 

Input 
\ 

Output = SMOOTH3(lnput, D) 
output = s3 
S3 = INTEGRAL(Change in Stage 3, S3(0)) 
Change in Stage 3 = (S, - S3)/(D/3) 
S2 = INTEGRAL(Change in Stage 2, S,(O)) 
Change in Stage 2 = (S, - S,)/(D/3) 
S1 = INTEGRAL(Change in Stage 1 ,  Sl(0)) 
Change in Stage 1 = (Input - S,)/(D/3) 

(11-9) 

*Output 
+ 
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Figure 11- 14 compares the response of the first-, third-, and twelfth-order in- 
formation delays to a step increase in the input. As with the material delays, the 
higher the order, the smaller the initial response and the steeper and faster the even- 
tual rise to the final value. In the limit of an infinite-order delay, the output would 
exactly track the input t - D periods in the past: a pipeline delay. 

11.4 RESPONSE TO VARIABLE DELAY TIMES 
Another important issue in modeling delays is whether the delay time is constant 
or changing. Relative to the purpose of your model, can you consider the duration 
of the delay to be constant, or might it vary? If it varies, does it vary exogenously 
or endogenously? What happens when the delay time changes? 

The delay times for both material and information delays can change. Raising 
the speed limit on US interstate highways from 55 to 65 reduced the delay in the 
transport of raw materials from supplier to customer (assuming any truckers were 
actually obeying the 55 mph speed limit in the first place). Replacing a mainframe- 
based accounting system and manual data entry with a globally integrated, real 
time client-server network and point-of-sale scanner data can reduce the delay in 
the measurement and reporting of the sales rate for a firm's products. 

Delay times can vary both exogenously and endogenously. For example, a crit- 
ical parameter in a model of a firm's supply chain is the average delay between 
placing and receiving orders for parts and materials. Can you consider this time to 
be fixed? In many industries the resupply time is a variable, and both exogenous 
and endogenous factors influence it. For example, the resupply time often depends 
on the season of the year (an exogenous factor). The time required to deliver fresh 
strawberries to market in Boston is shorter in summer when local berries are 
in season and longer in winter when the supply line stretches to California and 
Mexico. 

The length of a delay often depends on the state of the system itself. How long 
will you wait to withdraw cash from an ATM? If there are no people ahead of you 
in line, the delay is the minimum time required for you to insert your card, enter 
your code, collect your cash, and get your card back-about a minute. However, 
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the length of time you must wait increases if there are people ahead of you in line. 
In turn, the rate at which people join the line depends on how many people are al- 
ready in line: when the line is long, people will walk by and wait until the crowd 
isn’t as big (a behavior known as balking). The average waiting time (the delay in 
getting served) therefore depends endogenously on the number of people in the 
delay (the length of the queue of people awaiting service). 

Similarly, the delay in receiving parts from suppliers depends on both the nor- 
mal order processing time and on the suppliers’ backlog of orders relative to their 
capacity. When suppliers have ample capacity, they can deliver rapidly. When ca- 
pacity is fully utilized, backorders accumulate, and customers are put on allocation 
(they receive a fraction of their order and are forced to wait longer than expected). 
In the long run, customers will seek alternative suppliers, forming a negative loop 
that reduces the delivery delay. But in the short run, before new suppliers can be 
found and qualified, customers may actually order more in an attempt to get what 
they really desire. If your supplier tells you it can only ship part of your order this 
week, you may order more than needed in the hope of receiving what you actually 
require. Placing such phantom orders creates a positive feedback that further in- 
creases the supplier’s backlog and lengthens the delivery delay still more, often 
leading to instability in orders, production, and inventory (see chapter IS). 

Response of Delays to Changing Delay Times 
To develop your understanding of how the different types of delays respond to 
variations in the delay time, answer the following questions. 

1. Consider a model of the post office as a third-order material delay (equation 
(1 1-4)). Assume that the mailing rate is constant and that the system is in equi- 
librium-the mailing rate and delivery rate are equal. Without using simulation, 
sketch the behavior you expect if the delay time suddenly and permanently in- 
creases from 5 days to 10 days on day 5. Make two graphs-one showing the 
mailing rate and delivery rate and the other showing what you expect to happen 
to the stock of letters in transit. Sketch the response you would expect if the delay 
time suddenly dropped from 5 to 2.5 days. 
2. Now consider a firm’s forecast of orders. Assume the firm uses adaptive ex- 
pectations to forecast orders, equation (1 1-6). Assume that the order rate is con- 
stant and that the expected order rate is equal to the order rate (the system is in 
equilibrium). Without using simulation, sketch the behavior you expect if the 
time to adjust the forecast suddenly and permanently decreases from 6 months to 
3 months. 
3. 
late their response to changes in the delay time. Was your intuition correct? If 
there are differences in the response of the material and information delays to 
changes in the delay times, explain why. 

After you’ve sketched your intuitive estimates, build the models and simu- 
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11.4.1 Nonlinear Adjustment Times: 
Modeling Ratchet Effects 

Often the time constant for an information delay depends nonlinearly on the input. 
The delay in adapting ourselves to a new situation may be longer than the delay in 
reacting to further instances of the stimulus once we have come to expect it. Peo- 
ple get used to higher income faster than they adapt to a drop in their income. We 
sometimes learn more rapidly than we forget. Because first-order smoothing (and 
all the delays discussed up to now) is linear, it responds symmetrically to inputs of 
any magnitude and to increases as well as decreases. One way to model asymmet- 
rical adjustments is with a nonlinear delay in which the time constant for the delay 
depends on the state of the system. 

In the 1940s, the economist James Duesenberry noticed that aggregate con- 
sumption expenditures seemed to rise faster than they fell as income fluctuated 
over the business cycle. He hypothesized that people rapidly raised their expec- 
tations of future income when income increased, boosting their consumption 
quickly, but were slow to give up their desired standard of living in the face of hard 
luck, leading them to spend near the old rates even though income had fallen. 

Such “ratchet effects” can be modeled by assuming the time constant D takes 
on one value when the input to the delay X exceeds the output X and another when 
the input falls below the output: 

D, i f X  2 X 
D = {  D,ifX < X 

( 1 1 - 10) 

where D, is the time constant that characterizes the adjustment when the output is 
increasing (when X 2 X) and D, is the time constant governing the adjustment 
when the output is decreasing (when X < X). In the case of income expectations, 
the hypothesis suggests downward rigidity of expectations, that is, D, < DD.9 

Sterman, Repenning, and Kofman (1997) used the nonlinear smoothing struc- 
ture to capture the response of workers to news of layoffs in a model of process im- 
provement. Improvement programs have the potential to create excess labor if 
productivity rises faster than the demand for the product. The willingness of work- 
ers to participate in improvement programs was hypothesized to depend on per- 
ceived job security. Perceived job security depended on workers’ memory of past 
layoffs (along with other factors such as excess capacity): perceived job security is 
likely to be higher in a firm that hasn’t laid off any workers for years than in one 
where layoffs are common. The memory of past layoffs was modeled using the 
nonlinear delay in equation (11-10). The input was the fraction of the workforce 
laid off in the recent past and the output was the memory of layoffs. Setting 
D, e D, captured the results of our field studies showing that perceptions of job 
security fall swiftly on news of a layoff and take years to recover, even if there is 
no subsequent downsizing (Figure 11- 15). The nonlinear smoothing structure also 
works with higher-order information delays. 

9Though economists dating back to Keynes have suggested that wages and prices might also 
exhibit ratchet effects, rising more rapidly than they fall, empirical studies are scarce; some do not 
support the hypothesis (e.g., Rassekh and Wilbratte 1990). 
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ESTIMATING THE DURATION AND DISTRIBUTION OF DELAYS 
The average length of a delay and the shape of the response distribution can be es- 
timated by two principal methods: statistical techniques and firsthand investigation 
of the process in the field. 

11.5.1 Estimating Delays When Numerical Data 
Are Available 

A wide range of econometric and statistical tools can help you estimate the dura- 
tion and distribution of lags from time series data, when such data are available 
(see Hamilton 1980 for a review; further details are provided in any good econo- 
metrics text). 

Though you can write the output of a lag as the weighted sum of past values of 
the input (see equation (11-7)), it is usually infeasible to estimate the weights di- 
rectly due to multicollinearity and lack of data. The main econometric techniques 
available for estimating lags from time series data include the Koyck or geometric 
lag, polynomial distributed lags, rational distributed lags, and ARIMA models (see 
section 11.7). Many econometric and time series statistical packages are available 
to estimate these models from time series data. 

In choosing an estimation method you must trade off the flexibility of the for- 
mulation against the number of parameters to be estimated. Some methods assume 
the shape of the response (equivalent to assuming the order of the delay) and esti- 
mate the mean delay time. The Koyck or geometric lag, for example, is easily es- 
timated but assumes the delay is first-order (see section 11.7). Other techniques, 
such as the polynomial lag method, impose fewer a priori restrictions on the shape 
of the lag distribution but require more data. You should not constrain the shape of 
the delay in advance unless there is strong independent evidence to support a 
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particular lag shape or if sensitivity analysis suggests the results of interest are not 
contingent on the shape of the delay distribution. 

While you may estimate the length and distribution of a delay using econo- 
metric techniques, you should not use the estimated regression equation in your 
simulation model. Instead, you should replace the estimated distributed lag with 
the material or information delay that best matches the estimated lag. There are 
several reasons. First, econometric techniques are designed for discrete time since 
most economic and business data are reported at regular, discrete intervals such as 
a month, quarter, or year. System dynamics models are usually developed for con- 
tinuous time. The time step for updating the state variables is often different from 
and usually shorter than the data reporting period used to estimate a delay. Using 
the continuous time delay that best matches the estimated discrete delay ensures 
that your model will be robust to changes in the simulation time step. Second, re- 
gression equations for lags have fixed lag weights, implying a fixed delay time. In 
many situations, however, the length of a delay is actually a variable. Even if the 
delay time is thought to be constant in the current version of your model, further 
work may reveal that the delay time must be incorporated as an endogenous vari- 
able. The material and information delay structures used in system dynamics re- 
spond appropriately to changes in the delay times, while a regression equation for 
a distributed lag does not enable delay times to vary. Regression equations for dis- 
tributed lags also do not distinguish between material and information delays. Ma- 
terial and information delays respond differently to changes in delay times. Your 
model must properly distinguish between the two types of delay to respond appro- 
priately to changes in delay times and to ensure conservation of material flows. 

Example: The Lagged Response of Energy Supply to Price 
Delays played an important role in Roger Naill’s (1973) model of the natural gas 
industry. Exploration effort responds to changes in price, but only after a consider- 
able delay. Fortunately, Khazzoom (197 1) had carefully estimated the distributed 
lag response of gas supply to changes in price. Rather than using the discrete time 
formulation, however, Naill found that the estimated delay was approximated well 
by a third-order delay with a 4.5-year delay time (Figure 11-16). Whereas Khaz- 
zoom treated the delay between price and supply as a single, aggregate process, 
Naill’s model explicitly portrayed the exploration and discovery process. Explic- 
itly modeling investment in exploration capital with a material delay meant Naill 
could simulate the response of natural gas supply to changes in the delay between 
the initiation of exploration activity and its results, changes that might arise from 
changes in exploration technology, government regulations, the location and depth 
of gas resources, or the capacity of the industry supplying drill rigs. 

Example: Capital Investment in the Macroeconomy I 
Capital investment is a major decision for any business, and understanding the re- 
sponse of investment to changes in economic conditions is critical in the formation 
of fiscal and monetary policy. Since investment takes time, policy makers such as 
central bankers and governments must understand the length and distribution of the 
lags in the response of investment to changes in policy levers such as interest rates, 
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Approximating 
a discrete time 
distributeld lag with 
a continuous delay 
Khazzoorn (1971) 
estiimatecl the 
lagged response 
of natural gas 
supply to changes 
in price. The 
graph shows his; 
estiimates; of the 
response to a 
1 $/MCF (thousand 
cubic feet) impulse 
in the price of gas. 
Naill (1 973) found 
a 4.5-year, third- 
order delay 
matched the 
estiimatecl lag well. 
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taxes, and the level of demand in the economy. How long does it take to build new 
capital plant? 

Figure 11-17 shows data for one part of the capital investment process: the 
construction delay. The figure shows the distribution of construction completions 
for private nonresidential investment projects derived by Montgomery ( 1995) from 
US Department of Commerce survey data. The surveys cover 52,000 construction 
projects from all sectors of the economy. The mean delay between the start of con- 
struction and completion is 16.7 months (1.4 years). The data describe only the 
physical construction process and do not include planning and administrative de- 
lays in the investment process. 

The construction delay distribution is approximated extremely well by a sec- 
ond-order material delay with a 16.7-month average delay time, the same mean de- 
lay as the data. The low order of the delay, consistent with the large variance in 
completion rates, is due to the aggregation of many types of capital plant in the 
survey data, data spanning all sectors of the economy. Delay distributions for cap- 
ital plant at the level of particular industries or types of structures (e.g., semicon- 
ductor wafer fabs, power plants, office buildings) would have lower variance and 
would require higher-order delays. 

Interestingly, Montgomery found only small variations in the average delay 
across the decades, and his estimate of 16.7 months is very close to the 15-month 
mean construction time estimated by Mayer (1960) from a 1954 survey of US con- 
struction projects. The mean and distribution of construction times appears to be 
quite stable over the past 40 years despite significant technical change and shifts in 
the composition of the economy. The relatively small range of variation suggests 
that the construction delay and distribution can be modeled with the same structure 
and parameters over long time horizons. 

Example: Capital Investment in the Macroeconomy I1 
The roughly 17-month average construction delay is only part of the total lag in 
the response of capital investment to changes in business conditions. Estimates of 
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FIGURE 11 -1 7 
The construction 
lag for capital 
plant: data vs. 
model 
Data: Distribution 
of construction 
completion times 
for US private 
nonresidential 
structures, 
1961-1991, as 
estimated by 
Montgomery 
(1 995) from 
US Dept. of 
Commerce survey 
data. The mean 
lag is 16.7 months. 
Model: Second- 
order material 
delay with 
average delay 
time of 
16.7 months. 
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the total delay between a change in, say, demand for a firm's products and the com- 
pletion of new capacity are much longer, typically 2 to 3 years, as they include the 
administrative, decision making, appropriations, permitting, design, and other de- 
lays as well as the physical construction process. Businesses and organizations 
such as the Federal Reserve must account for the entire delay when setting policy. 

The lags in capital investment have been intensively explored in macro- 
economics for more than 50 years. A common formulation known as the neo- 
classical investment function (see, e.g., Jorgenson, Hunter, and Nadiri 1970) 
presumes firms first calculate the optimal level of capital stock they desire, K*, 
based on traditional static profit maximization considerations, then adjust the 
actual stock K toward the desired level: 

K(t) = L(K*, D) (11-11) 

The lag operator L denotes a distributed lag with mean delay time D. The optimal 
capital stock K" is calculated by assuming firms set the desired capital stock at the 
level that maximizes profits, which in turn is a function of industry demand, inter- 
est rates, taxes, the marginal productivity of the capital stock, and possibly other 
variables. The distributed lag L is estimated from data on gross investment or cap- 
ital expenditures by noting that the rate of change of the capital stock K is net in- 
vestment, that net investment is gross investment less capital discards, and by 
assuming that discards depend on the current capital stock. Discards are usually as- 
sumed to be a first-order decay process with a constant average life of capital. The 
resulting lag estimates subsume the construction delay to yield a mean and distri- 
bution for the total delay between changes in business conditions and the response 
of capital investment. 

A major problem with the neoclassical investment function is that the mean de- 
lay and lag distribution are assumed to be fixed. The time between placing an or- 
der for new plant and equipment and receiving that capital from the supplier is 
assumed to be independent of the supplier's capacity utilization. Yet when suppli- 
ers have excess capacity, the delivery time will be short, while during booms, when 
supplier capacity is fully utilized, the delivery delay will increase. Senge (1978) 
found that delivery delays for capital goods varied by 550-75% over the business 
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cycle.'O Models where the lag distribution is fixed are misspecified because they 
implicitly assume suppliers of plant and equipment have unlimited or perfectly 
flexible production capacity, a physical impossibility. In general, models in which 
delays are specified as distributed lags rather than conserved stock and flow struc- 
tures are not robust and frequently violate basic laws of physics. 

The system dynamics national model (SDNM), a macroeconomic model de- 
veloped by the MIT system dynamics group (Forrester 1977, 1979; Forrester et al. 
1976; Mass 1975), addressed this and other defects of the neoclassical function by 
explicitly representing the investment process at the operational level. The model 
distinguishes between perception delays and material delays and captures the con- 
served flows of orders, acquisitions, and discards of plant and equipment. The ac- 
quisition delay varies with the capacity utilization of the capital producing 
industries. Figure 11 -1 8 shows a simplified representation of the investment func- 
tion. Instead of representing investment as a single distributed lag, the model rep- 
resents the stages of investment separately, distinguishing between the planning 
process and the capital ordering and construction process. Capital stock is in- 
creased by acquisitions and decreased by discards. Discards are assumed, as in the 
neoclassical model, to be a first-order exponential decay process. The acquisition 
rate depends on the backlog of orders for capital and the current delivery delay for 
capital. The backlog of capital on order is increased by orders. Orders lag the rate 
of order starts, capturing appropriation and administrative delays in investment. 
The order start rate responds to four factors: (1) replacement of capital discards; 
(2) adjustment for the expected growth in demand, based on past growth in ship- 
ments; (3) the gap between the desired and actual stock of capital, and (4) the gap 
between the desired and actual supply line of capital on order (see chapter 17). 

The desired supply line depends on the perceived delivery delay for capital and 
the required replacement of discarded capital. The desired stock of capital is pro- 
portional to desired production but is modified by the perceived marginal return on 
new capital. Firms are assumed to respond to the profitability of a new investment, 
but with a delay caused by the difficulty of assessing changes in the marginal pro- 
ductivity and marginal cost of capital. Desired production depends on expected de- 
mand, and is then adjusted to correct discrepancies between the desired and actual 
levels of inventory and backlog. Expected demand is modeled as an information 
delay of shipment data. The model provides an operational description of the cap- 
ital investment process, allowing the delays in the different parts of the process to 
be separately specified and estimated. 

Senge (1978, 1980) showed that the disequilibrium investment function used 
in the SDNM includes the neoclassical investment function as a special case. The 
SDNM investment function reduces to the neoclassical function when a number 
of equilibrium and perfect information assumptions are made. These include the 
assumptions that inventories, backlogs, and the stock of capital on order always 

'OThe large variation in capital delivery delays Senge found does not conflict with the relatively 
stable distribution of construction times Montgomery (1995) documented. The total delivery delay 
includes the construction time plus any additional time an order spends in queue awaiting the start 
of construction. During boom periods, this preconstruction waiting period increases as the backlog 
of projects waiting for construction crews and equipment to become available builds up. 
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equal their desired levels; that firms instantly and perfectly perceive demand and 
the marginal productivity of capital; that the delivery delay for capital is constant; 
and that capacity utilization is always constant at the desired level. Senge used 
econometric techniques to estimate the parameters of the SDNM investment func- 
tion. While the system dynamics model relaxed the unrealistic assumptions of the 
neoclassical theory, the added complexity of the model made econometric estima- 
tion of the various delays much more difficult, both statistically and in the creation 
of consistent data sets. To ensure the robustness of the results, Senge tested eight 
different specifications, each progressively relaxing more of the restrictive as- 
sumptions of the neoclassical formulation. 

Senge tested the model with quarterly data for four industries: durable and 
nondurable manufacturing, electrical machinery, and textile products. These in- 
dustries spanned two major levels of aggregation: durable and nondurable manu- 
facturing together account for the entire manufacturing sector of the economy, 
while the other two industries tested the model’s ability to explain investment at a 
more disaggregate level. 

The regression results supported the disequilibrium system dynamics function. 
For all four industry groups, the SDNM investment function explains more of the 
variance in the data, with less autocorrelation in the residuals than the neoclassical 
function, while yielding statistically significant, plausible estimates for the model 
parameters. The model also generates more realistic behavior when simulated than 
the neoclassical function. Table 11- 1 reports the estimation results for nondurable 
manufacturing. The estimated distributions for three key lags are shown in Figure 
11-19. These delays were estimated by the polynomial distributed lag method, 
allowing the lag shape, as well as the mean delay, to be estimated rather than 
assumed. 

The lag in averaging shipments to form demand forecasts was hypothesized to 
be first-order, and indeed, the estimated distribution of lag weights for average 
shipments is approximated well by first-order exponential smoothing with a delay 
time of about two quarters. The response of investment to changes in the perceived 
delivery delay for capital was also expected to be first-order, and the estimated 
weights are well approximated by first-order smoothing, though with a much 
longer average delay of about 1.3 years. A longer delay in the response to changes 
in capital availability is expected. Delivery quotes for plant and equipment are un- 
certain and unreliable; managers must wait a substantial fraction of the normal de- 
livery delay before they can glean reliable information on the progress of 
equipment orders or the rate of construction of new plant. More time is required to 
determine how to alter investment plans to compensate for changes in lead time. 
Finally, the response of growth expectations to changes in the growth rate of ship- 
ments was hypothesized to be a higher-order delay. The regressions support this 
hypothesis. The estimated lag distribution is bell shaped: Growth expectations do 
not respond significantly to short-term changes in actual demand growth rates. The 
estimated distribution is approximated reasonably well by a third-order delay of 
the rate of change in average shipments (average shipments are given by first-order 
smoothing of actual shipments with the estimated 2.13 quarter delay). 

Senge also compared the estimated delays to the a priori judgmental estimates 
developed by the modeling team (Table 11-1). In some cases the a priori estimates 
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are not statistically different from the estimated values. For other parameters there 
is a large difference between the two. These discrepancies led to reconsideration of 
the logic behind the judgmental estimates and the appropriateness of the data 
sources and estimation methods. In some cases the judgmental estimates were 
revised in light of the estimation results or improved model formulations were 
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TABLE 11 -1 Comparison of estimated and judgmental estimates of investment delays 

Parameter 

Estimated A Priori Estimated Standard 

(quarters) (quarters) (quarters) 
Value Estimate Deviation of Estimate 

Tiime to .Average Shipments 
Time to Perceive Marginal 

Return to Capital 
Tiime to Perceive the Delivery 

Delay for Capital 
Tiime to Form Growth 

Expectations 
Supply Line Correction Time 
Capital !Stock Correction Time 
Time to Correct Inventory and 

Desired Inventory Coverage 
Desired Backlog Coverage 
Fractional Discard Rate 

(Average Life of Capital) 

Backlog 

2.13 

4.12 

5.36 

7.25 
3.02 

12.10 

1.73 
0.47 
1.65 

0.0384/quarter 
(6.5 years) 

2.00 

8.00* 

8.00* 

6.10 
1 o.oo* 
10.00 

3.00* 
1.33* 
1.33 

0.01 56/quarter* 
(1 6 years) 

1.88 

0.32 

0.96 

1.17 
0.86 
2.18 

0.37 
0.033 
0.34 

0.00043/quarter 

Estimates for the consumer nondurables sector. 

* indicates estimated and judgmental values differ by more than 2 estimated standard deviations, indicating a significant differ- 
ence between the two estimates. 

Source: Serige (1978, pp. 110). 

developed. In other cases, the discrepancy was traced to limitations of the estima- 
tion protocol or an imperfect match between the concept in the investment function 
and the data series used to proxy it, and the a priori estimate was retained for sim- 
ulation purposes. 

11 3.2 Estimating Delays When Numerical Data 
Are Not Available 

In many situations, data from which to estimate the duration and shape of delays 
are not available. In these cases you must estimate these parameters from direct in- 
spection of the delay process, experience with analogous delays in related systems, 
or judgment. 

Judgmental estimates of aggregate delays can be quite unreliable and usually 
underestimate their duration. Recall the challenges at the start of this chapter. What 
was your estimate of the investment delay for the manufacturing economy? How 
about the time required for pork supplies to respond to price changes or for econ- 
omists to update their inflation forecasts? Most people dramatically underestimate 
these and other delays. The actual delays are roughly 3 years, 2 years, and 1 year, 
respectively (Senge 1978; Meadows 1970; Sterman 1987). The longer the delay, 
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the greater the degree of underestimation. What was your estimate of the delay 
in recognizing and reacting to air pollution? As shown in Table 11-2, more than 
50 years have passed from the first undeniable evidence that air pollution causes 
significant health problems, such as death, yet most major metropolitan areas in the 
US are still not in compliance with the provisions of the Clean Air Act. 

Decomposition is a useful strategy to minimize the underestimation of delays. 
Instead of estimating the total length of the delay, decompose the process into its 
various stages, then estimate the length of time required for each. Senge’s capital 
investment model decomposed the total response lag into a disaggregate, opera- 
tional model whose individual lags could be estimated judgmentally from direct 

1800s: Widespread use of coal for industry and heating leads to growing air 

1948: Smog in Donora, Pennsylvania kills 20 people and sickens 6000. 

1955: First US Federal Air Pollution Control Act laid primary responsibility for 

TABLE 11 -2 
Delays in societal 
response to air 
pollution in the 
United States 

pollution in urban areas of Europe and the United States. 

Soon after, coal fumes kill nearly 800 in London. 

limiting air pollution upon states and cities, but allocated $5 million for 
research. 

boundaries; sets up regulations for control of interstate abatement; provides 
more assistance for state and local governments. 
1970: Clean Air Act strengthened by defining “safe” standards for SO2, CO, 
particulates, VOCs (Volatile Organic Compounds), NO,, ozone, and lead. 
State plans to meet standards required by 1975. 
1977: Deadline postponed until 1982 as 78 cities were in violation of the 
ozone standard. 
1988: Ninety urban areas with 150 million inhabitants exceed ozone 
standard; 40 violate CO standard. 
1990: Comprehensive amendments to Clean Air Act require all cities to meet 
ozone standard by 2007 (except Los Angeles which has until 201 0). Stricter 
regulations for auto emissions, gasoline, SO2, and many newly regulated 
pol I u tan ts. 
1997: Ambient concentrations of all seven regulated pollutants dropping very 
slowly (except lead, which plummeted as soon as leaded gasoline was 
banned, though much lead from prior emissions remains in soils). Medical 
evidence shows health problems and deaths from air pollution growing. 
122 million in US live in areas violating the ozone standard. EPA seeks to 
stiffen ozone and particulate standards. Industry allocates millions to fight 
the strengthening of standards. 
Time from clear signal of problem to first meaningful law: 22 years. 
Time from first law to measurable, steady improvements in air quality: 
20 years. 
Time from first law to full compliance with law: 27 years and counting. 
Total delay from first clear signal to full compliance: > 50 years. 

1963: Federal Clean Air Act recognizes air pollution does not respect state 

Source: Paraphrased and condensed with permission from D. Meadows and A. AtKisson, The 
Balaton Bulletin, 1997, pp. 16-1 7. 



Chapter 11 Delays 447 

observation of business decision making; subsequent statistical estimation showed 
the judgmental estimates were often reasonable. 

To decompose a delay for the purposes of judgmental estimation, map the stock 
and flow structure of the process at the operational level. For example, consider the 
delay in the response of aggregate pork supply to price changes (Figure 11 -20). 

Decomposition reveals the following sequence. First, hog farmers must decide 
that a rise in price is likely to persist long enough to justify investing in increasing 
production. Then they must increase their breeding stock (by withholding some 
mature sows from market), then breed the sows. After the gestation delay, the lit- 
ters are born. The piglets require further time to mature, then spend additional time 
in a feedlot until they reach the optimal weight where the gain in market value 
from greater weight is balanced by the cost of additional feed. Only then are they 
sent to slaughter, increasing the supply of pork. Most of these delays are biologi- 
cally determined, easily estimated, and quite stable. The gestation, maturation, and 
feedlot delays are about 3.8,5, and 2 months, respectively, a total material delay of 
about 11 months (Meadows 1970). How long is the delay in adjusting producers' 
expectations about the future price and in building up the breeding stock? Because 
it takes about a year between breeding and the resulting increase in hog supply, 
producers cannot afford to react too quickly to price changes but must wait long 
enough to be confident higher prices will persist. Studies show forecasts of future 
hog prices are strongly influenced by recent prices, with little weight on prices 
more than a year in the past (Bessler and Brandt 1992). Meadows (1970) estimated 
the expectation formation delay to be about 6 months and the breeding stock ad- 
justment delay at about 5 months. Thus the total delay between a change in the 
price of hogs and the resulting change in hog production is about 22 months. Not 
surprisingly, such a long delay in the market feedback regulating prices leads to in- 
stability: hog prices tend to oscillate with an average periodicity of about 4 years 
(see chapter 20). 

Decomposition also gives insight into the shape of the outflow distribution for 
each delay. The more stages in a delay, the tighter the output distribution will be 
and the smaller the initial response. The variance in the gestation process is small; 
Meadows (1970) reports 90% of farrowings take place 11 1 to 119 days after breed- 
ing, indicating a very high-order delay. The variance in the maturation and feedlot 
delays is greater than that of the gestation delay, but the short run response to a 
pulse input is small. These delays could probably be modeled adequately with a 
third- or sixth-order delay. Price expectations and the delay in adjusting the breed- 
ing stock, however, can probably be modeled as first-order processes: Both price 
expectations and the breeding stock are likely to respond quickest when the gap 
between the desired and actual states is greatest. Because the total delay cascades 
many distinct stages, many of which have low variance, the short-run response of 
hog production to higher prices is neg1igible.l' 

"Actually, the short-run effect of price increases on supply is negative. For the aggregate indus- 
try, the breeding stock can only be increased by withholding some sows from slaughter. The first 
response of the slaughter rate to a rise in expected price is therefore a reduction in supply, creating 
a positive feedback loop: Higher prices lead to lower short-run supply and still higher prices as pro- 
ducers send fewer sows to slaughter to increase their breeding stock. A good model of the hog pro- 
duction system must include this destabilizing loop, a process that cannot be captured in models, 
such as cobweb models, that treat the supply response as an aggregate delay. See chapter 20. 
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11 5.3 Process Point: Walk the Line 
Even when numerical data are available, direct inspection is important. You should 
be suspicious of data in a firm's information systems, and take the time to investi- 
gate the process firsthand. In modeling a manufacturing process you should go to 
the actual plant and walk the line. Follow a few parts through the entire process, 
from the time they arrive at the receiving dock until they are shipped to a customer. 
In a service operation, follow the customer and paperwork from start to finish. 

Finan (1993) studied the cycle times for fabrication of various parts at a major 
commercial aircraft manufacturer. The firm's order planning system was supposed 
to track parts and subassemblies as they flowed through the manufacturing 
process. Downloading the data for a representative sample of parts revealed that 
the recorded cycle times for each lot were always exactly equal to the time allot- 
ted. To take a typical example, the scheduled completion time for a particular part 
was 10 days. Data in the information system showed every lot was delivered ex- 
actly 10 days after the order was received. However, cross-checking other records, 
walking the line, and interviewing the workers showed the actual delay averaged 
22 days, with a standard deviation of 9 days. Only 2 of 20 lots examined were 
completed in 10 days or less. Obviously the start times recorded in the information 
system had been back-calculated by subtracting the scheduled cycle time from the 
completion date of the lots. 

Firsthand investigation of the process on the factory floor not only yielded a 
better estimate of the delay but revealed significant errors and wasted effort in the 
information and control systems governing the operation. Not surprisingly, the 
poor quality of systems and procedures kept the company from increasing produc- 
tion smoothly and rapidly when orders surged. The resulting production bottle- 
necks, extra costs, and delays in deliveries to customers led to more than $1 billion 
in extraordinary charges and a significant decline in profits just as demand reached 
an all-time high. 

11.6 System Dynamics in Action: 
Forecasting Semiconductor Demand1* 

Understanding and modeling delays can often yield significant value, even without 
the complexity of a full simulation model of the feedback structure of the business. 
Chipmaker Symbios Inc. used simple models of delays to dramatically improve its 
ability to forecast demand for its integrated circuits, stabilizing production sched- 
ules, improving capacity utilization, and lowering production and capacity acqui- 
sition costs. 

Symbios Inc. is a successful semiconductor and component manufacturer with 
headquarters in Fort Collins, Colorado. Symbios makes a full spectrum of hard- 
ware and software for storage management and peripherals including standard and 

"1 am indebted to Symbios and to Lyle Wallis, Karl Braitberg, Kevin Gearhardt, Michael 
Haynes, and Mark Paich for permission to present this case, their willingness to share their data and 
experiences, and their assistance in its preparation. In 1998 Symbios was sold to LSI Logic Corp, a 
chipmaker in Milpitas, California. 
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application specific integrated circuits (ASICs), host adapters, I/O technologies, 
and storage hardware for high-performance workstations and servers. Their cus- 
tomers are original equipment manufacturers (OEMs) in the computer and elec- 
tronics industry. Throughout the 1990s Symbios enjoyed revenue growth of about 
20%/year, reaching about $600 million in revenue in 1996 with 2300 employees 
worldwide. 

Like all chipmakers, Symbios is caught between the rapid growth, technical 
change, and volatility of the semiconductor market on the one hand and the high 
costs and long delays of adjusting manufacturing capacity on the other. Semi- 
conductor wafer fabs are among the most technically sophisticated and expensive 
factories ever built. Typical fabs for ASICs cost about $1 billion; fabs for high per- 
formance microprocessors cost a billion dollars more. Given the high fixed costs 
of semiconductor manufacturing, consistently high utilization of a chipmaker’s 
fabs is essential for profitability. However, capacity can only be adjusted with long 
delays. The delay between the decision to build a fab and the first useable output is 
several years. Long capacity adjustment delays mean chipmakers must be able to 
forecast demand reliably over quite long horizons. l3 

As Director of Business Planning and Modeling for Symbios, Lyle Wallis 
struggled with this dilemma. There is little room for error. The integrated circuit 
market is very competitive. Many of Symbios’ customers are very large and wield 
considerable market power over suppliers. Rapid technical change puts a premium 
on the quality and responsiveness of the firm’s design and engineering staff. The 
quality standards OEMs require their suppliers to meet are among the most strin- 
gent in any industry. Price competition is intense. And, perhaps most important, de- 
livery time is a critical competitive battleground. Because the life cycle of the 
products using these chips is often very short, chipmakers must deliver on time. As 
Wallis commented, 

When you underestimate demand your delivery time can stretch out from 12 weeks 
to 24 weeks-which seems like infinity to your customers. But at the same time 
you can’t afford to hold excess capacity that is likely to go unutilized. 

Symbios, like most chipmakers, continuously developed and revised bottoms-up 
forecasts of production requirements and revenues. These customer demand fore- 
casts (CDFs) were developed by collecting the customers’ own projections of de- 
livery requirements by line item for the next four quarters. A Symbios manager 
described the process: 

The [CDF] process begins with a Symbios sales representative visiting . . . a cus- 
tomer to obtain the customer’s demand projections. After obtaining the customer’s 
forecast, the sales representative reviews the forecast with a Symbios sales man- 
ager. Together, the sales manager and sales representative determine the likelihood 

‘3Symbios makes about 80% of its chips in its own fab. Like many firms in the industry, 
Symbios uses outside foundries to handle demand peaks and to produce some small volume, older 
products. While outsourcing to external foundries provides some flexibility, there are still substan- 
tial delays between the decision to outsource and the delivery of product, and the less predictable 
the need for outsourcing, the more expensive it is to locate, qualify, and contract with external 
foundries. 



Chapter 11 Delays 451 

FIGURE 11 -21 
Actual billings 
compared to 
6- and 12-month 
customer demand 
forecasts 
The graph shows 
the CDFs 
prepared in month 
t - h plotted 
against actual 
billings for montlh t 
(whlere h is the 
forecast t-i o rizo n of 
6 oir 12 months). If 
the forecasts were 
accurate ,they 
would correspond 
exactly to actual 
billings. All three 
series are 3-month 
centered moving 
averages to filter 
out monthly 
fluctuations. 
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that the customer will hit their projections. If they have concerns that the customer 
may be over- or underforecasting, they enter a confidence factor into the forecast 
or adjust the projection. The forecast is then submitted to Symbios marketing man- 
agers and product marketing engineers. After reviewing the forecasts, the marketing 
managers and engineers also have the opportunity to adjust the confidence factor 
and alter the customer's forecast. . . Once reviewed by marketing, the forecast be- 
comes available for use company-wide. 

The rationale for the bottoms-up forecasts was for many years unquestioned 
throughout the organization. The demand forecast information came directly from 
the customers, who should know their own requirements best. Using customer re- 
quirements forecasts creates a strong channel of communication between the 
OEMs and chipmakers and demonstrates to the customers that the suppliers are lis- 
tening and responding to their needs. Yet the more Wallis examined the accuracy 
of the bottoms-up CDFs, the more concerned he became. 

Figure 11-21 shows the 6- and 12-month revenue forecasts based on the cus- 
tomer demand forecasts against actual billings. The forecasts of future sales pre- 
pared in month t - h are plotted at time t against actual billings for month t (h is the 
forecast horizon of 6 or 12 months; the data are 3-month centered moving averages 
to filter out high-frequency noise). If the forecasts were accurate the forecast and 
actual billings curves would be identical. Wallis immediately noticed several fea- 
tures of the forecasts. First, the bottoms-up forecasts are not very accurate. The 
mean absolute percent error is 40% for the 6-month forecasts and 46% for the 
12-month f0re~asts . l~  Second, the forecasts correlate poorly with actual billings. 
The forecasts tend to move out of phase with actual billings; that is, they tend to be 
high when billings are low and vice versa. Third, the forecasts are consistently too 
high. Some of the bias reflects overoptimistic forecasts of consumer demand by the 
OEMs. Some reflects each OEM's effort to ensure receipt of sufficient output 
by padding orders to the supplier (and then canceling later if necessary). Fourth, 
the forecasts are extremely volatile. The forecasts fluctuate significantly around the 

I4The mean absolute percent error (MAPE) is defined as 

I n  
n i = l  

MAPE = 100" - Z (ICDF, - BillingsiIA3illings,) 
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FIGURE 11-22 
Six and 12-month 
customer demand 
forecasts 
compared to 
actual bookings 
The forecasts are 
plotted at the time 
they were made. 
Forecasts of future 
demand are highly 
correlated with 
current orders. 
All three series are 
3-month centered 
moving averages 
to filter out 
monthly 
fluctuations. 
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growth trend, with much greater variance than actual production. Chasing the fluc- 
tuations in forecasts caused costly errors in production planning and capacity 
acquisition. 

Figure 11-22 compares the 6- and 12-month forecasts against current bookings 
(the order rate). Here, the forecasts of future sales have been plotted at the date the 
forecasts were made to show the relationship between current bookings and the 
current beliefs of customers about future demand. Both the 6- and 12-month cus- 
tomer forecasts are highly correlated with current customer orders (the correlation 
between boolungs and the customer demand forecasts is about 0.70 for both fore- 
cast horizons; the correlation between the two forecasts is 0.96). Loolung closely, 
you can see a lag of several months between the peak in actual bookings and the 
peaks in the forecast. Customers appear to project their future requirements by ex- 
trapolating their recent actual orders. The lag arises from short-term smoothing of 
recent orders and administrative delays in preparing the forecasts. 

Wallis concluded that the customer demand forecasts responded strongly to re- 
cent events, particularly the current demand requirements of the customers, and 
contained little useful information on future requirements. When customers need 
more product right now, their 6- and 12-month forecasts increase sharply; when 
they need less right now, their forecasts of future needs drop. Consequently, short- 
term inventory and supply line adjustments find their way into forecasts of future 
demand even though these temporary influences on orders usually have little bear- 
ing on demand 6 or 12 months out. The errors and volatility of the bottoms-up 
forecasts caused Symbios to make frequent and costly changes in production 
schedules and capacity, eating up profits and crimping the competitiveness of the 
business. 

Further, because the customers' MRP and production planning systems reacted 
to the availability of the products from suppliers, forecast volatility was self- 
reinforcing. Fluctuating demand meant products would sometimes be placed on 
allocation, stretching out delivery schedules. During periods of allocation, cus- 
tomers' MRP systems and production planners responded by seeking to hold 
greater safety stocks and ordering farther ahead, forecasting still greater future re- 
quirements and leading Symbios to add capacity. Once adequate capacity came on- 
line and the product went off allocation, orders fell as customers responded to the 
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ready availability of the product by canceling their defensive orders, leading to ex- 
cess capacity. As orders fell, so too did forecasts of future requirements, causing 
Symbios to cut production plans and capacity acquisition and setting up the next 
cycle of inadequate capacity, allocations, and surging orders. 

Finally, producing and updating the bottoms-up forecasts took too long and 
cost too much. It took too long to get the data from the customers and ate up a lot 
of Symbios’ sales and management time. The data frequently contained errors and 
inconsistencies that took further time to work out. Wallis ruefully concluded, 
“Using a ‘bottoms-up’ forecast is worse than nothing for sizing the business.” 

The poor performance of the bottoms-up forecasts was well known throughout 
the organization. Wallis noted the past reaction to each forecasting failure: 

In each case we would find something to blame. Usually, we blamed the sales force 
for not being able to forecast, so we would have the marketing groups do the work. 
Then we would switch back to sales after some time. Or, we blamed the software 
system and changed that. 

He concluded that there were deeper structural reasons for the repeated failure of 
the bottoms-up forecasts: 

My position is that structurally each of these systems was similar and that each pro- 
duced similar results. They always take the current situation and project it into the 
forecast horizon. In such a situation even normal seasonal fluctuation causes real 
problems. We have looked at the data produced by sales versus marketing versus 
different business units and can find no real difference in behavior. 

And he recognized that he had not been immune to these problems himself 

In fact, I went back and looked at my [forecasting] data for when I was a sales man- 
ager and when I was a business unit director-same behavior. 

Despite the strong evidence of the failures of the bottoms-up forecasts, many in the 
organization-not to mention the customers-were strongly committed to the cur- 
rent forecasting process and didn’t believe the analysis. 

As a very customer-oriented company, the customers’ forecast is a very compelling 
input, even if intellectually one knows that the customers’ forecasting process is 
flawed. First, it makes some sense that the customers should know their business. 
Second, they are IN YOUR FACE demanding whatever it is that they think they 
want, whether it makes sense or not. And, selective memory is pervasive. If they 
fall short of their forecast, it is forgotten. But miss their forecast just once and there 
is hell to pay. Customers appear to believe that their forecasts are pretty good in 
spite of evidence to the contrary. 

Wallis knew that you can’t beat something with nothing; pointing out the problems 
caused by the current system without proposing a better alternative would only cre- 
ate anger and frustration. 

But what were the alternatives? One possibility was to use simple trend pro- 
jection based on actual aggregate billings. Simple extrapolation is fast and cheap 
and yielded reasonable results at the aggregate level. However, extrapolative 
methods didn’t provide enough detail to plan production or capacity at the level of 
particular production lines or product families, and many in the company didn’t 
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believe trend projections could be trusted because they didn’t take the customers’ 
own requirements forecasts into account. 

Another possibility was to use econometric forecasts of semiconductor indus- 
try demand by segment. Many market research and consulting organizations sell 
such forecasts. However, the industry forecasts often, even usually, m i s s  the turn- 
ing points in the industry. Further, the turning points in the demand for Symbios’ 
products didn’t always coincide with the segment turning points. Finally, econo- 
metric models had poor forecasting accuracy at the longer time horizons needed to 
plan capacity. 

Having played the Beer Distribution Game (Sterman 1989b, chap. 17), Wallis 
recognized that much of the volatility in orders and customer demand forecasts 
Symbios experienced was endogenously generated by feedbacks among the mem- 
bers of the semiconductor industry supply chain (Figure 11-23). Each firm in the 
chain, following its own self-interest, orders to meet anticipated customer demand 
and adjusts its inventories and backlogs of parts on order to ensure a steady supply 
of deliveries from suppliers. The result is powerful amplification of demand fluc- 
tuations from one level of the distribution chain to the next, causing instability for 
all players in the industry. As a chipmaker, Symbios held the tail position in the 
supply chain and experienced more volatility in demand than those downstream. 
For Symbios to temper the wild swings in orders caused by the amplification of in- 
ventory and supply line adjustments up the supply chain, it could no longer base 
capacity plans on forecasts derived from past actual order rates. 

With the help of Mark Paich, an experienced modeler, Wallis began to develop 
a system dynamics model. Wallis also recruited two Symbios managers, Karl 
Braitberg and Kevin Gearhardt, from line positions into the team. They began by 
mapping the stock and flow structure that generated demand and quickly deter- 
mined that the key to improved forecasts was the link between design wins and 
customer orders. A design win occurs when a customer commits to using a specific 
Symbios chip in a specific product. Design wins are the focus of the sales force’s 

FIGURE 11 -23 Semiconductor industry supply chain 

As in the Beer Distribution Game, each layer in the distribution chain amplifies fluctuations in final 
demand until orders for and production of semiconductors fluctuate significantly. 
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efforts. To generate business, sales people must persuade OEMs to use a Symbios 
chip in their products. 

The progression of ASIC design wins from customer commitment to produc- 
tion is shown in Figure 11-24. An application-specific chip cannot go into pro- 
duction until the detailed design is developed, prototypes are tested, and the 
chip-specific tooling in the fab is developed and tested. Hence new design wins 
accumulate in a stock of Designs in Development. As designs are completed and 
reviewed, prototyping starts. After successful test (and concurrent development 
and test of the fabrication process), production begins. Production volume and 
revenue depend on the number of product designs in production and average sell- 
ing prices. The stock of designs in production decreases as the designs reach the 
end of their useful life and are discontinued. 

The conceptual model shown in Figure 11-24 was developed very rapidly. It 
was readily apparent that there were long delays in the design and prototyping 
process. The long delays meant today’s revenue derived from past design wins, so 
knowledge of the recent wins in the development and prototyping pipeline should 
provide a better forecast of future build requirements and revenue. 

The next step was to convert the conceptual model shown in Figure 11 -24 into 
an operational, calibrated model. The team quickly realized that an aggregate 
model tracking the total number of design wins was not sufficient, since different 
design wins generated very different production volumes and prices. However, 
previous attempts to forecast demand based on individual design wins had not 
been successful. The delay between any particular design win and volume produc- 
tion is quite variable, as the product development time depends on the complexity 

FIGURE 11-24 The stock and flow structure of design wins detervines volume and revenue. 

Current volume and revenue depend on past design wins due to development and prototyping delays. 
The delays in each stage are high-order processes. 
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of the particular chip, the stability of customer specifications, and other attributes 
of the product development process. The sales organization routinely estimated the 
volume predicted to flow from each design win, but the manufacturing and mar- 
keting groups considered these projections unreliable. Indeed, some design wins 
never resulted in volume production, for example when the OEM canceled the 
product before production began; others became wild successes beyond the hopes 
of the customer. 

The modeling team settled on an intermediate level of aggregation. Knowl- 
edge of the volumes generated by individual design wins was not necessary. Pro- 
duction planners needed to know how many wafers to start and how many units to 
build at the level of each production technology such as a line producing 8-inch 
wafers with a 0.35 micron line width and a certain number of layers. Sales and 
marketing needed to know likely future sales at the level of product families so 
they could allocate resources and set sales goals and sales force compensation. The 
modeling team disaggregated the model at the level of each product family and 
process technology. The delays, volumes, and revenues for ASICs are radically dif- 
ferent from those for standard products, and there are differences among the dif- 
ferent standard product families. Disaggregation allowed the model to generate 
information needed by key organizational constituencies in a form they could use 
by providing forecasts of volume and revenue at the product family and process 
technology level. 

The simple stock and flow structure in Figure 11-24 is appropriate if the vol- 
ume and average price associated with each design win are the same. In reality, 
volume and prices change over time with changes in the product mix, technology, 
and market conditions. The volume and revenue generated by design wins cur- 
rently in production could be quite different from the volume and revenue antici- 
pated from design wins farther upstream in the process. To model this variability, 
they disaggregated the model further by adding parallel stock and flow structures, 
known as coflows, to track the projected volumes and revenues associated with 
each design win (Figure 11-25). Coflow structures keep track of various attributes 
of the units in a stock and flow network (see chapter 12). 

Each design win adds one design to the stock of designs under development 
and adds a certain expected volume to the stock of anticipated production volume 
from designs under development. The ratio of the anticipated volume from designs 
under development to the total number of designs under development is the aver- 
age volume expected from each chip currently in the design phase. When the de- 
sign moves from development to prototyping , the average expected volume 
associated with the designs under development also moves into the parallel stock 
for the expected production volume of designs in prototyping. When the design 
moves into production, the production volume expected from the designs in proto- 
typing also moves into the stock of anticipated volume from designs in production. 
The operational model included an additional coflow structure to track the revenue 
expected from each design win. Production and capacity planners could use the 
volume projection to plan wafer starts by applying the expected yield and wafer 
size to volume requirements, and senior management could use the revenue pro- 
jections to set budgets and generate pro forma financial statements. 
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Calibrating the model required (1) estimating the length and distribution of the 
development and prototyping delays for each process technology and (2) estimat- 
ing the expected volume, wafer requirements, and price for design wins in each 
product category. 

Generating and collecting the data was a major challenge. The team needed 
current data on design wins and their attributes. Fortunately, in 1990 the sales or- 
ganization had launched a new program in which sales representatives recorded the 
characteristics of each win at the time of the sale. The database tracked the prod- 
uct, customer, anticipated volumes, average selling prices, and other attributes for 
the next 3 years. These data were used by the sales organization to determine sales 
goals and compensation but were considered unreliable and unstable by the manu- 
facturing and marketing organizations. 

The estimates of price and volume recorded in the sales force design win data- 
base could not be used in raw form because they didn’t account for subsequent or- 
der cancellations, changes in requirements, and changes in prices. But the 
modeling team realized that the sales force database didn’t have to be accurate as 
long as the relationships between projected and realized volume and revenue were 
stable. The team then assembled the production histories of each product from data 
collected by the manufacturing organization. Cross-tabulating the sales organiza- 
tion’s design win database against the actual production histories enabled the team 
to assess the accuracy of the sales database. Regressions showed fairly stable rela- 
tionships between the volume and revenue projections recorded at the time a con- 
tract was won and the actual, realized volumes and revenues when the chips were 
actually made. These relationships were used to calibrate the model. Combining 
the sales force’s design win data with the design and production histories for each 
product also allowed the modelers to estimate the length and distribution of the de- 
lays by product and process category. Since the design and prototyping processes 
are themselves composed of multiple stages (product definition, design, layout, 
masking, wafer fabrication, sorting, prototype assembly, testing, etc.), the team ex- 
pected the delays to be very high-order (but not pipeline delays as there is con- 
siderable variation in processing times for each step). While the delays for any 
particular design win were unpredictable, the modeling team found that the distri- 
bution of the delay outflows in each category were approximated quite well by var- 
ious high-order material delays (generally between ninth- and twentieth-order, a 
reflection of the many stages subsumed in the design and prototyping processes 
and the disaggregation of the model by process technology). Figure 11-26 
shows the overall response of the estimated model for ASICs to a single design 
win (a unit pulse). Because custom chips have a long design time, there is no re- 
sponse at all for roughly a year. Production volumes then build rapidly to a peak 
roughly 3 years after the design win before gradually tailing off as product de- 
mand falls. 

The calibrated design win model generated more accurate forecasts than the 
bottoms-up procedure. Figure 11-27 compares the revenue projection of the design 
win model to actual billings for product line A. The model tracks actual billings 
more accurately than the bottoms-up forecasts. The model also captures key shifts 
in revenue growth, such as the decline in sales between months 50 and 64 and the 
recovery in sales beginning around month 78. 
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FIGURE 11 -26 
Estimated reveinue 
impact of a design 
win for ASlCs 
The curve shows 
the distrilbution of 
revenue over time 
given a unit pulse 
from a single 
design win. 
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Note that the model is far from perfect. Actual revenues fluctuate around the 
projection. These errors caused intense discussion within the modeling team. They 
found that some of the errors arose from variations in volume and prices generated 
by the occasional very large or very small design win or other unpredictable 
events. However, after careful review of the data and some additional modeling, 
the modeling team ultimately concluded that much of the unexplained variation in 
production and billings was caused by fluctuations in overall industry demand 
around the long-term growth trend. Most of these excursions are themselves 
caused by industrywide supply chain volatility-situations where customers over- 
react to short-term inventory and lead time variations. Wallis commented, “We 
do not attempt to capture these effects with the design win model. Instead, we think 
of the model results as representing the longer-term growth trends for the busi- 
ness.” Forecasts based on design wins help Symbios damp out temporary over- 
reactions in customer orders, tempering expensive swings in production and 
capacity acquisition. 

The design win approach also provided insight into the drivers of growth 
for the business. Figure 11-27 breaks the projected revenue stream into revenues 
from projected design wins, from current year design wins, and from earlier de- 
sign wins. Products in line A have short win-to-production and lifetimes. Design 
wins already in the pipeline will support sales for only about 2 years. After just 
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18 months, about a third of projected revenues are assumed to derive from design 
wins yet to be won. The long-term revenue forecast for line A is therefore highly 
sensitive to the assumed rate of future design wins. For product line A the bound- 
ary of the model might usefully be extended so design wins can be related to the 
size and experience of the sales force, their compensation incentives, and the rela- 
tive attractiveness of the products. 

More importantly, the drivers of design wins emerge as a key leverage point 
for growth, as Wallis pointed out: 

Understanding these product design win and life cycle characteristics allows our 
top management team to balance the required investments in technology, produc- 
tion capacity, and sales effectiveness against the likely timing and magnitude of the 
returns on those investments. Prior to development of the design win model, evalu- 
ations of proposed investments generally underestimated the delays between invest- 
ment and results. Without a model, estimates of the total life of investment returns 
are generally too short, causing total investment return to be underestimated. 

The calibrated, disaggregate design win model gained broad, though not universal, 
acceptance in the company. It is used to generate a rolling estimate of future vol- 
ume requirements and revenue to manage production and plan inventories. The 
model is also used as a key input to the annual planning process, to long-term cap- 
ital planning, and as part of the product development planning cycle. 

Consistent with the experience of others, the modeling team found that ab- 
stract description and conceptual models did not change the thinlung or behavior 
of key decision makers in the organization. Rather, the mental models and behav- 
ior of the managers responsible for production planning and capacity acquisition 
changed only when they actively worked with the model to address important is- 
sues. The modeling team worked hard to involve current and future line managers 
in the development and testing of the model. Some members of the modeling team 
were subsequently promoted into line positions where they used the model to help 
them in production planning and inventory management. 

Karl Braitberg, who became manager for standard products, commented on the 
business impact of the model: 

We used to manage inventory by gut feel. For example, people would say, “This is 
a hot product so we better build a hundred thousand of them now.” They’d base this 
on sample requests or other unreliable information coming from customers. Now 
we make better production scheduling decisions and time inventory builds better by 
taking the delays between design wins and volume demand into account. Customer 
service has improved: our ability to meet customer requested delivery dates has im- 
proved from about 60% to about 80%, and on time delivery to our commit date is 
97%, while inventory days on hand are at a 3-year low. All the inventory metrics 
have improved. We have a better mix of product in stock and in WIP [Work in 
Process inventory]. Now we build the right inventory at the right time. 

It is important to recognize that the model does not replace other considerations in 
the production planning and capacity decision. Managers do not slavishly follow 
the model’s output, nor should they. Rather, the model informs the viewpoint of 
key participants in discussions about production and capacity planning, providing 
a sanity check on the customers’ claimed requirements. Short-term, event-oriented 
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thinking still exists, as Wallis commented: “For some people, when a customer 
calls and screams at them, they don’t care what your model says.” But the model 
helps temper the reaction to such pressure, helping to stabilize the operation, raise 
average utilization, and increase delivery reliability, all of which generate benefits 
for the customers as well as for Symbios. Wallis recalled that in the old days 

during revenue shortfalls we’d beat up the marketing and sales groups to go out and 
get some more design wins to fill the revenue hole next quarter. Of course, this 
never worked because of the long delays, and probably caused more instability. The 
model helps people understand these dynamics, stabilizing the business, increasing 
the efficiency of the organization, and boosting our growth. 

While the model provides better forecasts of production volumes and revenues 
than the bottoms-up approach, modeling team members are careful to note its lim- 
itations and monitor its accuracy as the firm and industry continue to evolve. 

The model treats design wins as a continuous flow. Most of the time, the con- 
tinuous flow assumption works well. However, occasional extremely large indi- 
vidual design wins violate the continuous flow assumption and must be handled 
separately (they are added exogenously). Similarly, some customer products fail, 
leading to cancellation of orders at various points in the process. Finally, as some 
customers are bought by others the resulting consolidation of OEM product lines 
can affect the volume and revenue generated by design wins already in the 
pipeline. These issues are growing in importance: The computer industry in the 
1990s became significantly more concentrated through mergers and acquisitions. 
As the industry consolidates, the number of design wins per year falls while their 
average size grows and forecasting becomes more difficult (for all methods, not 
just the design win model). Internal changes at Symbios also mean the model must 
be continually updated: the processes underlying the delay distributions estimated 
from the data change as the product mix and process technology change and as im- 
provement programs shorten product development times. 

For these reasons, the model (and all models) can never be considered fin- 
ished. Models are always works in progress, and the model users must constantly 
ask whether the assumptions of the model are still reasonable as conditions change. 
Sustained implementation success depends on creating an ongoing process of mod- 
eling rather than a single model, no matter how accurate or comprehensive (For- 
rester 1985). Team members now continuously track their forecasting record and 
compare it to the accuracy of the other forecasts. Analysis of their errors generates 
important insight into model limitations and helps them to calibrate and improve 
the model. They continue to develop the model in concert with the needs and par- 
ticipation of the people responsible for production planning, capacity acquisition, 
and strategy to help ensure that the model continues to be understood and used. 

Modeling efforts underway at the time this is written explicitly address the un- 
certainty caused by lumpy design wins through the development of a Monte Carlo 
version of the model which will generate the range of uncertainty as well as the ex- 
pected trajectory of volume and billings. The modeling team is working with key 
customers to develop models to reduce further the volatility of orders and improve 
delivery performance. As one customer said, “We give you the worst information 
we have and then wonder why we have a problem.” 
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As often found in modeling projects, the greatest insight into the structure and 
behavior of the business came when the model results were wrong. Yet because 
many organizations punish those who make mistakes, mistakes are often hidden, 
denying the organization the opportunity to learn from experience. The modeling 
process has helped Symbios overcome the natural tendency to find the people 
responsible for errors and blame them. Senior management is now more likely to 
interpret a forecasting failure as an opportunity to deepen their understanding of 
the business and less as an occasion to blame a bad outcome on sales, marketing, 
or customers. 

11.7 MATHEMATICS OF DELAYS: 
KOYCK LAGS AND ERLANG DISTRIBUTIONS 

This section presents the mathematics of the basic delay types in continuous and 
discrete time. System dynamics models typically treat time as continuous. How- 
ever, the discrete time formulations are useful because the data from which delays 
are estimated are usually reported at discrete intervals. In the following I assume 
the delay time is constant, so the analysis applies equally to material and informa- 
tion delays. The assumption of constant delay times also allows delays to be 
treated as linear operators. Note that if the delay time is endogenous, for example 
when the delay process is capacitated, the delay time will in general be a nonlinear 
function of the history of the input. 

11.7.1 General Formulation for Delays 
The shape of the response of a delay to a unit pulse can be interpreted as the prob- 
ability distribution of the outflow rate, analogous to the delivery distribution of let- 
ters following a mass mailing. 

In discrete time, the output of a delay at time t is a weighted sum of all past 
values of the input up to the present time: 

Output(t) = WOIt + W,It - 1 + WZIt - 3 + . . ' 

(11-12) 

where the lag weights w are the probabilities of exiting the delay in any time 
period i and must sum to unity, that is, 

m 

C W i = l  
i = O  

(11-13) 

The constraint that the weights sum to unity ensures the conservation of material 
through the delay. If the weights summed to less than one, the quantity exiting the 
delay would be less than the quantity added to it; if the weights totaled more than 
one, more would leave the delay than entered, violating the conservation principle. 
In information delays, weights summing to one ensure the equilibrium output 
equals the input, giving an unbiased perception of the input. 
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Taking the limit of the discrete time formulation as the time interval between 
periods shrinks to zero yields the continuous time formulation. The output is the 
integral of past values of the input weighted by the probability of delivery at time 
t - s, where the probability of delivery s time units after entering the delay, p(s), is 
given by a continuous distribution: 

Output(t) = 6 p(s)Input(t - s)ds ( 1 1 - 14) 

[p(s)ds = 1 (11-15)15 

In principle the pattern of weights-the probability distribution of exiting the 
delay-is arbitrary, subject to the constraint that the input to the delay is conserved 
(that the weights are nonnegative and sum to unity). However, in practice, only a 
few patterns are reasonable and realistic. At the instant a quantity of material is in- 
jected into a delay the output has not yet had any time to respond, so the probabil- 
ity of exit at time p(0) = 0 (in discrete time, the weight on the current value of the 
input wo = 0). The output of all delays must approach zero after a sufficiently long 
time has passed; that is, once the items are delivered the exit rate must fall to zero. 
Therefore p(") = wm = 0. Thus the probability of exiting a delay-its response to 
a unit pulse-must start at zero, rise to a maximum, then fall to zero. 

It is reasonable to assume the exit distribution is smooth and that the dis- 
tribution has a single maximum. If the data suggest the output distribution of a 
delay has more than one peak, it is almost certain the total output is the result of 
two different delays operating in parallel and you should model each delay sepa- 
rately. Within these constraints, there are two main types of responses: a delay in 
which the output responds immediately after a pulse input, then gradually declines; 
and a delay in which there is no response for some period of time, followed by a 
gradual increase, peak, and decline. The first-order delay models the former case 
and the higher-order delays provide a flexible family of distributions to model the 
latter case. 

I5Equation (1 1-14) can also be derived by applying the convolution theorem of linear systems 
theory. In general, the response of any linear system to an arbitrary input can be expressed as the 
convolution of the input with the pulse response of the system, that is, the product of the input with 
the lagged pulse response of the system: 

Output(t) = Input(s)h(t - s)ds 

where h() is the response of the system to a unit impulse. 

values, and its integral need not be unity, or even finite. In the case of delays, the pulse response 
must be nonnegative, and conservation of material requires the integral of the response to equal 
unity, so we may treat h() as a probability distribution p(). The convolution integral can be derived 
by rewriting equation (11-12) as 

In general, the pulse response of a linear system can take on negative as well as positive 

and taking the limit as the interval between time periods becomes infinitely small. Further details 
can be found in control theory texts such as Ogata (1997) or Rowel1 and Wormley (1997). 
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11.7.2 First-Order Delay 
The first-order delay assumes the contents of the stock of material in transit are 
perfectly mixed at all times. Perfect mixing randomizes the order of exit from the 
delay, implying some items stay in the stock of material in transit longer than the 
average delay time and some stay for a shorter period. Since the first-order delay 
is equivalent to the first-order linear negative feedback system, its characteristic re- 
sponse to a pulse input is exponential decay. That is, the probability of exiting the 
first-order material delay is given by the exponential distribution 

p(t> = (1/D)exp(-tm (11-16) 

where the mean of the distribution is the average delay D. 
What is the average delay or mean residence time for items in the delay? Is it 

in fact the delay time parameter D? By the mean value theorem of calculus, the 
average residence time T, for any delay process is the time-weighted average of the 
outflow rate, given a unit pulse input at time zero: 

T, = i,’ t . Outflow(t)dt = i,’ t . p(t)dt (1 1- 17) 

Note that the time-weighted average of the outflow from a unit pulse is the same 
as the time-weighted mean of the outflow probability distribution p(t). For the case 
of a first-order material delay, the outflow is the stock of material in transit, S, di- 
vided by the average delay time D: 

Outflow(t) = S(t)/D (11-18) 

Immediately after a unit pulse input, the initial value of the stock of material in 
transit is unity. Since the first-order material delay is the linear first-order negative 
feedback system, the stock in transit then decays exponentially with time con- 
stant D: 

S(t) = exp(-t/D) (11-19) 

Therefore, the mean residence time is given by 

T, = jOm t . [S(t)/D]dt = t(l/D)exp(-t/D)dt jom (11-20) 

Note that (l/D)exp(-t/D) in the latter expression is precisely the exponential prob- 
ability distribution. Integrating by parts, 

which confirms that the mean residence time is in fact given by the delay time 
parameter D. 

In discrete time, the weights wi for a first-order delay decline geometrically 
(by a fixed proportion) over time: 

wi = (1 - L)L‘ (1 1-22) 
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where the lag weight parameter L, 0 5 L < 1 ,  is related to the average delay time 
D by 

D = L/(1 - L) (1 1-23) 

The discrete time geometric lag formulation is quite common in econometric mod- 
eling where it is also known as a Koyck lag, after Koyck (1954) who showed how 
the lag parameter L can be estimated (see any good econometrics text for details). 

11.7.3 Higher-Order Delays 
Cascading n first-order delays together in series creates the higher-order delays 
discussed above. Mathematically, the output of the nth-order delay is the convolu- 
tion of the sequence of first-order delays, each with identical delay times equal to 
the total delay time D divided by the number of stages in the delay. In continuous 
time the higher-order delays are equivalent to the Erlang family of distributions, 
named after the Danish telephone pioneer known as the father of queuing theory. 
The Erlang distribution of order n is given by 

(11-24) 

You can use the mean value theorem to check that the mean residence time of the 
nth-order delay is in fact given by D. The Erlang distribution reduces to the first- 
order exponential distribution for n = 1. 

In discrete time the higher-order delays are also known as Pascal lags, given 
by the distribution 

i + n - 1  (i + n - l)! 
i!(n - i)! (1 - L)”Li; i E {O,m} (11-25) 

where again the mean delay is L/( 1 - L). Just as the first-order Erlang lag is equiv- 
alent to the exponential distribution, the Pascal lag reduces to the geometric lag for 
n =  1.  

If sufficient data are available, the outflow distribution can be plotted and di- 
rectly compared to the Erlang family to see if it is a good model of the delay 
process and to select the appropriate order of the delay (see section 11.5.1). Some- 
times, however, only summary statistics such as the sample mean and variance are 
available, while the data for the full distribution are not. In this case the order of 
the delay can still be estimated, subject only to the assumption that the lag is well 
approximated by a member of the Erlang family. The variance of the nth-order 
Erlang lag is given by u2 = D2/n. Consistent with intuition and the simulation re- 
sults above, the smaller the variance relative to the mean delay the higher the order 
of the delay. Approximating the mean delay and variance of the outflow from their 
sample values, denoted D and s2, respectively, yields a simple estimator for the 
order of the delay: 

n = IN.($) (11-26) 
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where INTO is the integer function. Of course, the ratio D/s2 won’t in general be 
an integer, but rounding to the nearest integer generally introduces little error com- 
pared to the likely sampling errors in the data. Remember, however, that this esti- 
mator presumes the delay distribution is a member of the Erlang family; departures 
from the Erlang distribution will yield poor estimates. Information about the order 
of a delay gleaned from fieldwork should be used to check estimates derived from 
equation ( 11 -26). 

11.7.4 Relation of Material and Information Delays 
As seen above, the outputs of material and information delays with equal delay 
times are identical provided the delay time remains fixed. To see why, consider the 
equation for the first-order information delay with input I and output 0: 

- (I - dO 
dt 
-- O)/D (11-27) 

The output of the delay, the stock 0, has a single net rate determined by the gap be- 
tween the input and output. The net rate can be disaggregated into explicit increase 
and decrease rates: 

(11-28) 

Equation (11-28) is equivalent to a first-order material delay with inflow UD, out- 
flow Om, and stock in transit 0. As long as the delay time remains fixed, the be- 
havior of the two delays is identical. However, in a material delay the output is the 
exit rate from the stock, while in the information delay the output is the stock 0. 
Changing the delay time causes the behavior of the two delays to differ. Even 
though their response under constant delay times is the same, modelers must be 
careful to use the proper type of delays: A delay time currently thought of as fixed 
may become variable as a model is developed. 

SUMMARY 
This chapter discussed delays and showed how they can be modeled. First, all de- 
lays include at least one stock. Second, delays in material flow networks must be 
distinguished from delays in information feedback channels: material flows are 
conserved, while information is not. The difference affects how the two types of 
delays respond to changes in the delay time. 

Every delay has two main characteristics: the mean delay time and the distrib- 
ution of the output of the delay around that average. The chapter developed a fam- 
ily of formulations for material and information delays enabling modelers to 
capture a wide range of plausible delivery distributions. First-order delays are 
characterized by an exponentially declining output in response to a pulse input. 
The largest response occurs immediately after the pulse input. The response of 
higher-order delays, formed by cascading first-order delays in series, is initially 
zero, builds to a maximum, and then dies away. Pipeline delays preserve the order 
of entry to a delay so the output is exactly the same as the input, but shifted by the 
time delay. The first-order delay assumes the contents of the stock of material in 
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transit are perfectly mixed at all times, so the outflow is independent of the order 
of entry. The higher the order of the delay, the less mixing is assumed; pipeline de- 
lays assume no mixing of the contents of the stock in transit at all. The higher the 
order of the delay, the lower the variance in the distribution of the output. 

Finally, the chapter discussed how the length and output distribution of delays 
can be estimated. When numerical data are available, econometric tools can help 
estimate delay durations and distributions. When numerical data are not available, 
estimation by direct inspection of the relevant process can yield good estimates. 
Judgmental estimates are more accurate when you decompose the delay into its 
constituent steps and estimate the delays of each separately. You should use multi- 
ple sources of information to help you specify delays (and other model parameters) 
and inspect the process firsthand whenever possible. 





Coflows and Aging Chains 

[Mathematical demography] is concerned with commonsense questions about, 
for instance, the effect of a lowered death rate on the proportion of old people 
or the effect of abortions on the birth rate. The answers that it reaches are not 
always commonsense, and we will meet instances in which intuition has to be 
adjusted to accord with what the mathematics shows to be the case. Even when 
the intuitive answer gives the right direction of an effect, technical analysis is 
still needed to estimate its amount. We may see intuitively that the drop from an 
increasing to a stationary population will slow the promotion for the average 
person in a factory or ofice, but nothing short of an integral equation can 
show that each drop of 1 percent in the rate of increase will delay promotion to 
middle-level positions by 2.3 years. 

-Nathan Keyfitz (197711983, Applied Mathematical Demography, p. viii. 

The stock and flow structures described in previous chapters keep track of the 
quantities flowing through various stages of a system. Often, however, modelers 
must not only capture the total quantity of material in a stock and flow network but 
also various attributes of the items in the network. These attributes might include 
the average skill or experience of a workforce, the quality of materials, or the en- 
ergy and labor requirements of a firm’s machines. Coflows are used to account for 
the attributes of items flowing through a stock and flow network. The outflow rates 
of items from a stock often depend strongly on the age of the items. Human mor- 
tality rates depend on age, the rate at which people discard and replace their auto- 
mobiles depends on the age of their cars, machine breakdowns in a plant depend 
on the time since the machines were last overhauled, and the probability ex- 
convicts are re-arrested depends on the time since their release. Aging chains are 
used to represent situations where the mortality rates of items in a stock and flow 
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structure are age-dependent and allow you to model changes in the age structure of 
any stock. This chapter shows how such situations can be modeled and provides 
examples including global population growth, organizational aging, on-the-job 
learning, and technical change. 

12.1 AGING CHAINS 
The stock and flow structure of systems is a critical determinant of their dynamics, 
and often there are significant delays between the inflow of material to a process 
and the outflow. In material delays (described in section 11.2) the flow of material 
through the delay is conserved. Material enters the delay, progresses through a 
number of intermediate stages, and finally exits. There are neither additions to nor 
losses from the intermediate stages: every item that enters eventually exits, and no 
new items can enter other than at the start of the delay. In many situations there are 
additional inflows and outflows to the intermediate stages. In these cases an aging 
chain is used to model the stock and flow structure of the system. Imagine the 
skilled labor force at a firm. Since it takes time for new hires to become fully ex- 
perienced and productive, the modeler may choose to disaggregate the total stock 
of employees into two categories, rookie employees and experienced employees. 
An important aspect of the structure is the delay in the assimilation of rookies. 
However, this situation cannot be modeled with a second-order material delay be- 
cause the firm can hire both rookies and experienced people, and both rookies and 
experienced employees can quit (or be fired). There are inflows and outflows to 
each of the stocks in the chain (Figure 12-1). 

12.1 .I General Structure of Aging Chains 
An aging chain can have any number of stocks (called cohorts), and each cohort 
can have any number of inflows or outflows. Figure 12-2 shows the general struc- 
ture for an aging chain. The total stock is divided into n cohorts, C(i), each with an 
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-i7 
L1 

General structure 
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inflow, I(i), and outflow, O(i). Material in cohort i moves to cohort i + 1 through 
the transition rate T(i, i + 1): 

C(i) = INTEGRAL(I(1) + T(i - 1, i) - O(i) - T(i, i + l), C(i),) (12-1) 
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There is no transition rate into the first cohort and no transition rate out of the last 
cohort: T(0, 1) = 0 and T(n, n + 1) = 0. In general, the transition rates can be 
either positive or negative (a negative transition rate means items flow from cohort 
i + 1 to cohort i). Usually, however, the transition rates are formulated as a delay 
and most often as a first-order process: 

T(i, i + 1) = C(i)NPC(i) (12-2) 

where YPC(i) is the number of years per cohort (the average residence time before 
exiting via maturation). The average residence time for items in each cohort 
YPC(i) can differ from cohort to cohort. Recall from chapter 11 that a first-order 
outflow from a stock implies that the contents of the stock are perfectly mixed so 
that the probability a particular item exits is independent of when it entered the 
stock. Just as in higher-order material delays, the overall behavior of an aging 
chain with n cohorts will be similar to the nth-order material delay. The number of 
cohorts can be increased until the assumption of perfect mixing within each cohort 
becomes a reasonable approximation (see section 12.1.3 for a formulation that pre- 
serves the exact order of entry to each cohort). 

The outflow rates can be formulated in a variety of ways. Often, however, the 
outflow represents the death rate (that is, the exit rate from the stock) and is for- 
mulated as 

O(i) = C(i) * FDR(i) (12-3) 

where FDR is the fractional death rate for cohort i. 
Aging chains can be applied to any population in which the probability of ex- 

iting the population depends on the age of the items in the population. Besides the 
aging and mortality of a population, examples include the failure of machines in a 
factory as a function of the time since the last maintenance activity, default and re- 
payment rates for loans of different ages, the rate of divorce as a function of mar- 
riage duration, or the likelihood of re-arrest following parole. 

12.1 -2 Example: Population and Infrastructure 
in Urban Dynamics 

Forrester’s (1969) Urban Dynamics model includes aging chains for three key 
components of a city: the stock of commercial structures, the housing stock, and 
the population (Figure 12-3). Forrester divided the total stock of commercial struc- 
tures into three categories: New Enterprise, Mature Business, and Declining In- 
dustry. The stock of New Enterprise is increased by New Enterprise Construction. 
The transition rate of New Enterprise to Mature Business is the New Enterprise 
Decline rate. Mature businesses age into the stock of declining industry through 
the Mature Business Decline rate. Finally, the stock of buildings in the Declining 
Industry cohort falls through the Declining Industry Demolition rate. Forrester 
chose to assume that all new construction adds to the New Enterprise cohort (there 
are no inflows to the mature or declining industry stocks other than the aging rates 
from the prior cohort). He also assumed that the demolition rate for new and ma- 
ture businesses was small enough to ignore, so the only outflow from the aging 
chain is the declining industry demolition rate. The aging chain for commercial 



FIGURE 12-3 Aging chains for businesses, housing, and labor in Urban Dynamics 
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structures is therefore equivalent to a third-order material delay (though the life- 
times of each cohort are not equal and vary with changes in economic and social 
conditions in the simulated city). 

The housing stock chain is more complex. Forrester divided the total housing 
stock into three categories-Premium Housing, Worker Housing, and Underem- 
ployed Housing-that correspond to the three types of people represented in the 
model: Managerial-Professional workers, skilled Labor, and the Underemployed. 
New housing of each type can be built. As each type of housing ages it is gradually 
converted into housing for the next type of worker. For example, in many cities 
large Victorian houses once occupied by the professional class were later divided 
into two- or three-family apartments occupied by the working class; as middle- 
class apartment blocks in the Bronx aged and deteriorated many became tenements 
primarily occupied by the underemployed. 

Each of the three population classes included a net birth rate (births less 
deaths), an inmigration rate, and an outmigration rate. The underemployed could, 
by gaining jobs and experience, move into the worker class, and workers could ad- 
vance into the managerial-professional class. Workers could also sink into under- 
employment. 

As an initial model of urban problems and policies, Forrester deliberately kept 
the model as simple as possible. Not all possible flows in the aging chains are rep- 
resented, and the model is no more disaggregated than necessary for the purpose. 
For example, Forrester ignored possible downward mobility of the professional 
class and did not explicitly represent the age structure of the population within 
each class of worker. In representing the infrastructure of the city, Forrester as- 
sumed that structures built for businesses could not be converted to housing, and 
vice versa, and that old, decayed housing could not be rehabilitated into premium 
housing. The experience of the past 30 years shows that some of the excluded 
flows did become important in many cities. A great deal of old industrial space was 
converted to housing (e.g., lofts in Soh0 and Brooklyn), gentrification rehabilitated 
much of the older housing stock, and many new businesses were created in peo- 
ple’s garages and spare bedrooms. These flows could easily be added to the aging 
chains in the model. For example, Homer (1979a, 1979b) adapted the Urban Dy- 
namics model to study insurance redlining. The modified model explicitly ac- 
counts for gentrification and rehabilitation of older housing, along with arson for 
profit. Mass (1974) and Schroeder, Sweeney, and Alfeld (1975) present a number 
of extensions and elaborations of the original model, generally showing that the 
policy recommendations of the original model were robust to major changes in the 
model boundary and level of aggregation; see also Alfeld and Graham (1976). 

12.1.3 Example: The Population Pyramid and 
the Demographic Transition 

A common use for aging chains is capturing the age structure of populations. Es- 
pecially for long-lived species like humans, young and old behave differently and 
for many purposes cannot be aggregated into a single stock. Chapter 8 described 
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the simplest demographic model where the number of people are aggregated into 
a single stock, with birth and death rates proportional to the total population: 

Population = INTEGRAL(Births - Deaths, Populationb) 

Births = Fractional Birth Rate * Population 

Deaths = Fractional Death Rate * Population 

( 12-4) 

(12-5) 

(12-6) 

In this first-order structure those just born can immediately reproduce and are just 
as likely to die as the oldest members of the population. For most real populations 
these are poor assumptions. For humans, mortality rates (the fractional death rate) 
are strongly age-dependent: mortality is high in the first years, low from childhood 
through the end of middle age, then rises with age. The childbearing years are 
roughly between 15 and 50, and fertility is not uniform during this interval. Vari- 
ations in the population growth rate alter the age structure and affect its overall 
behavior. For example, a nation with high life expectancy can have a higher frac- 
tional death rate than one with a lower life expectancy. If population in the nation 
with low life expectancy is growing rapidly, then a much larger proportion of the 
population will be young, reducing the total number of deaths per year per person 
despite lower average life expectancy. The lag between birth and reproduction can 
induce fluctuations in the age structure. Modeling the effects of phenomena such 
as the baby boom of the 1950s-including the extra demand placed on schools, the 
job market, and, in coming decades the retirement system-requires a model that 
distinguishes between age groups. 

Demographers often represent the age structure of a population by the popula- 
tion pyramid, a graph showing the number of people in each age group, by sex 
(Figure 12-4). The age structures for the world as a whole and for many develop- 
ing nations such as Nigeria resemble pyramids because rapid population growth 
means there are many more young people than old. The age structures of the de- 
veloped nations, where growth rates have been low for a generation or more, are 
more uniform, though it is still quite easy to see the variations in cohort size caused 
by phenomena such as the Great Depression, World War 11, and the postwar baby 
boom. In the US, for example, the depression and war cut birth rates, so the cohorts 
born between 1930 and 1945 are much smaller than the baby boom cohorts born in 
the 1950s (even after accounting for normal mortality). The echo of the baby boom 
generation (the large cohorts of 5-19 year olds in the figure, representing the chil- 
dren of the baby boomers) is also clearly visible in the US age structure. For a 
number of developed nations (including Japan), fertility has been below replace- 
ment rates for some time, so the youngest cohorts are smaller than those in the 
prime childbearing years. 

To model these issues, the total population can be represented by an aging 
chain in which the population is divided into n cohorts, each representing a certain 
age range, such as those age 5-10, 11-15, etc. The final cohort represents all 
people over a certain age. The following equations also disaggregate the popula- 
tion by sex: 

(12-7) 
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FlGiURE 12-5 
World average 
distribution of 
births by mothers’ 
age, 1990-1 995 

Ps(i) = INTEGRAL(M,(i - 1) + I&) - Ds(i) - M&), Ps(i)h) 

Pdn) = INTEGRAL(Ms(n - 1) + Is(n) - Ds(n), P,(n),p) 

f o r i E ( 1 ,  . . . ,  n -  1) (12-8) 

(12-9) 

where P,(i) is the population in cohort i, B is the birth rate, I(i) is net immigration 
to each cohort, D(i) is the cohort-specific death rate, and M(i) is the maturation rate 
from cohort i to i + 1. The subscript S denotes the sex (M or F). Each cohort rep- 
resents YPC(i) years per cohort. 

The birth rate is the sum of the children born to all women in the childbearing 
years: 

cy, 
B - S i  TF ) 3 w(a)P,(a), where w(a) = 1 

- (CY, - CY1 + 1) a=CY, a=CY, 

(12-10) 

In this formulation, P,(a) is the female population in cohort a and TF is total fertil- 
ity-the total number of children born to each woman during the childbearing 
years, where CY, is the first and CY, is the last childbearing year considered. The 
ratio TF/(CY, - CY, + 1) is therefore the average number of births per woman 
per year during the childbearing years, inclusive, usually assumed to be ages 15 to 
49. The age-specific weights w(a) represent the fraction of lifetime births occurring 
in each of the childbearing years (Figure 12-5) and depend on both biological fac- 
tors, such as nutrition, and socioeconomic factors, such as the role of women in the 
society, marriage age, and education. The sex ratio S, is the fraction of births of 
each sex. These fractions are usually close to but not equal to 0.5. The sex ratio is 
also not constant over time: In societies where there is a preference for male off- 
spring, technology now enables people to selectively abort female fetuses, reduc- 
ing S,. Female infanticide, which also occurs in a number of traditional societies, 
would be captured in the model by higher mortality rates for the youngest female 
cohort. 
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Source: United Nations Population Division, Population Newsletter, 59 (June 1995). 
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Over time people move through the aging chain. The process can be modeled 
with equations (12-1)-( 12-3). Most standard demographic models, however, use a 
slightly different formulation. Many of these models use discrete time intervals 
equal in duration to the number of years per cohort, UPC(i). They further assume 
that the death rate within the cohort is constant and deduct the total number of 
deaths from the cohort population before moving the population from one cohort 
to the next: 

M,(i) = Exit Rate,(i) * (SF,(i)) 

D,(i) = Exit Rate&) * (1 - SF,(i)) 

(12-1 1) 

(12-12) 

The total rate at which people leave each cohort (the exit rate) is divided into two 
flows: those who mature into the next cohort and those who die. The Survival 
Fraction, SFs(i), is the fraction maturing into the next cohort and (1 - SF) is the 
fraction that died while in the cohort. The survival fractions are easily derived from 
life tables or survival distributions for the population.' The age-specific mortality 
rate (the probability of death per year or fractional death rate FDR) for a cohort 
with survival fraction SF is given by the rate of exponential decay that would leave 
the fraction SF remaining after YPC years, or FDRs(i) = -ln(SF,(i))/YPC(i). 
If the age-specific mortality rates FDR are known, then the survival fraction is 
given by 

SFs(i) = exp(-FDRs(i) * YPC(i)). (12-13) 

If the age-specific mortality rate for a 10-year cohort in a population were FDR = 
O.Ol/year, then after 10 years the expected survival fraction would be 90.5%. The 
fraction surviving is greater than 90% because the number of deaths during each of 
the 10 years falls as the number surviving falls. 

There are two common formulations for the exit rate. Standard demographic 
models assume discrete time intervals and constant death rates within them. This 
formulation can be modeled using a pipeline delay where the exit rate from each 
cohort is the total rate at which people enter the cohort (the sum of those maturing 
into the cohort plus any inmigration), delayed exactly YPC years: 

Exit Rate&) = DELAYP(M,(i - 1) + I&), YPC(i)) ( 1 2- 14) 

where the DELAYP function represents a pipeline delay with a delay time here 
equal to the number of years per cohort YPC(i).2 

The pipeline delay is appropriate for situations where the population resides in 
each cohort for exactly the same period. Often, however, the residence times for 
individuals are not identical and the death rate varies continuously. At the other end 
of the spectrum, such situations can be modeled by a first-order delay: 

Exit Rates(i) = P,(i)/YPC(i) (12- 15) 

lKeyfitz (1977/1985), Lee (1992), and Rosner (1995) describe the mathematics of life tables 

2The DELAYP function is defined as follows: Outflow = DELAYP(Inflow, Delay Time) im- 
and survival analysis in discrete and continuous time. 

plies Outflow(t) = Inflow(t - Delay Time). See section 11.2.3. 
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The first-order exit rate implies that while the average residence time in each co- 
hort is YPC(i) years, some people leave earlier and some leave later. The formula- 
tion in equation (12-15) is appropriate in situations where the cohorts are defined 
not by age but by membership in a category such as the level in an organization 
where some are promoted to the next level faster than others (see the model in sec- 
tion 12.1.6). As the number of cohorts increases and the number of years per co- 
hort falls, the behavior of an aging chain consisting of n first-order cohorts 
converges to the pipeline formulation. 

Two Formulations for Mortality 
The formulation for the transition (maturation) rate in equations (12-2) and (12-3) 
differs from the formulation in equations (12-1 I)-( 12-15). In the former case, the 
maturation rate is given by the size of the cohort divided by the average residence 
time, while at the same time, deaths occur at a rate proportional to the size of the 
cohort. In the latter case, deaths are considered to occur at the time members exit 
the cohort. The two formulations are similar but not identical. Consider first 
equations (12-11)-(12-15), and for simplicity assume the exit rate is given by 
the first-order formulation in (12-15). The total outflow from each cohort P(i) is 
M(i) + D(i) = Exit Rate(i) = P(i)NPC(i). The interpretation is that each member 
of the cohort P(i) resides in the cohort for an average of YPC(i) periods. On exit- 
ing the cohort, the total outflow is divided into those maturing into the next cohort 
and those exiting the aging chain. This formulation is common in discrete time 
demographic models based on the pipeline delay where each cohort represents a 
particular age range and by definition individuals remain in the cohort for a fixed 
period of time. It is also a reasonable behavioral model for some organizational 
structures, such as consulting firms, law practices, or universities where there is an 
up-or-out promotion policy. In these settings, the stocks in the aging chain repre- 
sent categories such as associate, senior associate and partner. At every rank, each 
professional is reviewed after a certain number of years and is either promoted or 
terminated (section 12.1.6). 

In the case of equations (12-2) and (12-3), the total outflow from each cohort 
is M(i) + D(i) = P(i)/YPC + P(i) * FDR(i). This situation represents a case where 
deaths continuously remove people from each cohort. The average residence time 
is less than YPC periods. This formulation is appropriate, for example, in the 
Urban Dynamics model where the population is divided into different socio- 
economic categories: workers move from one category to another with a certain 
probability but also continuously face a chance of death.3 

Which formulation is better? Returning to the case of a law firm or university 
with an up-or-out promotion policy, both processes clearly play a role. After an av- 
erage period of, say, 8 years, all faculty are reviewed and either given tenure or ter- 
minated, as in equation (12-ll), but there is also a certain rate at which untenured 
faculty leave the university prior to their mandatory review date, as in equation 
(12-2). If necessary for the purpose of the model both formulations can be com- 
bined. Usually, however, the data are not good enough to allow these processes to 

3Statistically, the distribution of the population in each cohort is exponential in the case of 
equation (12-1 1); in the case of equation (12-2), the distribution is hyperexponential. 
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FIGURE 12-6 
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be estimated separately, and the differences between the two formulations are 
small enough that it is not necessary to include both. 

12.1 -4 Aging Chains and Population Inertia 
An important consequence of the age structure of the human population is the 
enormous momentum of population growth. World population crossed the 6 billion 
mark in 1999 with a growth rate of about 78 million people per year (1.3%/year). 
If fertility around the world instantly fell to replacement rates, meaning that on av- 
erage people have just enough children to replace themselves, the world population 
would not immediately stabilize. Instead, population would continue to grow. In 
the United Nations’ 1998 instant replacement scenario, world population would 
reach 8.4 billion in 2050 and 9.5 billion in 2150, a rise of more than a third. As 
long as total births exceed total deaths, the population continues to grow. Though 
each cohort just replaces itself, those now in the childbearing years are much 
greater in number than those in the older cohorts. Because world population has 
been growing, more and more people will reach the prime childbearing years for 
the next 30 years or so, increasing total births still more. Long human lifetimes and 
the long delay between birth and reproduction mean population is very slow to ad- 
just to changes in fertility and mortality. 

The tremendous inertia caused by the age structure of a population is further 
illustrated by the experience of China. Fertility in China fell below the replacement 
level beginning in the late 1970s as the result of the government’s one-child policy 
and other changes in social and economic circumstances (see Figure 12-4). Never- 
theless, the population of China grew from 985 million in 1980 to 1.237 billion in 
1998, more than 25% in less than 20 years. And although total fertility is expected 
to remain below replacement, the population is projected to grow to a peak of more 
than 1.4 billion by 2030 before gradually declining. Figure 12-6 compares China’s 
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age structure in 1998 to the age structure the US Census Bureau projects for 2010. 
While the population under age 35 remains about the same or even falls, the 
population over age 35 increases dramatically, simply because those aging into 
each cohort over age 35 are much more numerous than those aging out. 

These examples show that a population can continue to grow even though to- 
tal fertility rates are below replacement and can shrink even when fertility is 
greater than replacement. Variations in fertility (more generally, in the rate of ad- 
dition or removal from the cohorts) can induce variations in the age structure of a 
population that can cause its behavior to differ significantly from a model in which 
all ages are lumped into a single stock. 

12.1.5 System Dynamics in Action: World 
Population and Economic Development 

Most demographic models, such as the projections of the US Census Bureau and 
United Nations, assume total fertility, births, mortality, and migration are exoge- 
nous and calculate the resulting age distributions and total populations. These mod- 
els are essential tools for businesses and government agencies seeking to 
understand demographic trends over the short term, for purposes such as forecast- 
ing school age populations or the number of people entering the workforce or be- 
coming eligible for Social Security. 

Over longer time horizons births and life expectancy should not be treated as 
exogenous inputs. Factors such as nutrition, access to health care, the material 
standard of living, pollution, and crowding all depend on the size and wealth of the 
population, creating a huge number of feedbacks. Nevertheless, virtually all de- 
mographic models including those of the UN cut all these loops. Official projec- 
tions assume recent trends toward lower fertility will continue, until total fertility 
falls enough to bring world population to eventual equilibrium. The UN’s 1998 
medium fertility scenario, for example, assumes replacement fertility is achieved 
worldwide in 2055, leading to an equilibrium population of about 11 billion. 

Forrester, in World Dynamics (1971b), and then Meadows et al. (1972, 1974) 
developed the first integrated models of world population, the global economy, 
natural resources, and the physical environment. These models were designed to 
investigate the effects of population and economic growth as human activity ap- 
proaches the carrying capacity of the earth. Forrester’s model represented world 
population as a single stock. Meadows et al. elaborated and expanded Forrester’s 
model, disaggregating world population into four cohorts (ages 0-14, 15-44, 
45-64, and 65 and over). Meadows showed the four-level aging chain behaved 
quite well and provided sufficient precision when applied to world population 
where many different populations are aggregated together and there is considerable 
measurement error and uncertainty about parameters. Wang and Sterman (1985), 
applying the Meadows population sector to the population of China, used a 66 co- 
hort model (one per year up to age 65 and one for those over 65). 

Meadows et al. sought to model the demographic transition. The demographic 
transition describes the pattern of change in population growth rates as nations 
industrialize. In traditional societies prior to economic development, both crude 
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birth and death rates (births and deaths per thousand people) tended to be high and 
variable. Average life expectancy was comparatively low, and women bore many 
children to ensure that a few would survive to adulthood and support their parents 
in their old age. Population growth was slow. 

According to the theory of the demographic transition, life expectancy rises 
sharply with the arrival of industrialization and the introduction of modern sanita- 
tion, public health systems, and medical care. Death rates fall. Birth rates eventu- 
ally fall as well. Higher life expectancy and lower infant mortality mean more 
children survive to adulthood, so women do not need to bear as many to achieve 
their desired family size. Further, desired family size tends to fall as the cost of 
child rearing rises and as the contribution of children to the economic welfare of 
the family declines. Costs of child rearing rise and contributions fall in industrial 
societies because children enter the labor force much later than in traditional agri- 
cultural societies and must be supported by their parents for much longer and at 
higher cost. The decline in birth rates, however, is very slow, since norms for fam- 
ily size, marriage age, and other determinants of fertility are strongly embedded in 
traditional culture, religious norms, and other social structures; fertility is not the 
result of economic utility maximization by couples. 

Consequently, during the demographic transition population growth acceler- 
ates sharply, since death rates fall while birth rates remain high. Eventually, ac- 
cording to the theory, fertility falls into rough balance with mortality, and 
population approaches equilibrium. Figure 12-7 shows crude birth and death rates 
(births or deaths per thousand people per year) for Sweden and Egypt. In Sweden, 
where industrialization began early, death rates fell slowly, so population growth 
was modest during the transition, taking 120 years to double (1875 to 1995). In 
Egypt, however, as in many later-developing nations, the death rate fell sharply 
after World War 11. The birth rate, while starting to fall, remains high, so popula- 
tion growth is very rapid; population doubled in just 30 years (1966-1996). By the 
late 1990s the transition was far from over. 

The Meadows et al. global model included a fully endogenous theory of the 
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rises and falls, the distribution is shifted downward or upward, respectively, but 
retains roughly the same shape. Assuming the shape of the distribution remains 
stable, age-specific mortality can then be modeled as 

FDRs(i) = RFDRs(i)f,, ,(LE) (12- 16) 

where RFDR(i) is the reference fractional death rate for each cohort and LE is av- 
erage life expectancy at birth. The reference death rate is the fractional death rate 
in a reference year, corresponding to the year in which life expectancy takes the 
value that yields fs, ,(LE) = 1. The downward-sloping age-specific functions fs, 
relate mortality to average life expectancy and can be estimated from actuarial or 
demographic data. 

Meadows et al. modeled aggregate life expectancy as depending on four fac- 
tors: food per capita, health care services per capita, exposure to persistent pollu- 
tion, and crowding. These factors interacted multiplicatively to capture important 
interdependencies and to ensure robustness under extreme conditions (e.g., life ex- 
pectancy must approach zero as food per capita approaches zero; life expectancy 
remains finite even if all conditions are extremely favorable). The determinants of 
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life expectancy were endogenously generated by other sectors of the model, clos- 
ing the feedback loops in the model. 

Total fertility TF depends on both a biological maximum and desired family 
size of each woman in the population. The effectiveness of fertility control deter- 
mines whether total fertility is closer to the biological maximum or the desired 
level. A variety of socioeconomic factors determined desired family size and fer- 
tility control effectiveness in the model. The model also represented delays in the 
adjustment of cultural norms for desired family size to new social and economic 
conditions. The model did an excellent job replicating the aggregate historical data 
and provided the first fully endogenous model of the demographic transition, a 
model that, after more than 25 years, can still be fruitfully used to explore differ- 
ent policies relating to population growth. 

By treating interactions of population, economic growth, and the environment 
in a fully endogenous fashion, Forrester and Meadows et al. provided the first in- 
tegrated global models to study the dynamics of growth in a finite world. In the 
Meadows et al. model the demographic transition is not automatic, as assumed in 
models with exogenous fertility and mortality. If resources and environmental ca- 
pacity are sufficient and if economic growth and development are distributed fairly 
so even the poorest people have sufficient food, clean water, access to health care, 
and decent jobs, then the world as a whole moves through the demographic transi- 
tion and population eventually stabilizes with high life expectancy and low fertil- 
ity. But if global economic development passes the have-nots by or if pollution, 
resource shortages, crowding, insufficient food, or other problems caused by 
growth limit development, then the economic and social conditions that eventually 
lead to low birth rates will not arise and the demographic transition will not occur. 
Population and economic growth continue, overshooting the earth’s carrying ca- 
pacity. Environmental degradation reduces the carrying capacity and mortality 
rises. Within a hundred years, population and economic output fall. 

Meadows et al. (1972, pp. 23-24) summarized the conclusions of the study as 
follows: 

1. If the present growth trends in world population, industrialization, pollution, 
food production, and resource depletion continue unchanged, the limits to 
growth on this planet will be reached sometime within the next one hundred 
years. The most probable result will be a rather sudden and uncontrollable 
decline in both population and industrial capacity. 
It is possible to alter these growth trends and to establish a condition of eco- 
logical and economic stability that is sustainable far into the future. The state 
of global equilibrium could be designed so that the basic material needs of 
each person on earth are satisfied and each person has an equal opportunity 
to realize his [or her] individual human potential. 
If the world’s people decide to strive for this second outcome rather than the 
first, the sooner they begin working to attain it, the greater will be their chances 
of success. 

2. 

3. 

Both Forrester and the Meadows team sought to encourage conversation and 
debate about growth and stimulate further scientific research leading to im- 
proved models, improved understanding, and, ultimately, actions and policies to 
prevent overshoot and collapse and encourage what is now known as sustainable 
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development. Toward that end, the authors took pains to point out the limitations 
of their models. Meadows et al. (1972, p. 21) wrote “The model we have con- 
structed is, like every other model, imperfect, oversimplified, and unfinished.” 
They published complete documentation for both world models so anyone with ac- 
cess to a computer could replicate, revise, and modify the models. Many did so, 
and dozens of critiques and extensions were published. 

The model triggered a vigorous and sometimes acrimonious public debate over 
growth, a debate still reverberating today. It also stimulated many other global 
modeling efforts, spanning a wide range of methods, model boundaries, time hori- 
zons, and ideological perspectives. Global models with narrow model boundaries, 
where many of the feedbacks are cut, tend to reach more optimistic conclusions. 
Models that capture the many feedbacks between human activity and the environ- 
ment tend to reach conclusions consistent with the original study.5 

12.1.6 Case Study: Growth and the Age Structure 
of Organizations 

Variations in birth rates have dramatic effects on the age structure of the world 
population. But growth also has profound implications on the age structure and 
maturation of organizations. Most organizations contain various promotion chains 
that represent the different levels in the hierarchy within each department or func- 
tion. Consulting firms, for example, typically include levels such as associate, 
senior associate, partner, and director. 

The growth rate of the organization has a dramatic impact on the balance 
among the levels in a promotion chain hierarchy and on opportunities for advance- 
ment. Figure 12-8 shows the promotion chain for a typical American university. 
There are three faculty ranks: assistant professors, associate professors, and full 
professors. Most US universities operate an up-or-out promotion system: faculty 
are reviewed after a certain period and those not promoted are terminated. Faculty 
reaching full professor are granted life tenure and remain active until they choose 
to retire (mandatory retirement in the US was abolished in the 1980s). While 
occasionally senior faculty are hired from other institutions, the vast majority of 
hiring is at the new assistant professor level. 

The up-or-out policy means the transition and departure rates are formulated 
as follows (the assistant professor flows are shown; flows for associates are 
analogous): 

Assistant Promotion Rate = Assistant Review Rate * Assistant Promotion Fraction 
(12- 17) 

5Forrester (1971b) provides the first global model with fully endogenous population and carry- 
ing capacity. Meadows et al. (1974) provides full documentation for the model, called WORLD3. 
Meadows et al. (1972) provides a nontechnical discussion of the assumptions and results of the 
study. Meadows, Meadows, and Randers (1992) updates the study and model and is the best 
starting point for those wishing to dig more deeply into these issues. Other global models and the 
science of global modeling itself are critiqued in Meadows, Richardson, and Bruckmann (1982). 
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Note that the assistant and associate ranks are formulated as first-order processes 
even though contracts are nominally all for the same specified duration, sug- 
gesting a pipeline delay. In practice some faculty are promoted earlier than others 
due to the varying incidence of personal and professional leaves of absence and to 

6The formulation assumes all faculty remain at the institution until they come up for review. 
In fact, there is some probability faculty leave prior to their promotion reviews. A more realistic 
model would incorporate both effects, combining the two formulations for mortality. In practice 
the data to estimate the parameters are not available, and the error introduced by aggregating 
those who leave prior to mandatory review with those who leave after a negative promotion 
review is negligible. 
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differing market pressures (a hot young professor may be promoted early to re- 
spond to outside offers from competing universities). These sources of variation 
imply that the formulation for the exit rate should allow some mixing. The first- 
order formulation assumes perfect mixing, certainly an overestimate of the variance 
in promotion times. However, given the relatively short residence times in each 
junior rank, the first-order formulation is not likely to introduce significant error. 

In contrast, the long tenure of full professors means a first-order formulation, 
with its assumption that the youngest full professors are just as likely to retire as 
the oldest, is clearly inappropriate. In the model analyzed here, a third-order for- 
mulation for the retirement rate is used. 

Given these assumptions, what is the distribution of faculty across the three 
ranks? The distribution depends on the average residence times of faculty in each 
rank and the average promotion fractions, as well as the growth rate of the faculty. 
In most universities, faculty remain assistant professors for an average of 3 years 
before promotion to associate; associate professors are typically reviewed for pro- 
motion to full professor after an average of 5 years. Full professors typically serve 
about 35 years before retiring at an average age of about 70. Though promotion 
fractions vary over time, typical values might be roughly 50% at each rank. The 
equilibrium distribution given these parameters is readily calculated (by Little’s 
Law) to be about 21% assistant, 18% associate, and 61% full professors, a distri- 
bution top-heavy with senior faculty. Where the total size of the faculty is fixed, 
junior faculty can only be granted tenure when a full professor retires or dies. 

However, few universities are in equilibrium. Most US universities went 
through a period of rapid growth from the end of World War I1 through the early 
1970s, when the baby boom generation graduated from college. Since then, due to 
declining college age populations and stagnating federal support for higher educa- 
tion, growth slowed or even became negative. Figure 12-9 shows the distribution 
of faculty ranks at MIT since 1930 (the pattern of behavior at other leading uni- 
versities is similar, though the timing and magnitudes differ). Until 1970 total fac- 
ulty grew rapidly, averaging 3.7%/year. The age distribution was skewed toward 
the younger ranks, with full professors averaging only about 36% of the faculty 
from 1930 through 1969. In the 1970s growth essentially ceased, and the total fac- 
ulty remained roughly constant through the mid 1990s. Hiring of new assistant 
professors fell, and the age distribution began to approach equilibrium. By 1993 
assistant professors made up less than 18% of the faculty while more than 63% 
were full professors-very close to the equilibrium distribution. 

The consequences of this transition were profound. During the era of rapid 
growth, the high proportion of young, untenured faculty gave the institution 
tremendous flexibility and brought large numbers of talented people into the orga- 
nization. Because there were relatively few senior faculty, the chances of promo- 
tion to tenure were good. Relatively young professors soon found themselves 
promoted to senior positions such as department chair or dean. After growth 
stopped and most departments began to fill with tenured faculty, flexibility de- 
clined. It became more difficult to get tenure. In some particularly top-heavy de- 
partments (those that had grown the fastest during the boom years), there was 
almost no turnover, little hiring, and few junior faculty. As similar dynamics played 
out at universities throughout the country, many doctoral candidates found they 
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could not get tenure-track positions after graduation; as a result, many were forced 
to accept low-paying postdoctoral positions or leave academia altogether. 

The aging of the faculty also had important financial implications. Because 
senior faculty are generally paid more than junior faculty, the aging of the faculty 
increased the total cost of the faculty faster than the rise in salaries for each rank. 
For individual faculty salaries to keep pace with inflation, the total payroll had to 
grow even faster. The resulting cost escalation helped push tuition up much faster 
than inflation during the 1970s and 80s. Ultimately, in part to relieve budget pres- 
sure and in part to make room for fresh blood, MIT, along with other top research 
universities where the same dynamics had played out, implemented an early 
retirement incentive program to speed the outflow from the ranks of the full 
professors. 

The discussion above suggests that the hiring rate and promotion fractions are 
not constant; they change as conditions in the university evolve. The data on fac- 
ulty at each rank can be used to estimate what the hiring and promotion fractions 
must have been and therefore test these hypotheses, given the average time spent 
in each rank. Figure 12-10 shows the results. No attempt has been made to specify 
the hiring and promotion fractions every year; instead, these parameters are set to 
round numbers at widely spaced intervals. Despite the low resolution with which 
the inputs are estimated, the model closely tracks the actual data. The excellent fit 
shows that the assumption of first-order exit rates from each junior cohort (and 
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a third-order retirement rate) is acceptable and there is little need for further 
disaggregation of the age structure within each faculty rank. Consistent with the 
discussion above, promotion fractions and hiring were high during the years of 
rapid growth and fell when growth stopped. Note also the large burst of hiring 
in the 1960s, which dramatically increased the ranks of the assistant professors. 
As intuition would suggest, the hiring surge was followed by several years of 
depressed hiring. More interestingly, the increasing number of faculty in the upper 
ranks compared to the number of slots available meant that the probability of 



490 Part IV Tools for Modeling Dynamic Systems 

promotion from assistant to associate after the hiring boom in the 1960s fell 
significantly. 

In reality, the size and composition of the faculty, and more generally any 
workforce, feeds back through the market and other channels to affect the hiring 
rate, promotion fractions, and other parameters. While important insights can be 
gleaned from the promotion chain model with exogenous hiring, promotion, and 
departure parameters, these structures are most useful when embedded in a full 
model of the organization. The promotion fraction, for example, can be modeled 
endogenously as depending on the normal span of control and the balance of senior 
to junior personnel. It is also affected by the financial health of the organization. 
The rate at which employees voluntarily quit to take better opportunities elsewhere 
depends on their perceptions of the chances for promotion. These chances, in turn, 
depend on the age structure and hence the growth rate of the organization. Since 
the most talented employees will have the most attractive outside opportunities, a 
slowdown in growth, by reducing promotion opportunities, can systematically 
drain an organization of its best talent. Loss of talent can then feed back to worsen 
performance in the marketplace, further eroding growth in a vicious cycle (see sec- 
tion 10.4.9). 

The faculty example shows how an aging chain can be used to model the de- 
mographic structure of organizations and illustrates the dramatic impact of growth 
on the distribution of personnel among the different ranks. The steady state age 
structure of any population depends on its growth rate. Changes in population 
growth rates at the community, national, or global levels change the ratios of chil- 
dren to people of childbearing age and of the working age population to retirees, 
significantly changing the social, economic, and political pressures faced by the 
population. Similarly, as the growth rate of a business or other organization 
changes, it necessarily goes through large changes in the ratio of senior to junior 
employees, in promotion opportunities, and in the average cost of the workforce. 
These changes arise solely as a function of changes in the growth rate of the orga- 
nization. Since the growth of all organizations must slow as they become larger, 
the age distribution tends to become top heavy, posing great challenges to organi- 
zations seeking to renew themselves while preserving attractive career paths for 
those already in the hierarchy. The larger and faster the decline in growth rates, the 
worse this problem becomes. The fastest-growing, most successful organizations 
always face the greatest challenge when their growth inevitably slows. 

12.1.7 Promotion Chains and the Learning Curve 
Consider again the two-level promotion chain for rookie and experienced workers 
(shown in Figure 12-11). This structure is very useful in modeling the effect of 
training and assimilation delays on the productivity of a workforce as the growth 
rate ~ a r i e s . ~  The promotion chain provides a simple and effective way to model 
the learning curve for new employees. To keep the model simple, assume it is not 

701iva (1996) applies the promotion chain structure to service quality in a major UK bank; 
Abdel-Hamid and Madnick (1991) apply it to software product development; Packer (1964) 
applies it to a model of high-tech growth firms. 
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FIGURE 12-1 1 A two-level promotion chain to explore worker training 
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possible to hire experienced people. In some industries, experienced hires are 
unavailable or too expensive. More commonly, becoming fully productive depends 
on the accumulation of situation-specific knowledge, so prior experience is of 
limited benefit. 

The productivity of rookie employees is typically a fraction of that for fully ex- 
perienced employees. The total potential output of the workforce is then given by 

(12-20) 
Potential Experienced * Rookie Productivity Rookie Experienced + 

Fraction Employees Employees 
- - 

Output Productivity 

Average productivity is 

Average Productivity = Potential Output/Total Employees 

Formulating the flows as first-order processes yields 

Rookie Quit Rate = Rookie Employees * Rookie Quit Fraction 

Experienced Quit Rate 
= Experienced Employees * Experienced Quit Fraction 

Assimilation Rate = Rookie EmployeedAssimilation Time 

(12-21) 

(12-22) 

(12-23) 

(12-24) 

For purposes of testing, assume the workforce grows at a constant exponential rate. 
To do so, the firm must replace all those who quit and continuously add a fraction 
of the current total workforce: 

Rookie Hire Rate = Total Quit Rate + Growth Rate * Total Employees (12-25) 

Total Quit Rate = Rookie Quit Rate + Experienced Quit Rate (12-26) 
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What is the equilibrium distribution of employees between the rookie and experi- 
enced categories? The equilibrium conditions, when the growth rate is zero, are 

Roolue Hire Rate = Rookie Quit Rate + Assimilation Rate (12-27) 

Assimilation Rate = Experienced Quit Rate (12-28) 

Given the definitions of the flows, the equilibrium number of rookies is easily 
shown to be: 

Experienced * Experienced * Assimilation 
Employees (Quit Fraction Time Rookie Employees,, = 

which means the equilibrium Rookie Fraction is 

Experienced * Assimilation 
Quit Fraction Time 

Rookie Fraction,, = 
Experienced * Assimilation 
Quit Fraction Time 

(12-29) 

(12-30) 

Equilibrium average productivity, as a fraction of the productivity of experienced 
employees, is 

Rookie Productivity * Experienced ~ Assimilation 

Experienced * Assimilation 
Quit Fraction Time 

(12-31) 
Productivity,, - Fraction Quit Fraction Time 

Average 

Experienced 
Productivity 1 

- 

As intuition would suggest, the lower the relative productivity of rookies, the lower 
the equilibrium productivity of the workforce will be, unless rookies are as- 
similated instantly. Longer assimilation times mean there must be more rookies 
in training, and higher experienced quit rates mean more rookies must be hired 
to offset those experienced workers who leave. Both effects lower equilibrium 
productivity. 

Note that the rookie quit fraction has no impact (in this model). Because rook- 
ies are represented as a single cohort, those who quit are immediately replaced, so 
rookie quits cancel out in the net rate of change of rookies. Of course, higher 
rookie quit rates would increase the load on and cost of the firm’s human resource 
organization. In a more realistic model where the rookie population is disaggre- 
gated into more than one cohort, or where filling vacancies takes time, the equilib- 
rium would depend on the quit rates of the intermediate stocks. 

As an example, suppose the assimilation delay is 100 weeks (about 2 years) 
and experienced employees remain with the firm for an average of 10 years (the 
experienced quit fraction is 0.002/week). Assume rookie employees quit at a 
higher rate of O.Ol/week as some of the rookies wash out or decide the job doesn’t 
suit them. Assume the average rookie is only 25% as productive as experienced 
workers, The equilibrium roolue fraction is then %, and equilibrium productivity is 
0.875 of the experienced level.* 

8Without loss of generality, the productivity of experienced employees can be defined as 1, 
allowing potential output to be measured in full-time equivalent (FTE) experienced personnel. 
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The assimilation delay and rookie productivity fraction jointly determine the 
learning curve for new employees. Imagine hiring a group of rookie employees 
when there are no experienced employees. Productivity initially will be the rookie 
productivity fraction and ultimately will be 100% of the experienced level. Be- 
cause the assimilation process is first-order, productivity must approach 100% ex- 
ponentially with a time constant equal to the assimilation delay. If the evidence 
suggested the learning curve for new employees was not first-order7 the promotion 
chain could be disaggregated further to yield the appropriate pattern of productiv- 
ity adjustment. 

What happens if the firm is growing? Figure 12-12 shows a simulation in 
which the workforce grows at an exponential rate of 50%/year (O.Ol/week), start- 
ing in week 5.  The initial number of experienced workers is 1000; therefore, the 
initial hiring rate is 100 per year. The hiring rate immediately rises above the total 
quit rate, and the workforce begins to grow at 50%/year. Because all new hires are 
inexperienced, the rookie fraction immediately begins to rise and average produc- 
tivity immediately begins to fall. In the steady state, the rookie fraction rises to 
54% and productivity falls to just 59% of the experienced level. Though every em- 
ployee goes through a learning process that boosts individual productivity from 
0.25 to 1, the shift in the age distribution caused by growth lowers average pro- 
ductivity. Consequently, given the parameters in the example, potential output 
(shown on the graph in FTE experienced employees) barely changes for the first 
6 months even though the total workforce and payroll begin to rise immediately. 
After a year, potential output has risen by only 36% compared to the 50% growth 
in total  employee^.^ 

12.1.8 Mentoring and On-the-Job Training 
In the model so far roolue employees gain experience automatically and without 
cost. In reality, on-the-job (OTJ) training often requires the help and mentoring of 
experienced employees. Inexperienced workers reduce the time experienced peo- 
ple can devote to their own jobs by asking questions and by causing experienced 
people to work at a slower rate. Modifying the model to account for the impact 
of mentoring requires reformulating potential output as depending on the number 
of Effective Experienced Employees: 

rotenti 
outpt 

where the effective number of experienced employees is the total number less the 
time devoted to training the inexperienced employees. That is, 

Effective Experienced Experienced - Time Spent ) (12-33) 
Employees Employees Training Rookies 

9Note that the pattern of adjustment of productivity and the rookie fraction is exponential, a 
direct consequence of the first-order assimilation rate. A more realistic model disaggregating the 
rookie population into more cohorts would show an even slower increase in potential output. 
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FIGURE 12-12 
Response of two- 
level promotion 
chain to growth 
The total work- 
force grows at 
5O%lyear starting 
in week 5. The 
Rookie Produc- 
tivity Fraction = 
0.25, The Assimi- 
lation Delay = 
100 weeks, 
the Experienced 
Quit Fraction = 
0.002/week, 
and the Rookie 
Quit Fraction = 
0.01 /week. 
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Time Spent Fraction of Experienced Time 
= Rookies * Training Rookies Required for Training 

(12-34) 

Each rookie consumes an amount of experienced worker time equal to the Fraction 
of Experienced Time Required for Training. Under extreme circumstances, the 
number of roolues might be so high, or their training demands might be so great, 
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that the time remaining for experienced workers to actually do their jobs may fall 
to zero.1° 

Mentoring has only a small impact on the equilibrium productivity of the 
workforce. Equilibrium productivity for the case of mentoring by experienced 
workers is easily found to be 

Experiena 
Quit 

Fraction of 
Rookie 

Fraction 
for Tri 

Average 
-oductivity,, 

:d * Assimilation 
Time 

PI xining / 
~ 

Experienced 
Productivity 

(12-35) 

Experienced * Assimilation 
Quit Fraction Time 

With the parameters in the example above and assuming a rather high value of 0.5 
for the fraction of an experienced employee's time consumed in training each 
rookie, productivity in equilibrium falls to 79% of the experienced level, compared 
to 87.5% in the case with no mentoring by experienced workers. 

While mentoring has only a modest effect on equilibrium productivity, the im- 
pact on productivity and potential output when the workforce is growing is dra- 
matic. Figure 12-13 shows the effect of mentoring in the same scenario as Figure 
12-12. In the simulation, each rookie requires mentoring by the equivalent of 0.5 
experienced people. The rookie and experienced employee stocks follow the same 
trajectory, but now, as the rookie fraction rises, the total time spent training rook- 
ies grows, and the time experienced workers can contribute to production drops. 
Given the parameters, productivity falls to a steady state value of 0.32, compared 
to 0.59 in the case with no mentoring, a drop of 46%. In the short run, growth ac- 
tually causes potential output to fall. Potential output drops to a minimum 9% be- 
low the initial equilibrium and only reaches the initial level after 67 weeks. 

The Interactions of Training Delays and Growth 
The training model in section 12.1.8 shows that the higher the growth rate of the 
labor force, the lower the steady state experience level and productivity will be. 

1. Using the model with OTJ training, derive an algebraic expression for steady 
state productivity as a function of the growth rate and other parameters, including 
the fractional quit rate of experienced employees, the assimilation time, the relative 
productivity of rookies, and the fraction of experienced time required for training. 

'OMore realistically, production pressures will slash the time devoted to training rookies below 
what is required long before the number of effective experienced employees falls to zero. Therefore 
to be fully robust, the assimilation time should be reformulated as a variable, rising when total men- 
toring time is less than required. 
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How do these parameters affect the loss of productivity in the steady state as 
growth rates increase? 
2. The current model assumes the learning and assimilation process is first-order. 
In many high-skill settings this is unrealistic. Modify the model to include a third- 
order training and assimilation process (with the same fractional rookie quit rate 
and average assimilation time). Assume rookie employees are equally likely to quit 
in each of the three trainee categories you create. Be sure you modify the total hir- 
ing rate to replace all employees who quit. Each category of rookies still requires 
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the same time from experienced employees through OTJ training and mentoring. 
Initially, assume the productivity of all rookies is still 0.25 that of experienced 
workers. Repeat the test shown in Figure 12-13 (in which growth at a constant 
fractional rate begins from an initial equilibrium). Next, assume more realistically 
that rookie productivity is 0, 0.25, and 0.50 that of experienced workers for rook- 
ies in stages 1, 2, and 3 of their training, respectively. What is the impact of a 
higher-order training process on the transition from stability to growth? 
3. In many organizations, such as consulting firms, law firms, and other profes- 
sional service organizations, experienced employees not only mentor junior em- 
ployees on the job but also participate in recruiting new employees. Modify the 
model to capture the loss of productive time due to recruiting effort. Assume re- 
cruiting each new employee requires a certain fraction of an experienced person’s 
time (rookies do not participate in recruiting). Pay careful attention to the units of 
measure. Select parameters to represent the case of consulting firms recruiting 
MBA students. The leading consulting firms invest heavily in the recruiting 
process. Besides on-campus recruiting events and interviews, promising candi- 
dates face second, third, and often fourth rounds of interviews at company sites 
during which they meet many senior members of the firm. Senior people must then 
devote further time to discussion and selection of the finalists. Further, many can- 
didates must be interviewed for each one ultimately hired. Make the selectivity of 
the firm an explicit parameter in your model, measured as a dimensionless ratio of 
the number of offers made per candidate considered. Also introduce a parameter 
reflecting the fraction of offers accepted (the yield). Using your estimate of these 
parameters and the time senior employees invest in recruiting each candidate, run 
the model for various growth rates. What is the impact of recruiting effort on aver- 
age productivity and effective production capacity? What is the impact of growth 
on the time senior people have available for revenue-generating activities? What 
would happen if the firm tried to cut back on the time senior people invest in re- 
cruiting? What would happen if the firm became less selective? If the reputation of 
the firm declined, eroding their yield? Develop a causal diagram showing how po- 
tential output and average productivity might feed back to affect the firm’s ability 
to deliver high-quality results to their clients and to recruit and retain the best can- 
didates. What are the implications for the growth strategy of a firm? 

12.2 COFLOWS: MODELING THE ATTRIBUTES OF A STOCK 
The stock and flow networks developed thus far keep track of the number of items 
in a stock and flow chain. The size of a stock indicates how much material is in the 
stock but does not indicate anything about other attributes of the items. A model of 
a firm might include stocks for different kinds of employees, but these stocks only 
indicate how many employees there are and do not reveal how productive they are, 
their average age, their training level, or other characteristics that might be impor- 
tant for the model purpose. Often it is necessary to keep track of attributes such as 
the skill and experience of workers, the productivity of machine tools, the defects 
embodied in designs moving through a product development process, or the book 
value of a firm’s inventory. Coflow structures are used to keep track of the 
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attributes of various items as they travel through the stock and flow structure of 
a system. 

As an example, consider a model designed to help a company understand how 
fast new technology can be deployed and how it changes the number of workers it 
needs. Each machine the company buys from equipment suppliers requires a cer- 
tain number of workers to operate it. Over time, as technology improves, the pro- 
duction process grows more automated and fewer workers are required. The 
company is interested in knowing how quickly the new, labor-saving machines 
will be deployed and how fast their total labor requirements will change. 

A simple model of the situation begins with the firm’s stock of capital plant 
and equipment, such as machine tools. The capital stock is augmented by capital 
acquisitions and reduced by capital discards. For simplicity, assume the discard 
process is first-order: 

Capital Stock (12-36) 
= INTEGRAL(Capita1 Acquisition - Capital Discards, Capital Stock(t,)) 

Capital Acquisition = Exogenous (12-37) 

Capital Discards = Capital StocWAverage Life of Capital (12-38) 

The total labor requirements of the firm are equal to the product of the number of 
machines in the firm’s plants and the average labor requirements of each machine: 

Total Labor Requirements = Capital Stock * Average Labor Requirements (12-39) 

How should average labor requirements be modeled? Obviously, if a new type of 
machine requiring only half as many workers suddenly became available, the av- 
erage labor requirements would change only slowly as the new machines gradually 
replaced the existing, labor intensive machines. There is a delay between a change 
in the labor requirements available in new machines and the adjustment of average 
labor requirements. Similar considerations apply to other factor inputs to the 
production process such as the energy requirements of the machines, their total 
productivity, and so on. It is tempting to model the adjustment of these factor re- 
quirements as a simple delay where the adjustment time is equal to the average life 
of capital: 

Average Labor Requirements (1 2-40) 
= SMOOTH(Labor Requirements of New Capital, Average Life of Capital) 

However, the delay formulation is fundamentally flawed and will lead to signifi- 
cant errors if the capital stock is not in equilibrium. An extreme conditions test ex- 
poses the defect in the proposed formulation. Suppose the firm’s equipment 
suppliers introduce a new type of machine that requires only half as many workers. 
Now suppose that at the same time, the firm stops buying new equipment alto- 
gether (say, because of a recession). The firm then must continue to use the exist- 
ing, inefficient machines, and there is no change in the average labor required per 
machine. However, the delay in equation (12-40) will continue to adjust average 
labor requirements to the new, low level of the new machines even though the firm 
isn’t buying any. The firm’s required labor force falls as the delay magically con- 
verts the old machines to the productivity of new ones without the need for any in- 
vestment or expenditure. The rate of change in average labor requirements depends 
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FIGIJRE 12-14 Coflow to track the labor requirements embodied in a firm's capital stock 
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on the rates at which new machines are added to and old machines are discarded 
from the capital stock. The labor requirements of the firm's equipment are embod- 
ied in the machines themselves. Modeling the adjustment as a delay divorces 
changes in this attribute of the stock of machines from changes in the stock itself. 
To model such a situation requires the modeler to keep track of the labor require- 
ments of every machine added and every machine discarded. Coflow structures 
allow you to do this." 

Figure 12-14 shows the structure for the capital stock model described above. 
The coflow is a stock and flow structure exactly mirroring the main stock and flow 
structure. The coflow tracks the labor requirements embodied in the capital stock 
as new machines are acquired and old ones are discarded. 

The stock of capital is augmented by acquisitions and reduced by discards. For 
now, the capital stock is treated as a first-order process. The capital acquisition rate 
is exogenous. 

"Some try to save the delay formulation in equation (12-40) by making the average life of 
capital a variable or representing the adjustment process with a higher-order delay, but the critique 
remains valid. In fact, there are many models in the literature where the adjustment of input 
requirements is modeled as a delay, including a wide range of econometric models of energy de- 
mand in which the energy intensity of the economy (BTU/$ of output or BTU/year per $ of capital 
stock) are assumed to adjust to changes in price with some form of distributed lag, independent of 
the characteristics, size, or turnover of the capital stocks consuming that energy. 
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The total labor required to operate the company’s existing machines is given 
by the Labor Requirements stock. Every time a new machine is added to the capi- 
tal stock, the total labor requirements of the firm rise by the labor required for that 
machine. Every time a machine is discarded, the total labor requirements decrease 
by the average labor requirements of the discarded machine: 

Increase in Labor Requirements 
= Capital Acquisition * Labor Requirements of New Capital (12-41) 

For example, if each machine requires, say, 100 workers, then a purchase of 
10 machines increases total labor requirements by 1000 people. Since the discard 
process is assumed to be first-order, the probability of discard is independent of ac- 
quisition time and of any other attributes of the capital stock. Therefore the aver- 
age labor requirements of the discarded machines equal the average for the entire 
existing stock. That average is given by the total labor requirements divided by the 
total capital stock. Thus 

Decrease in Labor Requirements 
= Capital Discards * Average Labor Requirements 

Average Labor Requirements = Labor RequirementsKapital Stock 

(12-42) 

(1 2-43) 

Increase in Decrease in 

Requirements Requirements, 

Labor 
Requirements(Q =INTEGRAL Labor - Labor 

(12-44) 
i Labor 

Requirements 

If each existing machine required 200 workers, then the discard of 10 machines 
would reduce labor requirements by 2000 people. The replacement of these ma- 
chines with new ones requiring 100 instead of 200 people reduces total labor re- 
quirements by 1000 people. 

The coflow structure has some obvious and desirable properties. In equilib- 
rium, capital acquisitions and discards are equal, and, if the labor requirements of 
new capital are constant, the labor requirements of the firm will also be constant, 
since the loss of jobs associated with discarded machines just offsets the increase 
in labor required to operate new ones. The equilibrium labor requirements of the 
firm will be Labor Requirements of New Capital * Capital Stock. 

Changes in capital acquisition or discards have no effect on average labor re- 
quirements as long as the labor requirements of new capital remain constant. Now 
imagine that a new labor-saving technology suddenly becomes available so that all 
new machines require only half as much labor. Figure 12-15 shows the response of 
labor requirements over time. As expected given the first-order structure for the 
capital discard rate, the labor requirements of the firm approach the new equilib- 
rium exponentially, with a time constant given by the average life of capital. 

If the response of the system is simple exponential decay, why is a coflow for- 
mulation needed? The behavior shown in Figure 12-15 is exactly what would be 
generated by the delay formulation in equation (12-40). Why not simply model the 
adjustment of average labor requirements with the simple and easy to explain de- 
lay? The answer is that the response of average labor requirements depends on the 
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behavior of the acquisition and discard rates. In equilibrium, with constant acqui- 
sitions, discards, and capital stock, the coflow behaves exactly like a first-order de- 
lay with a time constant equal to the average life of capital. But now suppose the 
firm is growing, so the acquisition rate rises exponentially at some rate. New ma- 
chines will be added ever faster, quickly diluting the contribution of old machines 
to average requirements. Or suppose the discard rate varies with the utilization of 
the firm's capital stock. In these cases the rate at which old machines are replaced 
varies over time and so too will the evolution of average labor requirements. Fig- 
ure 12-16 compares the behavior of labor requirements in stationary equilibrium to 
the cases where the acquisition rate grows at lO%/year and where it shrinks at 
lO%/year. 

When the capital stock is growing, new machines are added at an ever-greater 
rate, so new machines with low labor requirements quickly dominate the stock of 
capital. Average labor requirements fall to the new level after only about 35 years, 
compared to more than 90 years in the equilibrium case. Even more interesting, in 
the case where the firm is shrinking at 10%/year, new investment quickly becomes 
so small that average labor requirements never reach the new level. After about 
20 years, new investment is negligible and the firm is stuck with a capital stock 
consisting primarily of old, inefficient machines. By explicitly modeling the 
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attributes of the items flowing into and out of the stock of machines, the coflow 
model correctly tracks changes in the total and average labor requirements of 
the firm. 

The labor requirements example can be generalized to any attribute of any 
stock. Figure 12-17 shows the generic structure for a coflow for the case where 
there is a single inflow and single outflow to the stock. 

In general, the main stock may have any number of inflows and outflows, say 
m inflows and n outflows: 

Stock = INTEGRAL(Tota1 Inflow - Total Outflow, Stock(b)) 

rn 

Total Inflow = Inflow(i) 
,= I  

n 

Total Outflow = Outflow(j> 
, = i  

Outflow( j)  = StocWAverage Residence Time for Outflow( j) 

( 12-45) 

(12-46) 

(12-47) 

( 12-48) 

Each outflow is modeled as a first-order process with an outflow-specific time con- 
stant. The time constants can be variables. 

The coflow structure tracking the attribute of the stock exactly mirrors the 
structure of the main stock. Each unit flowing into the stock adds a certain number 
of attribute units to the total attribute stock. In the example, each new machine 
adds a certain number of workers to the total number required to operate all the 
machines. The number of attribute units added per stock unit, denoted the marginal 
attribute per unit, can differ for each inflow. For example, the firm might buy dif- 
ferent types of machines, each requiring a different number of workers to operate 
it. Thus, 

Attribute(t,) 

Total Total 
Increase in - Decrease in 
Attribute Attribute, 

Total 
Attribute 

(12-49) 

m 

Total Increase in Attribute = 2 Marginal Attribute per Unit(i) * Inflow(i) (12-50) 
I = I  

Similarly, for each outflow from the main stock there is a corresponding drain from 
the total attribute stock. Each unit leaving the stock removes the average attribute 
per unit. The average attribute per unit is simply the total attribute level divided by 
the total number of units in the stock: 

n 

Total Decrease in Attribute = Average Attribute per Unit * Outflow(j) (12-51) 
j = 1  

Average Attribute per Unit = Total Attribute/Stock (12-52) 

You can model as many different attributes as you desire, each captured by a sep- 
arate coflow structure. For example, one coflow might represent the labor require- 
ments of the firm’s capital stock, another might represent the energy requirements, 
a third might represent the productivity of the machines, a fourth might represent 
the defect rate in the output of the machines, and so on. 
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FIGURE 12-1 7 
Each unit flowing into the stock adds the marginal attribute to the total attribute. Each unit flowing out 
removes the average attribute. In general, there can be any number of inflows and outflows to the main 
stock, each with a corresponding flow into the total attribute stock. 
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Cof lows 
Build and test coflows for the following situations: 

1.  A firm maintains a make-to-order system for its products. The order backlog 
is increased by the order rate; it is decreased as orders are fulfilled and by order 
cancellations. Assume the average delivery delay (the order fulfillment time) is 
constant and equal to 4 weeks. Assume also that on average 1% of orders are can- 
celled per week. Customers pay on delivery but pay the price in effect at the time 
their order was placed, even if price has changed in the meantime. Create a coflow 
that tracks the average value of the orders in the backlog and determines the aver- 
age price associated with the orders filled. Also formulate the equation for the 
firm’s revenues (assume revenue is recorded when orders are fulfilled). 
2. Consider the national debt of the United States. The debt is increased by bor- 
rowing and decreased by repayment. The repayment rate depends on the average 
maturity of the outstanding debt. The mix of Treasury notes, bills, and bonds de- 
termines average maturity. Assume the average maturity is 5 years. The Treasury 
rolls over maturing debt and must issue new debt to finance any fiscal deficit. The 
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deficit is expenditure less revenue. Assume revenue is constant at $900 billion 
(900e9) per year. Expenditures consist of interest on the debt and spending on gov- 
ernment programs. Assume program spending is also constant at $900 billiodyear. 
These values are approximately correct for 1988; in 1988 the outstanding debt was 
about $2.5 trillion (2.5e12). Interest payments are equal to the product of the out- 
standing debt and the average interest rate. First, formulate the average interest rate 
as an exogenous constant initially equal to 7%/year. Next, replicate the model and 
formulate the average interest rate by using a coflow. The coflow formulation ac- 
counts for the fact that the average interest rate depends on the interest rates at 
which each bill, bond, or note was issued, even if interest rates on new debt have 
changed. 

Verify that when the interest rates in both formulations are constant and equal, 
the behavior of the two formulations is identical. Next, compare the behavior of 
the two formulations for the case where the interest rate falls from 7%lyear to 
3%/year in 1992. What difference does the coflow structure make, and why? To 
approximate a continuous compounding situation, use a small time step, such as 
%6 year, for the simulations. 
3. It is often important to model the average age of items in a stock or the aver- 
age date at which the items entered the stock. As an example, consider a model of 
a firm’s labor force. Assume a single stock of labor, increased by a hiring rate and 
decreased by an attrition rate. Assume that the attrition rate is first-order and that 
employees stay with the firm an average of 10 years. Formulate a coflow that 
keeps track of the average age of the people in the labor force and also the average 
date at which they joined the firm. Hint: You only need one coflow stock to calcu- 
late both the average date at which each person was hired and the average age of 
the workers. Formulate the model so it begins in equilibrium. Demonstrate that in 
equilibrium the average age of the workers is equal to the average tenure in the job 
plus their average age at the time of hiring. Explore the response of the average age 
of the employees to various test inputs such as changes in the average time people 
stay with the firm, step and pulse changes in the hiring and attrition rate, and ex- 
ponential growth or decline in the hiring rate. Note: This challenge requires that 
you introduce a flow that alters the attribute stock for which there is no corre- 
sponding flow into or out of the stock of labor. Such a structure is called a non- 
conserved coflow because the attribute stock can change even when there is no 
inflow to or outflow from the main stock. 
4. The capital stock of a firm is increased by acquisitions and decreased by dis- 
cards. The average lifetime of each unit of capital is 20 years. Given the cost of 
each unit of capital create a coflow that models the book value of the firm’s capi- 
tal stock. Assume the value of each unit of capital is reduced by depreciation with 
an average depreciation life of capital that can differ from the actual lifetime. 

12.2.1 Coflows with Nonconserved Flows 
The coflow structures described so far represent the attributes of the stock as con- 
served quantities: the only way the total attribute stock can change is through the 
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inflow or outflow of a unit from the main stock. Often, however, the attributes as- 
sociated with a stock can change without any change in the main stock. Retrofits 
can change the labor or energy requirements of a firm's capital stock even though 
the firm doesn't buy or discard any new equipment. The value of a firm's inventory 
can be written down to reflect changes in its market value though the physical in- 
ventory itself doesn't change. In these cases, the total attribute associated with a 
stock is not conserved and the coflow structure includes additional flows into or 
out of the total attribute stock, flows for which there are no corresponding flows af- 
fecting the main stock. 

Suppose as in Figure 12-18 you are modeling a firm's labor force, which is 
increased by hiring and decreased by attrition. For the purposes of this example, 
the hiring rate and fractional attrition rate are assumed to be exogenous, though in 

FIGURE 12-18 
New employees bring a certain amount of experience with them; departing employees take their 
experience with them. In addition, experience increases with tenure in the job and declines as workers 
forsjet or as changes in the process make existing experience obsolete. 
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general they will be modeled as endogenous variables. The coflow measures the 
average and total effective experience of the workforce. The stock Total Effective 
Experience (measured in person-weeks) is the effective number of weeks of ser- 
vice each employee has, summed over all employees. Each employee hired brings 
a certain amount of effective experience. Employees leaving the labor force take 
the average experience with them: 

Average Experience = Total Effective ExperienceLabor Force (12-53) 

Total Effective Experience = INTEGRAL(1ncrease in Experience from Hiring 
+ Increase in On-the-Job Experience - Loss of Experience from Attrition 
- Experience Decay Rate, Total Effective Experience(t,)) ( 12-54) 

Increase in Experience from Hiring 
= Average Experience of New Hires * Hiring 

Loss of Experience from Attrition = Average Experience * Attrition 

(12-55) 

(12-56) 

Each employee accrues additional experience at the rate of 1 week per week 
worked. In this example, the unit of time for the simulation is the year, while aver- 
age experience is measured in weeks. The increase in total effective experience is 
the number of weeks each person works per year summed over the entire labor 
force: l2 

Increase in On-the-Job Experience 
= Labor Force * Weeks Worked per Year 

(12-57) 

Finally, effective experience also decays as people forget relevant knowledge and 
as changes in the production process render experience obsolete. The fractional 
decay rate is assumed constant here but might vary with changes in organizational 
structure or process technology. The total loss of experience is the average loss of 
experience summed over the entire workforce: 

Experience Decay Rate (12-58) 
= Labor Force * Average Experience * Fractional Experience Decay Rate 

Because the stock of effective experience is modified by the nonconserved flows 
of experience accrual and decay, the equilibrium experience of the average worker 
will not, in general, equal the average experience of new hires, as it would in a 
conserved coflow. In equilibrium the sum of the four rates affecting total effective 
experience must be zero. When hiring and attrition are also equal so the labor force 
is in equilibrium with Hiring = Attrition = Labor * Fractional Attrition Rate, a 
little algebra reveals equilibrium average experience to be: 

12Time in the simulation of this example is measured in years, while experience is measured in 
weeks. There is no contradiction. Consider the units of equation (12-57). The increase in OTJ ex- 
perience is measured in person-weekdyear, determined by the labor force and the average number 
of weeks worked each year. If time was measured in months, the Increase in On-the-Job Experience 
would be the labor force multiplied by the number of weeks worked per month. Note that the 
number of weeks worked per year will not in general equal 52. Vacation time, sick leave, strikes, 
or promotion to management all reduce the rate at which employees accumulate experience. 



Chapter 12 Coflows and Aging Chains 507 

Fractional * Average Experience + Weeks Worked) (12-59) 
Average - Attrition Rate of New Hires per Year 

1 Fractional Fractional Experience + Attrition Rate Decay Rate 

Equilibrium total effective experience is simply the equilibrium average experi- 
ence multiplied by the labor force. As expected, the greater the experience of new 
hires or the number of weeks worked per year, the greater the equilibrium average 
experience will be; the faster experience decays or people leave the organization, 
the lower the equilibrium experience level will be. 

Greater average experience should translate into greater productivity, higher 
quality, and lower cost. Learning curve theory provides a variety of models to re- 
late experience with a process to attributes such as productivity, quality, or cost. 
One common formulation for the learning curve posits that productivity rises by a 
given percentage with each doubling of relevant experience: 

i 
i 

- 
Experience,, 

Average Experience 
Reference Experience Productivity = Reference Productivity * (12-60) 

where Reference Productivity is the productivity attained at the Reference Experi- 
ence level. The exponent c determines the strength of the learning curve and is 
equal to 

c = log,(l + fp) = ln(1 + fp)/ln(2) (12-61) 

where fp is the fractional change in productivity per doubling of effective experi- 
ence (see the challenge in section 9.3.4; see also Zangwill and Kantor (1998) for a 
derivation of this and other forms of learning curves).13 Similar equations could be 
used to model other attributes such as defect rates, mean time between failure for 
equipment, or unit costs as they depend on average experience. 

Most learning curve models measure experience by cumulative production, a 
stock that can never decline, so productivity can only rise over time. The model de- 
veloped here represents productivity as dependent on the average effective experi- 
ence of each worker. Modeling learning as a process embedded in the human 
capital of the firm means that, in contrast to standard learning curve models, it is 
possible for the productivity of the firm to fall. Productivity can fall if there is a 
sudden exodus of experienced workers or if there is a large change in technology 
that makes past experience obsolete. 

Clearly, while worker-specific knowledge is important, learning is also em- 
bedded in longer-lived stocks such as plant and equipment, organizational routines, 
and other infrastructure. Cumulative experience with these infrastructures could be 
modeled in the same way as effective labor experience, though these other ele- 
ments of firm infrastructure would have smaller attrition rates than labor. Model- 
ing productivity as dependent on experience embedded in a firm’s resources and 
infrastructure, rather than as a function of some disembodied notion of cumulative 

13The fractional change in productivity fp will be positive because greater experience boosts 
productivity. If the learning curve is used to represent unit costs, fp will be negative since increasing 
experience reduces costs. 
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experience, allows productivity, cost, or quality to decay should experience de- 
cline, while standard learning curves cannot exhibit such behavior. 

There is some evidence for such “forgetting curves.” Sturm (1993) estimated 
learning curve models for the nuclear power industry in Europe, the former Soviet 
Union, and the USA. Surprisingly, the number and duration of unplanned outages 
actually increased with cumulative operating experience in about half the coun- 
tries, primarily in the nations of the former Soviet bloc. Sturm hypothesized that 
knowledge of safe operations fell in the wake of the political and economic turmoil 
caused by the fall of the command economies. Henderson and Clark (1990) found 
that dominant firms in the semiconductor equipment industry often lost their lead- 
ership position when there was a change in product architecture that rendered the 
cumulative experience of the firm obsolete, eroding their competitive advantage 
and allowing younger and less experienced firms to overtake them. Accurately 
modeling such situations requires nonconserved coflows. 

The Dynamics of Experience and Learning 
Explore the behavior of the workforce experience model in Figure 12-18. Assume 
the hiring rate equals the attrition rate (plus exogenous test inputs) so that those 
leaving are instantly replaced. Assume the initial labor force is 1000 people. Con- 
sider the following parameters: 

Fractional Attrition Rate = 0.20/year. 
Average Experience of New Hires = 10 weeks. 
Average Weeks Worked per Year = 50 weekdyear. 
Fractional Experience Decay Rate = 0.10 /year. 
Fractional Improvement in Productivity per Doubling of Experience 
(f,) = 0.30. 
Reference Productivity = 100 (widgets/week)/person. 
Reference Experience = 10 weeks. 

1. What is the equilibrium average experience per worker? Explore how the 
equilibrium varies with the values of the different parameters. 

2. What happens to average experience and productivity if no one ever leaves 
the firm? Generate the learning curve for a cohort of new employees by 
setting the initial labor force to a very small number (one), setting the 
Fractional Attrition Rate to zero, and then adding a large pulse of new 
employees (1000) at the start of the simulation. Without attrition, 
experienced employees never leave. Does effective experience rise 
indefinitely? Why/why not? What is the equilibrium (if it exists) for 
average experience and productivity? 

3. Consider the response of average experience and productivity to changes in 
the various parameters (from an initial equilibrium). Assume employee 
turnover doubles. What is the impact on average experience and 
productivity and why? 
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4. From the original equilibrium, assume changes in the production process 
accelerate, so effective experience suddenly begins to decay at twice its 
original rate. What is the impact on average experience and productivity 
and why? 

5. What is the behavior of average experience if the firm begins to grow? 
From the initial equilibrium described above, assume the hiring rate starts 
to grow exponentially at 30%/year. What is average experience in the 
steady state? How long does it take to reach the steady state? What is the 
impact on productivity? How does the behavior of the model compare to 
that of the rookie/experienced worker model in section 12.1.7? 

12.2.2 Integrating Coflows and Aging Chains 
The assumption that each unit leaving the main stock removes the average attribute 
per unit is clearly an approximation. In particular, the first-order structure for the 
decrease in the total attribute implicitly assumes that all items in the stock are per- 
fectly mixed. As seen in chapter 11, the assumption of perfect mixing is often not 
appropriate: A better model requires higher-order delays or a high-order aging 
chain. The coflow structure for these cases will exactly mirror the stocks and flows 
in the higher-order delay or aging chain. 

For example, Sterman (1980) developed a general model to capture the pro- 
duction function of a firm or economic system. Production depends on inputs of 
capital, labor, energy, and materials. These input requirements are embodied in the 
firm’s capital stocks (as in the labor requirements example). However, economet- 
ric evidence and field study show that the distribution of discards from capital 
stocks is not first-order; for example, new machines and facilities are not nearly as 
likely to be scrapped as older units. The distribution is clearly higher-order. I there- 
fore disaggregated the capital stock into an aging chain, with corresponding 
coflows. I further assumed that the labor, energy, and materials requirements of 
capital equipment were determined at the time construction starts (the energy 
requirements of a new office building can’t be changed significantly after ground- 
breaking except by costly retrofit). The resulting vintaging structure and corre- 
sponding coflows for the embodied input requirements are shown in Figure 12-19. 
The number of vintages can be increased as needed to fit the data for the survival 
distribution of items in the main aging chain. In the simplified representation of the 
model shown in the figure, the construction delay is assumed to be first-order, 
while a third-order delay, with a corresponding third-order coflow structure for the 
factor requirements of capital under construction, would be more realistic. Like- 
wise, capital is discarded only from the oldest vintage. If the data warrant it, it is 
easy to include a discard rate from each vintage. In that case the modeler must also 
include the reduction in the factor requirements of each vintage from discards, 
equal to the product of the factor intensity of each vintage and the discard rate from 
each vintage. 

Finally, note that the model shown in the figure does not permit changes to 
the factor requirements of capital. This is known as a putty-clay model because 
factor requirements can be varied prior to investment, like putty, but once the firm 
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FIGURE 12-19 Vintaging structure for capital stock with coflow for embodied factor requirements 
The coflow structure exactly mirrors the aging chain of the capital stock. One coflow structure is used for each factor input (Labor, 
Energy, Materials, etc.). In this model, retrofits are not allowed. For a more detailed model with retrofits, see Sterman (1 980). 
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commits to an investment, the embodied factor requirements are fixed until that 
capital is discarded (the factor proportions harden like clay fired in a kiln). In real- 
ity, retrofits, maintenance activity, and wear and tear can alter the factor require- 
ments of existing capital. The model is easily modified to incorporate such changes 
in factor requirements (Sterman 1980 develops a general model of production in- 
cluding a variable retrofit potential which allows the modeler to specify any degree 
of variability in the factor requirements of existing capital, from pure putty-clay to 
full putty-putty). 

12.3 SUMMARY 
Aging chains are widely used to capture the demographic structure of a population. 
The population need not be a living population but can be the stock of machines in 
a plant, the number of cars on the road, or the accounts receivable of a firm. Any 
time the rate at which items exit a stock and flow network depends on their age, 
that is, any time the mortality rates of individuals in the stock are age-dependent, 
an aging chain may be required to model the situation with sufficient accuracy for 
the purpose of the model. 
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Coflows are used to keep track of the attributes of the items in a stock and flow 
network. Attributes can include the age of the items, the productivity and experi- 
ence of labor, the energy requirements or level of technology embedded in plant 
and equipment, the level of defects in product designs, or any property that is as- 
sociated with the items in the stock and flow network. Coflows are useful in situa- 
tions where the qualities of the items in a system’s stocks, as well as their quantity, 
affect the decision making of the agents in the system. 



13 

Modeling Decision Making 

A model for simulating dynamic system behavior requires formal policy 
descriptions to speciJL how individual decisions are to be made. Flows of 
information are continuously converted into decisions and actions. N o  plea 
about the inadequacy of our understanding of the decision-making processes 
can excuse us from estimating decision-making criteria. To omit a decision 
point is to deny its presence-a mistake of far greater magnitude than any 
errors in our best estimate of the process. 

-Jay W. Forrester (1992, pp. 51-52) 

Prior chapters discussed how to represent the physical and institutional structure of 
systems, for example, how to represent stock and flow networks and select the 
level of aggregation. This chapter explores the formulation of the decision rules 
representing the behavior of the agents. The decision rules in models must be for- 
mulated so that they are appropriate for the purpose of the model. They must be 
consistent with all available knowledge about the system, including numerical and 
qualitative data. The information used in the model of a decision process must be 
available to the actual decision makers. And all formulations must be robust so that 
no matter how extreme the inputs, the output behaves appropriately. 

The chapter also presents common and important formulations that conform to 
these principles, the structure and behavior of each formulation, and examples. 
These formulations constitute a library of frequently used components from which 
you can assemble a larger model. 

13.1 PRINCIPLES FOR MODELING DECISION MAKING 
The structure of all models consists of two parts: assumptions about the physical 
and institutional environment on the one hand and assumptions about the decision 
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processes of the agents who operate in those structures on the other. The physical 
and institutional structure of a model includes the model boundary and stock and 
flow structures of people, material, money, information, and so forth that char- 
acterize the system. For example, Forrester’s (1969) Urban Dynamics sought to 
understand why America’s large cities continued to decay despite massive amounts 
of aid and numerous renewal programs. To do so the model represented key physi- 
cal components of a typical city including the size and quality of the housing stock, 
commercial structures, and other infrastructure; the size, skill mix, income, and 
other attributes of the population; the flows of people and capital into and out of 
the city; and other factors describing the physical and institutional setting. 

The decision processes of the agents refer to the decision rules that determine 
the behavior of the actors in the system. The behavioral assumptions of a simula- 
tion model describe the way in which people respond to different situations. In the 
Urban Dynamics model, these included decision rules governing migration and 
construction. In another pioneering simulation study, Cyert and March (1963) 
found that department stores used a very simple decision rule to determine the 
floor price of goods. In essence, the rule was to mark up the wholesale cost of the 
items by a fixed percentage. If excess inventory piled up on the shelves, a sale was 
held and the markup was gradually reduced until the goods were sold. If sales 
goals were exceeded, then prices were raised. Prices were also adjusted toward 
those of competitors. The normal markup was determined by tradition-it adjusted 
very slowly toward the actual markup on the goods sold (taking account of any 
sales or other price changes). Cyert and March found that these rules for pricing re- 
produced the pricing decisions of the store managers quite we1l.l 

Accurately portraying the physical and institutional structure of a system is rel- 
atively straightforward. In contrast, discovering and representing the decision rules 
of the actors is subtle and challenging. To be useful, simulation models must mimic 
the behavior of the real decision makers so that they respond appropriately, not 
only for conditions observed in the past but also for circumstances never yet en- 
countered. You must specify a robust, realistic decision rule at every decision point 
in the model. 

13.1 . I  Decisions and Decision Rules 
Modelers must make a sharp distinction between decision rules and the decisions 
they generate. Decision rules are the policies and protocols specifying how the 
decision maker processes available information. Decisions are the outcome of this 
process. In the department store example, the decision rule is the procedure for 
marking up wholesale costs and adjusting the markup based on inventory turnover, 

‘The agents in models need not be human decision makers. They might be other types of 
organisms (such as wolves and moose in a predator-prey model) or physical objects (such as the 
sun and planets in a model of the solar system). In these cases, the decision rules of the agents 
represent the ways in which the moose, wolves, and planets respond to the state of the systems 
in which they operate. In the solar system simulation, the modeler would specify the forces acting 
on each mass according to either Newtonian gravitation or general relativity; in the predator-prey 
case, the decision rules specifying the behavior of the moose and wolves (fertility, mortality, forag- 
ing and hunting behavior, migration, etc.) would be grounded in field and perhaps laboratory study. 
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competitor prices, and so on. The decision rule leads to decisions such as pricing a 
particular item at, say, $9.95. 

It is not sufficient to model a particular decision. Modelers must detect and 
represent “the guiding policy” that yields the stream of decisions (Forrester 1961). 
Every rate of flow in the stock and flow structure constitutes a decision point, and 
the modeler must specify precisely the decision rule determining the rate. 

Every decision rule can be thought of as an information processing procedure 
(Figure 13-1). The inputs to the decision process are various types of information, 
or cues. The cues are then interpreted by the decision maker to yield the decision. 
The cues used to revise prices in the department store case include wholesale costs, 
inventory turnover, and competitor prices. Decision rules do not necessarily utilize 
all available or potentially relevant information. The mental models of the decision 
makers, along with organizational, political, personal, and other factors, influence 
the selection of cues from the set of available information. Those cues actually 
used in decision making are also not necessarily processed optimally. Cyert and 
March found that department store pricing decisions did not depend on interest 
rates or required rates of return, store overhead, trade-offs of holding costs against 
the risk of stockouts, estimates of the elasticity of demand, or any sophisticated 
strategic reasoning. 

The decision rules in a model embody, explicitly or implicitly, assumptions 
about the degree of rationality of the decision makers and decision-making 
process. The spectrum of possibilities is broad. At one extreme, some models rep- 
resent decision makers as simple automata, making decisions by rote from a small, 
fixed repertoire of choices, without any possibility of learning or adaptation. At the 
other extreme lies the theory of rational expectations which holds that decision 
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makers understand the structure of the system perfectly, never make systematic er- 
rors in their inferences about its future behavior, and therefore always make opti- 
mal decisions (Muth 1961; Miller 1994; Lucas 1996). Nobel laureate Gary Becker 
(1976, p. 14) summarized the view of many economists when he said, “All human 
behavior can be viewed as involving participants who maximize their utility from 
a stable set of preferences and accumulate an optimal amount of information [to do 
so].” In this view, not only do people make optimal decisions given the informa- 
tion they have, but they also invest exactly the optimal time and effort in the deci- 
sion process, ceasing their deliberations when the expected gain to further effort 
equals the cost. 

13.1.2 Five Formulation Fundamentals 
The nature of a decision process and its rationality are empirical questions that 
must be addressed by primary field study, experimental tests, and other means. 
Chapters 15 and 16 discuss different views on the rationality of decision making 
and its implications for models of human behavior. But whatever your view about 
the sophistication and rationality of decision making, your models must conform 
to certain basic principles (Table 13-1). 

The Baker Criterion: The inputs to all decision rules in models must 
be restricted to information actually available to the real decision 
makers. In 1973, during the US senate’s hearings on the Watergate burglary, 
rumors flew about the possible involvement of President Nixon. Senator Howard 
Baker, a moderate Republican, kept asking the witnesses before the committee, 
“What did the President know, and when did he know it?” His point was that the 
president could not be implicated in the scandal if he was unaware of the actions 
of his staff and subordinates. When it later became clear from the White House 
tapes that Nixon had known early on and had participated in the cover up, Baker 
had the answer to his question and called for Nixon to resign. 

You must also apply the Baker Criterion when formulating the decision rules 
in your models. You must ask, What do the decision makers know, and when do 
they know it? To properly mimic the behavior of a system, a model can use as an 
input to a decision only those sources of information actually available to and used 
by the decision makers in the real system. If managers of an oil company do not 
know the true size of the undiscovered resource in a basin, this information cannot 
be used in modeling their decision to drill. If ship owners do not know how many 
ships are under construction around the world, information about this supply line 
cannot be used as an input to their forecasts of future rates nor their decision to ex- 
pand their fleets. If production planners do not know the current order rate, they 
cannot use that information to set the production schedule. The true size of the 
basin, the actual supply line of ships on order, and the actual order rate will be pre- 
sent in the model, but information about them cannot be used as inputs to the as- 
sumed decision rules if these data are not known by the actual decision makers. 

The principle that decisions in models must be based on available information 
has three important corollaries. 

First, no one knows with certainty what the future will bring. All beliefs and 
expectations about the future are based on experience. Modelers must represent the 
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TABLE 13-1 
Principles for 
modeling human 
behavior 

1. The Baker Criterion: The inputs to all decision rules in models must 
be restricted to information actually available to the real decision 
makers. 

The future is not known to anyone. All expectations and beliefs about 
the future are based on historical information. Expectations and beliefs 
may therefore be incorrect. 
Actual conditions and perceived conditions differ due to measurement 
and reporting delays, and beliefs are not updated immediately on 
receipt of new information. Perceptions often differ from the actual 
situation. 
The outcomes of untried contingencies are not known. Expectations 
about “what if” situations that have never been experienced are based 
on situations that are known and may be wrong. 

2. The decision rules of a model should conform to managerial 
practice. 

All variables and relationships should have real world counterparts and 
meaning. 
The units of measure in all equations must balance without the use of 
arbitrary scaling factors. 
Decision making should not be assumed to conform to any prior theory 
but should be investigated firsthand. 

Desired and actual conditions should be distinguished. Physical 
constraints to the realization of desired outcomes must be 
represented. 

Desired and actual states should be distinguished. 
Desired and actual rates of change should be distinguished. 

Decision rules should be robust under extreme conditions. 
Equilibrium should not be assumed. Equilibrium and stability 
may (or may not) emerge from the interaction of the elements of 
the system. 

3. 

4. 
5. 

way in which people form and update their beliefs from information about the 
current and past states of the system. You cannot assume that decision makers 
have perfect knowledge of future outcomes or that forecasts are correct, even on 
average. 

Second, perceived and actual conditions often differ. Information about the 
current state of a system is generally not known; instead decisions are based on de- 
layed, sampled, or averaged information. Plant managers may have some data 
about the order rate, but their information may differ from the actual order rate. 
Models must account for the delays and other imperfections in the measurement 
and reporting of information. Measurement and reporting not only introduce de- 
lays, but can also create bias, noise, error, and other distortions. Models should rep- 
resent the processes by which information is generated, and decisions should be 
represented as depending on the reported information, not the true state of affairs. 

Third, modelers cannot assume decision makers know with certainty the out- 
comes of contingencies they have never experienced. Decisions involve choosing 
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from various alternatives. The choices lead to consequences. People usually (but 
not always) choose the alternative they believe will yield the best outcome (how- 
ever they define it). Some of the alternatives may have been chosen in the past, and 
the decision maker may have a good idea of their likely consequences. But others, 
probably most, have never been tried, either by the decision maker or by anyone 
else from whom the decision maker might learn. 

Economic theory requires firms to allocate their resources to those activities 
that yield the highest return, for example, to choose the mix of capital, labor, and 
other inputs to the production process that maximizes profit. But managers in a 
firm don’t have any direct knowledge about the productivity of most of the possi- 
ble combinations of these activities and factor inputs. Would a new fax machine in 
accounting increase productivity more than one in purchasing? Should the firm 
buy a new automated machine tool to reduce the number of workers required? No 
one knows with certainty because there is no experience of these situations. In- 
stead, impressions about which investments and combinations of inputs might be 
most productive are sketchy, incomplete, and conjectural. These impressions are 
gleaned over time from anecdotes, observations of other organizations, experi- 
ments the firm might conduct, and so on. Information about the true consequences 
of contingencies and choices that have never been realized cannot be used in mod- 
els. Instead, models must represent the way in which people form expectations 
about the likely consequences of trying new things. These beliefs are often incor- 
rect and slow to adjust to new information. 

The decision rules of a model should conform to ‘managerial practice. 
Every variable and parameter in a model must have a real world counterpart 
and should be meaningful to the actors in the real system. Equations must be 
dimensionally consistent without the addition of fudge factors or arbitrary pa- 
rameters. Managers and model users are justly suspicious of models with variables 
such as “technical adjustment factor” or parameters with units of measure such as 
widgets2/person-mile/leap year, suspecting, often correctly, that they are fudge 
factors used only to get the model to work and lack any empirical or theoretical 
justification. 

Many models, especially in operations research and economics, assume deci- 
sion making is optimal. Simulation models, in contrast, must mimic the way peo- 
ple actually make their decisions, warts and all. Modelers must study the decision 
processes of the actors in the field, through laboratory experiments, or other 
means. You should not assume people will behave according to any a priori theory, 
such as the assumptions in economic models that people are motivated by narrow 
self-interest and are perfectly rational, or that they are naYve automatons and un- 
responsive to new information. 

Desired and actual conditions should be distinguished. Physical con- 
straints to the realization of desired outcomes must be represented. 
We live in a world of disequilibrium. Change arises from the gaps between the de- 
sired and actual states of affairs. Models should separate desired states-the goals 
of the decision makers-from the actual states of the system. The decision rules 
in models should explain how the actors would respond to problems, shortfalls, 
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pressures, and other indications that things aren’t where they think they should be. 
Goals are themselves dynamic, and modelers often need to represent the way the 
actors in the system form and update their aspirations. 

Modelers should separate the desired rates of change in system states from the 
actual rates of change. Decision makers determine the desired rates of change in 
system states, but the actual rates of change often differ due to time delays, re- 
source shortages, and other physical constraints. A plant manager may determine 
the desired rate of production from cues such as inventory and order backlogs, but 
the actual rate of production cannot immediately respond to changes in the desired 
rate. Actual production depends on stocks of labor, capital equipment, and materi- 
als, along with less tangible system states including the workweek, workforce ef- 
fort and skill, and process quality. Decision makers cannot instantly change these 
states but can only affect the decision to hire, the acquisition of new equipment, the 
rate of worker training, and so on. Actually, managerial decisions only determine 
the authorization of vacancies and the ordering of new equipment. The actual rate 
of hiring and installation of new equipment depend on the availability of workers 
and the ability of toolmakers to produce and deliver. 

Decision rules should be robust under extreme conditions. Complex 
systems often generate behavior far from the range of historical experience. In- 
deed, one purpose of modeling is to design policies that move the system into an 
entirely new regime of behavior. To be useful, the decision rules in models must 
behave plausibly in all circumstances, not only those for which there are historical 
records. Robustness means decision rules must generate outcomes that are physi- 
cally possible and operationally meaningful even when the inputs to those deci- 
sions take on extreme values. Production can never be negative. Shipments from a 
warehouse must fall to zero when the inventory of product is zero, no matter how 
many orders there are. Robustness necessarily means models will include many 
nonlinear relationships. Under normal situations, a firm’s liquidity has no impact 
on employment. But if cash on hand approaches zero, a firm may be forced to lay 
off its workers even though the backlog of work is high and the firm is profitable. 
The impact of liquidity on net hiring is highly nonlinear. 

Equilibrium should not be assumed. Equilibrium and stability may (or 
may not) emerge from the interaction of the elements of the system. 
The existence and stability of any equilibria in a system emerge from the inter- 
actions of the decision rules of the agents with the physical and institutional struc- 
ture of the system. They are characteristics of system behavior. Modelers should 
not build into their models the presumption that the system has a particular equi- 
librium or equilibria, or that any equilibria are stable. Instead, modelers should rep- 
resent the processes by which decision makers respond to situations in which the 
state of the system differs from their goals. Model analysis then reveals whether 
these decision rules, interacting with one another and with the physical structure, 
result in stable or unstable behavior. 

These principles may seem to be nothing more than common sense. It seems 
obvious that people can’t base their decisions on information they don’t have, that 
desires are not instantly and perfectly realized, and that physical impossibilities 



520 Part IV Tools for Modeling Dynamic Systems 

are, well, impossible. Yet many models routinely violate these principles. In par- 
ticular, many economic and optimization models assume the agents have complete 
and perfect information about the preferences of customers, the production func- 
tion governing output, and other information that real managers perceive through 
a fog, if at all. Many others give decision makers perfect foresight, endowing peo- 
ple with crystal balls that give them perfect knowledge of the future and the abil- 
ity to predict how other people would behave in hypothetical situations. Decision 
makers are assumed to be concerned solely with the maximization of their personal 
utility (or profits in the case of a firm). These assumptions are used to derive the 
equilibrium of the system, and either no dynamics are considered or the system is 
assumed to be stable, returning swiftly and smoothly to equilibrium after a shock.2 

At the other end of the spectrum, some models assume decisions are made by 
rote from a limited repertoire of options. These models often show that very com- 
plex behavior can arise from extremely simple decision rules. Epstein and Axtell’s 
(1 996) Sugarscape model develops an artificial society in which agents with very 
simple rules compete for resources (sugar). Complex behavior they interpret as 
coalition formation, trade, and war arises from the interaction of the agents. The re- 
sults are fascinating and can help build understanding of the behavior of complex 
systems. However, unless the decision rules are grounded in firsthand study of ac- 
tual decision making, such models have limited utility to decision makers, and the 
correspondence between their dynamics and the behavior of real systems remains 
c~njectural .~ 

The formulations below all appeared in actual models (some simplifications have 
been made for clarity). Using the formulation principles above, critique each 
formulation. If you identify a flaw or flaws, propose a revised formulation that 
corrects the problem. 

*There are of course exceptions. Many economic models are dynamic. Others, such as many 
game-theoretic models, restrict the information available to the agents. A few explore alternatives 
to the assumption that people are motivated by selfish utility maximization. Still fewer are 
grounded in firsthand study of decision making. Fully dynamic, disequilibrium behavioral models 
grounded in primary fieldwork remain rare in economics. Psychologists, in contrast, often utilize 
fieldwork and experiment to study decision making and have developed models that accommodate 
motives for action other than utility maximization such as fairness, altruism, revenge, and others. 
However, many of these models explain single decisions at the level of the individual in static, 
one-shot decision contexts and cannot capture the dynamics of a system or organization. 

3There are exceptions. Since discovering and understanding the decision processes of people 
in complex systems is often difficult, it is often useful to develop models that assume different 
degrees of rationality to test the robustness of results to a wide range of assumptions about human 
behavior. Models of fully rational behavior can also be used to establish upper bounds for the per- 
formance of a system and help measure the value of potential improvements in decision making. 
Models such as Sugarscape can generate useful ideas for further research and illustrate the well- 
known property of complex systems that their behavior arises more from the interaction of the 
elements and agents with one another than from the complexity of the individual components 
themselves (see, e.g., Forrester 1961 and Simon 1969). 
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1. In a model of a firm’s supply chain and inventory management policies, 
the inventory of finished product was increased by the production rate and 
decreased by the shipment rate. The following formulation for production 
was proposed: 

Production = Shipments + Inventory Shortfall 

Inventory Shortfall = Desired Inventory - Inventory 

(13-1) 

(13-2) 

where 
Production = Rate at which products are completed and enter inventory, 
Shipments = Rate at which products are shipped to customers from 
inventory, 
Inventory Shortfall = Shortage or surplus of inventory relative to the 
desired level, 
Desired Inventory = Inventory level the firm considers appropriate, 
Inventory = Actual stock of product available for shipment to customers. 

2. In the same model, the modeler initially proposed 

Shipments = Orders (13-3) 

but then realized that inventory could become negative if orders were large 
enough for a long enough period. The modeler then proposed the following 
formulation to correct the flaw: 

Shipments = MIN(Orders, Inventory) (13-4) 

3. A model of a firm’s investment in capital plant assumed investment was 
determined by the gap between the desired level of capital stock and the 
current level, plus replacement of worn-out capital (the discard rate): 

(13-5) 
Investment = Capital Discard Rate 

where 
K* = Desired capital stock, 
K = Capital stock, 
DELAY3 = Third-order material delay, 
Construction Delay = Average construction delay for capital. 

4. In the same model, the desired stocks of capital and other factors of 
production such as labor were determined by the solution to the profit 
maximization problem for a firm under perfect competition. In equilibrium, 
the marginal revenue derived from use of an additional unit of any factor of 
production Fi is just balanced by its marginal cost Pi: 

+ DELAY3[(K* - K), Construction Delay] 

p - = p .  JQ 
dFi I 

where 
P = Price of output (marginal revenue), 

(13-6) 
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Pi = Price of a unit of factor i (marginal cost of factor), 
Q = Q(F,, F2, . . . , F,) = Production, given by the firm’s production 
function, 
dQ/dFi = Marginal productivity of factor i (additional output generated 
by one additional unit of factor i). 

5. A model of the US dairy industry specified the equilibrium consumption 
and production of milk as depending on gross domestic product (GDP)- 
a measure of the income of the nation-and the price of milk P,: 

Consumption(t) = Production(t) = a + bGDP(t) + 
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13.2.2 Fractional Decrease Rate 
Consider the outflow rate R, from a stock S. The outflow is often proportional to 
the size of the stock. The outflow can be formulated either as depending on the 
fractional decrease rate d or equivalently as the stock divided by the average life- 
time L for the items in the stock: 

Ro = dS = S/L 

Examples 
Death Rate = Fractional Death Rate * Population 

= PopulatiodAverage Lifetime 

(13- 11) 

(13-12) 

Defaults on Accounts Receivable = Fractional Default Rate * Accounts Receivable 
= Accounts Receivable/Average Time to Default 

(13-13) 

These examples all form linear, first-order negative loops and generate exponential 
decay with a time constant of L = l/d. They are equivalent to a first-order mater- 
ial delay. The fractional rates or average residence times can be variables. 

13.2.3 Adjustment to a Goal 
Managers often seek to adjust the state of the system until it equals a goal or de- 
sired state. The simplest formulation for this negative feedback is 

R, = Discrepancy/AT = (S* - S)/AT (1 3- 14) 

where Discrepancy is the gap between the desired state of the system S* and the 
actual state S. The adjustment time AT is the average time required to close 
the gap. 

Examples 
Change in Price = (Competitor Price - Price)/Price Adjustment Time 

Net Hiring Rate = (Desired Labor - Labor)/Hiring Delay 

(1 3- 15) 

(13-16) 

Heat Loss from Building = Temperature Gap/Temperature Adjustment Time 

Temperature Gap = Outside Temperature - Inside Temperature (13-17) 

Production Rate = Perceived Inventory Discrepancy/Inventory Adjustment Time 

Perceived Inventory Discrepancy = Desired Inventory - Perceived Inventory 
( 1 3- 1 8) 

“Desired minus actual over adjustment time” is the classic linear negative feedback 
system, and, in the absence of other rates, generates exponential adjustment to the 
goal (see chapters 4 and 8). In equation (13-15) a firm adjusts its price to match the 
competition. In (13-16) the modeler has chosen not to represent hiring, firing, and 
quits separately but to aggregate them into a single net hiring rate. The hiring delay 
represents the average time required to adjust the actual workforce to the desired 
level. When net hiring is negative the firm is implicitly laying off its workers. In 
(13-17) the rate of heat loss from a building depends on the temperature difference 
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between the building and the air outside and the thermal resistance or R-factor of 
the structure. Often the actual state of the system is not known to the decision mak- 
ers, who rely instead on perceptions or beliefs about the state of the system (see the 
Baker Criterion). In these cases the discrepancy is given by the difference between 
the desired and perceived state of the system, as in (13-18). Note that to be robust 
(13- 18) should be modified so production never becomes negative. 

13.2.4 The Stock Management Structure: 
Rate = Normal Rate + Adjustments 

When there is an outflow from a stock, the adjustment rate formulation RI = 

(S* - S)/AT will produce a steady state error. If there is an outflow R,, the stock S 
will be in equilibrium when S = S* - R, * AT. The larger the outflow or the longer 
the adjustment time, the greater the equilibrium shortfall will be. The stock man- 
agement structure adds the expected outflow to the stock adjustment to prevent 
steady state error: 

Inflow = Expected Outflow + Adjustment for Stock 

Adjustment for Stock = (S* - S)/AT 

(13-19) 

(13-20) 

Since the instantaneous value of rates cannot be measured the expected outflow is 
usually formed by averaging past outflows. 

Example 
A manufacturing firm may set production to replace the shipments it expects to 
make, adjusted to bring inventory in line with the desired level. Expected ship- 
ments are often estimated by smoothing past shipments. 

Production = Expected Shipments + Adjustment for Inventory (13-21) 

(1 3-22) Adjustment for Inventory 
= (Desired Inventory - Inventory)/Inventory Adjustment Time 

(13-23) Expected Shipments 
= SMOOTH(Shipment Rate, Shipment Averaging Time) 

To be fully robust, the production rate must be constrained to be nonnegative even 
when there is far too much inventory. Additional adjustments can be included, for 
example, to adjust for stocks of work in process inventory, backlogs of unfilled 
orders, and so on. 

The stock management structure is one of the most important and useful for- 
mulations and is discussed in detail in chapter 17. 

13.2.5 Flow = Resource * Productivity 
The flows affecting a stock frequently depend on resources other than the stock it- 
self. The rate is determined by a resource and the productivity of that resource: 

(13-24) Rate = Resource * Productivity 

Or equivalently, 

Rate = ResourceResources Required per Unit Produced (13-25) 
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Examples: 
*Production - Labor Force * Average Productivity 

- 
(UnitsPeriod) (People) ((Units/Period)/Person) 

(13-26) 

Customers Served - Service Personnel Average Time per Customer 
(Customers/Hour) (People) (Person-HourslCustomer) (13-27) 

(13-28) 

I - 

Bug Generation Rate - Code Production Rate * Error Density - 
(BugsDay) (Lines of Code/Day) (BugsLines of Code) 

In (13-26) production depends on the labor force and average productivity. The la- 
bor force will typically be another stock in the model, varying with hiring and at- 
trition. Average productivity could be constant or a variable dependent on factors 
such as skill and experience, motivation, fatigue, and the adequacy of other factors 
of production such as equipment. In (13-27) the number of service personnel and 
the average number of person-hours required to serve each customer determine the 
rate at which customers are served. If a call center has 20 service representatives 
and each call requires an average of 10 person-minutes, then the rate at which cus- 
tomers are processed is 2 per minute. Note that productivity is the inverse of aver- 
age time per customer. In (13-28) the rate at which bugs are introduced into a 
software product is the product of the number of lines of code the programmers 
write each day and the bug density. 

13.2.6 Y = Y* * Effect of X, on Y 
* Effect of X2 on Y * * Effect of X, on Y 

In all the formulations above, parameters such as the fractional change rates, time 
constants, and productivities can be variables. They often depend nonlinearly on 
one or more other variables. A common formulation sets a variable Y to its normal, 
or reference value Y*, multiplied by the product of various effects, each a (possi- 
bly nonlinear) function of a variable Xi. 

Y = Y* * Effect of X, on Y * Effect of X, on Y * . . . * Effect of X, on Y (13-29) 

The variable Y can be a rate or an auxiliary that feeds into a rate. The nonlinear 
functions are often normalized by the normal or reference value of the inputs Xi: 

Effect of Xi on Y = f ( X , / X ; )  (13-30) 

Normalization ensures that when the inputs Xi equal their reference levels, the out- 
put Y equals its reference level. Normalizing means the input and output of the 
Effect of Xi on Y are both dimensionless, allowing the modeler to separate the nor- 
mal values from the effect of deviations from normal. The reference levels Y* and 
X: can be constants or variables representing equilibrium levels, the desired state 
of the system, or the values of the variables at some time in the past. A common 
variant is 

Rate = Normal Fractional Rate * Stock 
* Effect of X, on Rate * . . . * Effect of X, on Rate (13-31) 
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Examples 
Workweek = Standard Workweek * Effect of Schedule Pressure on Workweek 

(13-32) 

Effect of Schedule Pressure on Workweek 
=f(Schedule Pressure);f(l) = 1,f '  2 0 

Schedule Pressure = Desired ProductionIStandard Production 

(13-33) 

(13-34) 

The workweek for an individual or group can be modeled as a standard value, such 
as 40 hourdweek, adjusted by a nonlinear function of the workload, measured by 
Schedule Pressure, a dimensionless ratio of desired to standard production. Stan- 
dard Production is the rate of output achieved given the size and productivity of the 
workforce at the standard workweek. The functionf(Schedu1e Pressure) is upward 
sloping and passes through the point (1 , 1). It also must saturate at a maximum 
workweek when workload is high. Chapter 14 discusses the formulation of non- 
linear functions in general and the workweek function in particular. 

Reference levels can also be defined as arbitrary constants chosen by the 
modeler, so long as they are consistent. Consider the following formulation for 
labor productivity: 

Productivity = Reference Productivity * Effect of Experience on Productivity 
(13-35) 

Average Experience 
Reference Experience Effect of Experience on Productivity = f 

f(1) = 1, f '  2 0 
(13-36) 

Reference productivity could be defined as the productivity of the average new 
employee with a month of experience, in which case reference experience is 1 per- 
son-month. Reference productivity could equally be defined as that of a 10-year 
veteran, in which case the reference experience level is 10 person-years. Section 
12.2.1 applies this formulation to the learning curve. 

Reference values can also be defined as the values the variables take on in a 
reference year. In the WORLD2 model, Forrester (1971b) formulated the birth 
rate as 

Birth Rate = Normal Fractional Birth Rate 
* Population * Effect of Food on Births 
* Effect of Material Standard of Living on Births 
* Effect of Crowding on Births * Effect of Pollution on Births 

(13-37) 

Forrester defined the normal fractional birth rate as the world average in the refer- 
ence year 1970. The inputs to the effects modifying births were all normalized by 
their 1970 values. For example, the input to the Effect of Food on Births was a di- 
mensionless index given by the level of food per capita normalized by the world 
average in 1970. 

A common form of the multiplicative formulation in (13-29) is the power law 
or log-linear model where the effects are specified as power functions of the (nor- 
malized) inputs: 

Effect of X, on Y = ($)a' (13-38) 
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where the exponents are the elasticities of Y with respect to the normalized 
inputs (if ai = 0.5, a 1% increase in Xi boosts Y by 0.5%). Substituting the ef- 
fects into the equation for Y and taking logs of both sides gives the log-linear 
formulation 

ln(Y) = ln(Y*) + a,ln(X,/XT) + a,ln (X,/Xz) + . . . + aJn (X,/X;). (13-39) 

The log-linear model is common because it can be estimated by linear regression. 

Process Point: Variable Names for Nonlinear Effects. In keeping with 
the formulation principle that every variable should have a real-life meaning, you 
should avoid technical jargon for the names of the nonlinear effects in formulations 
such as equation (13-29). The nonlinear function in a formulation such as Y = 
Y* * f ( X / X * )  should be given a name that reflects what it does or the effect it cap- 
tures. A common convention is to denote such functions by the “Effect of X on Y,” 
yielding Y = Normal Y * Effect of X on Y. The Effect of X on Y is then defined 
separately as a nonlinear function, either analytically or as a table function (chap- 
ter 14). Though this convention sometimes leads to long variable names, the gain 
in clarity is worthwhile. 

13.2.7 Y = Y* + Effect of XI on Y + Effect of X2 on Y 
+ - .  - + Effect of X, on Y 

The additive formulation 

Y = Y* + Effect of XI on Y + Effect of X, on Y 
+ . . . + Effect of X, on Y (13-40) 

is sometimes seen. The effects of the Xi can still be nonlinear, and the reference 
values X* can be constants or variables. Often, however, the linear form is used: 

(13-41) 

Example 
Consider a model of the wage rate paid by a firm or industry. The average wage 
rate is a stock that responds to a variety of pressures including the demand and sup- 
ply of workers, the expected inflation rate, the firm’s expectation for productivity 
growth, firm profitability, and comparisons to wages paid for comparable work in 
other firms or industries. The fractional change in wages per year can be modeled 
as the sum of the fractional change in wage arising from each pressure. 

Wage = INTEGRAL(Change in Wage, Wage,) (13-42) 

Change in Wage = Fractional Change in Wage * Wage (13-43) 

Fractional Change in Wage = Change in Wage from Labor Availability 
+ Change in Wage from Inflation + Change in Wage from Productivity (13-44) 
+ Change in Wage from Profitability + Change in Wage from Equity 

Change in Wage from Labor Availability 
= f(Labor Supply Demand Balance);f(l) = 0,f’ 5 0 (13-45) 

Change in Wage from Inflation = f(Expected Inflation);f(O) = 0; f ’  2 0 (13-46) 
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Change in Wage from Productivity 
=f(Expected Productivity Growth);f(O) = 0 ; f ’  2 0 

Change in Wage from Profitability 
= f(Perceived ROI - Reference ROI);f(O) = 0,f’ 2 0 

Change in Wage from Equity = f(Re1ative Wage);f(O) = 0,f’ 2 0 

Relative Wage = (Perceived Industry Average Wage - Wage)/Wage 

(13-47) 

(1 3-48) 

( 13-49) 

(13-50) 

Presumably, lower labor availability, higher expected inflation or productivity 
growth, higher profitability, and higher wages in other firms all increase the rate of 
wage growth. The labor supply/demand balance could be measured different ways, 
possibly including factors such as the average time to fill vacancies, the number of 
unfilled positions, and the unemployment rate in the industry or region. Expecta- 
tions for future inflation and productivity growth could depend on the history of in- 
flation and productivity (see chapter 16). Profitability could be measured by return 
on investment (ROI) normalized by a reference reflecting industry or economy- 
wide norms. Finally, the fractional gap between wages at comparable firms and the 
firm in question provides a measure of wage equity. Adjusting the shapes and 
strengths of the different nonlinear functions can capture different labor market in- 
stitutions, from collective bargaining to the market for day laborers. The shapes 
and values of the functions for each contribution to the total fractional change in 
wages must be carefully chosen so that the overall response of wages is appropri- 
ate even when the inputs take on extreme values. 

Multiplicative or Additive Effects? When should you choose a linear for- 
mulation such as equation (13-40) and when is the multiplicative formulation in 
(1 3-29) better? Linear formulations are common because linear models are simple, 
can be solved analytically, and facilitate parameter estimation by linear regres- 
~ i o n . ~  However, the multiplicative formulation is generally preferable and some- 
times required. 

The actual relationship between a variable and its inputs, such as between 
births and food, health care, crowding, and pollution, is typically complex and non- 
linear. Both the multiplicative and additive formulations are approximations to the 
underlying, true nonlinear function Y = f ( X , ,  X2, . . . , X,). Each approximation 
is centered on a particular operating point given by the reference point Y* = 
f ( X 7 ,  X;, . . . , Xi). Both the additive and multiplicative approximations will be rea- 
sonable in the neighborhood of the operating point but increasingly diverge from 
the true, underlying function as the system moves away from it. 

The additive formulation assumes the effects of each input are strongly sepa- 
rable: The impact of a change in any one input is the same no matter what values 
the other inputs have. Strong separability is clearly incorrect in extreme conditions. 
In the birth rate example, the birth rate must be zero when food per capita is zero 
no matter how favorable other conditions are. The additive formulation can never 

4The growth in computer power and widespread availability of nonlinear estimation routines 
means there is now little reason to enforce linearity for estimation purposes. You should capture 
the nonlinearities the data suggest and robustness requires, then estimate them with an appropriate 
statistical technique. 
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capture that nonlinear effect. The multiplicative formulation should be used when- 
ever an extreme value of any input dominates all other  effect^.^ 

Multiple Nonlinear Effects 
In a model of urban growth an analyst finds that the migration rate to the city is 
proportional to the current population and that the fractional inmigration rate de- 
pends on the (perceived) availability of jobs and housing and the crime rate. The 
analyst proposes the following formulation: 

Inmigration = Inmigration Fraction * Population (13-51) 

Inmigration Fraction = Normal Inmigration Fraction 
+ Effect of Jobs on Inmigration + Effect of Housing on Inmigration 
+ Effect of Crime on Inmigration 

(13-52) 

Job availability is measured by the ratio of jobs available to the labor force. Hous- 
ing availability is measured by the ratio of housing to households. The crime rate 
is measured by crimes/year per thousand people. 

1. Is the proposed formulation reasonable? Why/why not? Sketch the likely 
shapes of the functions for each effect on migration so that the individual 
functions take on appropriate extreme values if, for example, there were 
no jobs, no housing, or high crime. 

2. Is the proposed formulation robust in extreme conditions? If not, give an 
example of a situation in which the formulation would generate unrealistic 
results. 

3. Reformulate the inmigration rate so it is robust to any combination of 
inputs. 

13.2.8 Fuzzy MIN Function 
Often a rate or variable is determined by the most scarce of several resources. For 
example, capacity or insufficient demand can limit production: 

Production = MIN(Desired Production, Capacity) (13-53) 

or more generally, Y = MIN(X, Y*), where Y* is the capacity of the process. 
However, the sharp discontinuity created by the MIN function is often unreal- 

istic. Many times the capacity constraint is approached gradually due to physical 
characteristics of the system at the micro level. Consider a single worker and work- 
station in a job shop. As the required rate of production increases from the normal 
rate, the worker at first can keep pace by speeding up and reducing idle time. These 
responses gradually experience diminishing returns, until the maximum rate of 

5The linear formulation in (13-40) corresponds to the first terms of the Taylor series for the 
true underlying formulation, thus assuming strong separability of the individual effects. The power 
law formulation in (13-39) corresponds to the first terms of the Taylor series of the log of the true 
function and assumes multiplicative separability. It is possible to include higher-order terms to 
capture interactions, but care must be used to ensure that the resulting formulation is globally 
robust to extreme combinations of inputs. 
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output is reached. Even when a capacity constraint is sharply discontinuous at the 
level of the individual unit, the response of the aggregate system is likely to be 
smooth, since there will typically be a distribution of individuals around the aver- 
age capacity level. The following formulation captures a "soft" 
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FIGURE 13-3 
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The desired hiring rate may be negative if the firm has far too many workers, but 
the hiring rate can fall at most to zero (net hiring can still be negative since work- 
ers quit and can be laid off; see chapter 19). The fuzzy maximum function is 

Y = Y* * Effect of X on Y 

EffectofXonY = f ( X / X * ) ; f ( - w )  = O , f ( l )  = 1 

(13-59) 

(1 3-60) 

The fuzzy maximum function is useful in situations where individual decision 
makers are reluctant to cut the output Y to zero as X falls. For example, a firm may 
choose to keep a chemical plant running above the desired rate when demand is 
low to avoid shutdown expenses. The function is also useful when the model ag- 
gregates a population with a distribution of desired and normal rates around the 
averages. When the average desired rate is zero, some members of the population 
will have desired rates less than zero and will be shut down while others have de- 
sired rates greater than zero, so average output is greater than zero. You can com- 
bine the fuzzy minimum and fuzzy maximum into a single effect by including a 
saturation nonlinearityf(X/X*) = f""" for large values of W X * ,  as shown in Fig- 
ure 13-3. 

Example 
Applying the fuzzy maximum function to the hiring rate, 

Hiring Rate = Normal Hiring Rate * Effect of Desired Hiring on Hiring (13-61) 

Desired Hiring Rate i Normal Hiring Rate 
Effect of Desired Hiring on Hiring = f 

f(-m) = O , f ( l )  = l , f ( " )  =f""" (13-62) 

The desired hiring rate would include replacement of those employees who quit or 
retire modified by an adjustment to close any gap between the desired and actual 
labor force (as in the stock management structure). The normal hiring rate repre- 
sents the capacity of the firm's human resource organization and can be modeled 
most simply as a normal fraction of the labor force. Actual hiring gradually ap- 
proaches zero as desired hiring falls below normal because labor requirements 
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by facility and skill are imperfectly correlated: Some hiring will be needed to fill 
vacancies for particular skills in particular departments or firms even when the av- 
erage desired hiring rate for the firm or industry as a whole is zero. At the other ex- 
treme, the human resources organization cannot hire faster than a certain rate; in 
the example shown in Figure 13-3, hiring gradually saturates at 2.5 times the nor- 
mal rate when labor demand is high. 

13.2.1 0 Floating Goals 
Many formulations respond to some measure of the discrepancy between the de- 
sired and actual state of the system. Where do the goals come from? In some cases, 
goals are exogenous to the decision. In the manufacturing example in section 
13.2.4, desired inventory might depend on the firm's forecast of demand and a tar- 
get for inventory coverage. Often, however, there are no obvious external reference 
points to determine goals. In these cases, the desired state of the system is, at least 
partially, affected by the state of the system itself. The goals float with the ebb and 
flow of the system itself. 

Consider the classical linear negative feedback system: 

S = INTEGRAL(Net Change in Stock, S,) 

Net Change in Stock = (S* - S)/SAT 

(13-63) 

(13-64) 

where S" and S are the desired and actual states of the system and SAT is the stock 
adjustment time. The formulation for the net change in the stock assumes decision 
makers initiate corrective actions in response to any discrepancy between desired 
and actual. In a pure floating goal structure the desired state of the system is itself 
a variable: 

S* = INTEGRAL(Net Change in Goal, S:J 

Net Change in Goal = (S - S*)/GAT 

(13-65) 

(13-66) 

where GAT is the goal adjustment time. The goal adjustment rate forms a first- 
order linear negative feedback loop that acts to eliminate any discrepancy between 
the desired and actual states of the system-but by eroding the goal rather than 
changing the world. There is ample empirical support for such adaptive aspira- 
tions. Habituation, the tendency to get accustomed to your present circumstances, 
is a form of goal adaptation. People find the tension created by unfulfilled goals 
uncomfortable and often erode their goals to reduce cognitive dissonance (Fes- 
tinger 1957; see also Lant 1992). 

Figure 13-4 shows a causal diagram for the pure floating goal structure. The 
mutual dependence of the state of the system and goal form a positive feedback 
loop. The mutual adaptation of goals and outcomes causes such systems to be path 
dependent. A random shock that lowers the state of the system will generate cor- 
rective actions that raise the state of the system back up, but while the actual state 
is low the goal will be adjusted downward. The system will return to equilibrium, 
but not the original equilibrium. The degree of goal erosion will depend on how 
fast the goal adjusts relative to the state of the system. 
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FIGURE 13-4 Feedback structure created by floating goals 
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Example 
Recall the student workload management model in section 5.4. Figure 5-25 sug- 
gests the student’s desired grade point average (GPA) adjusts to the actual GPA:7 

Desired GPA = INTEGRAL(Change in Desired GPA, Desired GPA,) 

Change in Desired GPA 

(13-67) 

(13-68) 
= (GPA - Desired GPA)/Grade Goal Adjustment Time 

Floating Goals 
Consider the floating goal structure in equations (13-63) through (13-66). For il- 
lustration, assume the state of the system is a student’s actual GPA and the goal is 
the student’s desired GPA. Without using simulation, sketch the behavior you ex- 
pect for the following situations. 

1. The state of the system begins at zero and the desired state, at 100. Assume 
the adjustment time for the state of the system SAT is 8 weeks. What is the 
behavior of the system and equilibrium GPA when the goal adjustment time 
GAT = (the goal remains fixed)? 

’Actual achievement i s  more complex, depending on student aptitude compared to the difficulty 
of the material; the student’s motivation, preparation, and effort; and the support, encouragement, 
and expectations of teachers, parents, and peers. Nancy Roberts (1978) develops a model of stu- 
dent-teacher-parent interactions in which the dynamics depend strongly on the goal formation 
process for each of these actors. 



534 Part IV Tools for Modeling Dynamic Systems 

2. What is the behavior of the system when goals are flexible? What is the 
equilibrium GPA when GAT is 32, 16, 8,4,  and 2 weeks? 

3. After sketching your intuitive estimates of the behavior, simulate the system 
for the conditions above. Were your mental simulations correct? 

4. Discuss the implications of flexible goals. Under what circumstances should 
goals remain absolute? When should goals be adaptive? Give examples of 
floating goals from your own experience. 

Goals are often partially affected by past performance and partly by various exter- 
nal factors. In these cases the goal can be formulated as a weighted average of the 
various external factors SE and the traditional performance of the system ST. Tra- 
ditional performance adjusts over time to actual performance. 

S* = WT * ST + (1 - WT) * S E  (13-69) 

ST = SMOOTHn(S, ATT) (13-70) 

where ATT is the adjustment time for the tradition and SMOOTHn is the nth-order 
information delay (chapter 11.3). 

Modeling a goal as a weighted average of past performance and external pres- 
sures is consistent with the common judgmental heuristic known as anchoring and 
adjustment. 

People often estimate a quantity or make a judgment by anchoring or begin- 
ning with a known reference point, then adjusting their judgment to account for 
factors specific to the case at hand. Often the adjustments are insufficient, leading 
to bias toward the anchor. 

Judgments are often strongly anchored to information people know to be ir- 
relevant. Northcraft and Neale (1987) had professional real estate agents appraise 
the value of various houses. Agents received 10-page packets describing each 
house, identical except for one piece of information-the asking price, which 
should be irrelevant in appraising the true market value of a house. Nevertheless, 
the appraisals were significantly anchored to the asking price. Appraisers told the 
house was listed at $119,900 gave an average appraised value of $114,200; ap- 
praisers told the very same house was listed for $149,900 gave a mean appraised 
value of $128,800. Most of the agents denied considering the asking price in their 
judgment . 

Russo and Schoemaker (1989) asked MBA students for the last three digits of 
their phone number, say XYZ, then added 400 to the answer. Students were then 
asked, “Do you think Attila the Hun was defeated in Europe before or after [the 
year XYZ + 400]?’ After responding, the students were then asked, “In what year 
would you guess Attila the Hun was actually defeated?” The students know their 
phone number has nothing to do with the date of Attila’s defeat, yet this irrelevant 
anchor significantly biased their answers. Those for whom XYZ + 400 was 
between 400 and 599 gave average estimates of the year 629; those for whom 
XYZ + 400 was between 1200 and 1399 gave average estimates of the year 988. 
Attila was actually defeated in the year 45 1. 
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Floating goals are pervasive. Examples include company goals for quality, deliv- 
ery time and delivery reliability, customer satisfaction, and so on. Organizational 
norms of all types tend to adjust to past experience, including norms such as dress 
codes, the length of the workweek, and the degree of civility in the organization. 
Your personal goal for your weight may be affected by the official target for your 
stature calculated by nutritionists, but is probably strongly conditioned by your 
past weight and by the size of the clothes in your closet. Since those clothes prob- 
ably fit you when you bought them, your current weight goal is largely determined 
by how much you actually weighed when you bought the clothes you are wearing 
now. Similarly, goals that appear to be exogenous are actually often endogenous. 
A firm may set its goals for service quality, delivery time, and reliability by 
benchmarking its competitors. From the point of view of the individual firm, these 
goals are exogenous. But when all firms benchmark performance against one an- 
other, goals are actually endogenous and determined by past performance. An en- 
tire industry can suffer from goal erosion even as each firm seeks external 
reference points for its aspirations. 

13.2.11 Nonlinear Weighted Average 
A variable is often a compromise or weighted average of several cues near a cer- 
tain operating point but restricted by maximum or minimum limits in extreme con- 
ditions, thus requiring a nonlinear weighted average. For example, the weighting 
of internal and external factors in goal formation is often nonlinear. When the ex- 
ternal inputs to a goal are very different from the current situation, people some- 
times discount them as unrealistic, suggesting that the goal is anchored nonlinearly 
to traditional performance: 

(13-71) 

(13-72) 

s* - s - 

Effect of External Factors on Goal =f(SE/ST);f(l) = 1,f '  2 0 

* Effect of External Factors on Goal 

Figure 13-5 shows a typical form for the functionf(SE/ST). The 45" reference line 
represents the case S* = SE: External factors fully determine the goal. The line 
f(SE/ST) = 1 implies S* = ST: The external factors have no role in goal formation. 
The slope of the function is the weight on the external factors. The maximum and 
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FIGURE 13-5 
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minimum values capture the idea that decision makers are unwilling or unable to 
set goals too far from traditional norms for performance. 

Example 
Jones and Repenning (1 997) studied the dynamics of quality improvement at a ma- 
jor motorcycle producer. Fieldwork revealed that the workers’ quality goals were 
strongly affected by their own experience with the product, both as employees and 
customers. Many owned one or more of the firm’s bikes and put many miles on 
them each year. In the 1980s the loyalty and knowledge of the employees was a 
major asset as the company dramatically improved the quality, reliability, and 
styling of its bikes. The quality improvement contributed to a dramatic surge in de- 
mand and renewed popularity for the firm’s products. By the early 1990s a new 
type of customer became important. Known as “rubbies” (rich urban bikers), these 
new customers tended to buy the company’s bikes more for status value than trans- 
portation. The rubbies didn’t actually ride much and were far more sensitive to mi- 
nor cosmetic issues related to the paint and finish than the company’s traditional 
blue-collar customers, including their own workers. As customer standards and 
warranty claims increased, management aggressively boosted goals for finish qual- 
ity. Some workers initially resisted these new, higher standards. One manufactur- 
ing manager said, “Sometimes [customer] standards are too high. He’s an artist or 
a banker and expects everything to be 100% perfect.” An engineer commented, 

I’d kind of like to drop cosmetics as a quality problem. That is more of a subjective 
kind of quality problem-what the customer expects versus what we are producing. 
I don’t even want to talk about them, because half of the cosmetic defects that will 
turn up in paint or chrome you won’t see. 

Another commented, “We don’t build motorcycles, we build jewelry.” 
The engineers viewed external data such as market research or warranty claims 

as unreliable or irrelevant: “Data from the customers is too subjective. We don’t 
use it to learn about quality improvement.” Instead, employee quality goals were 
strongly anchored on their own experience. When asked how he learned about the 
quality of the product, one engineer said, “By buying them. By hanging around in 
the field. I use our product extensively.” 
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The tendency to discount evidence significantly different from their own stan- 
dards suggests the employees’ quality goals were flexible only up to a point, con- 
sistent with the nonlinear anchoring and adjustment formulation: 

(13-73) Employee Quality Goal 
= Traditional Quality * Effect of Customer Feedback on Quality Goal 

Effect of Customer Feedback on Quality Goal 
= f(Customer Quality GoaYTraditional Quality) 

(13-74) 

The traditional quality goal responded to past quality and emphasized mechanical 
functionality rather than cosmetics. Customer goals for quality, once similar to the 
employees’ goals, had risen, and now emphasized cosmetic concerns. The inter- 
view data suggested the Effect of Customer Feedback on Quality Goal had a slope 
much less than 1 near the neutral point and saturated for high values of the input. 
Boosting the operational goal for quality required changing employees’ percep- 
tions of what quality should be, not merely applying additional pressure for higher 
quality. Management used the results of the Jones and Repenning study, along with 
other work, to make significant changes in product development and the PD- 
manufacturing relationship, helping to lift quality goals-and quality-throughout 
the organization. By the end of the 1990s quality was trending up while sales con- 
tinued at record rates. 

13.2.1 2 Modeling Search: Hill-Climbing Optimization 
In many situations decision makers strive to optimize a system but lack knowledge 
of the system structure that might help them identify the optimal operating point. 
For example, a firm may seek the price that maximizes profit or the mix of labor 
and capital that minimizes the cost of production. A variant of floating goals en- 
ables the agents in models to find the optimum point in such cases in a behav- 
iorally realistic way. Since firms, for example, do not know what the optimal mix 
of labor and capital is, they must find it by sensing whether there is too much labor 
or too much capital, then adjusting the mix in the right direction. Such a procedure 
is called hill climbing. 

Imagine yourself trying to climb a mountain in a complete whiteout. Visibility 
is zero. You have no idea which way will lead you to the summit. You carefully 
take one step in each direction to see which way the ground around you slopes, 
then strike out in the direction that leads most steeply uphill. Every few steps, you 
stop and take a step in each direction to reassess which way is uphill. You continue 
in this fashion, stopping only when every direction you can move takes you down- 
hill. If the mountain is smooth, has only a single peak, and you reassess the gradi- 
ent often enough, you are guaranteed to make the summit even though you have no 
idea where the summit lies.* 

8Nelson and Winter (1982) develop a search heuristic similar in spirit to the hill-climbing 
procedure assumed here, show how boundedly rational firms can use it to search for best-practice 
combinations of inputs and technology, and demonstrate how such search can lead to economic 
growth. 
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Hill climbing sounds simple and is widely used as an optimization technique, 
but there are important subtleties. Hill climbing can lead to suboptimization. If 
there are multiple peaks (known as local optima), you can end up stuck at a peak 
lower than the main summit. If the mountain is not smooth (the landscape is 
rugged), you can’t reliably tell which way is uphill and might wander aimlessly 
forever. If you are too aggressive and walk a long way before reassessing the gra- 
dient, you can overshoot and oscillate around the peak. Sophisticated hill-climbing 
methods solve the overshoot problem by adjusting the step size as the gradient 
changes. If the mountain is smooth enough, the slope must diminish as you ap- 
proach the summit. Therefore, a steep slope means you can go a long way before 
reassessing the gradient without much risk of missing the mark, thus saving time. 
As the slope flattens, you take smaller steps so as not to overshoot the summit. 

Hill climbing is a very common and often effective heuristic for optimization 
and learning. To model hill climbing, the desired state of the system is anchored on 
the current state, then adjusted by various external pressures representing the gra- 
dient of the hill and indicating the way uphill. The general structure for such a hill- 
climbing process is 

S = INTEGRAL(Change in State of System, S,) 

Change in State of System = (S* - S)/SAT 

(13-75) 

(13-76) 

S* = S * Effect of X, on S* * Effect of X, on S* * . . . * Effect of X, on S* 
(13-77) 

Effect of Xi on S* = f(Xi/XT) (13-78) 

The effects of the external pressure are formulated here as multiplicative and are 
normalized to their reference values, though other formulations are possible. Fig- 
ure 13-6 shows the feedback structure. There are two loops. The negative State Ad- 
justment loop closes any gap between the desired state of the system s* and the 
actual state S. The goal itself depends on the state of the system, creating the pos- 
itive Goal Revision loop. 

As long as the net effect of the pressures on the goal causes S* to exceed S, 
the state of the system will grow exponentially. When the net pressures push the 
goal below the current state, the system will decay exponentially. To see why, sup- 
pose the net effects of the external pressuresf(Xi/X;) equal some constant k, so 
S* = kS. Substituting in (13-76) yields 

Change in State of System = (kS - S)/SAT = (k - l)S/SAT (13-79) 

which is the formulation for a first-order linear feedback system. If k > 1, the pos- 
itive Goal Revision loop dominates, and the system grows exponentially at the 
fractional rate (k - l)/SAT. If k < 1 ,  the system decays exponentially. In reality, 
and in a full model, the variables Xi driving the goal would be part of the feedback 
structure and affected by the state of the system. Usually, the state of the system 
will change until the external pressures cause S* to equal S, at which point 
S reaches equilibrium-the optimal point where there is no further pressure to 
change the state of the system. The equilibrium is not predetermined. Instead, the 
system settles at whatever value of S causes the pressures on the goal to net out. 
Chapters 15 and 20 provide examples and tests of the hill-climbing formulation. Of 
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FIGURE 113-6 Structure for hill-climbing search 

l r  

State of 
System 

S 

v 
1l 

State 
Adjustment 

Goal 
Revision 

Desired + 

State s* \ Effect of External I on Desired State 

+ Pressures X,, ..., X, 

External 
C Pressures e x,, ..., x, 

course, whether an equilibrium or optimal value of S exists, and whether the ap- 
proach to it is stable or unstable, depends on the parameters of the goal revision 
and stock adjustment process, as well as those governing the reactions of the other 
variables Xi. As in the real world there is no guarantee that the hill-climbing 
process will converge. 

Example 
Consider the price setting process in a market such as a commodity or stock mar- 
ket. The demand for the good falls as prices rise; supply rises as price rises. In 
equilibrium price is just high enough to balance demand with supply. But how do 
the market makers (the people who set prices by calling out bids and offers in the 
trading pit) find the equilibrium price? And how do prices change when there is an 
imbalance between demand and supply? Price P adjusts to an indicated price over 
an interval given by the price adjustment time PAT: 

P = INTEGRAL(Change in Price, Pb) 

Change in Price = (P* - P)/PAT 

(13-80) 

(13-8 1) 

In a trading pit such as a stock exchange PAT may be a matter of minutes; for large 
industrial products PAT may be months. Since the true equilibrium price that will 
clear the market is unknown, market makers form P* by anchoring on the current 
price and then adjusting in response to the perceived balance between demand and 
supply: 

P* = P * Effect of Demand Supply Balance on Price (13-82) 
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Effect of Demand Supply Balance on Price = f(Demand/Supply); 
f(1) = 1,f' 2 0 (13-83) 

If demand exceeds supply, indicated price will rise. As it does, so too will the ac- 
tual price. The price will therefore grow exponentially as long as demand exceeds 
supply. Price will fall as long as supply exceeds demand. The Effect of Demand 
Supply Balance on Price can be approximated simply by 

Effect of Demand Supply Balance on Price = (Demand/Supply)s (13-84) 

where s > 0 is the sensitivity of price to the demandhpply balance. The values of 
s could be estimated from data relating price changes to the relative size of buy and 
sell orders in a stock market or order rates and capacity in a firm. 

To test the ability of the hill-climbing formulation to find the market-clearing 
price, assume demand and supply respond to price with constant elasticities: 

Demand = Reference Demand * Effect of Price on Demand 

Effect of Price on Demand = (Price/Reference Price)"d 

Supply = Reference Supply * Effect of Price on Supply 

Effect of Price on Supply = (PriceReference Price)". 

(13-85) 

(13-86) 

(13-87) 

(13-88) 

where ed < 0 and e, > 0 are the elasticities of demand and supply, respectively. 
The equilibrium price Pe, is found by equating demand D and supply S and solv- 
ing for price: 

(13-89) 

where PR, DR, and SR are the reference values of price, demand, and supply, re- 
spectively. Equilibrium price depends only on the demand and supply curves. The 
price adjustment time and sensitivity of price to the demand/supply balance char- 
acterize the disequilibrium behavior of market makers and do not affect the equi- 
librium price. Figure 13-7 shows the feedback structure of the price discovery 
process. 

The price formation process forms two loops. Price adjusts to the indicated 
level, forming the negative Price Adjustment loop, but the indicated price is based 
on the current price, forming the positive Price Discovery loop. The responses of 
demand and supply to price form two additional negative loops (see chapter 5.5 for 
discussion). Figure 13-8 shows a simulation beginning from an initial equilibrium 
with Price = Reference Price = $100/unit and Demand = Supply = Reference 
Demand = Reference Supply = 100 unitdperiod. The price adjustment time is set 
to 1 period. The elasticities ed and e, are set to -0.25 and 0.50, respectively. The 
sensitivity of indicated price to the demandhupply balance is one. At time zero the 
demand curve shifts upward by 20%. 

Given the parameters, the market clears at a new equilibrium price of $127.521 
unit, with demand and supply equal to about 113 unitdperiod. However, market 
makers, ignorant of the true demand and supply curves, do not know the equilib- 
rium price and must hunt for it through a gradual process of price adjustment. 
Faced with excess demand, market makers immediately increase P* above P, so 
price starts to rise. After a short time, the higher price begins to suppress demand 
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FIGURE 13-7 Price discovery by hill climbing: structure 
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and stimulate supply. However, there is still an imbalance, so indicated price re- 
mains above price. Price continues to rise until demand and supply come into bal- 
ance, at which point P* = P and price change ceases. 

The adjustment in this simple example is first-order, without overshoot and os- 
cillation, because demand and supply are assumed to respond to price immediately, 
and the model ignores changes in inventories or backlogs. A proper treatment of the 
stocks and delays in these feedbacks could cause instability. Further, the only exter- 
nal pressure on price arises from the demandsupply balance. Section 20.2.6 pre- 
sents a richer model of price discovery that can be applied to a variety of markets. 

A more realistic and subtle use of the hill-climbing structure arises in model- 
ing the problem of selecting the optimal mix of inputs to a production process. Fac- 
tor inputs typically include capital and labor, or capital, labor, energy, and materials 
(K, L, E, M). As all introductory economics students learn, in equilibrium, assum- 
ing competitive factor and output markets, firms should choose the mix of produc- 
tion factors so that the revenue generated by an additional unit of each factor is just 
balanced by the cost of the additional unit. That is, 

Marginal Revenue * Marginal Productivity of F, = Marginal Cost of Fi (13-90) 

where Fi denotes a factor of production i E { K, L, E, M}. The marginal productiv- 
ity of each factor is given by 

Marginal Productivity of F, = dQ/dFi (13-91) 

where output Q is given by the production function 

Q = f ( K  L, E, M) (13-92) 
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Equilibrium models solve these equations and then set the factor stocks to the op- 
timal levels or adjust factor stocks gradually to the optimal levels. In reality man- 
agers do not know the true production function for the firm and cannot solve for 
the optimal input mix. Instead, they make gradual adjustments based on their sense 
of which direction to move to improve the efficiency of operations (for an explicit 
model of this process see Nelson and Winter 1982). Out of equilibrium, the mar- 
ginal benefit of an additional unit of any input may yield more or less than its mar- 
ginal cost. As these pressures are perceived, the firm gradually increases or 
decreases the use of that factor. The following formulation captures the local 
search for a better mix of inputs: 

(13-93) Desired Factori = Factori * Effect of Relative Demand on Desired Factor 
* Effect of Relative Return on Desired Factori 

The desired stock of each input factor is anchored to the current stock, then ad- 
justed in response to relative demand and relative return. Relative demand is the 
ratio of desired production to capacity and affects all factors equally; relative re- 
turn is the perceived marginal return generated by each factor relative to its cost. 

Effect of Relative Demand on Desired Factor 
=f(Relative Demand);f(l) = 1,f' 2 0. (1 3-94) 

Relative Demand = Desired ProductionProduction Capacity (13-95) 
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A typical formulation for the effect of relative demand on desired factor stocks lies 
along the 45" reference line near the operating point where relative demand = 1 
but saturates for very low and very high values. 

The effect of relative return captures pressures to rebalance the mix of inputs 
as their relative return varies. The effect depends on the perceived and not the ac- 
tual relative return. Perceived relative return is modeled with an information delay. 

(13-96) Effect of Relative Return on Factor, 
=f(Perceived Relative Return to Factori) ;f(l) = 1,f' 2 0. 

Perceived Relative Return to Factori 

= SMOOTH(Re1ative Return to Factori, 
Time to Perceive Relative Return to Factori) 

(13-97) 

The Time to Perceive Relative Return to Factor captures the time required to form 
reliable estimates of the marginal return of each factor. Like the effect of relative 
demand, the effect of relative return on desired factor stocks lies along the 45" line 
near the operating point and saturates for very high and very low values. 

Relative return is the ratio of the marginal revenue generated by another unit 
of the factor to the marginal cost of the factor. When the ratio is greater than one, 
the firm should increase its use of that factor; when it is less than one the factor 
costs more than it yields and should be cut back. Marginal revenue (price net of re- 
turns and taxes) and marginal cost (the unit cost of each input) are perceived 
rapidly and are relatively unambiguous. However, information about the marginal 
productivity of each factor is difficult to get and hard to interpret. Beliefs about 
marginal productivity are therefore likely to change only slowly, so relative return 
depends on the perceived marginal productivity of each factor, which adjusts with 
a delay to the actual value. 

Marginal * Perceived Marginal Productivity 
Relative Return - Revenue 

to Factor, 

Perceived Marginal Productivity of Factor, 
= SMOOTH(Margina1 Productivity of Factor,, 
Time to Perceive Marginal Productivity,) 

of Factor, 
- 

Marginal Cost of Factor, 
(13-98) 

(13-99) 

Marginal Productivity of Factor, = dProduction Capacity/dFactori ( 13- 100) 

The marginal productivity of each factor can be modeled using the analytic ex- 
pression for the true marginal productivity given the particular production function 
used or estimated by comparing the output generated by different combinations of 
inputs (e.g., in different business units or at different times). 

Finding the Optimal Mix of Capital and Labor 
Recognizing that the actual factor stocks will adjust to the desired levels (with 
some delay), sketch the feedback structure of the formulation for desired factor 
stocks developed above. Remember that individual factors experience diminishing 
returns as they increase relative to fixed factors. Given the feedback structure you 
identify, what is the likely response of the system to a change in the relative prices 
of factor inputs? 
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Consider a model of an aggregate industry or sector of the economy such as 
manufacturing or transportation. Assume for simplicity that capital and labor are 
the only factors of production considered in the model. Further, assume production 
capacity Q is given by the Cobb-Douglas production function: 

Q = PR * (WK,).k * (L/L,)”I (13-101) 

where P,, KR, and L, are reference production, capital, and labor, respectively. The 
exponents a, and al capture the response of production to each factor. Assume con- 
stant returns to scale, so a, + al = 1.  The marginal productivity of a factor in the 
Cobb-Douglas production function dQ/dFi = aiQ/Fi. 

Assume for simplicity that each factor adjusts to the desired level in a first- 
order fashion: 

Factori = INTEGRAL(Change in Factori, Factori, t,> 

Change in Factori = (Factor; - Factori)/ATi 

( 13- 102) 

(1 3- 103) 

The adjustment time AT is longer for capital than for labor.9 Finally, assume 
demand and the prices of each factor Pi (the cost of capital and the wage) are 
exogenous. 

Build the model, selecting parameters you believe are appropriate given the 
adjustment times and other considerations. Section 11.5 provides guidance on pa- 
rameters for capital investment. 

Simulate the model under the following conditions: 

1. Unanticipated changes in demand (both increases and decreases) 
2. Unanticipated changes in the price of each factor. 

In each case, does the model end up at the appropriate equilibrium? Since the man- 
agers represented in the model do not know the equilibrium factor stocks they 
should be using, how do their responses to imbalances enable them to respond to 
changes in factor prices or productivity? What are the adjustment dynamics, and 
why? What defects do you see in the model, and how might you correct them? 

13.2.1 3 Resource Allocation 
It is often necessary to allocate resources among multiple uses. The total demand 
for automobiles is divided among each producer. The capacity of a firm is divided 
among different products. A worker’s time is allocated to production, training, 
maintenance, process improvement, and other tasks. Formulations for resource 
allocation must ensure that the share of the resource going to each use remains 
between zero and one and that the sum of the resources going to each use equals 
the total resource available. A useful formulation for resource allocation give each 
use a share of the resource proportional to its contribution to the total attractiveness 
of all uses and is known as SHARE = US/(US + THEM). 

9A more realistic model uses the stock management structure to represent the capital and labor 
supply chains (chapters 17 and 19), and might model labor requirements as embodied in the capital 
stock, as in section 12.2. 
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13.3 

Assume there are n possible uses for a resource. For concreteness, consider the 
problem of determining the market share of n competitors in an industry with total 
demand D,. The share of demand going to each firm is given by its attractiveness, 
A,, relative to the sum of the attractiveness levels of all competitors: 

Si = Ai 2 A, I ,1, 
( 13- 104) 

(13- 105) 

( 13- 106) 

where attractiveness is a function of various attributes qj. There may be j = 1, . . . , m 
attributes, such as price, delivery delay, quality, functionality, warranty terms, ser- 
vice capability, and so on. No matter how attractiveness is formulated, the share 
going to any firm is bounded between zero and one, and the sum of the shares al- 
ways equals one (as long as Ai 2 0). 

Many formulations for attractiveness are possible. Usually the true underlying 
attractiveness function is approximated by a multiplicatively separable formulation: 

Ai =h(qJ *h(qJ * . . . *fm(aim) ( 1 3- 107) 

The product of individual effects is usually better than the sum for the same ro- 
bustness reasons discussed in section 13.2.7. The individual effects can in princi- 
ple be any nonlinear function. A common choice is the exponential function 

J(qj) = exp(kj * qj/j/a3') (1 3- 108) 

where kj is the sensitivity of attractiveness to attribute j and a: is the reference 
value of attribute j .  With the exponential function for the individual attributes of 
attractiveness, the US/(US + THEM) formulation is known as the logit model 
because the share going to any option follows a logistic curve as the attractiveness 
of that option is increased relative to the others. Section 10.8 uses the logit model 
to model market share. 

The logit model is convenient because it can be estimated by linear regression. 
However, the formulations for attractiveness need not be exponential, and indeed, 
the exponential is generally not robust in extreme conditions. You should specify 
the effects of the individual attributes on attractiveness to capture appropriate non- 
linearities and not simply assume they follow any particular analytic function such 
as the exponential. 

COMMON PITFALLS 
The formulations above provide templates you can use to create meaningful, ro- 
bust formulations for the decision rules in models. This section discusses several 
common pitfalls to be avoided. 

13.3.1 All Outflows Require First-Order Control 
Real stocks such as inventories, personnel, cash, and other resources cannot 
become negative. You must formulate the rates in your models so that these stocks 
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remain nonnegative even under extreme conditions. Doing so requires all outflows 
to have first-order control. First-order control means the outflows are governed by 
a first-order negative feedback loop that shuts down the flow as the stock drops to 
zero. For example, shipments of finished goods from inventory must be zero when 
inventory is zero no matter how great the demand for the product. These loops 
must be first-order because any time delay could allow the flow to continue even 
after the stock falls to zero. As discussed above, these outflow-limiting loops are 
often highly nonlinear, having no effect under normal conditions but sharply con- 
stricting the flow when the stock becomes small relative to normal. 

A useful generic formulation to prevent nonnegativity of a stock sets the out- 
flow to the lesser of the desired rate or the maximum rate: 

Outflow = MIN(Desired Outflow, Maximum Outflow) ( 13- 109) 

The maximum outflow rate depends on the quantity in the stock and the minimum 
time required to drain it: 

( 13- 1 10) Maximum Outflow = StockMinimum Residence Time 

In many situations the constraint imposed by the maximum outflow rate gradually 
becomes binding. In these cases, you should use the fuzzy minimum function (sec- 
tion 13.2.8): 

Outflow = Desired Outflow * Effect of Availability on Outflow (13-11 1) 

( 1 3- 1 1 2) Effect of Availability on Outflow 
= f(Maximum OutflowDesired Outflow);f(O) = 0 , f ’  2 0 

Under normal conditions when the stock is in ample supply, the outflow equals the 
desired rate. If the stock falls far enough, however, the outflow will be constrained 
and the stock will fall exponentially to zero. You should check to make sure every 
outflow from every real stock in your model has first-order control. 

Example 
The shipment rate from a firm’s inventory can be formulated as the lesser of the 
desired shipment rate (based on demand) or the maximum shipment rate (based on 
inventory availability). The maximum shipment rate is given by inventory and the 
minimum time required to process and fill an order. 

Inventory = INTEGRAL(Producti0n - Shipments, Inventoryto) 

Shipments = MIN(Desired Shipments, Maximum Shipments) 

(13-113) 

( 1 3- 1 14) 

Maximum Shipments = InventoryMinimum Order Fulfillment Time (13-1 15) 

Under normal conditions when inventory is ample, shipments equal desired ship- 
ments and the availability loop is not active. Only when inventory drops far 
enough will availability constrain shipments. The use of a MIN function is appro- 
priate for the case where all inventory is identical (no aggregation of different 
products or warehouse locations). When the model aggregates different product 
types and sites together, there is some probability of local stock outs for particular 
items even when aggregate inventory is sufficient. In these cases, the fuzzy mini- 
mum function should be used, as in chapter 18. 
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13.3.2 Avoid IF.  . . THEN . . . ELSE Formulations 
Many modelers, especially those with strong computer programming backgrounds, 
are tempted to make extensive use of logical statements such as IF . . . THEN . . . 
ELSE. Resist the temptation. Conditional statements such as IF . . . THEN . . . 
ELSE introduce sharp discontinuities into your models, discontinuities that are 
often inappropriate. Individual decisions are rarely entirely eithedor. In many sit- 
uations the decision is a compromise or (possibly nonlinearly) weighted average of 
competing pressures. In the cash balance example from the challenge above, the 
firm is not likely to continue to pay all its bills fully and on time until its cash is 
completely exhausted but will gradually cut back and defer payments as its cash on 
hand dwindles. Even when individual decisions are sharply discontinuous, most 
models aggregate a population of individual agents with heterogeneous character- 
istics, smoothing out the relationships. Even if each firm in an industry followed 
the policy of paying in full until cash is completely exhausted, the distribution of 
liquidity among firms in the industry means payments would vary smoothly as the 
average cash balance changes. 

On a practical note, conditional statements such as IF . . . THEN . . . ELSE are 
often difficult to understand, especially when the conditions are complex or nested 
with others (see 13-122) for an example).1° 

13.3.3 Disaggregate Net Flows 
In general you should model inflows and outflows from a stock explicitly rather 
than as a single net flow. Instead of a single net hiring rate, for example, it is usu- 
ally better to model the hiring, layoff, and voluntary quit rates separately. Instead 
of net migration, model inmigration and outmigration separately. 

'OWhile you should generally avoid conditionals in modeling decision making, there are occa- 
sional exceptions (e.g., the nonlinear smoothing structure in section 11.4.1). Conditionals can also 
be useful in representing switches to select among different policies or scenarios for model testing. 
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There are several reasons for this practice. First, the decision processes gov- 
erning the various flows often differ. These differences can include differences in 
the information inputs used in the decision and the decision rule for processing the 
cues. Time delays can differ as well. Second, it is often difficult to create robust 
and transparent formulations for net flows. 

Consider a firm’s labor force. A simple model assumes the labor force adjusts 
to the desired labor force through a net hiring rate: 

Net Hiring = (Desired Labor - Labor)/Labor Adjustment Time ( 13- 1 17) 

This formulation assumes labor rises as fast as it falls. In the real world, these ad- 
justments are governed by different delays and different constraints. It can take 
substantially longer to find, recruit, and train new workers than it can to lay them 
off, so the symmetrical adjustment time for increases and decreases is often not ap- 
propriate. The net hiring rate is gross hiring less voluntary quits and any layoffs. 
These decisions are made by different groups of people using different cues and 
are limited by different constraints. Hiring depends on the f m ’ s  desired hiring rate 
but is constrained by the availability of workers with the skills the firm seeks. Po- 
tential new hires judge the desirability of taking the firm’s offer on the basis of in- 
direct information: The firm’s reputation, word of mouth about what it’s like to 
work there, and so on. It takes time to form and revise these perceptions. Current 
workers, however, know what it’s actually like to work there, so the quit rate is af- 
fected by different information than the hire rate. 

Aggregating inflows and outflows into a single net rate also makes it hard to 
capture costs accurately. A firm with a net hiring rate of zero could have employee 
turnover of lO%/year or 1000%/year. In the former case, the costs of hiring, train- 
ing, and recruiting are low and the average experience of the workers will be high; 
in the latter case human resources costs are high and average experience is low. 
Because the net rate does not distinguish between the two cases, it cannot properly 
model the costs or consequences of employee turnover. 

Finally, it is often difficult to formulate robust net rates. Consider the labor 
force model in section 12.1.7. The labor force is represented with a two-cohort 
aging chain consisting of rookie (new) employees and experienced employees. 
Rookies become experienced after an average assimilation time. Both rookies and 
experienced workers quit at certain fractional rates. Suppose the modeler at- 
tempted to aggregate hiring and layoffs into a single Net Hiring Rate (the net 
change in the labor force is then Net Hiring - Total Quit Rate). Net hiring can 
be formulated simply using the classic Inflow = Replacement + Stock Adjust- 
ment form: 

Net Hiring Rate = Total Quit Rate + Adjustment for Labor (13- 118) 

Adjustment for Labor = (Desired Labor - Labor)/Labor Adjustment Time (13-119) 

If desired labor is much less than actual labor, the adjustment for labor could eas- 
ily exceed turnover, causing the net hiring rate to become negative. That is not a 
problem per se-after all, rookies can be fired. However, the net hiring rate could 
still be negative even after all new employees have been fired, causing the absurd 
result of negative roolue employees. 
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1 :3.4 

The modeler might correctly recognize that when net hiring is negative there 
must be first-order control on the outflow rate so that layoffs go to zero when 
rookies are zero. However, the number of rookies only constrains net hiring when 
net hiring is negative. After some trial and error, the modeler defines two new 
variables: 

Indicated Net Hiring = Total Quits + Adjustment for Labor 

Maximum Layoff Rate = RookiesLayoff Time 

( 13- 120) 

(13-121) 

Indicated net hiring is the net rate the firm would like to have before any con- 
straints are applied. The maximum layoff rate will limit layoffs so that the stock of 
rookies never becomes negative. The layoff time represents the amount of notice 
management must give terminated employees. The net hiring rate then becomes 

Net Hiring Rate = IF (Indicated Net Hiring > 0) THEN (Indicated Net Hiring) 
ELSE (-MIN( -Indicated Net Hiring, Maximum Layoff Rate)) ( 13- 122) 

This formulation works in the sense that the rookie population will never become 
negative, but it is poor modeling practice because other formulation principles are 
violated to ensure the formulation is robust. The equation involves nested logical 
statements and embodies several different ideas. How long did it take you to parse 
(13-122) and understand that it will work? Few clients will find this formulation 
intuitive and may lose confidence in the model. A better formulation would repre- 
sent the hiring rate separately from the layoff rate: 

Hiring Rate = MAX(0, Indicated Net Hiring) 

Layoff Rate = MIN(1ndicated Layoff Rate, Maximum Layoff Rate) 

Indicated Layoff Rate = MAX(0, -Indicated Hiring Rate) 

(13-123) 

(1 3- 124) 

(13- 125) 

This formulation is fully robust (rookies can never become negative) and much 
easier to understand. Each equation contains only one idea. The individual formu- 
lations can be modified as needed to enhance model realism; in particular, layoffs 
and hiring need not be based on the same information. The MAX and MIN func- 
tions in the formulation are easily replaced by their fuzzy equivalents to eliminate 
unrealistic discontinuities. The structure and principles in this section apply to any 
resource, not only labor. 

SUMMARY 
Discovering the decision rules of the actors in a system and representing them in 
models is challenging and requires skillful combination of theory, experiment, and 
observation. While there are many theories about the degree of sophistication and 
rationality of human decision making, all models must conform to basic principles 
of formulation. Decision rules and models must be robust in extreme conditions so 
that physical impossibilities cannot occur, no matter how extreme the inputs to the 
decision rules may be. All equations must be dimensionally consistent without the 
use of \arbitrary fudge factors with no real world meaning. The decision rules in 
models cannot utilize information the real decision makers do not have, such as 
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information about the future, about hypothetical contingencies, and about the cur- 
rent value of variables whose values are only known with a delay. 

This chapter developed a number of standard formulations for robust rate 
equations. These canonical formulations provide templates for use in your own 
models. You should use the simplest formulation you can that conforms to the prin- 
ciples outlined here and suits the purpose of the model. 



14 

Formulating Nonlinear 
Re1.a tions hips 

Up until now most economists have concerned themselves with linear systems, 
not because of any belief that the facts were so simple, but rather because of 
the mathematical diflculties involved in nonlinear systems . . . [Linear systems 
are] mathematically simple, and exact solutions are known. But a high price is 
paid for this simplicity in terms of special assumptions which must be made. 

-PaulA. Samuelson (1947, p. 288) 

Nonlinear relationships are fundamental in the dynamics of systems of all types. 
A company regularly ships at the desired rate-unless inventory is inadequate. Im- 
provements in nutrition and health care boost life expectancy-up to a point. The 
demand for a product must tend to zero as availability or quality fall to zero, no 
matter how cheap it is. The importance of nonlinearities has been recognized for 
centuries (e.g., the straw that broke the camel's back, you can't push on a rope), but 
it is only since the advent of computer 'simulation that nonlinearity has become im- 
portant in dynamic modeling. This chapter describes the formulation of realistic 
and robust nonlinear relationships for use in dynamic models. The focus is speci- 
fying the appropriate shapes and values for nonlinear functions, drawing on all 
available information, both qualitative and quantitative. The chapter also presents 
a practical method for eliciting information about nonlinear relationships from ex- 
perts. Examples from manufacturing, the service industry, product development, 
and other contexts illustrate the principles. 

551 
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14.1 TABLE FUNCTIONS 
Many of the formulations in system dynamics models involve nonlinear functions 
Y = f ( X ) .  Sometimes these functions are specified analytically, for example, 
f ( X )  = Xa. More often, nonlinear relationships are captured using lookup or table 
functions, where the relationship is specified as a table of values for the indepen- 
dent and dependent variables. Linear interpolation is used for values between the 
specified points. The function Y = fix) is represented as 

Y = Effect of X on Y 

Effect of X on Y = Table for Effect of X on Y(X) 

Table for Effect of X on Y = (xl, yJ, (x2, y2), . . . , (x,, y,) 

(14-1) 

(14-2) 

(14-3) 

where (xi, yi) represents each pair of points defining the relationship. Figure 13-2 
provides an example. All system dynamics software packages support table func- 
tions. In most, the extreme values are used if the independent variable exceeds the 
specified domain (some support linear extrapolation using the slope defined by the 
last two points).l 

14.1 . I  Specifying Table Functions 
The information you need to specify the shape and values for nonlinear relation- 
ships can be gleaned from various sources, including statistical studies, fieldwork, 
interviews, considerations of extreme conditions, and physical laws. Some table 
functions represent physical constraints, others represent purely behavioral influ- 
ences, and some capture both types of effect. Table 14-1 gives guidelines for spec- 
ifying the shapes and estimating the values of table functions. 

14.1.2 Example: Building a Nonlinear Function 
To illustrate the steps in formulating a nonlinear function, consider a firm operat- 
ing a make-to-order system. Orders accumulate in the backlog until completed and 
shipped. Shipments are determined by the size of the backlog but are limited by the 
firm's production capacity. This structure, known as a capacitated delay, is very 
common. It arises any time the outflow from a stock depends on the quantity in the 
stock and normal residence time but is also constrained by a maximum capacity. 
Besides the make-to-order case, examples include work in process inventory and 
the production rate, the rate at which customers and paperwork are processed in 
any service delivery supply chain, and the completion rate of tasks in any project. 
Figure 14-1 shows the structure of the system. 

The average residence time for orders in the backlog (the delivery delay) is the 
ratio of the backlog to the current shipment rate: 

Delivery Delay = Backlog/Shipments (14-4) 

Backlog = INTEGRAL(0rders - Shipments, Backlogb) (14-5) 

'Most system dynamics software packages issue a warning whenever an input to a table 
function moves outside the range of specified values. These warnings are helpful diagnostics 
to ensure that the system is operating where you believe it should. 



Chapter 14 Formulating Nonlinear Relationships 553 

TABLE 14-1 
Guidelines for 
forrnulatirig table 
f unlct i ons 

1. 

2. 

3. 

4. 

5. 

6. 

7.  

8.  

9. 

Normalize the input and output, if appropriate. Instead of Y = [X), 
normalize the function so that the input is the dimensionless ratio of the 
input to a reference value X* and the output is a dimensionless effect 
modifying the reference value Y*, Y = Y*f(wX*). 
Identify the reference points where the values of the function are 
determined by definition. For example, in normalized functions of the form 
Y = Y*f(X/X*), the function usually must pass through the point (1, 1) so 
that Y = Y* when X = X*. 
Identify reference policies. Reference policies are lines or curves 
corresponding to standard or extreme policies. The reference policy 
f(X/X*) = 1 represents the policy that X has no effect on Y. The 45" line 
represents the policy that Y varies 1 % for every 1 % change in X and is 
often a meaningful reference policy. Use the reference policy curves to 
rule out infeasible regions. 
Consider extreme conditions. What values must the function take at 
extremes such as -m, 0, and +m? If there are multiple nonlinear effects 
in the formulation, check that the formulation makes sense for all 
combinations of extreme values and that the slopes of the effects at the 
normal operating points conform to any reference policies and constraints 
on the overall response of the output. 
Specify the domain for the independent variable so that it includes the full 
range of possible values, including extreme conditions, not only the 
normal operating region. 
Identify the plausible shapes for the function within the feasible region 
defined by the extreme conditions, reference points, and reference policy 
lines. Select the shape you believe best corresponds to the data 
(numerical and qualitative). Justify any inflection points. Interpret the 
shapes in terms of the physical constraints and policies of the decision 
maker. 
Specify the values for your best estimate of the function. Use increments 
small enough to get the smoothness you require. Examine the increments 
between values to make sure there are no kinks you cannot justify. If 
numerical data are available you can often estimate the values 
statistically. If numerical data are not available, make a judgmental 
estimate using the best information you have. Often, judgmental 
estimates provide sufficient accuracy, particularly early in a project, and 
help focus subsequent modeling and data collection efforts (see item 9 
below). 
Run the model and test to make sure the behavior of the formulation and 
nonlinear function is reasonable. Check that the input varies over the 
appropriate range (e.g., that the input is not operating off the ends of 
the function at all times). 
Test the sensitivity of your results to plausible variations in the values 
of the function. If sensitivity analysis shows that the results change 
significantly over the range of uncertainty in the relationship, you need to 
gather more data to reduce the uncertainty. If the results are not sensitive 
to the assumed values, then you do not need to spend additional 
resources to estimate the function more accurately. 
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FIGURE 14-1 
Structure for a 
capacitated delay 
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Desired Production depends on the backlog and the target delivery delay: 

Desired Production = Backlog/Target Delivery Delay (14-6) 

A simple formulation would specify shipments as a nonlinear function of desired 
production, saturating at high levels as capacity is reached: 

Shipments = f(Desired Production) (14-7) 

Data on shipments and backlog might be used to estimate the function for the ship- 
ment rate in (14-7). 

1. Normalization. 
Equation (14-7) is not robust as it only applies given the firm’s current capacity. 
If capacity changes, through productivity improvements or the acquisition of new 
equipment, the relationship would change. Even if you believe capacity won’t 
change over the current time horizon of the model, it is better to normalize the 
relationship so that the model will work properly in case capacity were to change 
or in case the client wanted to explore policies where capacity changed. Normal- 
ize the relationship by defining shipments as the product of capacity and capacity 
utilization: 

Shipments = Capacity * Capacity Utilization (14-8) 

Utilization becomes a function of schedule pressure, the ratio of desired 
production to capacity: 

Capacity Utilization = f(Schedu1e Pressure) 

Schedule Pressure = Desired ProductiodCapacity 

(14-9) 

(14-10) 
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Schedule pressure measures the pressure to produce above or below the normal 
rate. Normalizing means both the input and output of the function are 
dimensionless ratios. 

2. Reference points. 
Capacity can be defined as the normal rate of output achievable given the firm's 
resources. Given that definition, the capacity utilization function must pass 
through the reference point (1, 1): When Schedule Pressure = 1, Shipments = 
Desired Production = Capacity and the actual delivery delay equals the target. 

The normalization chosen here defines capacity as the normal rate of output, 
not the maximum possible rate when heroic efforts are made. If you preferred to 
define capacity as the maximum possible output, implying utilization is less than 
one under normal conditions, then Schedule Pressure would be defined as 
Desired Productiod(Norma1 Capacity Utilization * Capacity). The utilization 
function would pass through the reference point (1, Normal Capacity Utilization) 
and saturate at one. The normalization and reference point are arbitrary as long as 
you are consistent. 

3. Reference policies. 
There are three reference policy lines for the relationship. First, the line Capacity 
Utilization CU = 1 corresponds to a policy where Shipments always equal 
Capacity. Second, the 4.5" line CU = SP (Schedule Pressure) corresponds to a 
policy where utilization is varied just enough so the firm always produces at the 
desired rate. Third, the line CU = s,, * SP, where s,, is the maximum slope of 
the function, corresponds to the policy of producing and delivering as fast as 
possible, that is, with the minimum delivery delay. To see why, substitute the 
reference policy CU = s,,, * SP into the equation for Shipments: 

Shipments = Capacity * Capacity Utilization 
= c * s,,, * SP 
- 
- C * s,, * DP/C 
= s,,, * DP 
= s,,, * B/DD" 

(14-11) 

where DP is Desired Production, C is Capacity, and DD* is the Target Delivery De- 
lay. Substituting into the equation for delivery delay yields the minimum delivery 
delay DDfi;,: 

DD,, = B/(s,,, * B/DD*) = DD*/s,,, 

Solving for s,,,, 

s,,, = DD*/DD,, 

(14-12) 

(14- 13) 

The minimum delivery delay thus determines the value of s,, and further limits 
the feasible region for the utilization function. 

4. Extreme conditions. 
Turning to the extreme conditions, the utilization function must pass through the 
point (0,O) because shipments must be zero when schedule pressure is zero or 
else the backlog could become negative, an impossibility. At the other extreme, 
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high schedule pressure eventually causes utilization to saturate at the maximum 
feasible rate, CU,,,. 

5. Specifying the domain for the independent variable. 
The domain for the input to a table should be wide enough to capture the full 
range of possible values, not only the range observed in the data. Schedule 
Pressure cannot be less than zero, but could in principle rise to infinity. However, 
since Capacity Utilization saturates at a maximum value for large values of 
Schedule Pressure, the function need only be specified for values large enough 
to ensure that it has reached its saturation point. The data might suggest that 
maximum output is reached by the point SP = 2. To be safe and allow for 
sensitivity analysis, you specify the function over the interval [0, 2.51. 

6. Plausible shapes for the function. 
The reference policies and extreme conditions define a rather narrow region in 
which the true utilization function must lie. The function must lie below the line 
CU = s,,, * SP because orders cannot be delivered faster than the minimum 
delivery delay. It must also lie below the reference policy CU = CU,, since 
utilization cannot be greater than its maximum. When Schedule Pressure is 
greater than one, the firm would not produce at less than the normal rate nor 
would it produce more than desired. Similarly, when schedule pressure is below 
one, the firm would not cut production back more than needed to meet the low 
level of desired production, nor would it produce at utilization rates greater than 
one. The resulting feasible region is rather small. 

To bound the relationship further, you turn to the data. Numerical data on 
desired production, capacity, and shipments may be available so you can estimate 
the relationship statistically. However, most often such data are difficult to get 
and only span a limited range, providing no information about the extreme 
values. Qualitative data gained from fieldwork and interviews are extremely 
helpful in these circumstances. Your discussions might show that management 
prefers to utilize capacity fully and avoid layoffs if it can. When schedule 
pressure is low, management cuts utilization back less than proportionately, 
allowing the backlog to run down instead. Therefore the slope of the function 
is less than one at the normal point where SP = 1. When schedule pressure is 
very low there is a lot of excess capacity and the firm can produce at close to the 
minimum delivery delay. Therefore utilization rises close to the reference policy 
defining the minimum delivery delay. As it rises, it becomes more and more 
difficult to deliver in the minimum time. Utilization rises steadily, but at ever- 
diminishing rates. When schedule pressure exceeds one, utilization rises less than 
the amount required to produce at the desired rate, until it saturates at maximum 
output. 

7. Specifying the values of the function. 
The principal uncertainties are the maximum of the function and the minimum 
delivery delay. Review of the data and discussions with management might 
reveal normal capacity utilization to be about SO%, implying the maximum value 
of the Effect of Schedule Pressure on Shipments to be 1/0.80 = 1.25. Suppose 
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FIGURE II 4-2 
Formulating a 
table function for 
capacity utilization 
By calculating 
the! i ncreimen ts 
between points 
you can check 
thait there are nlo 
inappropriate kinks 
or (changes in 
slope for the 
function. 

also that delivery delay can never be less than about 75% of normal. These two 
data points tightly circumscribe the plausible values for the function. Thus even 
if numerical data to estimate the relationship statistically are not available, you 
can have confidence that judgmental estimates of the function are reasonable. 
If numerical data are available, you can use them to refine the estimated values 
of the function further. Figure 14-2 shows the selected function and values, along 
with the increments between values. The slope diminishes monotonically: There 
are no kinks or inflections in the table. Values are specified in increments of 0.25, 
giving a reasonably smooth function. If necessary for the purpose, you can 
specify more points until you achieve the smoothness you require. 

8. Testing the formulation. 
Many industries experience cyclical patterns in demand. A good starting point for 
testing is to assume orders vary cyclically with an amplitude A and period P 
around an average equal to capacity: 

Orders = Capacity * [l + Asin(2dP)I 
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FIGURE 14-3 
Behavior of the 
capacitated delay 
with cyclical orders 
Orders fluctuate 
+20% with a 
1 -year period. 
Note the amplifi- 
cation of desired 
production and 
the phase lag 
between orders 
and shipments. 

For illustrative purposes, assume the Target Delivery Delay = 1 month and 
Capacity = 100 unitdmonth. Many industries experience peak-to-trough swings 
in utilization of 15% or more over their characteristic cycles (see chapters 17 
and 20 for examples), implying a larger swing in orders, so set A = 0.20 and 
P = 12 months. 

trough swing in orders causes schedule pressure to vary from 0.76 to 1.33. 
Capacity utilization varies less, from 0.86 to 1.12, because the slope of the 
utilization function is less than one near the operating point. Average schedule 
pressure is 1.05. The saturation nonlinearity means shipments respond less to 
high schedule pressure than low. The backlog therefore builds up until schedule 
pressure is just high enough for shipments to equal orders on average over the 
full cycle. For the same reason, the average delivery delay is 1.04, greater than 
normal. Note also the phase lag between orders and shipments. The relative 
amplitudes and phase relationships among orders, shipments, utilization, and 
delivery delay are all reasonable and consistent with the dynamics observed in a 
wide range of industries. 

9. Sensitivity analysis. 
The feasible region for capacity utilization defined by the reference policies and 
extreme conditions tightly constrains the plausible values of the function. 

Figure 14-3 shows the resulting behavior. In steady state the 20% peak-to- 
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FIGURE 14-4 
Alternative 
capacity utilization 
functions for 
sensitivity analysis 
The flat and steep 
cases vary the 
responsiveness 
of utilization to 
schedule pressure 
by a factor of two 
relative to the 
base case. 

Nevertheless, it is important to test the sensitivity of the results to uncertainty in 
the assumed shape and values of all nonlinear functions. Suppose the numerical 
data and client expert opinion suggest the following: The slope around the 
operating point might vary by 525% from your best estimate; maximum 
utilization might vary between 1.20 and 1.30; and the minimum delivery delay 
might be as small as 60% of normal, or as high as 85% of normal. Remembering 
the overconfidence bias (section 8.2.5), you suspect these confidence limits 
are too narrow. You decide to test the sensitivity of the system to much wider 
variations in the assumed capacity utilization function. You vary the slope at 
the operating point by a factor of 5 2 ,  allow maximum utilization to vary between 
1.12 and 1.5, and vary the minimum delivery delay from twice as large as normal 
to the other extreme where it equals the target value (Figure 14-4). 

Many people expect that a factor of two variation in the responsiveness of 
the relationship will induce a factor of two variation in capacity utilization. If 
there were no feedback processes in the system, this intuition would be correct. 
In the base case the peak-to-trough variation in schedule pressure is 1.33 to 0.76, 
causing utilization to vary from 1.12 to 0.86, a range of 0.26. If there were no 

1 S O  

1.25 

0.00 
0.00 0.50 1 .oo 1.50 2.00 2.50 

Schedule Pressure 
(dimensionless) 

Schedule Flat Base Steep 
Pressure Case Case Case 

0.00 
0.25 
0.50 
0.75 
1 .oo 
1.25 
1.50 
1.75 
2.00 
2.25 
2.50 

0.00 
0.50 
0.80 
0.93 
1 .oo 
1.05 
1.09 
1 .ll 
1.12 
1.12 
1.12 

0.00 
0.33 
0.62 
0.85 
1 .oo 
1.10 
1.17 
1.22 
1.25 
1.25 
1.25 

0.00 
0.25 
0.50 
0.75 
1 .oo 
1.20 
1.34 
1.44 
1.50 
1.50 
1.50 



560 Part IV Tools for Modeling Dynamic Systems 

feedback between utilization and schedule pressure, then the steep case should 
induce swings in utilization from 1.24 to 0.76, a range 85% greater than the 
base case.2 Instead, utilization in the steep case varies from 1.17 to 0.82, only 
35% more than the base case. Similarly, under the flat case, the base case 
variation in schedule pressure should cause utilization to vary from 1.06 to 0.93, 
a range 50% as large as the base case. Utilization actually varies from 1.07 to 
0.90, some 65% as much as the base case. 

The intuition that a function twice as steep will cause variations in the output 
of the function twice as large assumes no feedback. It reflects an open-loop 
mental model. With utilization more responsive to schedule pressure, output rises 
more than the base case, draining the backlog faster and reducing schedule 
pressure. As shown in Figure 14-5, schedule pressure in the steep case varies 
only from 0.82 to 1.21, a range 32% less than the base case. In the flat case, less 
responsive utilization forces the backlog to higher peak levels during order 
upswings and lower troughs during downswings. Schedule pressure ranges from 
1.40 to 0.70, 23% more than the base case. Overall, open-loop considerations 
predict the peak-to-trough range of utilization would vary from 0.48 to 0.13 
between the steep and flat cases. Because the negative feedback regulating 
backlog compensates for changes in the values of the utilization function, the 
actual change in the range of utilization is only 0.35 to 0.17, only half as much. 

The sensitivity results demonstrate a general principle. The behavior of 
complex feedback systems is often insensitive to large variations in many 
parameters. In this case there is only a single negative feedback loop, yet a factor 
of two change in the strength of the relationship causes the range of utilization to 
change by only t 35%. A more complete model might include additional 
negative feedbacks that would further reduce the sensitivity of the behavior to 
variations in the responsiveness of utilization to schedule pressure. For example, 
high schedule pressure also means high delivery delays, which typically depress 
new orders and lead to cancellations, reducing schedule pressure and utilization. 
Many systems contain so many interacting negative feedbacks that their behavior 
is quite insensitive to large variations in parameters. Indeed, the function of most 
negative feedbacks is to reduce the sensitivity of a system to unpredictable 
disturbances including changes in parameters. Most systems contain a great 
many negative feedbacks for precisely this reason. The negative loops constitute 
control processes that were designed, or evolved, to compensate for changes in 
the environment or in the characteristics of system actors and components. 

There are three important caveats to the principle that many systems are 
relatively insensitive to variations in parameters. First, there are exceptions. Not 
all systems are dominated by negative feedback. In path-dependent systems and 
others dominated by positive feedback, small changes in parameters can 
cumulate to large effects. Further, most systems contain a few influential 
parameters that do greatly affect their behavior. These high leverage points must 

*The open-loop variation in utilization is less than t 2 because utilization depends nonlinearly 
on schedule pressure, in particular, because utilization saturates for high values of schedule pres- 
sure (calculate the sensitivities for a smaller or larger amplitude cycle in orders to see the effect). 
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y. They are also u e  best intervention points for 
effective policies; identifying them is a major goal of sensitivity analysis. 

assumptions can differ as the system moves from one operating regime to 
another. In nonlinear systems the sensitivity of a system to variations in multiple 
parameters is not a simple combination of the response to the parameters varied 
alone. System behavior can be quite insensitive to a relationship in one operating 
regime but highly sensitive to that same parameter under different conditions. For 
example, the behavior of an innovation diffusion system depends strongly on the 
strength of the positive word of mouth feedback during the growth phase, but is 
totally insensitive to that same loop after the market has saturated. In nonlinear 
systems sensitivity analysis requires multiple tests for multiple operating points 
and conditions. 

Second, real systems are highly nonlinear, so the sensitivity of behavior to 
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Finally, the criteria for deciding what constitutes a significant impact on your 
results depend on the purpose of the model. The numerical values of the variables 
do change between the flat, base, and steep utilization cases; the model exhibits 
numerical sensitivity (though less than open-loop thinking predicts). If the 
purpose of the model required very small tolerances, these changes might matter, 
in which case you must attempt to reduce the uncertainty by additional empirical 
study or by designing policies that further reduce the sensitivity of the system to 
parameter variations. In many cases, however, the purpose of the modeling 
process is to understand the patterns of behavior generated by the system or to 
design policies that lead to greater success. A model whose basic modes of 
behavior change as assumptions are varied over the plausible range of 
uncertainty is said to exhibit behavior mode sensitivity. Changes in the 
desirability of policies indicate policy sensitivity (see chapter 21 for further 
discussion). 

in the capacity utilization function far greater than the likely uncertainty in its 
values are unlikely to alter significant model results such as the modes of 
behavior it generates or the relative desirability of policies. If that result holds up 
after further testing, it means the judgmental estimate of the utilization function 
derived above provides sufficient accuracy. It would be an inefficient use of time 
and resources to gather additional data in an attempt to refine the estimated 
relationship further. Limited resources can best be used for other purposes such 
as estimating those parameters and relationships that do matter to the results. 

Though the sensitivity tests conducted here are not comprehensive, variations 

14.1.3 Process Point: Table Functions 
versus Analytic Functions 

Why use table functions at all? Why not use an appropriate analytic function 
to capture any nonlinear relationships? Diminishing returns can be captured by 
y = log(x) or y = xa for a < 1. Saturation nonlinearities can be captured by 
y = arctan(x) or y = ax/(k + x). S-shaped curves can be captured by the logistic 
curve y = y,,/[ 1 + exp( -a(x - b))]. And so on. Why not use these analytic func- 
tions rather than the cumbersome tables? 

As always, the answer depends on the purpose of the model and the expecta- 
tions and criteria of your client. Analytic functions do have some advantages. They 
are generally smooth and differentiable, while table functions are only piecewise 
continuous (the slopes of the tables jump at each point). Table functions sometimes 
lead to small kinks in the behavior of model variables (see Figure 14-16). Analytic 
functions are often defined over the entire domain of real numbers, or at least the 
positive real numbers, so you don’t have to worry about what happens outside the 
specified values for the input in a table. 

Analytic functions also pose problems. First, analytic functions are not as flex- 
ible as table functions. Simple analytic functions often do not allow you to control 
the shape, slopes, and saturation points of the function while ensuring the function 
always remains in the feasible region defined by the reference policies. For exam- 
ple, you might approximate the capacity utilization function in Figure 14-2 with 
the function 
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14.2 

cu = cu,,, * SP/[(CU*,, - 1) + SP] (14-15) 

The function always passes through the reference point (1, 1) and saturates at the 
maximum capacity utilization CU,,,, but you cannot separately specify the slope 
at the origin so that it conforms to the reference policy defined by the minimum de- 
livery delay. In fact, for realistic values of CU,,, the implied minimum delivery 
delay is implausibly short. More complicated functions with more parameters can 
increase flexibility and overcome these problems but reduce transparency and ease 
of use. 

Second, many clients find it difficult to interpret the meaning and visualize the 
shape of functions such as y = y,,,/[ 1 + exp( -a(x - b))]. Anything that slows 
client understanding reduces their confidence in the model and ultimately cuts the 
chances the modeling process will change client beliefs or behavior. Finally, ana- 
lytic functions follow a particular shape or a small number of possible shapes. Sup- 
pose you used CU = CU,, * SP/[(CU,, - 1) + SP] for capacity utilization, but 
your clients then asserted that actually the function was s-shaped. You could not 
test the clients’ hypothesis without coming up with an entirely different function. 
At the least, the process would grind to a halt while you selected an appropriate 
s-shaped function and estimated its parameters; at worst, you might become de- 
fensive and resist the clients’ request, destroying their confidence in the model and 
in you. With a table function, the clients can take the mouse and draw any shape 
they want in less than a minute, then run the model themselves, involving them 
more deeply in the modeling process and freeing up valuable time to focus on the 
issues of concern instead of technical details. 

CASE STUDY: CUTTING CORNERS VERSUS OVERTIME 
A structure closely related to the capacity utilization formulation above arises often 
in models where labor is the primary determinant of capacity. These situations 
arise in service delivery settings, in project management, in back-office operations, 
in manufacturing-in any situation where workers must process a stock of tasks. 
There are only four options available to an organization when the backlog of tasks 
rises: (1) reduce the arrival rate of new tasks (or cancel some pending tasks); 
(2) add service capacity; (3) increase the workweek; or (4) spend less time on each 
task. The first option, slashing the backlog by limiting task arrivals or canceling 
pending tasks, is often difficult or impossible. In many processes the task arrival 
rate is exogenous or responds to quality and delivery time only with long lags. In 
an insurance claims operation, for example, the rate at which claims are filed is de- 
termined by the number and risk levels of the policies in force and by random 
events. The claims operation cannot tell customers that new claims are no longer 
being accepted. The remaining three options all involve increasing the processing 
rate of tasks in the backlog. Each involves different delays, costs, and conse- 
quences. Adding service capacity is expensive and time-consuming. In many or- 
ganizations it is a last resort, and in any case new capacity cannot come on-line 
quickly. In the short-run, output can increase only if the labor force works longer 
hours or spends less time on each task. Figure 14-6 shows the structure of such a 
system. The task arrival rate and labor force are exogenous. The two principal 
feedbacks affecting the completion rate are the balancing Midnight Oil loop 
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FIGURE 14-6 Generic structure for a labor capacitated process 
A high backlog causes workers to use overtime (the Midnight Oil loop) or to reduce the time spent on each task (the Corner Cutting 
loop). The Completion Rate is also limited by the minimum time required to process and deliver a task (the Work Av: ibility loop). 
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formed by the use of overtime and the balancing Corner Cutting loop created by 
the willingness of workers to spend less time on each task to cut down a high back- 
log. Both responses are nonlinear (section 5.4 presents a simple causal diagram for 
these feedbacks). The overall structure is a variant of the capacitated delay dis- 
cussed in section 14.1.2. 

Tasks accumulate in a backlog until they are processed and delivered to the 
customer. The tasks could be loan requests in a bank, claims awaiting settlement in 
an insurance company, tasks in a product development project, or paperwork in 
any administrative process. The arrival rate is exogenous to the process (though it 
may be endogenous in a full model). The average delivery delay is the ratio of the 
backlog to the completion rate: 

Delivery Delay = Backlog/Task Completion Rate (14- 16) 

(14-17) Backlog 
= INTEGRAL(Task Arrival Rate - Task Completion Rate, Backlogb) 

The task completion rate is determined by the lesser of the potential completion 
rate based on the size and productivity of the workforce and the maximum com- 
pletion rate based on the number of tasks in the backlog and the minimum time 
required per task. 

Task Completion Rate 
= MIN(Maximum Completion Rate, Potential Completion Rate) (14-18) 

Maximum Completion Rate = BacklogMinimum Delivery Delay (14-19) 

The minimum delivery delay represents the minimum time required to process and 
deliver a task. The maximum completion rate forms the Work Availability loop, a 
first-order negative feedback that ensures the backlog remains nonnegative. 

The potential completion rate represents the rate at which tasks could be com- 
pleted given the labor force, the workweek, and the time allocated to each task: 

Potential Completion Rate = Net Labor * Workweemime per Task (14-20) 

Net Labor is the number of FTE employees net of absenteeism and the amount of 
time lost due to meetings, training, and so on. For now net labor is exogenous, 
though in a full model these factors should be modeled endogenously. 

The workweek is a standard workweek modified by an effect of schedule pres- 
sure, a measure of the pressure to work at a greater or lesser rate than normal. 

(14-21) 
Workweek 

= Standard Workweek * Effect of Schedule Pressure on Workweek 

Effect of Schedule Pressure on Workweek = f(Schedu1e Pressure) (14-22) 

Schedule Pressure = Desired Completion Rate/Standard Completion Rate (14-23) 

The Desired Completion Rate is determined by the Backlog and the organization’s 
goal for delivery time: 

Desired Completion Rate = BacMog/Target Delivery Delay (14-24) 

The Standard Completion Rate represents the throughput the organization could 
achieve with the current labor force working normal hours and allocating the 
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standard time to each task. Standard Time per Task represents the organizational 
norm for the level of effort the average task requires. 

Standard Completion Rate (14-25) 
= Net Labor * Standard WorkweeWStandard Time per Task 

The average time devoted to each task, in person-hourshask, is determined by 
Standard Time per Task and Schedule Pressure. Standard Time per Task represents 
the current norm for how long each customer interaction or task should take and is 
exogenous for the purposes of this example. In a more complex model it may re- 
spond endogenously to worker experience and training, task complexity, manage- 
ment norms, experience, task quality, and other factors. 

(14-26) 
Time per Task = Standard Time per Task 

* Effect of Schedule Pressure on Time per Task 

Effect of Schedule Pressure on Time per Task = XSchedule Pressure) (14-27) 

The response of the organization to schedule pressure depends on the relative 
strength of the Midnight Oil and Corner Cutting loops. The strength of these loops, 
in turn, depends on the two nonlinear functions governing the response of the 
workweek and time per task to schedule pressure. 

Formulating Nonlinear Functions 
1. Formulate the relationship between schedule pressure and workweek. Figure 
14-7 provides the axes and shows two reference policy lines to help you formulate 
the function. What is the policy represented by the linef(Schedu1e Pressure) = 1? 
What policy for workweek does the 45" line represent? 

Using your interpretation of the reference policies, sketch the range of plausi- 
ble shapes for the Effect of Schedule Pressure on Workweek. Assume the standard 
workweek is 40 hourdweek. Pay special attention to the extreme values. What is 
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the effect when schedule pressure is very high? When it is zero? Briefly explain the 
rationale for your relationship. 
2. Formulate the relationship for the Effect of Schedule Pressure on Time per 
Task. First, draw any reference policies that help bound the feasible region for the 
relationship. Then draw the range of plausible shapes for the function. Justify your 

14.2.1 Working Overtime: The Effect of 
Schedule Pressure on Workweek 

Even without data for a particular case a great deal can be said about the plausible 
shape and values of the workweek and time per task functions. First consider the 
reference policies for the workweek function. In the following, denote the effects 
of schedule pressure on workweek and time per task as fw,(SP) andf,,,(SP), re- 
spectively. The reference policyfww(SP) = 1 means the workweek never varies: 
The workers put in their 8 hours no matter how much there is to do; when the whis- 
tle blows, it's quittin' time, period. To derive the reference policy corresponding to 
the 45" line, assume that the backlog is large enough that the Work Availability 
loop is not a binding constraint (that is, that the Completion Rate CR is determined 
by the Potential Completion Rate PCR). Then, substituting the equations for the 
workweek and time per task into (14-20), 

PCR = Net Labor * WW* *f,,(SP)I[TPT* *ftp,(SP)] (14-28) 

where WW* and TPT" are the standard workweek and standard time per task, 
respectively. Noting that the Standard Completion Rate SCR = Net Labor * 
WW"/TPT*, 

PCR = SCR *f,,(SP)/&,(SP) (14-29) 

To derive the reference workweek policy corresponding to the 45" line, assume 
time per task equals the standard and note that the 45" line impliesf,,(SP) = SP: 

PCR = SCR *f,,(SP) = SCR * SP = SPR * DCWSCR = DCR (14-30) 

The 45" reference line therefore means workers vary the workweek exactly enough 
to complete tasks at the desired rate. 

These considerations mean the workweek function must lie in the area be- 
tween the two reference lines in Figure 14-7. In the region SP > l, indicating 
insufficient capacity, it is not reasonable to assume that the workweek would 
rise more than needed to lift task completion beyond the desired rate. Likewise, in 
the region SP < 1, it is not reasonable for the workweek to be cut back so much 
that completions fall below the desired rate. Similarly, excess capacity should 
never cause a firm to schedule overtime, and insufficient capacity should never 
lead to undertime. 

The workweek must saturate at a maximum value. A reasonable maximum 
workweek for the entire workforce might be 50 hours per week, or 25% more than 
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normal. Some workers would be putting in longer hours and some, ~hor te r .~  Many 
firms are unwilling to reduce the workweek below normal when there is excess ca- 
pacity (especially when they are contractually obligated to pay for a full week), in- 
stead using the excess labor to work off the backlog while waiting for attrition or 
layoffs to reduce the labor force. Firms may also choose to maintain throughput in 
the face of low schedule pressure to keep worker skills from e r ~ d i n g . ~  

14.2.2 Cutting Corners: The Effect of 
Schedule Pressure on Time per Task 

Turning to the Corner Cutting loop, there are two reference policy curves for the 
Effect of Schedule Pressure on Time per Task. At one extreme, workers may be 
completely insensitive to schedule pressure, devoting the standard time to each 
task no matter how great the pressure to increase throughput may be. This policy 
meansJC,,,(SP) is always unity. At the other extreme, workers may adjust the time 
per task just enough so that the delivery delay always equals the target, implying 
the completion rate always equals the desired rate. To derive this reference policy, 
assume again that the availability loop is not binding (so that the Task Completion 
Rate = Potential Completion Rate = Desired Completion Rate). Then assume the 
workweek equals the standard. From (14-29), 

DCR = PCR = SCW',,(SP) (14-31) 

Solving for the effect of schedule pressure on time per task, 

ftp,(SP) = SCR/DCR = 1/SP (14-32) 

Thus the policy of cutting corners to get the work done in the desired time yields a 
reference policy defined by the hyperbola y = l/x. When schedule pressure is less 
than one, this extreme policy requires the workers to take longer and longer on 
each task.5 

The feasible region for the true Effect of Schedule Pressure on Time per 
Task must lie between the two reference policies. Further, time per task cannot fall 

3Note that the maximum effect of schedule pressure on workweek and standard workweek arc 
not independent. Given a maximum workweek of 50 hours, the effect saturates at a value of 1.25 
when the standard workweek is 40 hours but at 1.43 when the standard workweek is 35 hours. 

4The workweek function need not be zero when schedule pressure is zero because (14-18) en- 
sures that the actual completion rate falls to zero even when the potential completion rate remains 
high. If the workweek remains high when schedule pressure is low, the workers may easily deplete 
the backlog so far that the availability loop becomes active. In this case, the workers may sit at their 
desks but much of the time have no tasks to process. If the availability effect were not modeled ex- 
plicitly as a separate feedback, the constraint that work cannot be completed faster than the mini- 
mum delivery delay would have to be embedded in the workweek function, as in the formulation 
for capacity utilization in section 14.1.2. 

5The hyperbolic reference policy is often confusing. Defining Productivity P as the inverse of 
time per task, the potential completion rate can be reformulated as PCR = SCR *fw,(SP) *fp(SP), 
where the effect of schedule pressure on productivityf,(SP) is simply l/j&(SP). The reference 
policy DD = DD' then becomes the 45" line, as in the workweek effect. The two formulations 
are equivalent; the choice is governed by ease of explanation and robustness under extreme 
conditions. It is very difficult to specify table values that conform to the reference policy y = l/x 
as the input goes to zero. 
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below some minimum even when schedule pressure is very high: It takes some 
minimum time to complete a task even when most of the steps are skipped or done 
in a shoddy fashion. Similarly, workers will not spend more than a certain maxi- 
mum time on each task even when schedule pressure is very low. 

CASE STUDY: ESTIMATING NONLINEAR FUNCTIONS 
wiirH QUALITATIVE AND NUMERICAL DATA 

Oliva (1996) used the structure above in his model of service quality delivery (see 
also Senge and Sterman 1992). The model relates service quality to the balance be- 
tween the demand for service and the number, skill, motivation, and quality norms 
of the service workers. The full model included many additional feedbacks besides 
the Midnight Oil and Corner Cutting loops, including service quality acquisition, 
the effect of fatigue on service quality and employee turnover, and feedbacks gov- 
erning the adjustment of quality norms by employees, management, and cus- 
tomers. Oliva tested his model through a detailed field study of retail lending 
operations in a major UK bank. Through interviews, archival data collection, and 
participant observation, he gathered extensive data on the operations of the bank’s 
major retail lending center. 

In the context of the task management structure, the tasks to be done were loan 
requests to be approved or denied. Loan officers, working in cubicles in a large call 
center, received customer requests from local branches by computer network, tele- 
phone, and mail. They processed the loan requests using their workstations and 
might also phone or write the branch, customer, and credit references to verify in- 
formation or sell additional products and services to the customer. The loan offi- 
cers were salaried employees and did not receive payment for any overtime they 
put in. Oliva observed some variation in the workweek including break and lunch 
times as schedule pressure varied. The employees also faced strong pressure to 
clear the backlog every day-management did not tolerate long delivery delays. 
Interviews and observation also suggested that the employees were more willing to 
cut corners than to work overtime or cut back on breaks to meet the delivery delay 
target and clear the backlog each day. The organization’s policies and procedures 
and other data suggested that the fastest each task could possibly be done was 
about 60% of the standard. At the other extreme, the time spent on each task could 
not rise too high since an employee could do only so many phone calls, credit 
checks, and so on for each loan application. 

Refining Table Functions with Qualitative Data 
While the reference policies and extreme conditions sharply limit the feasible 
shape and values for the effects of schedule pressure on workweek and time per 
task, there is still some uncertainty over their values. What are the slopes of the 
functions near the normal point? How do the workers trade off the pressure to work 
to the standards and the pressure to meet delivery targets? Imagine your client is 
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the bank described above. Use the qualitative data above to specify your best judg- 
ment for each table function. Provide numerical values for each table and plot both 

From the time series data he collected Oliva was able to estimate many of the non- 
linear relationships in the model econometrically, including both the dependence 
of workweek and time per task on schedule pressure. During the year for which 
Oliva collected data, schedule pressure varied from about 0.88 to 1.14. This range 
does not reveal any information about the saturation limits for the two relationships 
but does permit the slopes of the curves near the normal operating point to be esti- 
mated. Around the normal point the true functions are well approximated by the 
power functions 

fww(SP) = S P s w - -  and Lpt(SP) = SPSw (14-33) 

Estimating the exponents s,, and stpt for the workweek and time per task effects by 
log-linear regression gives highly significant results. For the workweek, the esti- 
mated exponent (with 95% confidence bounds) is 0.56 5 s,, = 0.63 I 0.69, 
R2 = 0.86. The estimated exponent for time per task is -0.43 I stpt = -0.36 I 

Figures 14-8 and 14-9 show the resulting effects of schedule pressure on work- 
week and time per task. The values of the table functions lie along the estimated 
slopes in the neighborhood of the data. The saturation limits for workweek are 
+25%. For time per task, the saturation limits are % 40%. These limits are consis- 
tent with interviews, observation, and other archival data Oliva collected at the 
bank. The figures also show a close-up of each function around the operating point 
including the data, estimated slope, and 95 % confidence bounds. How close to the 
estimated functions did your judgmental estimates lie? 

The considerations above help specify the shape and values of the individual 
tables. However, when a formulation involves several nonlinear effects it is im- 
portant to check that the formulation is robust and consistent with the data when all 
the effects interact. The extreme conditions and sensitivities at the normal operat- 
ing point should be established. First, consider the total impact of a change in 
schedule pressure near the normal operating point. Each individual relationship 
must satisfy the constraint defined by the reference policy defined by DD = DD*. 
That is, the delivery delay should not fall below normal when there is excess 
demand nor rise above normal when there is excess capacity. 

In addition, the joint effect of schedule pressure on both workweek and time 
per task should satisfy the same constraint. In general, workers are unlikely to do 
more than required to process tasks in the target delivery time when workload is 
high nor cut back so much that delivery delay rises above normal when there is too 
little work. In the case of the UK bank, Oliva’s qualitative data suggest that the 
workers cleared the backlog each day. The combined effect of overtime and corner 

-0.30, R2 = 0.70.6 

601iva used a more sophisticated partial model estimation procedure but the results were 
essentially identical to the log-linear regression estimates reported here. 
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FIGURE 14-8 
Lower graph shows data points. Dashed lines indicate the 95% confidence bounds for the estimated 
relationship. 
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SF' = Schedule Pressure; WW = Workweek; DD = Delivery Delay. 

Source: Data from Oliva (1996). 

cutting should therefore just enable the lending center to meet the target delivery 
delay. 

To check that the two relationships conform to this constraint, substitute the es- 
timated power law functions into (14-29): 

PCR = SCR *fww(SP)/j$,(SP) SCR * SPs4SP'~t = SCR * SP('--'vJ (14-34) 

The estimated values give s,, - stpt = 0.63 - (-0.36) = 1, which means 

PCR SCR * SP = SCR * DCWSCR = DCR (14-35) 

The independently estimated relationships indicate that the loan officers cut 
corners and used overtime just enough to process the backlog at the target delivery 
delay and are consistent with the qualitative data derived from interviews and 
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FIGURE 14-9 
Lower graph shows data points. Dashed lines indicate the 95% confidence bounds for the estimated 
relationship. 
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direct observation of the process, providing an important check on the estimated 
table values. 

Turning to extreme conditions, high schedule pressure boosts the total pro- 
cessing rate to 1.25/0.60 = 2.08 * SCR while low schedule pressure reduces the 
potential completion rate to 0.75D.40 = 0.54 * SCR, roughly a factor of two 
around the standard processing rate. These bounds are plausible. 

The estimated functions reveal that workers at the bank were much more 
willing to cut corners than to work overtime when schedule pressure rose above 
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normal. This result has important implications for the quality of service the bank 
was able to deliver. Within broad limits, a rise in workload was quickly accommo- 
dated by spending less time with each customer and, to a lesser extent, cutting back 
on lunch and breaks. Management therefore perceived little pressure to add service 
capacity. Indeed, management may interpret the rise in throughput per person as 
productivity growth and may cut service personnel to reduce expenses, further 
increasing schedule pressure and perpetuating high workloads in a positive loop. 
Indeed, Oliva found strong evidence for just this loop, leading to persistent erosion 
of service quality (see chapter 21 and Appendix B for further discussion). 

14.4 COMMON PITFALLS 
This section discusses some common pitfalls in the specification and use of non- 
linear functions. 

14.4.1 Using the Wrong Input 
Care must be taken to ensure that the inputs to nonlinear functions are properly 
specified, that the reference policies are easily interpreted, and that the resulting 
relationship is robust, without any inappropriate kinks. Consider the standard for- 
mulation Y = Y* * Effect of X on Y where the Effect of X on Y = A m * ) .  A com- 
mon problem arises when the reference policy curve for the formulation is the 
hyperbolaf(XIX*) = l/(X/X*) instead of the 45" linef(X/X*) = X/X*. The hyper- 
bola becomes very steep for small values, becomes infinite when X = 0, and is dif- 
ficult to approximate with piecewise linear segments. One solution is to invert the 
input to the table, so the reference policy becomesf(X*/X) = X*/X. Another solu- 
tion is to invert the Effect of X on Y in the equation where it is used. Reformulat- 
ing the equation for Y as Y = Y"/Effect of X on Y, the reference policy becomes 
f(X/X*) = X/X*, which is easier to specify and interpret. 

Example 
Shantzis and Behrens (1973) developed a model of an indigenous tribe in Papua 
New Guinea and their slash-and-burn agricultural system (see section 21.4.6 for 
further description). The model examined the relationship between the size of the 
population, food production, land fertility, and the incidence of ritual war with 
neighboring clans. They modeled food production as the product of the available 
land, land fertility, and the intensity of cultivation: 

Yield per Acre Food Production - Arable Land * 
(CaloriesNear) (Acres) (CaloriesNear/Acre) (Dimensionless) 

* Intensity of Cultivation - 

(14-36) 

The intensity of cultivation was formulated as a dimensionless function of poten- 
tial food output relative to the food needed: 

Intensity of Cultivation 
= f(Potentia1 Food/Food Needed); f (0)  = 1, f(m) = 0 (14-37) 

Food Needed = Human Population * Desired Food per Capita 

Potential Food = Arable Land * Perceived Yield per Acre 

(14-38) 

(14-39) 
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FBGURE 14-10 
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Source: Shantzis and Behrens (1973). 

The perceived yield per acre was formed by first-order smoothing of the actual 
yield to represent the time required for the Tsembaga to revise their beliefs about 
the fertility of their land. 

Figure 14-10 shows the function Shantzis and Behrens selected for cultivation 
intensity with the reference curve y = l/x, which represents the policy that food 
production is just equal to the food needed (when perceived and actual yield per 
acre are equal). The table captures the idea that food production adjusts to meet de- 
mand but is constrained by the maximum intensity of cultivation, defined as one. 

Figure 14-10 reveals several problems. While the values of the table fit the ref- 
erence policy closely for ratios of Potential Food/Food Needed (PF/FN) greater 
than eight, the piecewise linear approximation is poor for values of PF/FN less 
than eight. In particular, the table function values lie above the reference policy 
curve when PF/FN 2 1.33, meaning food production exceeds food requirements. 
Since important dynamics arise in the model from degradation of land fertility due 
to excessive cultivation, this error might matter. The function also fails a basic ex- 
treme condition test: When the population is zero, so no food is needed, somehow 
food is still produced at about 4% of capacity. Finally, the important dynamics in 
the model arise in the region where PF/FN is less than one, but the table specifies 
values only every 4 units, providing very low resolution for the relationship in the 
active region. 

The problem is solved by formulating intensity as a function of the ratio Food 
NeededPotential Food, the inverse of the input Shantzis and Behrens used. The ra- 
tio FN/PF is more intuitive (the fraction of maximum production needed to meet 
demand). By using FNPF, the reference policy Food Production = Food Needed 
becomes the easily interpreted 45" line. Figure 14-11 plots the original function 
against the inverted input FNPF. For FNPF 5 0.75 the original function lies 
above the reference line and contains many inappropriate kinks. Kampmann 
(1991) proposed a revised formulation for the table that corrects all the flaws of the 
original: Production smoothly saturates at maximum intensity and never exceeds 
requirements. And when there are no people there is no cultivation. 
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FIGURE '1 4-1 1 
Revised function 
for intensity of 
cultivation 
The 45" line 
represents the 
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production equals 
food needed. Note 
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Source: Adapted from Kampmann (1 991) 

Critiquing Nonlinear Functions 
Naill (1973) modeled the life cycle of natural gas. The stock of undiscovered gas 
resources is reduced by the discovery rate, which makes gas deposits available for 
development and production. Naill formulated the discovery rate as depending on 
exploration effort (the number of drill rigs and other equipment deployed in the 
search for new deposits) and the cost of discovery: 

(14-40) 
Discovery Rate - Exploration Effort Cost of Exploration 

- 
(Cubic Feenear)  ($Near) / ($/Cubic Foot) 

Exploration Effort was a (delayed) function of the expected profitability of new 
deposits (see section 11.5). The cost of exploration captures the difficulty of find- 
ing new deposits, and depends on the size, location, and depth of the remaining 
undiscovered deposits. Naill (pp. 22 1-222) explains: 

Initially . . . industry will explore . . . in the most accessible places and exploit the 
largest fields available, malung the cost of exploration relatively low. As most of 
the larger deposits are discovered, producers must look in less accessible places, 
such as the sea bottom or Alaska, causing the cost of exploration to rise. In addi- 
tion, both the size of the reserves found and the success ratio of wildcat wells 
drilled decrease, further increasing costs as the fraction of unproven reserves 
diminishes. Finally, as the fraction of unproven reserves remaining . . . approaches 
zero, the cost of exploration approaches infinity as no more gas can be found at 
any cost? 

Naill captures this logic with the following formulation: 

(14-41) Cost of Exploration 
= Normal Cost of Exploration * Effect of Resource Remaining on Costs 

7This passage describes the effect of depletion alone; other forces such as technological progress 
can reduce the costs of exploration, but these are omitted for the purposes of this challenge. David- 
sen, Sterman, and Richardson (1990) present a nonrenewable resource model with endogenous 
technological progress as well as depletion. 
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Effect of Resource Remaining on Costs 
= -(Fraction of Undiscovered Resource Remaining) (14-42) 

Undiscovered Resources 
Undiscovered Resources(tJ 

Fraction of Undiscovered Resource Remaining = 

(1 4-43) 

The values Nail1 used for the Effect of Resource Remaining on Costs as a function 
of the fraction of undiscovered resource remaining FURR are 

FURR qFURR) 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

10,000 
9.97 
5.00 
3.32 
2.48 
1.99 
1.67 
1.42 
1.25 
1.10 
1 .oo 

Critique Naill’s formulation, then reformulate it to correct any problems you 
identify. 

14.4.2 Improper Normalization 
Normalizing nonlinear functions by the reference values of the input and output is 
often useful. Normalizing converts the raw input and output of a function Y =AX) 
into a dimensionless effect as in Y = Y* *flx/X*). Care must be taken, however, 
that the normal or reference values are properly chosen. 

Example 
An analyst extends the service delivery model in section 14.3 to include the qual- 
ity of service as experienced by the customers. Fieldwork showed that quality of 
service was judged largely by the care, concern, and willingness to answer ques- 
tions evidenced by the employee during the service encounter. Employees in a 
hurry or who limited the duration of the interaction caused customer dissatisfac- 
tion. The analyst proposes to model quality as a function of time per task. The 
shorter the time per task relative to a reference, the fewer chances the customer had 
to ask questions, the more peremptory and impersonal the service, and the lower 
the quality of the experience. Thus 

Quality of Service 
= Reference Quality * Effect of Time per Task on Quality (14-44) 
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Effect of Time per Task on Quality 
= ATime per TasWStandard Time per Task) (14-45) 

Time per task is normalized by Standard Time per Task (see (14-25)). The function 
is upward sloping and passes through the points (0, 0) and (1, 1). The function 
probably has an S-shape: Only after a certain minimum time is devoted to the cus- 
tomer’s needs will the customer feel even partially satisfied. The effect also satu- 
rates at a maximum: Once the employee takes all the time the customer feels is 
required, additional time does not add to the customer’s feeling of satisfaction. 

The problem here is the normalization by the standard time per task. Standard 
time per task represents management’s current goal for the appropriate amount of 
time employees should spend on each customer interaction. Suppose management 
decided to reduce standard time per task to boost productivity, and suppose actual 
time per task fell accordingly. Equation (14-45) implies there would be no change 
in customer satisfaction. Indeed, the proposed normalization implies that cutting 
standard and actual time per task nearly to zero has no impact on service quality. 
In reality, of course, satisfaction would drop since the work will be less thorough 
and the customers will be treated in an increasingly abrupt manner. 

Standard time per task represents a management goal. In (14-45) it is used in- 
appropriately to represent a customer goal. The proper formulation normalizes by 
a new concept, the Customer Standard for Time per Task, representing how much 
effort the customers believe employees should put into the service encounter. The 
customer standard may be constant or variable and likely differs from manage- 
ment’s norm. Research indicates customer standards are conditioned by past expe- 
rience and by the service received from competitors and in other similar settings, 
suggesting the customer standard could be modeled as a floating goal with past ex- 
perience and competitive benchmarks as inputs (see section 13.2.10). 

14.4.3 Avoid Hump-Shaped Functions 
In chapter 5 I argued that all causal links in your models should have unambiguous 
polarity. The same principle applies to the nonlinear functions you specify in your 
models. Your functions should be either nondecreasing (flat or rising) or non- 
increasing (flat or falling). Nonlinear functions with rising and falling sections, 
with peaks or valleys, imply the polarity of the causal link between the input and 
output depends on the value of the input. A hump- or U-shaped relationship 
indicates the presence of multiple causal pathways between the input and output. 
You should represent each separately so the individual effects have a unique, un- 
ambiguous polarity. 

The famous Yerkes-Dodson Law in psychology provides an example. Yerkes 
and Dodson (1908) explored how performance in various tasks depended on the 
level of arousal or stress imposed. Low levels of arousal yield low performance. 
As stress or stimulation increases, performance increases, but at diminishing rates. 
As stress continues to rise, performance peaks and falls, forming an inverted U or 
hump-shaped function. The Yerkes-Dodson Law has been applied to a wide range 
of tasks, both physical and cognitive (see Fisher 1986 for a review). In the context 
of the backlog management model of section 14.3, schedule pressure measures 
the stress in the workers’ environment and output (the task completion rate) 
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FIGURE 14-12 
Hypothesized 
hump-shaped rela- 
tionship between 
schedule pressure 
and output: the 
Yerkes-Dodson 
Law 

corresponds to performance. Consistent with the Yerkes-Dodson Law, many peo- 
ple argue that the impact of stress (measured by schedule pressure) on output is 
hump shaped, as illustrated in Figure 14-12. At low workloads, increasing sched- 
ule pressure boosts output as workers speed up, cut breaks, and work longer hours. 
However, these effects encounter diminishing returns, while the negative effects of 
fatigue and stress gain strength, eventually causing productivity per hour to decline 
more than hours increase. 

Even if the applicability of the Yerkes-Dodson Law to the model was estab- 
lished, it would be a mistake to specify a table function corresponding to Figure 
14-12. First, the conflation of the different effects makes it hard to specify mean- 
ingful reference policies or rule out infeasible regions. Second, the output gains 
from working faster and overtime should be separated from each other and from 
the productivity-destroying effects of fatigue because each has different costs and 
benefits and each is affected differently by organizational policies and incentives. 
An increase in schedule pressure may boost overall throughput, but it makes a big 
difference whether that increase is gained by working longer hours or cutting the 
quality of work. Finally, the different effects may involve different time delays. 
Lumping them into a single function requires equal time delays in the causal links. 
A rise in schedule pressure will increase throughput quickly through overtime and 
corner cutting; only later, as sustained long work hours take their toll, will fatigue 
begin to erode productivity. 

Extended overtime and the fatigue it leads to have many harmful effects. These 
include decreased alertness and performance on cognitive and other tasks, higher 
stress, lower job satisfaction, increased injury and accident rates on and off the job, 
increased illness, decreased psychological health, increased incidence of substance 
abuse, higher suicide rates, and higher overall mortality (Rosa 1995 provides a 
survey). 
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Figure 14- 13 adds a properly formulated fatigue effect to the model in section 
14.3. The effect of fatigue on productivity is separated from the effect of schedule 
pressure on the workweek and from the effect of schedule pressure on time per task 
(not shown). The fatigue effect creates the Burnout loop, a positive loop in which 
long hours cut productivity, reducing the task completion rate. As the backlog 
builds up, schedule pressure rises, leading to still longer work hours and even more 
fatigue (see section 5.4). 

The formulation for the potential completion rate is modified by the Effect of 
Fatigue on Productivity. Fatigue does not set in immediately but builds up gradu- 
ally as workers consistently find themselves unable to get the rest or breaks they 
need. The fatigue effect is therefore a nonlinear function of the Recent Workweek, 
a measure of the average hours workers have sustained over an interval given by 
the Fatigue Onset Time. 

Potential - Net Labor * Workweek * Effect of Fatigue on Productivity 
- 

Completion Rate Time per Task 
(14-46) 

Effect of Fatigue on Productivity = f(Recent Workweek) (14-47) 

FIGURE 14-1 3 The burnout loop formed by the effect of fatigue on productivity 
The box around the Recent Workweek indicates that it is an information delay of the actual Workweek, 
witlh a time constant given by the Fatigue Onset Time. The order of the delay is not indicated. The 
diagram does not show the availability and corner cutting feedbacks in Figure 14-6. 
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Recent Workweek = SMOOTHn(Workweek, Fatigue Onset Time) (14-48) 

where the SMOOTHn function represents an nth-order information delay. 
Studies of the construction industry and other manual labor contexts indicate 

that long work hours begin to reduce productivity after a week or two, with the full 
effect requiring somewhat longer (Oliva 1996). Experience suggests the time con- 
stant for white collar work is similar, indicating the fatigue onset time constant 
should be several weeks. In the absence of strong evidence to the contrary, first-or- 
der smoothing is probably adequate to capture the recent workweek.x The fatigue 
effect captures not only the physiological and psychological effects of long work 
hours but also logistical considerations. In a crisis, people can work very long 
hours for short periods. Other important activities in their lives, from exercise to 
food shopping to laundry to spending time with their friends and family, can be de- 
ferred. As time passes, however, these activities can no longer be put off. People 
must again devote time to them, draining time from work and reducing productiv- 
ity. If these activities are deferred too long, the consequences grow increasingly 
dire, including declining health from lack of exercise and poor diet, loss of friends 
due to lack of a social life and of clean clothes, and, all too common, family prob- 
lems and divorce. The formulation here is a simple approximation to this more 
complex underlying structure. 

Figure 14-14 shows a plausible function for the effect of fatigue on productiv- 
ity. The input to the function is the recent workweek. A common error is to nor- 
malize the fatigue effect by the standard workweek (section 14.4.2). The standard 
workweek represents the organization’s norm for the workweek. Increasing it does 
not endow people with greater resistance to fatigue. If the function were normal- 
ized by the standard workweek, boosting the normal workweek from 40 to, say, 75 
hours would have no impact on fatigue, an absurdity. 

The function is normalized so the effect on productivity is one when the work- 
week is 40 hours. Reducing the workweek below 40 hours increases productivity 
only slightly. Longer hours, however, have a progressively greater effect; eventu- 
ally, of course, the function must gradually approach zero. People need an irre- 
ducible minimum amount of sleep, roughly 6 hourshight over the long term. 
Allowing just 3 hourdday for all other activities (eating, bathing, exercise, social 
life, etc.) implies productivity must fall quite low when the sustained workweek 
rises above 100 hours. 

The rate at which long hours cut into productivity will depend on the charac- 
teristics of the job and the training, expectations, and lifestyles of the workforce. 
The degree to which the job requires physical labor obviously has an effect. More 
subtly, the less pleasant and varied the work, the less important people perceive it 
to be, the less the work is suited to worker skills and interests, or the weaker peo- 
ple’s social support networks, the steeper the drop off will be. 

*Homer (1985) develops a model of worker burnout in which the individual’s energy level 
is represented as an explicit stock with recovery and depletion rates based on the workweek and 
stress levels. The formulation here is an approximation to a host of more complex psychological 
and physiological processes. 
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FIGURE 14-1 4 
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At what point will the negative effects of fatigue dominate the increase in work 
hours caused by schedule pressure? If the fatigue effect fell along the reference 
policy shown in Figure 14-14 the rise in work hours would eventually be exactly 
offset by the decline in productivity per hour. The hypothesized fatigue effect 
shown in the figure falls below the reference policy when the recent workweek 
rises above about 72 hours. Beyond that point, sustained long workweeks actually 
reduce output (in equilibrium) below the level achieved at the reference 40 hour 
workweek. 

Figure 14-15 shows the equilibrium relationship between output per person 
and workweek taking both the overtime and fatigue effects into account (but as- 
suming no variation in time per task). In equilibrium, the recent workweek equals 
the actual workweek, so the net effect is given by the product WW *AWW). When 
the workweek is less than 40 hours, output rises nearly linearly since the fatigue 
effect is nearly flat. Beyond 40 hours, net output rises, but at diminishing rates as 
fatigue begins to cut productivity. Given the values in the table, output reaches 
a maximum when the workweek is 60 hours, then falls. At about 72 hours/ 
week output falls below the level achieved at the reference workweek of 40 hours/ 
week. Further increases in workweek rapidly drop equilibrium output to zero. In 
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FIGURE 14-16 
Dynamics of 
overtime and 
fatigue 

equilibrium, fatigue interacts with overtime to generate the hypothesized hump- 
shaped curve consistent with the Yerkes-Dodson Law.9 

The curve in Figure 14- 15 represents equilibrium productivity. The actual pro- 
file of output will depend on the magnitude and duration of overtime. Figure 14-16 
shows simulations of the workweek and fatigue structure for various exogenously 
specified periods of overtime. A first-order delay with a Fatigue Onset Time of 2 
weeks is assumed for the Recent Workweek. 

Simulated workweek rises at time zero from 40 to 50, 60, 80, or 100 hours/ 
week, remains high for 10 weeks, then falls back to normal. In each case, output 
relative to the reference 40 hodweek  level immediately jumps by the fractional 
increase in work hours. However, as the recent workweek rises and fatigue sets in, 
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the value indicated 
for 10 weeks, then 
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normal level. As- 
sumes the recent 
workweek adjusts 
with a first-order 
delay and %week 
fatigue Onset time. 

9The kinks in the net output curve shown in Figure 14-15 arise because the table function 
approximates the smooth relationship between workweek and productivity by linear interpolation 
between a small number of points. If the kinks mattered, more points could be specified or an 
appropriate analytical function could be used for the effect of fatigue on productivity (e.g., the 
logistic function). In practice, the kinks caused by the piecewise linear approximation used in the 
table are small relative to the uncertainty in the true values and unlikely to matter to policy results. 
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productivity falls, cutting output. For workweeks less than 72 hourdweek, equi- 
librium output remains higher than the 40 hour/week rate. For workweeks greater 
than 72 hourdweek, output soon falls below the reference level. In the case of a 
jump to 100 hourdweek, output actually falls below normal after a little over 
2 weeks. In all cases, output falls below normal after the workweek returns to 
normal: The workers are still fatigued and require several weeks to recover. 

Formulating the Error Rate 
The positive burnout loop is a side effect of excessive overtime. Additional side ef- 
fects arise from the corner cutting loop. Cutting corners by reducing the time de- 
voted to each task increases errors, reduces the amount and effectiveness of quality 
assurance, and lowers customer satisfaction. Tasks done incorrectly must be re- 
worked, which boosts schedule pressure and leads to still more corner cutting and 
errors. The resulting positive feedback, the Haste Makes Waste loop, might cause 
schedule pressure and errors to spiral out of control (see Figure 5-9). 

There are several ways to model errors. To keep the example simple, assume 
tasks done erroneously are detected rapidly and therefore remain in the backlog un- 
til they are reworked." Modify the formulation for the task completion rate to ac- 
count for the fraction of tasks done erroneously: 

Task Completion Rate = Gross Completion Rate * (1 - Error Fraction) 

Gross Completion Rate 

(14-49) 

(14-50) 
= MIN(Maximum Completion Rate, Potential Completion Rate) 

The error fraction in any process depends both on the capability of the process and 
on how well the people operating it do their jobs. A poor process will generate a 
high error fraction even if the workers do the best they can; a great process oper- 
ated by careless, rushed people will also yield many mistakes. To capture these ef- 
fects the error fraction can be modeled as a function of the time allocated to each 
task and a minimum error fraction: 

Error Fraction = AMinimum Error Fraction, Time per Task) (14-5 1) 

The minimum error fraction represents the best that can be done even when work- 
ers take as much time as they desire on each task. It is convenient to normalize the 
formulation for the error fraction by the minimum value since the actual error frac- 
tion must lie between the minimum and 100%. 

Formulate the error fraction to capture the Haste Makes Waste loop. Be sure 
your equations conform to the formulation principles and guidelines for nonlinear 
functions above. Hint: The minimum error fraction can differ from process to 
process and in a more complete model may also change endogenously through 
process improvement efforts, learning, or changes in technology and organization. 
For the purposes of this challenge, assume the minimum error fraction is constant. 

'Oh many situations, errors cannot be detected immediately, so the erroneous tasks exit the 
backlog on the belief that they have been completed. The flawed tasks accumulate in a stock of 
undiscovered rework or customer complaints (see section 2.3). 
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Your formulation, however, must ensure the error fraction remains between the 
minimum and one even if the minimum error fraction were to change. 

The formulation for the standard completion rate must also be modified to ac- 
count for the fact that not all tasks are completed correctly: 

Standard 

Rate 

Net Labor * Standard Workweek 
Standard Time per Task 

Completion = * (1 - Standard Error Fraction) 

(14-52) 

The standard error fraction is the estimate of quality management and workers 
use when assessing the normal rate at which work can be completed correctly. 
The larger the standard error fraction, the more workers are needed to ensure the 
task completion rate equals the task arrival rate. For now, assume that the standard 
error fraction is a constant. Select a value that initializes the model in a balanced 
equilibrium with Schedule Pressure = l.ll 

Test your formulation to make sure it is robust under extreme conditions and 
lies within the feasible region defined by any reference policies you identify. Given 
your best estimates of any nonlinear relationships you specify, determine the over- 
all response of the task completion rate to schedule pressure. Does the Haste 
Makes Waste effect ever dominate the Corner Cutting loop, and if so, at what 
point? 

Errors do not depend on time per task alone. As the recent workweek rises, 
workers become so tired that the quality of their work falls. Errors increase even 
when the same time is allocated to each task. The effect of fatigue on errors forms 
the positive Too Tired to Think loop (section 5.4). Add this loop to your causal di- 
agram. 

Revise your formulation for the error fraction to include an additional effect of 
fatigue on errors. Be sure that your function is robust under extreme conditions and 
consider the joint extremes as well as the extremes of the individual functions. 

Given your best estimates for the effects of time per task and fatigue on errors, 
what is the overall response of the completion rate to schedule pressure? Make a 
graph showing how the completion rate (relative to the standard) depends on 
schedule pressure, taking all the loops-Midnight Oil, Corner Cutting, Burnout, 
Haste Makes Waste, and Too Tired to Think-into account. Is the overall depen- 
dence of output on schedule pressure reasonable? What are the implications of the 
resulting function for the management of a service, project, or other task? 

"Applying the Baker Criterion, management and workers do not know the true value of the 
equilibrium error fraction and must estimate it from experience. You can find the initial equilibrium 
value for the standard error fraction by trial and error or by solving the simultaneous initial value 
equations for schedule pressure and error fraction. In a more complete model the standard error 
fraction might adjust over time to the observed rate of errors and perhaps factors such as the quality 
achieved by other organizations. Observed errors, in turn, may not equal the true error fraction 
since quality assurance is never perfect: Some errors slip by undetected while some tasks that were 
in fact done properly are mistakenly reworked. However, for the purposes of this challenge it is 
acceptable to omit this more realistic structure. 



Chapter 14 Formulating Nonlinear Relationships 

Testing the Full Model 

585 

Build the full model including the fatigue and error fraction structures and initial- 
ize it in equilibrium. Then simulate its response to various patterns for the task ar- 
rival rate. Explore the response of the system to one-time temporary increases in 
the backlog of work using pulse inputs of different sizes (both increases and de- 
creases). Also consider the response to permanent changes in the task arrival rate 
using step inputs of various heights. Given a fixed labor force, a step in task ar- 
rivals means the system will not return to the initial balanced equilibrium with the 
delivery delay, workweek, and time per task all at their standard values and may 
not return to any equilibrium. What determines whether an equilibrium exists 
when there is a permanent increase in task arrivals? 

In each case, explore the relative importance of the different feedbacks in de- 
termining the behavior of schedule pressure, the workweek, time per task, the com- 
pletion rate, and delivery delay. Conduct sensitivity analysis in which you vary the 
strengths of the various feedbacks. How sensitive is the behavior to feasible varia- 
tions in the values of the various nonlinear functions? 

The model omits other important feedbacks. Identify the additional feedbacks 
that might operate in the structure described above. Add these additional loops to 
your causal diagram of the system. Identify the polarity of the new loops and 
comment on how they might affect the dynamics. Formulate and sketch any non- 
linear functions in your new loops. 

14.5 ELICITING MODEL RELATIONSHIPS INTERACTIVELY 
Most of the time numerical data to estimate nonlinear functions statistically are not 
available. When numerical data do exist, they often do not cover a wide enough 
range to reveal extreme values or saturation points. Generating reliable estimates 
of the nonlinear functions in models requires methods to elicit qualitative infor- 
mation from clients and others with firsthand experience in the system. Most of 
this information is tacit, residing only in the mental models of the experts. This 
section describes a method for eliciting nonlinear functions from system experts. 
The method is applicable to any relationships but is particularly useful for be- 
havioral relationships for which no numerical data are available. The elicitation 
method also increases the involvement of the clients in the modeling process, 
increasing their understanding of the model and the chances they will actually 
use it.12 

The method can be used with individual experts or small groups. Working with 
small groups is efficient and also helps build shared understanding among the 
members of the client or expert team. Care should be taken, however, that 
the individuals are not pressured to arrive at a single, consistent set of results 

%ection 14.5 is adapted from Ford and Sterman (1998a), which should be consulted for further 
details. 
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representing the group. Capturing the diverse views of a group is an important re- 
sult of the elicitation process. 

The elicitation process has three phases: positioning, description, and discus- 
sion. The positioning phase establishes the context and goals of the workshop. 
Though your model probably includes many nonlinear relationships, you should 
focus on one at a time. The facilitator describes the model purpose and structure 
and the relationship to be estimated. Describe the relationship operationally by 
defining the input and output variables with their units of measure, why the rela- 
tionship is important, where the relationship is used in the model, and which other 
parts of the system it affects. Provide worksheets to help the experts articulate their 
knowledge. As illustrated below, these worksheets help the experts go through the 
steps described in Table 14- 1 and include blank graphs of the function. Give each 
expert a set of worksheets that have been completed based on an example from 
an analogous setting, and use multiple examples to reduce suggestion bias. Ex- 
plain the examples in detail to illustrate the process and reasoning the experts 
should use. 

The description phase guides experts through four different descriptions of the 
relationship. Each helps transform their tacit knowledge into usable form. During 
the description phase the experts are directed to use their own images and not to in- 
teract with the other experts. (1) Visualize the process: Ask the experts to take a 
few minutes to visualize the process. Invite them to close their eyes or otherwise 
disengage from others during this step. (2) Record a description: Ask each expert 
to create a written “walk through” of the process. The completeness or accuracy of 
descriptions is not emphasized until the discussion phase of the method. (3) Zden- 
tifi anchor points: Have the experts record any reference points. The anchor or 
reference points are those values of the relationship required by system constraints 
(e.g., shipments must fall to zero when inventory is zero), defined by convention 
(e.g., the 1997 value = l.O), or in which the expert has high confidence. A separate 
portion of the description worksheet should provide space to record anchor point 
coordinates and the reasoning or data justifying each. (4) Graph the relationship: 
Have the experts draw the relationship in two steps. First, plot the anchor points on 
a blank set of axes on the worksheet. The blank graph you provide should include 
reference policies that constrain the feasible region for the relationship. Next have 
them consider the shape of the relationship between anchor points and use their 
reasoning to sketch their estimate of the relationship. Emphasize that the second 
step is significantly more than connecting the anchor points with straight lines, and 
do not direct them to generate smooth graphs. However, ask them to explain and 
justify any inflections or discontinuities. 

The discussion phase seeks to test, understand, and improve the descriptions of 
different experts. The discussion phase begins by displaying the different experts’ 
graphs side by side. The experts share their verbal descriptions with the group to 
explain the anchor points and shape in their graphs of the function. Comparing 
multiple descriptions of each expert improves consistency and uncovers beliefs 
about important features of the relationship. Differences among descriptions are 
inevitable because of the complexity of the relationships being described and the 
partial and particular knowledge of different experts. These differences naturally 
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lead the experts to discuss their mental models and assumptions used to describe 
the relationship. The facilitator helps the experts to identify and investigate the 
causes of differences based on their roles in the process, relationships among func- 
tional groups, and organizational structures. No attempt is made to resolve differ- 
ences or reach consensus. 

14.5.1 Case Study: Estimating Precedence 
Relationships in Product Development 

Ford and Sterman (1998a) used the knowledge elicitation method described above 
to estimate important nonlinear functions for a product development model (see 
Ford and Sterman 1998b for model details). The model is designed to understand 
the sources of cost and schedule overruns so common in development projects (see 
sections 2.3 and 6.3.4) and to evaluate policies such as increased use of concur- 
rent engineering to speed development, lower costs, and boost quality. To test 
the model, we calibrated it for the case of a moderately complex ASIC (applica- 
tion specific integrated circuit) developed by a major player in the semiconductor 
industry. 

The model disaggregated the overall development project, here code-named 
Python, into a number of phases: product definition, design, prototype develop- 
ment and testing, and manufacturing process development. Each phase was repre- 
sented by an identical generic structure calibrated with parameters specific to that 
phase. The generic module can be configured to represent any number of phases in 
any arbitrary network of interdependencies and contains five subsectors. The 
Scope subsystem defines phase sizes and tracks changes in customer or project re- 
quirements. The Targets subsystem describes project objectives for delivery time, 
quality, and cost. The Resources sector allocates personnel and other resources to 
each activity based on the pressure to meet deadlines as perceived by developers 
and management. The Process Structure sector captures the degree to which tasks 
can be done concurrently within a phase and between phases. Finally, the Perfor- 
mance sector tracks the completion and release of work, the number of defects and 
errors the work contains, and costs. 

The phases are mutually dependent on one another for information needed to 
complete the work. Design cannot proceed without product specifications from the 
definition phase; prototype builds cannot begin without at least some design in- 
formation, and so on. In project and product development models precedence re- 
lationships describe the constraint imposed on one activity by another by 
characterizing the degree to which activities can be carried out in parallel or must 
be done sequentially. External precedence relationships describe the dependency 
of the development tasks in one phase on the release of tasks from another, such as 
the constraint imposed on testing by the release of design work. Internal prece- 
dence relationships describe the interdependency of the development tasks within 
a single development phase. Internal precedence relationships are necessary be- 
cause each phase in a development project aggregates a number of different activ- 
ities. The activities in a given phase cannot always be done independently. The 
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FIGURE 14-1 7 
Left: Reference policies for fully concurrent and fully sequential precedence constraints. Right: Typical 
nonlinear external precedence constraints. 
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second floor of a building cannot be erected before the structural members for the 
first floor are placed no matter how many workers and cranes are a~ai1able.l~ 

External precedence relationships limit the work that can be done in phase i as 
a function of the work released to it by another phase j .  The precedence constraints 
are formulated as fractions of the tasks in phase i that can be done as a function of 
the fraction of the tasks of phase j released: 

Perceived Fraction of Tasks Availablei, = f i ,  j(Fraction of Tasks Releasedj) (14-53) 

When there are many other phases, the work phase i can do is constrained by the 
most limiting of the external precedence relationships. Two reference policies are 
useful in specifying the external constraints (Figure 14-17). If phase i is completely 
independent of phase j ,  the external precedence function is always unity. The work 
of the two phases can be completely concurrent. At the other extreme, if the work 
is completely sequential, so that phase i cannot begin its work until phase j has re- 
leased all its tasks, the function is zero until phase j releases all its tasks. Any in- 
termediate degrees of concurrency can be captured between these extremes. 
Nonlinear precedence functions imply that the degree of concurrency changes as 
the work of phase j proceeds. The highly sequential curve in Figure 14-17 implies 
phase i cannot complete any of its work until phase j releases about half its work. 
The highly concurrent curve indicates phase i can do about half its work when 

131nternal and external precedence relationships are identical to the gate functions used in the 
pulp mill model described in section 6.3.4. 
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phase j releases only about 10% of its work and nearly all its work when phase j re- 
leases more than half its work. 

The external precedence functions determine the perceived fraction of tasks 
available because the functionsx, j() represent the judgment of the workers in each 
phase about how much they can do based on the fraction of tasks released by other 
phases. That judgment could be wrong. A full project model must distinguish be- 
tween the degree of concurrence the project attempts and the optimal degree of 
concurrence; differences between these feed back to the quality of work and the 
fraction of tasks done correctly. Design engineers, for example, might under- 
estimate how much they can do based on the product specifications released to 
date. In this case, the project is more sequential than it needs to be and the com- 
pletion rate falls below what might have been done. If they overestimate how much 
they can do relative to what is actually possible, the completion rate rises, but the 
error rate for tasks done sooner than they should have been rises as well. The result 
is the discovery of additional rework later, often after other phases have begun 
their work. 

Internal precedence functions are analogous, except that the constraint depends 
on the fraction of tasks phase managers believe is complete: 

Perceived Fraction of Tasks Available, 
= f,(Fraction of Tasks Perceived Completei) 

(14-54) 

Internal precedence constraints must lie above the 45" line. A function below the 
45" line implies the number of tasks that can be completed is less than the number 
actually done, an impossibility. To illustrate internal precedence functions, con- 
sider the construction of an office building. Not all tasks involved in erecting the 
steel skeleton for an office tower can be accomplished simultaneously. The inter- 
nal precedence relationship for this phase captures the physical constraint that the 
building must be erected sequentially one floor at a time from the ground up. The 
work of placing the beams and girders for the next floor cannot be done until the 
members for the previous floor have been placed and secured. In a 10-story build- 
ing, completing the first 10% of the work (one floor) makes it feasible for the crew 
to do the next 10% (the second floor), and so on. Figure 14-18 shows the work- 
sheet for this example, with anchor points and comments, along with the resulting 
graph of the function. The linear progression reflects the sequential increase in the 
number of total floors available for steel erection as work proceeds up the building. 

Seven precedence relationships were estimated by Python engineers and man- 
agers in a set of seven workshops. Each focused on estimating one function, with 
a different set of experts from the affected phases, and averaged 45 minutes in du- 
ration. The experts had an average of over 10 years of experience developing com- 
puter chips and a minimum of 5 years' experience in the company's product 
development organization. Most developers in the Python organization also had 
management roles. The experts were familiar with the system dynamics approach 
to modeling product development projects and several had received training in sys- 
tems thinking. A few of the experts had heard an informal conceptual description 
of the model but none had knowledge of the formal model structure or descriptions 
of specific relationships used in it. The number of participants in each workshop 
varied from two to five. 
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FIGURE 14-1 8 
Top: Worksheet showing anchor points with explanation for the erection of the steel skeleton of a 
1 0-story building. Bottom: Graph of internal precedence relationship. 
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The workshops began with the positioning phase. The facilitator described 
the purpose of the work and overall architecture of the project management 
model. The construction example was used to illustrate the concept of internal and 
external precedence relationships and demonstrate the process of filling out the 
worksheets. 

Figure 14- 19 illustrates the worksheet. The worksheet describes the depen- 
dence of the Design phase on Product Definition and was completed by a product 
architect working in the Product Definition phase. The written notes show that the 
product architect believes Product Definition and Design are highly concurrent. He 
asserts that designers can do about 40% of their work with only about 10% of the 
product specifications in hand, noting that designers can begin high-level layout as 
soon as a concept straw man is available. In his image of the process designers can 
do nearly all their work when the specifications are only 80% complete. He argued 
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FIGURE 14-19 
Sample worksheet 
for elicitation of 
norilinear 
relationships 
Handwritten 
responses typed 
for clarity. 

EXTERNAL PRECEDENCE WORKSHEET 

Upstream Development Activity: Product Definition 

Downstream Development Activity: Design 

Position held by author: Product Architect 

PROCESS STORY NOTES: 

Product “straw man” complete-can begin high-level design & acquisition 

of needed design info [information] (e.g., cells, tools). 

Feedback incorporated into straw man, producing 1 st-cut product def’n 

rdefinitionl. 

1. 

2. 

3. 

4. Handoff complete. 

Incremental product def’n [definition] refinement. 

ANCHOR POINTS IN TABLE: 
Upstream Tasks Downstream Tasks 
Released (%) Available (%) Notes 

10 40 1. [see above] 

35 65 2. [see above] 

60 85 3. [see above] 
80 100 

Source: Ford and Sterman (1998a). 

that the Python project was a line extension product similar to other ASICs the 
company had designed in the past. 

The elicitation protocol described above proved highly effective. Besides a 
graph of the relationship (e.g., Figure 14-20), nearly all participants provided a 
written description of the process and justification of their anchor points, improv- 
ing internal consistency and the experts’ ability to explain their thinking. 

During the discussion phase the experts explained the reasoning underlying 
their estimates of the relationship. The following captures the verbal descriptions 
given by the process experts of the internal precedence relationship for the design 
phase, which produces the software used to lay out the physical features of the chip 
on the silicon wafers: The code to be produced is organized into 17 blocks (code 
modules). A few of these blocks must be designed and written before the others can 
be started. Therefore only these initial blocks (estimated to be 20% of the code) 
can be done at the beginning of the design phase. It’s not feasible to begin work on 
the other blocks of code until the initial blocks are nearly complete. When the ini- 
tial blocks are complete, most of the remaining code can be developed. When most 
of the blocks have been written the work of integrating them into a single opera- 
tional program begins. Integration is fundamentally less parallel, producing a flat 
tail on the right side of the graph. The dashed lines in Figure 14-21 show the rela- 
tionships developed by three experts. 
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FIGURE 14-20 EXTERNAL PRECEDENCE WORKSHEET 
Sample worksheet 
for elicitation Of Upstream Development Activity: f f l ~ L ~  &-G.w nod [Product Definition] 
nonlinear 
relationships Downstream Development Activity:&?,- [Design] 

Position held by Author: f h d -  L - 7 -  [Product Architect] 
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to Downstream Activity (%) 
Source: Ford and Sterman (1 998a). 

Differences among the experts provided the opportunity for testing and improve- 
ment in the discussion phase. The three experts were in general agreement with the 
verbal description of the relationship above despite the differences in their graphic 
descriptions. After discussion the experts decided that the relationship should be 
horizontal at the beginning of the phase because most of the code blocks could not 
be started until the first 20% were nearly complete. The discussion led to an im- 
proved graphic description for use in the model (the solid line in Figure 14-21). 
Note that the revised relationship is not simply the average of the three estimates 
but is shaped by discussion of the underlying process as described in the written 
notes and supplemented by the conversation in the discussion phase. 

Differences among descriptions also identified conflicts and inconsistencies in 
the views of the experts. Consider the external concurrence relationship between 
product definition and design (Figure 14-22). Product architects and marketing 
representatives gradually define the requirements for the new product. As these are 
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1, Strategic marketing representative; 2, product architect; 3, design manager; 4, design engineer. 

Source: Ford and Sterman (1998a). 

released the designers can begin to write the software that generates the chip lay- 
out so that it provides the specified functionality. Four experts, two from the prod- 
uct definition phase (one from strategic marketing and one product architect) and 
two from the design phase (a designer and a design manager) participated in the 
workshop. The strategic marketing representative was the participant farthest 
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upstream in the product definitioddesign portion of the Python project. His esti- 
mate suggested the most concurrence, implying little product definition work 
needed to be completed and released before designers could usefully do most of 
their work. The product architect, whose work is also upstream of design, similarly 
suggested that design can begin after only a small fraction of the product specifi- 
cations are released (see his worksheet in Figure 14-19). In contrast the designers 
believe the degree of potential concurrence is much lower and estimated that 
roughly half the product specifications must be released before any significant de- 
sign work can begin. 

The workshop revealed a huge gap between the mental models of the two 
groups. Marketers believe design work can begin very early, when product attrib- 
utes are still vague and evolving, while designers believe they must have detailed 
and stable specifications to do their work. The perceptions of these two groups dif- 
fered by more than half of the design phase scope. Also note that the design engi- 
neer, who actually does the design work, believes the process is most sequential, 
while the person farthest upstream (from strategic marketing) believes the two 
processes are highly concurrent. The gap caused conflict and delay since marketers 
felt little pressure to stabilize requirements before releasing them, which leads to 
excessive iteration, delays, and higher costs. The passionate discussion in this 
workshop helped the different parties come to a better understanding of the source 
of prior conflicts between their groups and how to improve specification handoff 
in the future. 

The method described here can be used in any situation where expert knowl- 
edge is an important source of data for the specification of parameters or nonlinear 
relationships for use in models. In many cases numerical data to estimate impor- 
tant parameters and relationships are unavailable or cannot be developed in time or 
at reasonable costs. In these cases modelers must rely on judgmental estimates, and 
a reliable method to elicit the largely tacit knowledge of experts is essential. The 
method is also valuable even when numerical data are available, both to triangu- 
late and check them and because numerical data often do not span a wide enough 
range to reveal extreme conditions. 

Generating the relationship through a succession of smaller steps (image to 
words to anchor points to graph) rather than asking people to simply “draw the re- 
lationship” improves knowledge elicitation by reducing the cognitive processing 
required at each step. Multiple formats and steps also slow the elicitation process, 
providing more time for reflection and revision. Explaining and providing com- 
plete documentation of the steps to be performed by the experts using an example 
from a familiar but different context improves the quality of the descriptions and 
the experience of the experts. Differences among the experts’ assessments help 
specify the ranges of variation in parameters and relationships for sensitivity test- 
ing. 

Though the primary purpose of these workshops was to elicit the information 
needed to specify important relationships in the model, they also provided imme- 
diate benefits to the organization by allowing experts and clients to share and com- 
pare their mental models. By documenting the data and assumptions underlying 
each person’s perspective the workshops helped begin a process of learning to re- 
place distrust and finger pointing. 
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14.6 

The workshops also boosted the credibility of the work by involving those re- 
sponsible for the system in the modeling process, acknowledging and honoring 
participant expertise, and making special efforts to incorporate that expertise into 
the model. Developing such understanding is essential to successful transfer of in- 
sight, the development of systems thinking slulls among the client team, and ulti- 
mately, successful implementation of model-based policy recommendations. 

SUMMARY 
Table or lookup functions provide a flexible tool to specify nonlinear relationships. 
This chapter presented guidelines for the construction of table functions, estima- 
tion of their shape and values from qualitative and quantitative data, methods to 
test the sensitivity of results to uncertainty in their values, and a practical process 
for eliciting their shapes and values from experts. 

Using all available data to specify nonlinear functions, including extreme con- 
ditions, reference policies, and other qualitative data often sharply restricts their 
feasible shape and values and limits the plausible range they can take. Sensitivity 
analysis often shows that the modes of behavior and response to policies of the 
system are often unaffected by wide ranges of variation in the assumed values of 
nonlinear relationships. When systems include many negative feedbacks around a 
particular parameter or nonlinear relationship, the system compensates for varia- 
tions in parameter values so that the numerical sensitivity of results is low as well. 
Those functions and parameters shown to be insensitive need not be investigated 
further. Judgmental estimates for these parameters often provide sufficient accu- 
racy, releasing time and resources that can be devoted to deeper empirical and the- 
oretical study of those parameters and relationships that do matter. 





15 

Modeling Human Behavior: 
Bounded Rationality or 
Rational Expectations? 

There can no longer be any doubt that the micro assumptions of [economic] 
theory-the assumptions of pei$ect rationality--are contrary to fact. I t  is not a 
question of approximation; they do not even remotely describe the processes 
that human beings use for making decisions in complex situations. 

-HerbertA. Simon (1979, p. 510). 

To mimic the behavior of real systems models must capture decision making as it 
is, not as it should be, nor how it would be if people were perfectly rational. Ex- 
perimental and field studies show that the rationality of human decision making is 
bounded. People use a variety of heuristics-rules of thumb-to form judgments 
and make decisions, and while these heuristics often work well in simple settings, 
they lead to persistent, systematic departures from rational behavior in many real- 
istic situations, including systems with even modest levels of dynamic complexity. 
Previous chapters presented useful formulations and techniques to capture decision 
making in dynamic models. This chapter presents principles for formulating the 
decision rules in models so they are consistent with the actual decision-making 
capabilities of real people. A model of a high-tech firm is used to illustrate how 
bounded rationality can be incorporated in model formulations and how the 
intended rationality of the decision rules for the individual agents in the model can 
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15.1 

be tested. Challenges give you a chance to design and implement policies for im- 
proved performance. 

HUMAN DECISION MAKING: BOUNDED RATIONALITY 
OR RATIONAL EXPECTATIONS? 

Chapters 13 and 14 provide a wide range of robust formulations for use in models 
of human behavior. But these formulations still leave considerable room for dif- 
ferent assumptions about the degree of rationality in the decision-making process. 
Given the information available to them, do people make rational, optimal deci- 
sions or is their behavior naive and mindless? Do people make systematic errors? 
How and how quickly do learning and adaptation occur? 

An extensive body of experimental and field studies document human 
decision-making behavior in diverse contexts. As you might expect, the way peo- 
ple make decisions depends somewhat on the situation. Some decisions are made 
automatically (which pair of socks should I wear this morning?). Others involve 
considerable time, resources, and deliberative effort, along with emotions and feel- 
ings (what kind of car should I buy?). Human decision making generally falls in 
between the extremes of mindless rote behavior and the perfect rationality of eco- 
nomic theory. The evidence suggests that the rationality of human decision making 
is bounded (see, e.g., Simon 1957, 1982; Cyert and March 1963; and Nelson and 
Winter 1982; Conlisk 1996 surveys the evidence and discusses theoretical issues in 
the context of economics). 

Bounded rationality arises because human cognitive capabilities, as wonderful 
as they are, are overwhelmed by the complexity of the systems we are called upon 
to manage. Chapter 1 discussed bounded rationality; here I repeat Herbert Simon’s 
(1957, p. 198) principle of bounded rationality: 

The capacity of the human mind for formulating and solving complex problems is 
very small compared with the size of the problem whose solution is required for ob- 
jectively rational behavior in the real world or even for a reasonable approximation 
to such objective rationality. 

Bounded rationality results from limitations on our knowledge, cognitive capabil- 
ities, and time. Our perceptions are selective, our knowledge of the real world is in- 
complete, our mental models are grossly simplified and imperfect, and our powers 
of deduction and inference are weak and fallible. Emotional, subconscious, and 
other nonrational factors affect our behavior. Deliberation takes time and we must 
often make decisions before we are ready. 

As an example, consider a basic problem facing the managers of any business: 
capital investment. Managers must decide when and how to invest in capacity and 
only desire to invest when they believe the investment will be profitable. To do so 
optimally, they must choose the rate of investment that maximizes the net present 
value of the firm’s expected profits, for all future time, as the competitive environ- 
ment, input costs, demand, interest rates, and other factors affecting profits change. 
They must take into account all possible contingencies including the ways in 
which other actors in the environment (suppliers, competitors, workers, customers, 
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government, etc.) might react to any decision the firm makes. In general, these 
inputs are linked in a complex network of feedback relationships and may also be 
influenced by random shocks. 

Choosing investment optimally requires the firm’s managers to formulate and 
solve an exceedingly complex stochastic, dynamic optimization problem. To do so 
the managers must have (1) knowledge of the cost and demand functions facing 
the firm; (2) knowledge of the future behavior of all variables and other actors in 
the system, or, equivalently, a perfect model of the system from which the future 
behavior of these variables and actors may be deduced (the rational expectations 
hypothesis, see Muth 1961); (3) the cognitive capability to solve the resulting op- 
timization problem; and (4) the time do so. 

None of these conditions is met in reality. In practice, the complexity of the 
problem is so overwhelming that no one can solve it or even agree on what the rel- 
evant variables and policy options are. Economists working with investment mod- 
els must make severe simplifying assumptions to render the problem tractable, for 
example, assuming input and product markets are perfectly competitive, discount 
rates are constant, and adjustment costs are quadratic. Even then, as Pindyck and 
Rotemberg (1983) comment with dry understatement, 

Stochastic control problems of this sort are generally difficult, if not impossible to 
solve. This, of course, raises the question of whether rational expectations provides 
a realistic behavioral foundation for studying investment behavior. 

Optimal decision making is impossible even for problems much simpler than cap- 
ital investment, such as choosing which job candidate to hire or which students to 
admit to a university. To do so requires assessing all relevant candidate character- 
istics and predicting the likely success and failure of the candidates given the at- 
tributes and performance history of all similar applicants, including those who 
were not selected. Many studies show that simple decision rules based on a small 
number of inputs often significantly outperform the experts in a wide range of 
tasks, from predicting the performance of students and the life expectancy of can- 
cer patients to predicting business failures and stock market performance (Dawes 
1979; Camerer 1981). 

This chapter began with Herbert Simon’s blunt assessment, in his Nobel Prize 
address, that the theory of rational choice underlying economics does not “even re- 
motely describe the processes that human beings use for making decisions in com- 
plex situations.” Such a bold statement suggests three questions: First, what is the 
evidence that people don’t behave according to the principles of rational choice 
and economic theory? Second, how then do people make decisions? Finally, how 
can the ways people make decisions be modeled? 

15.2 COGNITIVE LIMITATIONS 
Humans have a limited ability to process information. As a consequence, “percep- 
tion of information is not comprehensive but selective” (Hogarth 1987, p. 4; orig- 
inal emphasis). For both physiological and psychological reasons, we perceive and 
attend to only a small fraction of the information available in the environment. In- 
stead, people take very few cues into account when making decisions. Attention is 
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a scarce resource and must be allocated among competing demands. We focus our 
attention on some cues and ignore or remain unaware of other, potentially impor- 
tant cues. Under normal circumstances, our attention moves from one cue to an- 
other as their salience and perceived importance change and as we become 
distracted by events. In stressful situations the flood of information can overwhelm 
our processing capabilities and we fail to perceive new information, regardless of 
its importance. Studies of pilots in crises, for example, show how easily informa- 
tion overload can arise. In some cases, the pilots are doing so many things at once 
and are bombarded by so many different types of information (visuals, instru- 
ments, radio instructions, auditory cues, and others) that they are literally unable to 
notice critical cues such as the copilot shouting emergency instructions. Crashes 
have resulted from such information overload. 

Our cognitive capabilities are similarly bounded. Miller (1956) famously 
showed that short-term working memory is limited to “7 5 2” chunks of informa- 
tion; constraints on the storage and recall of information in long-term memory and 
on intuitive computational power have also been identified. Ideally attention and 
cognitive effort should be allocated optimally according to the importance and util- 
ity of the different cues available to the decision maker, but people do not have the 
time or cognitive capability to decide what that optimal allocation is. Indeed, the 
attempt to do so complicates the decision problem, aggravates information over- 
load, and can lead to even worse decision making. Rather, people tend to focus 
their attention and effort on cues that are readily available, salient, and concrete. 
We focus on cues we believe to be relatively certain, systematically undenveight- 
ing uncertain or remote information even when it has diagnostic value (Hogarth 
1987; Kahneman, Slovic, and Tversky 1982, chap. 4). Our mental models affect 
which of the many cues in an environment we think are important and useful, di- 
recting attention to those cues at the expense of others. However, as discussed in 
chapter 1, people are notoriously poor judges of causality and correlation, and sys- 
tematically create mental models at variance with the known situation, so that our 
expectations sometimes lead us to notice cues that have low diagnostic power and 
prevent us from attending to more useful cues. 

Because our cognitive and decision-making capabilities are limited, we cannot 
make decisions according to the prescriptions of optimization theory. Instead, we 
use, consciously and unconsciously, a wide range of heuristics to make decisions. 
A large and diverse body of empirical and experimental research, generally known 
as behavioral decision theory (BDT), documents the heuristics people use in judg- 
ment and decision making. 

While some heuristics work well under some situations, the research shows 
that many yield systematic, significant, and persistent errors. While training can 
moderate some of the errors, many are robust in the face of experience and are dif- 
ficult to overcome. 

‘The literature is large. For good overviews, see Hogarth (1987); Kahneman et al. (1982); Plous 
(1993); Russo and Schoemaker (1989); and Thaler (1991, 1992). 
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1 5.3 INDIVIDUAL AND ORGANIZATIONAL RESPONSES 
TO BOUNDED RATIONALITY 

Since optimal decision making with perfect models is impossible, people and 
organizations have developed a number of ways to simplify the task of decision 
making. 

15.3.1 Habit, Routines, and Rules of Thumb 
Habits and routines are procedures followed repetitively and without significant 
deliberative effort. Instead of deciding what to do each morning by considering the 
costs and benefits of all our options, most of us follow a routine: Exercise, shower, 
get dressed, and so on. We don’t think about it, we just do it. 

Routines are nearly automatic procedures triggered by particular conditions. 
They are the organization’s standard operating procedures. Routines may be infor- 
mal or highly codified protocols. They may be rigid or permit some flexibility in 
response to local conditions. They often evolve with experience. Organizational 
routines are simultaneously embedded in, justified by, and reinforce the organiza- 
tion’s traditions, culture, and folklore. 

Another common method to reduce the complexity of decision making is 
through rules of thumb. A rule of thumb is a procedure designed to yield a pretty 
good decision quickly and easily. Rules of thumb, or decision-making heuristics, 
are based on simplified, incomplete models of the problem situation. They tend to 
rely on relatively certain information readily available to the decision maker. In the 
department store pricing example cited in section 13.1, managers do not have the 
information, cognitive capability, or time to set the prices of each item to optimize 
store profits. Setting floor prices by multiplying wholesale costs by a traditional 
markup ratio is a rule of thumb that allows store managers to set prices quickly. 
The rule is not optimal but performs well enough in most situations. When prices 
prove to be too high or too low, other rules of thumb such as “hold a sale for slow 
moving products” allow managers to correct errors. 

15.3.2 Managing Attention 
Since attention is a scarce resource, controlling the information people have access 
and attend to is an important source of power. Organizations have developed many 
structures and routines to control access to information, directing the attention of 
its members toward some cues and away from others. These devices include for- 
mal reporting relationships, agenda setting, the geographical structure of the orga- 
nization and physical layout of its facilities, and accounting and information 
systems. Informal networks of communication also critically influence the alloca- 
tion of attention. Some of the most powerful people in any large organization are 
the executive secretaries-the people you must persuade to give you access to 
busy senior executives. 

15.3.3 Goal Formation and Satisficing 
Another strategy to reduce the complexity of the decision task is goal setting. In- 
stead of making decisions by explicitly solving optimization problems, people 
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instead tend to set goals and adjust their behavior in an attempt to meet them. Once 
the goals are met, problem solving efforts often stop so the attention and cognitive 
resources they consume can be used elsewhere. Herbert Simon coined the term 
“satisficing” to describe behavior in which effort is reduced once a satisfactory so- 
lution to a problem is found or a satisfactory level of performance is attained. Stu- 
dents often reduce their study effort once they achieve the grades they desire; 
consumers stop searching for bargains once a low enough price is found for the 
item they desire; employers often hire the first candidate meeting the requirements 
for the job rather than searching for the best one. 

Setting specific goals provides decision makers with a concrete target against 
which they can compare the actual performance of the system and initiate correc- 
tive action when there is a discrepancy. The more concrete and specific the goal, 
the easier it is for people to determine which information cues are important and 
which can be ignored and to decide which actions to take to reach the goal. 

Aspirations and goals themselves are adaptive and respond to experience. In 
the department store pricing example, the standard markup over wholesale costs 
adapted to experience. Store managers gradually adjusted target markups to the ac- 
tual markups realized by the store after responding to competitor prices and hold- 
ing sales to move surplus inventory. The quota for a sales force is often based on 
an average of recent sales plus a certain margin to encourage greater effort, and a 
student’s desired grade point average tends to adjust to the actual grades received, 
again perhaps biased by a margin to encourage greater achievement (Cyert and 
March 1963; Lant 1992; Morecroft 1985). 

15.3.4 Problem Decomposition and Decentralized 
Decision Making 

Limited information processing capability forces people to divide the total task of 
making a decision into smaller units. By establishing subgoals the complexity of 
the total problem is vastly reduced. 

Decomposition of decision problems into subgoals is also an important moti- 
vation for organizational specialization. Each organizational subunit is charged 
with achieving a small number of subgoals: The sales organization is charged with 
meeting sales goals; the manufacturing organization must deliver on time and be- 
low certain cost targets. Within each of these functions, further decomposition 
takes place: Inside the manufacturing organization, individual machine operators 
must hit their daily quotas and maintenance technicians strive to clear the backlog 
of work orders. Typically, the goals of each organizational subunit are broken 
down into still smaller subgoals until the connections between the decisions the 
agent can make and the agent’s goals are clear and unambiguous. 

In deciding how to achieve a goal, decision makers tend to ignore, or treat as 
exogenous, those aspects of the situation they believe are not directly related to it 
(Simon 1957, p. 79): 

Individual choice takes place in an environment of “givens”-premises that are ac- 
cepted by the subject as bases for his choice; and behavior is adaptive only within 
the limits set by these “givens.” 
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For example, a firm may lower prices to increase market share on the assumption 
that competitor prices will remain at current levels; a real estate developer may be- 
gin construction of a new property on the assumption that low vacancy rates and 
high rents will persist until the building is ready for occupancy; a machine opera- 
tor striving to hit the daily quota may choose to defer scheduled maintenance, ig- 
noring the effect of this action on future yield and quality. The implicit assumption 
of problem decomposition and decentralized decision making is that achieving 
each subgoal will enable the decision maker or organization to achieve their over- 
all goals. This assumption is often incorrect. 

15.4 INTENDED RATIONALITY 
Cognitive limitations and the other bounds on rationality mean decisions are often 
made as if there were no time delays, side effects, feedbacks, or nonlinearities. 
Since real systems often involve considerable dynamic complexity, decisions made 
in this fashion often cause policy resistance, instability, and dysfunction. Does this 
mean decision makers are irrational or just plain stupid? Not at all. Human behav- 
ior is usually purposeful. Most decisions are motivated by a certain logic. The 
modeler must uncover and represent the mental models of the decision makers and 
represent the rationale for their decision rules. What are the implicit assumptions 
that make their behavior sensible, from their point of view and given their goals? 
That is, is the decision rule intendedly rational? 

A decision rule is locally or intendedly rational if it would produce reasonable 
and sensible results if the actual environment were as simple as the decision maker 
presumes it to be, that is, if the premises accepted by the subject were true. For ex- 
ample, it is sensible for a firm to cut prices to stimulate market share when capac- 
ity utilization is low ifthe mangers believe that competitors won’t or can’t respond 
by cutting their own prices. Figure 15-1 shows a causal diagram of the situation. 
The company cuts prices when capacity utilization falls below some normal or tar- 
get level, forming a negative feedback as managers attempt to Fill the Line (loop 
Bl). If the system were as simple as the managers presume it to be, that is, if the 
price of competing products were in fact exogenous, then cutting prices to stimu- 
late demand and boost profits would make sense. But the managers’ mental model 
is like the proverbial tip of the iceberg: It includes only a small fraction of the feed- 
back structure in the system. Competitors are likely to set prices using the same fill 
the line logic. Cutting prices when utilization drops creates a reinforcing feedback 
(Rl) in which a drop in price causes the market share and hence utilization of com- 
peting firms to fall, leading them to cut their prices. The company finds its market 
share and utilization do not improve as expected and cuts price again, closing the 
positive loop. When the presumption of exogenous competitor prices is false, lo- 
cally rational attempts to fill the line lead to an unintended price war that destroys 
profitability for alL2 

’Not all price wars are unanticipated or irrational. Firms may start a price war in an attempt to 
bankrupt rivals they believe are weaker or to punish defectors from a cartel (e.g., Green and Porter 
1984). 
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FIGURE 15-1 
Top: Mental model of a firm in which competitor prices are believed to be exogenous. Cutting prices 
to Fill the Line (Bl )  when capacity utilization falls is locally rational if the boundary of management’s 
mental model cuts the feedbacks to competitor prices. 
Bottom: When competitor firms behave the same way and also cut prices to boost their own capacity 
utilization (B2), then the intendedly rational decision to lower prices in the hope of stimulating demand 
creates the reinforcing feedback R1 (shown by the thick lines) and a price war ensues whenever 
industry demand drops below capacity. For clarity, additional feedbacks from prices to industry demand 
and from demand to capacity are not shown. 

An intendedly rational pricing policy can lead to an inadvertent price war. 

Management’s Mental Model: Competitor Price Is Exogenous / F  Demand \+ /Capacitj 

Capacity til Utilization 
Market Fill the Line 
Share 

\ ~ Competitor 

Industry 
Demand 

Actual Situation: Competitor Price Endogenous 

The account above does assume the managers explicitly consider competitor 
prices but decide that the competitors won’t respond to a price cut with a price cut 
of their own. Alternatively, the managers may never consider competitor prices at 
all, assuming implicitly and without reflection that lower prices stimulate demand 
and will help fill the line. 
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15.4.1 Testing for Intended Rationality: 
Partial Model Tests 

Partial model tests help you determine whether the decision rules in your model 
are intendedly rational. In a partial model test each organizational function or de- 
cision point is isolated from its environment until the environment is consistent 
with the mental model that underlies the decision rule. The subsystem can then be 
challenged with various exogenous patterns in its inputs. Does a firm’s inventory 
management policy behave appropriately when demand suddenly increases? Does 
the capital investment process adjust capacity to appropriate levels without exces- 
sive instability? How does the firm’s price respond to a change in unit labor costs? 
In the price war example above, the managers cut prices to fill the line when uti- 
lization is low because they believe competitor prices will not respond. A partial 
model test of this pricing rule would be implemented by making the competitor 
price exogenous, then challenging the model with a decline in demand. Lower 
prices would boost demand and fill the line, demonstrating that the decision rule 
is sensible in a world where the feedback to the market is cut, as the managers 
believe. 

15.5 CASE STUDY: MODELING HIGH-TECH GROWTH FIRMS 
Forrester’s (1968) “market growth” model illustrates how bounded rationality can 
be represented in models and how the intended rationality of a model can be 
t e ~ t e d . ~  The market growth model grew out of Forrester’s experience advising en- 
trepreneurs and companies in the high-tech industry. It is one of several models of 
high-tech growth firms Forrester built during the 1960s (Forrester 1975a; see also 
Packer 1964 and Nord 1963). These models addressed a puzzle that is still an issue 
today. Most new companies fail. Some grow for a while but then stagnate. Still 
fewer manage to grow but experience periodic crises, often inducing turnover of 
top management. Only a very small number seem able to grow rapidly and steadily 
for extended periods of time (see Figure 3-6). 

Forrester could discern no obvious differences between the successes and fail- 
ures in the quality of the products, the creativity of their engineers, or other funda- 
mentals. He became convinced that the explanation for the differing outcomes lay 
in the different decision rules used to manage the enterprise and the unanticipated 
side effects of policies that appeared to be rational and well-intentioned when 
viewed in isolation. 

In the market growth model, Forrester set out to create the simplest possible 
model that could still capture the key decision rules of the entrepreneurs and chief 
executives he knew. Though based on the case of a particular firm, the model is 

3The analysis of intended rationality in the market growth model was inspired by and draws 
on Morecroft (1983). Morecroft pioneered the development of the concepts of intended rationality 
in system dynamics (see also Morecroft 1985) for which he won the Jay Forrester prize in 1990. 
The version of the market growth model developed here differs from both Forrester’s original and 
Morecroft’s 1983 version in some details, but the essence of key formulations is the same, as are 
the behavior and implications of the model. 
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quite general and its lessons apply to growing organizations in any industry. The 
parameters are therefore chosen to be representative of typical high-tech products 
and not to replicate the experience of any one company. 

To illustrate how interactions of intendedly rational policies could produce 
failure, Forrester deliberately made the strong simplifying assumption that the 
market for the firm’s product was unlimited. The potential of the computer and 
high-tech industry in the 1960s seemed to him to be so great that this was a rea- 
sonable assumption. 

15.5.1 Model Structure: Overview 
The model represents a single firm competing in a potentially unlimited market. To 
keep the model as simple as possible, Forrester deliberately omitted many organi- 
zational functions and structures. For example, there is no income statement or bal- 
ance sheet, and competitors are included implicitly in a simple market sector. The 
representation of the firm itself consists of three sectors, each representing a dif- 
ferent organizational subunit (Figure 15-2): sales, order fulfillment, and capacity 
acquisition. 

FIGURE 15-2 Sectors of the market growth model 
The model divides the firm into distinct organizational subunits. Each function operates on the basis of 
different information. 

Capacity 
Acquisition 

The Firm I The Market 

Source: Adapted from Morecroft (1 983). 
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Interactions of organizational functions create important feedback loops, such 
as the balancing loop B3, which couples the firm to the market through product 
availability. An increase in orders boosts the backlog and delivery delay, causing 
some delivery-sensitive customers to take their business to the firm’s competitors. 
The model represents the firm and its market as an ecology of interacting agents- 
the individual organizational functions-each with their own goals and decision 
rules. 

Consistent with the principles of bounded rationality, managers operating in 
the individual subunits are not assumed to understand the overall feedback struc- 
ture. Each subunit is assumed to have access to and use a small number of infor- 
mational cues, not the full set of information potentially available. For example, 
the capacity expansion decision is based on product availability as measured by the 
delivery delay and does not depend on forecasts of future sales generated by the 
marketing organization, which were generally distrusted and ignored by senior 
management. 

15.5.2 Order Fulfillment 
Figure 15-3 shows the structure of the order fulfillment function. 

FIGURE 15-3 Order fulfillment 
The recta.ngle with rounded corners denotes the boundary of a subsystem or organizational subunit in 
the model (Morecroft 1982). Variables outside the boundary are determined in other subsystems. Often 
the members of the subunit view these inputs as exogenous givens. Here, production capacity is taken 
to be outside the control of the order fulfillment organization. 
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FIGURE 15-4 
Capacity 
utilization 

Forrester assumed the firm manufactured a complex high-tech product and op- 
erated a build-to-order system. Orders accumulated in a backlog until they could 
be produced and shipped. The actual average delay in delivering orders (the mean 
residence time of orders in the backlog) is given by the ratio of the backlog to the 
current shipment rate (see section 11.2.6). The book-to-bill ratio is a common 
measure of the health of high-tech companies. Book-to-bill ratios greater than one 
indicate the order book is growing. 

Backlog = INTEGRAL(0rder Rate - Shipment Rate, Backlogh) (15-1) 

Delivery Delay = Backlog/Shipment Rate 

Book-to-Bill Ratio = Order RateKhipment Rate 

(15-2) 

(15-3) 

The desired production rate depends on the backlog and the normal delivery de- 
lay-the normal time required to process, build, and ship an order: 

Desired Production = Backlog/Normal Delivery Delay (15-4) 

Production capacity and capacity utilization determine shipments: 

Shipment Rate = Capacity * Capacity Utilization 

Capacity Utilization = f(Desired ProductiodCapacity) 

(15-5) 

(15-6) 

From the point of view of the managers responsible for order fulfillment, capacity 
is a given, one of the premises people accept as a basis for their choices. Capacity 
is not under their direct control and responds only slowly to senior management's 
decisions to invest. Operations managers must accommodate variations in demand 
through changes in the level of capacity utilization. The higher the backlog, the 
higher the utilization rate, though of course, utilization saturates when the firm's 
plants are operating at their maximum rate. Figure 15-4 shows the assumed capac- 
ity utilization function. By definition, when desired production equals capacity, uti- 
lization is unity. When desired production is less than capacity, plant managers cut 
utilization back gradually, preferring to run the backlog down rather than idling 
their plants and laying off employees. Therefore the assumed utilization curve lies 
above the 45" reference policy. However, when the backlog is zero, utilization and 
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shipments must also be zero: If there are no orders in the backlog, there are no cus- 
tomers to whom a product can be shipped, and the firm never accumulates inven- 
tory. Utilization rises above one when desired production exceeds capacity but at 
sharply diminishing rates until it reaches a maximum assumed to be 25% above 

The intended rationality of the order fulfillment decision rule can be examined 
through two partial model tests. First, the formulation for shipments should allow 
the firm to meet its delivery goals when capacity is not a constraint. If there were 
no capacity constraint on shipments so capacity utilization was perfectly flexible, 
utilization would lie along the 45" line in Figure 15-4. The formulation for the 
shipment rate would then reduce to 

n ~ r t n a i . ~  

Shipment Rate = Capacity * Capacity Utilization 
= Capacity * (Desired ProductiodCapacity) 
= Desired Production 
= Backlog/Normal Delivery Delay (15-5a) 

which is the formulation for a first-order material delay. If capacity were never a 
constraint on shipments, the production scheduling decision rule would always en- 
able the firm to fulfill orders within the normal delivery delay. 

The second partial model test examines the intended rationality of the entire 
order fulfillment process. Now capacity is taken as exogenous and constant, and 
the shipment formulation is challenged with a step increase in orders (Figure 15-5). 
Capacity is 500 unitdmonth. The initial backlog is 1000 units. Since the normal 
delivery delay is 2 months, desired production is 500 unitdmonth and initial uti- 
lization is 100%. In month 0 orders increase to 600 unitdmonth. The backlog be- 
gins to rise and managers increase utilization. Since capacity is fixed, the delivery 
delay rises above the normal level. Shipments smoothly approach the new equilib- 
rium rate of 600 unitdmonth. In the new equilibrium, utilization has reached 120% 
of normal and the delivery delay rises to 2.7 months. 

These tests demonstrate the intended rationality of the formulation for order 
fulfillment. In isolation, the order fulfillment decision rule tracks changes in orders 
in a smooth and stable manner and maintains the delivery delay as low as possible 
given the capacity constraint. Note, however, that if orders were sustained at a rate 
greater than 125% of capacity (the maximum rate of output), the shipment rate 
would always be less than orders and the backlog would increase indefinitely. Such 
behavior would still be intendedly rational: The best the managers could do is pro- 
duce at the maximum rate. 

15.5.3 Capacity Acquisition 
Figure 15-6 shows the structure of the capacity acquisition sector. 

4The backlog-shipment structure is an example of a capacitated delay, discussed in chapter 14, 
along with the construction of the nonlinear utilization function. The model defines utilization of 
100% to be the normal rate achieved when desired production equals capacity. Many firms define 
utilization as the fraction of maximum output achieved. Since the maximum utilization is 25% 
above normal, the formulation is equivalent to assuming the firm normally operates at 80% of 
maximum capacity. 
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FIGURE 15-5 

fulfillment sector to 
a step in demand 

Response of order 6 0 0  

c, 
Capacity is fixed at 0 

550 500 unitdmonth. CI u) Shipment Rate .- 
C 
3 

Orders increase 
from 500 to 600 
units/month at 
time zero. 

....................................................................... ......................... 500 

-1  2 0 1 2  Month 2 4  3 6  4 8  

..._. ......... .... 
.......I.. ....-... 

,..- 

Delivery Delay 
(right scale) 

t 

U 
2.7 

4 w 
U 

2.4 (P 
D w 
h z 

2.1 2 
5 - 

0 .901  , , , , , , , , , , , , , , , , , , , ~ 1.8 
-1  2 0 1 2  Month 2 4  3 6  4 8  

Rather than model the capacity ordering and acquisition process in detail, ca- 
pacity is assumed to adjust to the desired level of capacity with a third-order delay. 
The capacity acquisition time is set to 18 months, a typical value (section 11.5. l)? 

Capacity = SMOOTH3(Desired Capacity, Capacity Acquisition Delay) (15-7) 

The formulation for desired capacity captures several important aspects of 
bounded rationality. Forrester observed that senior managers in the company upon 
which his model was based, as in many firms, were very conservative about capi- 
tal investment. Investments in capacity are expensive and largely irreversible. Se- 
nior managers, in particular the founder and CEO, were reluctant to invest until 
there was clear evidence of need and until they could be sure that any new capac- 
ity would not go unutilized. Though the sales and marketing organizations pro- 
duced sales forecasts, senior management didn’t trust them. Senior management’s 
view was that “marketing can forecast the moon, and plant managers are always 
complaining about capacity shortages. The only reliable evidence that we need 
more capacity comes when we start missing delivery dates.” 

~~ ~ 

5Note that because the model does not represent the physical flows of capacity orders, arrivals, 
and discards, the information delay (SMOOTHS) is used rather than a material delay (section 11.3; 
chapter 17 develops formulations to model capacity acquisition explicitly). 
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FIGURE 15-6 Capacity acquisition 
The rectangles around Delivery Delay Perceived by Company and Capacity represent delays without 
showing ,their full stock and flow structure. 
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The desired capacity decision is modeled as an anchoring and adjustment 
process (section 13.2.10). Management forms desired capacity by anchoring on 
current capacity, then adjusting it up or down based on various pressures. Because 
cues such as sales forecasts are noisy, unreliable, and untrustworthy, the pressure 
to expand capacity derives from the firm’s perceived ability to deliver compared to 
its goal. 

(15-8) Desired Capacity 
= Capacity * Effect of Expansion Pressure on Desired Capacity 

Effect of Expansion Pressure on Desired Capacity 
= f(Pressure to Expand Capacity) (15-9) 

Delivery Delay Perceived by Company 
Company Goal for Delivery Delay 

Pressure to Expand Capacity = (15-10) 

Time for Company 
to Perceive Delivery Delay 

(15-11) 

Delivery Delay 
Perceived by Company 
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Pressure to expand capacity is the ratio of the delivery delay senior management 
perceives compared to their goal for delivery delay. Managers’ beliefs about prod- 
uct availability are assumed to lag the true delivery delay due to the difficulty of 
measuring availability and delays in updating their beliefs once data become avail- 
able. First-order exponential smoothing is assumed, with a perception delay of 
3 months. For now, the company goal for delivery delay is constant and equal to 
the normal delivery delay. In Forrester’s original model the goal was itself a vari- 
able (see the challenge below). 

The pressure to expand capacity has a nonlinear effect on desired capacity, as 
shown in Figure 15-7. When perceived delivery delay is very low compared to the 
goal, management concludes there is substantial excess capacity and cuts desired 
capacity below the current level. When the perceived delivery delay exceeds the 
goal, desired capacity rises above the current level. To capture management’s con- 
servative approach to capacity expansion the adjustment is weak: A 10% increase 
in expansion pressure causes a less than 10% increase in desired capacity, and the 
effect saturates at a maximum value. 

Management’s capacity expansion behavior is consistent with the principles of 
bounded rationality. Management had little confidence in sales forecasts, market 
research, and other possible signals of future demand and instead based its decision 
on delivery delay-an important, direct measure of the firm’s ability to meet de- 
mand. Perceptions of delivery delay lag behind the actual situation. A temporary 
increase in delivery delay will therefore not result in much investment. Only when 
delivery schedules are consistently missed does management become aware of and 
deem the need for capacity sufficiently compelling to justify investment. 

To test the intended rationality of the capacity decision, first consider a simu- 
lation in which the delivery delay perceived by the company is exogenous. This 
partial model test cuts the balancing capacity expansion loop B2 and tests the re- 
sponse of the anchoring and adjustment formulation for desired capacity. In Figure 
15-8 the pressure for expansion begins at the normal value of one. Management 
believes product availability is at the desired level. The perceived delivery delay 
then jumps by 25% for a period of 2 years before returning to normal. In month 60, 
perceived delivery delay drops to 75% of normal before returning to normal after 
another 2 years. 
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FIGURE 15-8 
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The increase in the perceived delivery delay creates pressure for capacity ex- 
pansion. Management increases desired capacity above its current level. Capacity 
gradually begins to rise. Because the feedback from capacity to product availabil- 
ity is cut, the increase in capacity does not reduce delivery delay. Managers con- 
tinue to experience pressure for expansion. Though capacity has increased, the 
continuing high delivery delay they perceive is evidence that capacity has not yet 
increased enough. Desired capacity remains higher than capacity, and capacity ad- 
justs to the desired level, closing the positive Capacity Goal loop (RO). The for- 
mulation for desired capacity enables management to search for the right level of 
capacity, whatever it may turn out to be. When production pressure returns to nor- 
mal in month 30, managers conclude that the current level of capacity is, finally, 
the right one. Desired capacity falls back to the level of actual capacity. Actual ca- 
pacity rises for a few more months due to the delay in capacity acquisition but the 
effect is modest. The response to evidence of excess capacity is similar. As long as 
the pressure for expansion is less than one, indicating the presence of excess ca- 
pacity, management gradually reduces capacity. Note that the final level of capac- 
ity is not equal to the initial level. The assumed change in availability is symmetric, 
but the nonlinear formulation for capacity acquisition means the response is not. In 
equilibrium the managers are content with the capacity they have because there is 
no pressure to change it. 

Having established the intended rationality of the formulation for desired ca- 
pacity and capacity acquisition, the next test considers the overall performance of 
the capacity subsystem by closing the balancing Capacity Expansion loop (B2). In 
Figure 15-9 the capacity subsystem begins in an initial equilibrium with orders, ca- 
pacity, and shipments all equal to 500, capacity utilization at loo%, and delivery 
delay at the normal value. The order rate is exogenous. At time zero orders increase 
to 600 units/month and remain at that level. 

As in the test of the order fulfillment sector, the first response is an increase in 
the backlog and capacity utilization. As utilization begins to saturate, delivery de- 
lay rises. Eventually, senior managers become convinced that high delivery delays 
are significant and persistent enough to warrant capacity expansion. Capacity grad- 
ually rises. In a little over a year, capacity has risen enough that utilization peaks 
and begins to drop. Delivery delay falls back toward the desired level. The pressure 
to increase capacity gradually diminishes. Capacity smoothly approaches the new 
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FIGURE 15-9 
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equilibrium of 600 unitdmonth, and both utilization and delivery delay return to 
normal values. 

The response is intendedly rational. Capacity increases in a smooth, stable 
fashion, without significant overshoot or instability. Consistent with the 1 %month 
capacity acquisition delay and management’s cautious approach to investment, the 
full adjustment takes several years. 

Shipments do overshoot orders before returning to equilibrium. The overshoot 
is an inevitable consequence of the physical structure of the system and not a flaw 
in the decision rules. The capacity acquisition lag means shipments fall behind the 
desired rate after the step increase in orders. The backlog and delivery delay rise 
above their equilibrium values. The only way backlog and delivery delay can fall 
back to normal is for shipments to exceed orders. In the test, the required increase 
in shipments is accomplished through utilization. A large enough increase in orders 
would saturate the utilization loop, forcing capacity to rise above orders long 
enough to clear the excess backlog. 

Notice that the simulated managers increase capacity by exactly the required 
amount even though they do not know the optimal level of capacity. The formula- 
tion for desired capacity is an example of the hill-climbing structure developed in 
section 13.2.12. Hill-climbing optimization uses local knowledge-the slope of the 
terrain around you-to decide which way leads most steeply uphill. If the terrain 
is smooth enough and the mountain has only a single peak, you will always end up 
at the summit. 
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In the context of capacity acquisition, moving uphill means managers adjust 
capacity in the direction they believe will improve performance by eliminating the 
pressure for capacity expansion. Capacity increases when delivery delay is per- 
ceived to be high and falls when low delivery delay signals excess capacity. Be- 
cause they always anchor the desired capacity decision on the current level of 
capacity, they continue to move uphill until the slope of the hill (production pres- 
sure) is zero. Note from Figure 15-7 that the fractional expansion in capacity falls 
as the pressure to expand capacity drops. The cautious investment policy means 
expansion slows as the summit is approached, reducing the chance of overshoot.6 

Hill Climbing 
You propose the capacity acquisition formulation in Figure 15-6 in a model and 
demonstrate its intended rationality to your client by showing the tests in Figure 
15-8 and Figure 15-9. Your client objects that the response of capacity to changes 
in orders in Figure 15-9 is too slow, pointing to the conservative capacity expan- 
sion fraction as the problem. Explore the impact of more aggressive responses to 
expansion pressure by repeating the partial model tests with a steeper expansion 
policy. 

Test a policy in which the expansion fraction rises by the same proportion as 
the pressure to expand capacity. If the pressure to expand capacity were 1.5, indi- 
cating delivery delay was perceived to be 50% above normal, the firm would set 
desired capacity 50% above its current level. The reference line in Figure 15-7 
shows the capacity expansion fraction for this policy. What is the behavior of the 
capacity subsystem with this aggressive policy? Is the response still intendedly ra- 
tional? What happens when the capacity expansion policy is twice as aggressive as 
the reference line (the slope of the relationship is 2)? Under what circumstances 
could you justify the use of such aggressive policies in your model? 

15.5.4 The Sales Force 
Figure 15-10 shows the policy structure for the sales force. 

6Hill climbing is not the most efficient or reliable optimization heuristic. More sophisticated 
methods such as simulated annealing, taboo search, and genetic algorithms have been developed to 
solve the local optimum, rugged landscape, and overshoot problems. In different ways, they each 
strike out at random from time to time as a way to get off a local peak and increase the chance that 
you eventually make your way to the main summit (the global optimum). For details see, for exam- 
ple, Aarts and Lenstra (1997); Rayward-Smith et al. (1996); and Barhen et al. (1997). These meth- 
ods have proven to be effective in many optimization contexts, including np-hard tasks such as the 
travelling salesperson problem. Some modelers find it tempting to replace the simple hill-climbing 
heuristic embedded in the capacity acquisition decision rule with one of these more sophisticated 
methods. However, few firms are willing to conduct such experiments. The conservative managers 
in the firm Forrester studied, and in most firms, were unwilling to invest in expensive capacity just 
to see if by chance it would improve performance. While these heuristics are often excellent opti- 
mization methods, they are usually poor models of actual human behavior. To justify the use of one 
of these methods would require evidence from field study of the decision makers that they behaved 
in a fashion consistent with the more sophisticated procedure. 
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FIGURE 15-1 0 Structure of the sales organization 
The gray link from Backlog to Shipment Rate represents the order fulfillment process (Figure 15-3) and 
closes the Sales Growth loop R1. 

Sales 
Force Net 

Hiring Rate 

Sales Force 
Adjustment 

Time 
Target 
Sales 

/” +FT 
Cost per 

Sales 
Representative 

Sales 
A Budaet 

Sales 
Growth 

f 
Fraction of 
Revenue to 

Sales 

Change in 

Revenue + 

Recent 1y 

f 
Revenue 
Reporting 

Delay 

Sales 
Effectiveness 

Revenue 

’+ \  Price 

The order rate depends on the number of sales representatives and their effec- 
tiveness as measured by orders booked per person per month: 

Order Rate = Sales Force * Sales Effectiveness (15-12) 

Sales effectiveness depends on the number of customer calls each sales person can 
make per month (assumed to be constant) and the fraction of calls resulting in a 
sale (the closing rate), which depends on the attractiveness of the product in the 
marketplace (see the market subsystem). 
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The actual sales force adjusts to the target sales force through the net hiring 
rate. The adjustment time for the sales force represents the time required to recog- 
nize and fill a vacancy and for new sales people to become fully effe~t ive .~ 

Sales Force = INTEGRAL(Sa1es Force Net Hiring Rate, Sales Forceto) (15-13) 

(15-14) (Target Sales Force - Sales Force) 
Sales Force Adjustment Time Sales Force Net Hiring Rate = 

The number of sales representatives the sales organization can support is deter- 
mined by the sales budget and the average cost of a sales representative, including 
benefits and overhead. 

Sales Budget 
Cost per Sales Representative 

Target Sales Force = (15-15) 

Budgeting, as in many organizations, is based on expected revenue. Expected reve- 
nues are regularly updated and are modeled by smoothing actual revenue with a 
3-month revenue reporting delay. The fraction of expected revenue allocated to 
the sales organization is assumed to be constant. Shipments and price determine 
revenue. 

Sales Budget = Fraction of Revenue to Sales * Recent Revenue (1 5- 16) 

Recent Revenue 
= INTEGRAL(Change in Recent Revenue, Recent Revenueb) (15-17) 

Change in Recent Revenue 
= (Revenue - Recent Revenue)/Revenue Reporting Delay (1 5- 18) 

( 1 5- 1 9) Revenue = Price * Shipment Rate 

Consistent with the principles of bounded rationality, the formulations for the sales 
budget and for the target sales force do not involve any attempt to determine the 
optimal number of sales representatives. Instead, as in many organizations, each 
major organizational function receives a traditional fraction of the budget, perhaps 
adjusted slightly as other factors vary. Budgets are based on recent actual revenue 
and do not involve complicated forecasting. 

Isolating the sales organization from the rest of the system tests the intended 
rationality of the sales organization’s decision rules. The average cost is set to 
$8000 per person per month. The fraction of revenue to sales is set to 20%, and the 
product price is $10,00O/unit. In the simulation in Figure 15-11, capacity is as- 
sumed to be perfectly flexible, so orders can always be filled in the normal deliv- 
ery delay, and sales effectiveness is assumed to be exogenous. 

For the first 60 months, sales effectiveness is high-10 units/person/month. As 
a result, the sales force generates more money for the sales organization than it 
costs. As revenue grows, and with it the sales budget, the sales force rises. The ad- 
ditional sales people book even more orders, leading to still more revenue growth 

7A more realistic model would separate net hiring into separate hiring, quit, and layoff rates 
since the decision processes and time delays affecting each of these flows are different (section 
13.3.3). However, Forrester’s net hiring formulation provides a reasonable first approximation for 
the present purpose. 
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FIGURE 15-1 1 
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and even more hiring. The positive Sales Growth loop (Rl) dominates, and the 
firm enjoys rapid exponential growth. In month 60 sales effectiveness suddenly 
drops to 25% of its original value. Orders immediately fall. The sales force contin- 
ues to grow for a few months due to revenues generated by orders already in the 
backlog and the delay in revising the sales budget. Soon, however, the sales orga- 
nization is forced to downsize. With sales effectiveness so low, the sales force now 
costs more than it generates in sales budget. The sales force declines exponentially 
and would eventually reach zero.* 

As in the case of capacity expansion, the decision rules for budgeting and for 
investing funds in the sales organization involve no optimization. The firm is not 

8The company will grow whenever the open-loop steady state gain (OLSSG) of loop R1 is 
greater than one. For a loop consisting of n variables, x,, . . . , x,, the OLSSG is defined by first 
breaking the loop at any point, say xl, defining an input variable xi and an output variable xf'. The 
OLSSG is then given by the steady state change in the output in response to a presumed change in 
the input: 

To calculate the OLSSG for the Sales Growth loop, recall that in equilibrium the output of a first- 
order negative feedback process such as exponential smoothing equals its input. Thus in steady 
state, Sales Force = Target Sales Force, Shipments = Orders, and Recent Revenue = Revenue. 
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able to calculate the optimal allocation of its resources among different activities 
and does not know the optimal sales force. The decision rules the firm uses for 
budgeting and sales force management embody a significant degree of bounded 
rationality. 

Yet these decision rules enable the sales organization to behave rationally. 
Whenever each dollar of revenue generates more than a dollar in new bookings, 
the company grows. When each dollar of revenue returns less than a dollar in new 
bookings, the sales organization and company shrink. The rules of thumb for bud- 
geting and sales force management enable the firm to grow until it reaches the 
equilibrium predicted by standard economic theory, even though the agents in the 
model do not have the information or capability to solve the profit maximization 
problem (see the challenge below). 

15.5.5 The Market 
In the full system sales effectiveness is not constant. Figure 15-12 shows the struc- 
ture of the market sector. 

Sales effectiveness depends on the attractiveness of the product in the market- 
place. For simplicity, Forrester assumed attractiveness depended only on the avail- 
ability of the product, measured by delivery delay. In reality, the attractiveness of 
the product depends on a host of attributes besides availability, including price and 
financing terms, quality, support and service, and so on. Forrester’s full “corporate 
growth model” (Forrester 1964, 1975a; Packer 1964), as well as many models 
since, represents market share and demand as depending on a wide range of attri- 
butes (see Figure 3-7). 

Effect of Availability 
on Sales Effectiveness 

Sales Effectiveness = Normal Sales Effectiveness * (15-20) 

(15-21) 
Effect of Availability 
on Sales Effectiveness = I (  Market Target Delivery Delay 

Delivery Delay Perceived by Market 

Delivery 

Perceived 
by Market 

) (15-22) 
Delivery Delay Time for Market to 

Delay = SMOOTH( 
Perceived by Company, Perceive Delivery Delay 

A one-unit change in the Sales Force therefore produces a steady state change in the Target Sales 
Force of 

Sales Effectiveness * Price * Fraction of Revenue to Sales 
Cost per Sales Representative 

OLSSG = 

Loops with OLSSG > 1 exhibit exponential growth, those with OLSSG < 1 exhibit exponential 
decline, and those with OLSSG = 1 have neutral stability. With the parameters of the base case 
growth requires 

8000 $/persodmonth - 
10,000 $/unit * 0.20 

Sales Effectiveness > - 4 units/persodmonth 

While the OLSSG determines whether the firm grows or declines, the rate of growth depends on 
the time constants of the delays in the loop: The shorter the delays, the faster the growth rate. 
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Applying the Baker Criterion (what do customers know about availability, and 
when do they know it?), it is clear that customers are not aware of the actual de- 
livery delay but must estimate it from delivery quotes provided by the company 
(and their own experience). The market’s perception of availability therefore lags 
the company’s own perception of the delivery delay used to provide delivery 
quotes. The market’s reaction to availability is further delayed because it takes time 
for customers to update their perceptions of delivery delay and still more time to 
shift their business to or away from the company. The perception and reaction 
delay for the market response to delivery delay is assumed to be 12 months, long 
enough to capture both the perception time and the time required to respond. 
A large increase in lead times induces some customers to drop the company and go 
with a competitor, but it takes time for them to select and qualify a new supplier 
and to reconfigure their own products and operations accordingly. Figure 15-13 
shows the assumed effect of perceived product availability on sales effectiveness. 

When the market perceives that delivery lead times equal their target, sales ef- 
fectiveness equals its normal value. As delivery lead times increase relative to the 
acceptable level, sales effectiveness falls. The decline in sales effectiveness accel- 
erates as delivery delay rises above the acceptable level, until the only customers 
left are those who are willing to wait for the product due to its unique suitability to 
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The market's response to availability creates the balancing Availability feed- 
back (B3). An increase in lead times causes the market to shift to other suppliers, 
reducing orders and eventually halting further increases in lead time. The delay in 
the market response ensures that customers don't overreact to short-term fluctua- 
tions in lead times. 

15.5.6 Behavior of the Full System 
The partial model tests above show that each organizational function and decision- 
making center in the model firm is intendedly rational. Each unit can respond in an 
appropriate, stable fashion to changes in its environment. Operations managers can 
meet demand as long as they have sufficient capacity. Senior management in- 
creases capacity smoothly and by the right amount when demand increases. The 
sales organization grows when it is profitable and shrinks when it is not. 

Each function in the organization behaves in a sensible fashion from the local 
perspective of its managers. If each subsystem is intendedly rational and smoothly 
adjusts to meet its goals, shouldn't the organization as a whole reach its objectives 
as well? 

Figure 15-14 shows the behavior of the whole model. Now the individual 
functions interact with one another and with the market. 

The behavior of the firm as a whole is far from optimal or even desirable. Sales 
do grow, but unanticipated interactions of the different organizational functions 
create severe problems. First, growth is much slower than potential. (Compare 
sales to the curve labeled Potential Revenue, which shows how fast sales would 
grow if the firm were always able to deliver on time.) Second, growth is far from 
smooth. The firm goes through repeated boom and bust cycles, as seen in the fluc- 
tuation of the book-to-bill ratio. During sales slumps orders fall by as much as 
50%. Revenue also drops during the slumps, though less than orders as the firm 
draws down its backlog. With the parameters of the base case, the sales slumps are 
so severe it is likely senior managers would be fired and quite possible the com- 
pany would be taken over during one of the downturns. 
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The slow growth and boom-bust cycles are entirely self-inflicted. They arise 
through the interaction of the feedback loops coupling the different organizational 
functions of the firm to one another and to the market. Specifically, the locally ra- 
tional capacity acquisition and sales force expansion policies interact with the mar- 
ket’s response to availability to create a persistent mismatch between orders and 
capacity. At first, capacity is ample, and the firm experiences healthy growth in 
sales as the Sales Growth loop dominates the behavior of the system. Growing rev- 
enue leads to expansion of the sales force and still more revenue. After about 3 
years, capacity begins to constrain shipments, utilization rises above normal, and 
delivery delay starts to rise. After waiting to ensure the rise in lead times isn’t tem- 
porary, senior management begins to expand capacity. Due to their conservative 
investment policy and the long capacity acquisition delay, however, capacity con- 
tinues to lag behind orders, allowing delivery delay to build up even higher. 

While the firm struggles to expand capacity, customers learn that lead times 
for the firm’s products are very high and begin to design the firm out of their own 
products while they seek other sources of supply. Sales effectiveness drops. Orders 
fall just as capacity starts to increase. The book-to-bill ratio soon drops below one 
and the backlog declines. Delivery delay now improves, but it takes time for the 
market to respond. Capacity ordered during the earlier shortage continues to arrive. 
Utilization and delivery delay soon fall below normal. Management, responding to 
the excess capacity, scales back its investment plans and soon capacity growth 
slows. At the same time, sales effectiveness begins to rise as customers respond to 
the ready availability of product. Sales representatives find it much easier to close, 
and a new spurt of order growth begins just as capacity growth slows. Orders and 
capacity fluctuate out of phase, with capacity growth lagging well behind orders. 

Managers in each organizational function believe they are making sensible and 
rational decisions. Their mental models treat variables outside their function as ex- 
ogenous inputs-the givens of their situation. The order fulfillment organization 
takes orders and capacity as given and outside its control and does its best to ship 
product under these constraints. The sales organization does the best it can to gen- 
erate orders given the sales budget. But because each function is linked with the 
others in a network of feedback loops, these inputs are actually not exogenous 
givens but are strongly influenced by their own behavior. Because the managers of 
the individual functions do not account for these loops their decisions generate 
unanticipated side effects, in this case, effects counter to their goals. Because they 
don’t understand the systemic origin of these dynamics, the individual managers 
are likely to blame their problems on the incompetence of their colleagues in other 
functions, the fickle decisions of the customers, or just plain bad luck. 

Imagine how management might react to the first crisis, which begins around 
month 48. The principal symptom of difficulty is a precipitous decline in orders. 
Examining the monthly numbers, senior managers immediately see that the sales 
force has continued to grow and that the cause of the slump is therefore a sharp 
drop in sales effectiveness. How might they interpret this information? Often, as 
Forrester observed, they blamed the sales slump on the weak leadership and mis- 
management of the vice president for sales, a poorly motivated or unskilled sales 
force, increasing competition, or other external factors. These attributions are con- 
sistent with behavioral decision theory. People tend to view cause and effect as 
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closely related in time and space: Orders depend on the number and effectiveness 
of sales representatives; if orders fall, the sales force must be at fault. 

The tendency to blame outcomes on individuals or individual characteristics 
instead of situational, systemic factors-the fundamental attribution error-rein- 
forces the problem (chapter 1). In the context of the simulated company, managers 
are likely to reason that poor sales force performance must indicate the sales force 
is burned out, poorly managed, or just plain lazy. Senior management responds by 
attacking these apparent causes, firing the sales VP, sending the sales force to a 
motivational workshop to boost sales effort, starting a new ad campaign, or cutting 
prices. From the perspective of the firm’s managers, with their open-loop mental 
models, these policies make sense. The policies directly attack what they have con- 
cluded are the causes of the problem. 

In fact, the actual cause of the problem is senior management’s conservative 
capacity acquisition policy and the unintended interactions of that policy with the 
delays in capacity acquisition, the policies of the sales organization, and the re- 
sponse of the market to availability. However, these systemic causes are distant in 
time and space from the symptoms of difficulty. Insidiously, policies designed to 
attack the symptoms appear to work in the short term. After replacing the sales VP, 
sales rebound, reinforcing the managers’ erroneous beliefs about the causes of dif- 
ficulty and preventing them from discovering the high leverage points for im- 
provement (Repenning and Sterman 1999 show how a major automaker was able 
to overcome these self-reinforcing attribution errors). 

Policy Design in the Market Growth Model 
This challenge asks you to extend and deepen your analysis of the market growth 
model to build confidence in the realism and intended rationality of the proposed 
decision rules. You also are asked to design and implement various policies to im- 
prove the performance of the firm. 

1. Policy analysis: sales force productivity 
Consider the base case behavior of the full model. Suppose senior 
management responds to the first sales slump by firing the vice president 
for sales, improving sales force training, and bringing in an expensive 
motivational speaker to pump up the troops. Assume these policies are in fact 
successful in permanently increasing the energy, skill, and effort of the sales 
force, boosting normal sales effectiveness by 25%. Further, ignore any costs 
associated with the new policy (specifically, assume there is no change in 
the cost per sales representative or any other parameters). Also, ignore any 
implementation delays. Implement the policies in month 60. Obviously, 
replacing the VP for sales and the other policies are unlikely to yield such 
a large, permanent increase in sales productivity and will have significant 
costs. Examining the costless, permanently effective policy may provide 
insight into the dynamics of the business. 
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a. Before simulating the model, write down what you expect. Sketch the 
behavior you expect for the variables in Figure 15-14 under the new 
policy. Briefly explain the rationale for your judgment. 
Simulate the policy. What is the short-run effect of the policy? What 
is the long-run effect? Why? Does the intervention solve the problems 
facing the firm? Whylwhy not? How did the actual behavior differ from 
your expectations, and why? 
How do you think senior managers might interpret the outcome of the 
policy intervention? What might they do next? 

b. 

c. 

2. Flexible goals for availability 
The capacity acquisition formulation assumes senior management’s goal 
for delivery delay is constant and equal to the normal delay of 2 months. 
Because production technology and product designs are constantly changing 
the normal time required to fill orders could vary. Forrester found that 
management’s goal for delivery delay-the delivery delay senior executives 
considered to be acceptable-adjusted over time to the delivery delay 
perceived by the company (a floating goal, see section 13.2.10). He also 
found that senior management tended to think that delivery delays were 
lower than they actually were. Management’s perceptions tended to be based 
on the firm’s own lead time quotes, not on the actual delivery experience of 
customers. Forrester found, in turn, that lead time quotes, especially those 
provided to senior management, tended to be overoptimistic. Consequently, 
management’s perception of delivery delay was biased and was actually 
lower than the data indicated. 

Figure 15-15 shows one way to model the goal-setting process. The 
formulation for the pressure to expand capacity subtracts the bias from the 
delivery delay perceived by the company. The company goal for delivery 
delay becomes a weighted average of a fixed goal and the traditional delivery 
delay. The traditional delay adjusts via first-order smoothing to the delivery 
delay perceived by the company. 
a. Add the goal setting structure in Figure 15-15 to your model. Assume 

the fixed goal for delivery delay is 2 months, as in the original model, 
and the time to adjust the traditional delivery delay is 24 months. Setting 
the delivery delay bias to zero and the weight on the traditional delivery 
delay to zero is then equivalent to the original model in which the target 
delivery delay is constant. Make sure your formulation is dimensionally 
consistent. 
Next, design and implement partial model tests to examine the intended 
rationality of the goal-setting process. Assume the weight on the 
traditional delivery delay is one and the delivery delay bias is zero. Is the 
formulation intendedly rational? How might the formulation be justified 
in terms of the principles of bounded rationality and the empirical 
findings of behavioral decision theory? Repeat the tests, setting the 
bias to, for example, 0.5 months. Are the results still intendedly rational? 
Whylwhy not? How might the delivery delay bias be justified in terms 

b. 
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FIGURE 15-15 Revised structure for the delivery delay goal 
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of the theory of bounded rationality and the results of behavioral 
decision theory? 
After you have tested the goal setting formulation in isolation, run the 
full model under the following conditions: 
i. 

ii. 

How does the goal-setting process affect the dynamics of the firm as a 
whole? 

c. 

Set the weight for the traditional delivery delay to one; keep delivery 
delay bias set at zero. 
Set the weight for the traditional delivery delay to one and delivery 
delay bias to 0.5 month. 

3. Designing a high leverage policy 
a. Design a revised capacity acquisition policy for the firm to overcome the 

limitations of the original policy. Your policy should enable the firm to 
avoid the boom and bust and slow growth of the original model. Keep 
your policy simple. Your policy must be consistent with the formulation 
principles discussed in chapter 13 and with the principles of bounded 
rationality and behavioral decision theory. If your policy utilizes 
different information cues than the original policy, be sure to consider 
possible delays in the acquisition and interpretation of these cues. 
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b. Test your revised policy for intended rationality. When orders are 
considered to be exogenous, will your revised decision rule adjust 
capacity in an appropriate and reasonable fashion when demand 
changes? 
Finally, test the behavior of your revised formulation in the full system. 
Discuss the results. Consider the reasons for the differences and 
improvements in the behavior of the model, the feasibility of 
implementing such a policy in real organizations, and the robustness of 
your policy in the real world. For example, will your policy work in a 
world where market potential is not unlimited and the market might 
saturate, decline, or fluctuate? 

c. 

4. Effectiveness of search for profit-maximizing equilibrium 
Return to the partial model test of the sales organization in the original 
model. In the discussion of the sales organization’s behavior, I asserted that 
the rules of thumb for budgeting and sales force management enable the firm 
to grow until it reaches the equilibrium predicted by economic theory even 
though the agents in the model do not have the information or capability to 
solve the profit maximization problem. However, in the test shown in Figure 
15-1 1 there is no equilibrium because the market potential is assumed to be 
unlimited. The test shows only that the company grows whenever sales effort 
yields more revenue than it costs, and vice versa. A more realistic assumption 
is that market potential is finite and that the effectiveness of sales effort falls 
as that limit is approached. In that situation the sales force should grow until 
sales effectiveness has fallen enough so that the cost of additional sales 
representatives just equals the additional sales budget they generate. 
a. Evaluate the ability of the formulation for the sales organization to reach 

the profit-maximizing equilibrium predicted by economic theory. 
Assume sales effectiveness declines as the company grows. Specifically, 
assume sales effectiveness declines linearly as the sales force grows 
relative to some market potential: 

Sales Effectiveness = f(Sa1es Force) = Normal Sales Effectiveness 
Sales Force * Normal Sales Effectiveness (15-23) 1 *MAX 0 , l  - ( Market Potential 

where Market Potential is a constant. Using this formulation for sales 
effectiveness, replicate the partial model test of the sales organization by 
assuming the shipment rate is always equal to the desired shipment rate. 
Assume Market Potential = 2000 unitdmonth and Normal Sales 
Effectiveness = 10 units/person/month. 
Does the sales force reach an equilibrium? If there is an equilibrium, is 
the approach to that equilibrium smooth and stable or does the model 
fluctuate around it? If there is an equilibrium, is it the profit-maximizing 
equilibrium predicted by economic theory? To answer this last question, 
treat the sales organization as a profit center. The net profit of the sales 

b. 
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department T is defined as its revenue (the sales budget it receives) less 
its expenditures (the cost of the sales operation): 

T = Sales Budget - Sales Expenditures (15-24) 

Revenue and the fraction of recent revenue allocated to sales determine 
the sales organization’s budget (15-16); the sales force and cost per sales 
representative determine expenditures: 

(15-25) 
Fraction of * Recent Sales * Cost per 

- T r =  
Revenue to Sales Revenue Force Sales Representative 

In equilibrium, Recent Revenue = Revenue = Price * Shipments = 
Price * Order Rate. The sales force and sales effectiveness yield the 
order rate (15- 12)). Therefore, equilibrium profits are 

Fraction of Cost per 
Sales Sales * Sales * 

Sales - ~r = Revenue *Price * 
Effectiveness Force Force to Sales Representative 

(15-26) 

From (15-26) you can derive an expression for the profit of the sales 
organization as a function of the size of the sales force. The maximum 
profit occurs where the rate of change of profits as a function of sales 
force is zero, that is, when 

Fraction of Cost per 
Sales 

Effectiveness 
- Sales dn  

d(Sa1es Force) 
O =  = Revenue *Price * 

Representative to Sales 
(15-27) 

Derive the equilibrium sales force from the expression for equilibrium 
profits, assuming sales effectiveness is specified according to ( 15-23).9 
Compare the economic equilibrium to the behavior in your partial model 
test. Does the boundedly rational formulation for sales management 
enable the organization to reach the profit-maximizing equilibrium even 
though the organization does not know what that equilibrium is? What 
circumstances might prevent the sales organization from converging to 
the profit-maximizing equilibrium? 

5. Generalizing the hill-climbing heuristic 
Give other examples where locally rational decision rules enable people or 
organizations to search for the optimal state of a system without global 
knowledge of the terrain. 

9Technically, (15-27) is the first-order condition for profit maximization. To be sure any value of 
sales force satisfying (15-27) maximizes profits instead of minimizing them requires satisfying the 
second-order condition that the second derivative of profits with respect to sales force be negative. 
Confirm that this is so for your solution. 
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15.6 SUMMARY 
Simulation models are descriptive. The decision rules in models must conform to 
actual practice, warts and all. The modeler can then design policies to improve per- 
formance. An extensive body of evidence shows that the rationality of human de- 
cision making is bounded. Bounded rationality arises because the complexity of 
the systems in which we live and the decisions we must make overwhelm our cog- 
nitive capabilities. Consequently, we use various heuristics-rules of thumb-to 
enable us to make reasonable decisions in the time available. However, sometimes 
these heuristics produce systematic errors and cause the quality of decision mak- 
ing to fall far short of rational behavior. Research in behavioral decision theory has 
documented a wide range of these heuristics and identified many errors and biases 
to which they frequently lead. 

The chapter showed how models consistent with bounded rationality and 
behavioral decision theory can be formulated and how the intended rationality of 
the decision rules can be tested. Partial model tests enable you to assess whether 
the simulated agents and organizational subunits are locally rational given their 
mental models, local incentives, and knowledge of the system. Partial model tests 
help uncover flaws in model formulations and help build confidence that your rep- 
resentation of the decision rules of the people in the system are sensible and con- 
sistent with your knowledge of how they think and behave. Partial model tests help 
you to identify situations where sensible people operating with intendedly rational 
decision rules can interact to create dysfunctional dynamics for the system as 
a whole. 
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Forecasts and Fudge Factors: 
Modeling Expectation Formation 

Stocks have reached what looks like a permanently high plateau. 
-Irving Fisher, Professor of Economics, 

Yale University, October 1929 

The trend will continue until it ends. 
-James Dines, stock market analyst 

(The Wall Street Journal, 21 May 1992) 

Expectations are fundamental to decision making. Modelers must portray the way 
the agents represented in their models form forecasts and update expectations. 
These models must be consistent with the principles of model formulation devel- 
oped in earlier chapters and must be grounded in empirical study in the field. This 
chapter develops a boundedly rational formulation for modeling forecasting and 
expectation formation, particularly for situations where the variable of interest is 
growing. Examples used to test the model include forecasts of inflation, commod- 
ity prices, and energy consumption. 

16.1 M C) D E LI N G EXP ECTATI o N FOR MATI o N 
All decisions depend on our mental models of the situation. Expectations about the 
future behavior of the system form a critical component of these mental models. 
We constantly form expectations about what is likely to happen, and these expec- 
tations guide our actions. Businesses and governments spend enormous sums on 

631 
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forecasts, from predictions of economic growth, inflation, and exchange rates to 
the chance of a revolution or terrorist attack. 

Models of the forecasting process must capture the way people form expecta- 
tions. Are forecasts prepared judgmentally or with formal techniques? Are the for- 
mal tools simple (e.g., exponential smoothing) or complex (e.g., large-scale 
econometric modeling)? The model must capture the cues used in the forecasting 
process and the way in which the cues are combined to yield the forecast. How is 
this possible? After all, different organizations forecast in different ways. Some use 
complex models to prepare forecasts; in that case, do modelers have to include the 
actual model used by the decision maker in their simulations of the organization? 
There are cases where simulation models do incorporate the other models used by 
the organization. In practice, however, such complexity is rarely needed. In a sur- 
vey of forecasting practices at about 100 US corporations Sanders and Manrodt 
(1994) found that 

Although managers are more familiar with quantitative forecasting methods than in 
the past, the level of usage has not increased. Practitioners continue to rely largely 
on judgmental forecasting methods.. . Further, when quantitative forecasting meth- 
ods are used, they frequently are judgmentally adjusted. 

Realistic models must also capture the social and political forces that influence an 
organization’s forecasts and decision making. An organization may use a large 
econometric model with hundreds of variables to forecast the economic environ- 
ment, but if senior managers ignore the model’s output and go with their gut feel- 
ings, then your model of the forecasting process can’t assume the sophistication of 
the large-scale model. Instead you must capture the ways in which the managers’ 
intuitive judgments are formed, that is, how the information they consume and the 
way they digest it lead to that certain feeling in their gut. 

Though many organizations spend considerable resources generating and pur- 
chasing forecasts, forecasting is a social, political, and bureaucratic activity, not a 
scientific one. Galbraith and Merrill (1992) studied the forecasting practices of 
large companies and found that management frequently adjusted, tweaked, and ig- 
nored the forecasts generated by corporate forecasting staff (Table 16- 1). 

The social and political nature of forecasting means many judgmental heuris- 
tics and other manifestations of bounded rationality may have considerable influ- 
ence on the forecasting process and can lead to persistent, systematic forecasting 
errors. 

Expectations are usually modeled in system dynamics as adaptive learning 
processes such as exponential smoothing. Adaptive expectations are common in 
economic models as well.’ Adaptive expectations (single exponential smoothing) 
outperform many other forecasting methods over longer time horizons (Makridakis 
et al. 1982; Makridakis et al. 1984; Carbone and Makridakis 1986). 

‘For example, Irving Fisher’s (1930) theory of interest rates, Nerlove’s (1958) cobweb model, 
Friedman’s (1957) permanent income hypothesis, Holt et al.’s (1960) production scheduling 
models, the behavioral models of Cyert and March (1963), Ando and Modigliani’s (1963) life 
cycle hypothesis of saving, and Eckstein’s (1981) theory of “core inflation.” 
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TAIBLE 16-1 
Forecasting is a 
social and politiical 
activity, not a 
purely scientific 
one. 
Results of a 
survey of 
corporate 
foriecasting stafif 
in a sample of 
New York and 
American Stock 
Exichange 
listed firms 
and comparable 
privately held 
firms. 

Management requests staff revisions to show more favorable outcomes 
Management makes own revisions to show more favorable outcomes 
Management requests backcasts (model used to justify 

Incorrect techniques or assumptions used: 
preselected outcome) 

Accidentally 
Deliberately 

Management ignores models/forecasts 
Departments withhold information from others 
Departments supply misleading information to others 
Models are deliberately misspecified 

45% 
26% 

38% 

19% 
13% 
11 Yo* 
26% 
13% 
17% 

Source; Galbraith and Merrill 1992. 

*Probably an underestimate since the surveys were reported by the forecasting staff, who have an in- 
centive to believe their work is useful, are likely to be told their work is important by superiors, and are 
not always (or even usually) privy to the actual decision-making process. 

However, sometimes expectations respond not just to the history of the vari- 
able but to its past growth rate as well. For example, the past values and past trend 
in orders may be used to estimate the likely future order rate. Exponential smooth- 
ing doesn't work well for trends. The output always lags behind the input, causing 
a steady state error whenever the input is steadily growing. Steady state error 
means the output never equals the input, even after sufficient time for transient ad- 
justments has passed.2 

All procedures for estimating a trend require comparing recent values to his- 
torical values in some fashion. For example, a company may estimate the future 
growth rate of revenue by comparing current year revenue to revenue from the 
prior year. Several issues arise in this seemingly simple task (Figure 16-1). 

First, the forecaster must get up-to-date information on the variable of interest. 
Often there are significant measurement and reporting delays. A firm may have to 
wait until the close of the fiscal year to get an accurate estimate of annual revenue 
to compare against prior year sales. 

Second, most variables are somewhat noisy-their values fluctuate in an un- 
predictable fashion around the trend. Short-term noise must be filtered out so the 
expected trend does not bounce around with temporary variations in the current 
value. A company can shorten the delay in getting revenue data by using unaudited 
quarterly or monthly estimates rather than waiting for the close of the fiscal year. 
However, quarterly or monthly data are more likely to vary with seasonal and other 
temporary factors that diverge from the underlying trend and are more likely to be 
revised. Shortening reporting delays reduces the reliability of the data. 

'Recall that in adaptive expectations the rate of change in the expectation X* is given by 
dX*/dt = (X - X*)/D, where X is the input variable and D is the time constant. Suppose X grows 
linearly at rate r unitdtime period. In the steady state X* must also be growing linearly at rate r, 
requiring (X* - X)/D = r, yielding a steady state error given by X* - X = rD. Section 16.6 derives 
the steady state error when the input grows exponentially. 
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FIGURE 16-1 
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Third, the forecaster must decide how far back in history to consider. In esti- 
mating future revenue growth, should the firm compare recent sales to prior year 
sales or to sales over a longer horizon such as 5 years? A short historical time hori- 
zon will lead to an earlier response to changes in trends but also amplifies the re- 
action to temporary fluctuations. The answers to these questions depend on the 
purpose for which the forecast is used, the amount of noise in the data, and institu- 
tional features such as the frequency of data collection, along with the various 
judgmental heuristics people use-deliberately and inadvertently-to process the 
data. 

16.1 .I Modeling Growth Expectations: 
The TREND Function 

Growth expectations in system dynamics are often modeled with the TREND 
function (Sterman 1987). The input to the TREND function can be any variable. 
The output is an estimate of the fractional growth rate in the variable. But TREND 
is not just a clever way to calculate growth rates. As the input to decision rules in 
models, TREND represents a behavioral theory of how people form expectations 
and takes into account the time required for people to collect and analyze data, the 
historic time horizon they use, and the time required to react to changes in the 
growth rate. The causal structure of the TREND function is shown in Figure 16-2. 

The TREND function generates the expected rate of change in the input vari- 
able, expressed as a fraction of the input variable per time unit. The TREND func- 
tion involves three parameters, each the time constant of a first-order exponential 
smoothing process: 

Perceived Trend = TREND(1NPUT; TPPC, THRC, TPT) 
TREND = INTEGRAL(Change in TREND, TREND,J 
TREND, = <specified by user> 
Change in TREND = (ITREND - TREND)/TPT 
ITREND = [(PPC - RC)/RC]/THRC 
RC = INTEGRAL(Change in RC, RC,) 
RCto = PPC,/(l + THRC * TREND,) 
Change in RC = (PPC - RC)/THRC 
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FIGURE 16-2 
The output is an estimate of the fractional growth rate in the input variable. The structure has three 
parameters: the! time to perceive the present state of the input, TPPC; the historical time horizon 
against which the perceived condition is compared, THRC; and the time for beliefs about the trend 
to respond to changes in its indicated value, TPT. 
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PPC = INTEGRAL(Change in PPC, PPC,) 
PPC, = INPUTJl + TPPC * TREND,) 
Change in PPC = (INPUT - PPC)/TPPC 

where 

INPUT = Input variable (units), 
TREND = Perceived fractional growth rate of the input variable 

ITREND = Indicated Trend in the input (Mime units), 
(Mime units), 

(16-1) 



636 Part IV Tools for Modeling Dynamic Systems 

RC = Reference Condition of the input (units), 
PPC = Perceived Present Condition of the input (units), 
TPT = Time to Perceive the Trend (time units), 
THRC = Time Horizon for the Reference Condition (time units), 
TPPC = Time to Perceive the Present Condition of the input (time units). 

How is the perceived growth rate determined from the input?3 To begin, the in- 
stantaneous, raw value of the input variable is smoothed, generating the Perceived 
Present Condition. First-order smoothing is assumed. The time to perceive the pre- 
sent condition TPPC represents two factors. First, assessing the current status of 
any variable takes time; TPPC must therefore not be less than the measurement and 
reporting delays for the input variable. In the case of corporate and economic data, 
the data collection and reporting lag may range from several weeks to a year. In the 
case of demographic, environmental, and social indicators the delays may be even 
longer. Second, even if the raw data were available immediately, forecasters may 
smooth the reported values of the input to filter out high-frequency noise. Noise 
arises from the process itself, from measurement error, and from subsequent revi- 
sions in the reported data. The extent of noise in one important and widely pre- 
dicted economic variable is shown in Figure 16-3, the rate of inflation in the US 
consumer price index (CPI). The CPI is reported monthly. Between 1947 and 1986 
the standard deviation of inflation from month to month was 11 1% of its mean 
value, clearly showing the need to filter out short-term fluctuations. 

Decision makers then compare the perceived present condition to its past val- 
ues, measured by the Reference Condition RC, to determine whether the input is 
rising or falling. The reference condition of the input is formed by first-order ex- 
ponential smoothing of the perceived present condition. The time horizon for the 
reference condition THRC determines the historical period decision makers con- 
sider to be relevant in the forecasting process. Equivalently, l/THRC is the rate at 
which past values of the perceived input are dis~ounted.~ 

The output of the TREND function is expressed as a fractional growth rate per 
time period. Hence the indicated trend ITREND is the difference between the per- 
ceived present condition of the input and the reference condition, expressed as a 
fraction of the reference condition and then divided by the time horizon for the ref- 
erence ~ondi t ion.~ 

The indicated trend provides the most up-to-date information on the current 
fractional rate of change in the input. However, beliefs do not adjust instantly to 

3The initial values of the reference and perceived present condition are set to initialize 
the TREND function in steady state at the initial perceived growth rate set by the modeler 
(section 16.6). 

4Note that the RC is not the value of the input at some particular point in the past but an expo- 
nentially weighted average of all past values of the input. The longer the historic horizon THRC, 
the more weight is given to older values of the input. 

While the equation for the indicated trend appears to compute the linear and not compound 
growth rate the expression for the indicated trend actually yields the continuous compounding frac- 
tional growth rate in the input because the reference condition is formed by exponential smoothing 
of the input (section 16.6). 
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FIGURE 16-3 
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new information. The TREND function allows the decision maker’s belief about 
the trend in the input variable to adjust gradually to the value indicated by the most 
recent data. First-order information smoothing is assumed with a delay given by 
the Time to Perceive the Trend TPT. The lag in the adjustment of the perceived 
trend represents the time required for a change in the indicated trend to be recog- 
nized and accepted by decision makers as a basis for their actions. 

How should the parameters of the TREND function be interpreted and esti- 
mated? The time to perceive the present condition is at least as long as any mea- 
surement and reporting delays but may be longer if the input variable is highly 
noisy and decision makers apply additional averaging or smoothing. The time hori- 
zon for establishing the reference condition THRC represents the time frame over 
which the trend is assessed and will depend on the purpose of the forecast. In gen- 
eral, the longer the time horizon for the forecast, the longer the historical horizon 
should be. However, the time horizon for establishing the reference condition is a 
subjective judgment and is influenced by the memories and experiences of indi- 
vidual decision makers. During the 1970s the rate of economic growth in the in- 
dustrialized world slowed significantly from the rates of the 1950s and 60s. 
However, economic forecasters whose professional experience was gained during 
the high-growth decades continued to forecast high growth for many years despite 
the lower actual growth rates of the 1970s and 80s. They believed the slow growth 
after 1973 was a temporary aberration and that the economy would soon resume 
the growth rate that characterized the past. The delay in the acceptance of a new 
trend as an operational input is often significant. The adjustment lag depends not 
only on the time required for individual decision makers to recognize the change 
but also on organizational inertia. A new trend may have to become part of the con- 
ventional wisdom before some are willing to act. In such cases, perceived trends 
may change only as fast as management turns over and is replaced. 
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The TREND function represents forecasting as a boundedly rational procedure 
in which forecasters smooth recent data and project recent trends. Is there any ev- 
idence that people form forecasts using smoothing and trend projection? Sanders 
and Manrodt’s (1994) survey found judgmental methods such as “manager’s opin- 
ion,” a “jury of executive opinion,” and “sales force composite” opinions were the 
most common methods used in sales forecasting in US corporations. Studies of 
judgmental forecasting (e.g., Makridakis et al. 1993) show that most judgmental 
forecasts are quite similar to simple smoothing with trend extrapolation. Among 
the formal techniques used by the surveyed firms, the most popular were moving 
averages, exponential smoothing, regression, straight-line projections, and naive 
models. All of these are forms of adaptive expectations. Naive models and moving 
averages are similar to exponential smoothing, differing only in the weights ac- 
corded to past data. Regression and straight-line projection likewise average out 
noise and fluctuations in the past data, though unlike simple smoothing they also 
account for growth trends. 

16.1.2 Behavior of the TREND Function 
The TREND function has the desirable property that it provides, in the steady state, 
an unbiased estimate of the fractional growth rate of the input. If the input grows 
exponentially at rate g, the steady state output of the TREND function is also g (see 
section 16.6 for a proof). 

The parameters of the TREND function determine its transient response to 
changes in the growth rate. Figure 16-4 shows partial model tests illustrating, for a 
range of parameters, its response to a change in the growth rate of the input. In the 
simulations, a one-quarter-year measurement and reporting delay (TPPC) is as- 
sumed-a value typical of many corporate and macroeconomic data series. The in- 
put, initially constant, suddenly begins to grow at a constant exponential rate of 
5%/year. The perceived trend in the variable generated by the TREND function at 
first does not change-though the input has started to grow, it takes time for the 
new values to be reported. The perceived trend then gradually rises to the true 
value of 5%/year. The longer the time horizon for establishing the reference con- 
dition or the longer the time required for decision makers to perceive the trend, the 
more gradual the response. 

CASE STUDY: ENERGY CONSUMPTION 
What will energy consumption be in the year 2020? How much electricity will util- 
ities have to supply 10 years from now? Long-term forecasts of energy consump- 
tion, both at the aggregate national level and at the fuel- and region-specific level, 
are critical to both energy suppliers and to the government. Power plants, refiner- 
ies, and oil fields involve some of the longest lead times of any construction pro- 
jects, often a decade or more. Fortunately for utilities and oil companies, energy 
consumption in the industrialized world grew at fairly steady exponential rates for 
most of the postwar period, and forecasting was easy. But after the first oil shock 
in 1973 economic growth slowed. Energy consumption fell significantly, and even 
after the economy recovered from the recession of 1974-75, consumption growth 
was both slower and more variable. The break in historic energy consumption pat- 



FIGURE 16-4 
Behavior of the 
TREND function 
The input, initially 
constant, begins to 
grow exponentially 
at !%/year at 
time zero. The 
parameters are 
as indicated, with 
TPPC = 0.25 
years in all cases. 
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terns provides a natural experiment to examine the ability of forecasters to antici- 
pate the crisis. In short, they didn’t-the 1973 crisis came as a surprise to nearly all 
energy producers, governments, and forecasters. It may be unreasonable to expect 
forecasters to have foreseen such a dramatic shift in the global economics and pol- 
itics of oil. How well, then, did forecasters do in adapting to the new world of 
volatile energy prices and slower economic growth? 

The first oil shock in 1973 led to the growth of a huge energy modeling indus- 
try, which soon offered detailed models of every aspect of the energy system. 
Many of these models are among the most complex public policy models ever de- 
veloped. Unfortunately, their forecasting record is poor. 

Forecasts of energy consumption in the United States (and other nations) ad- 
justed very slowly to the new realities of the energy system. Figure 16-5 shows 
forecasts of total US energy consumption for 1985 along with actual consumption. 
After 1973, as actual consumption fell, forecasts of energy consumption in the 
United States also began to drop. Forecasts made in the early 1970s projected US 
energy consumption in 1985 to be about 130 quadrillion BTUs or “quads” 
(1 quad/year = 1015 BTU/year). Actual energy consumption in 1985 was less than 
74 quads, a 75% overestimation. Similar errors were observed in the forecasts for 
other nations and time horizons and for electricity and other fuels (Lynch 1994; 
Nelson and Peck 1985). The large errors and seemingly reactive nature of the fore- 
casts suggest trend extrapolation may have been used by many of the forecasters. 
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FIGURE 16-5 
Forecasts of US 
total energy 
consumption in 
1985 
Each point 
represents a 
forecast of 
consumption in 
the year 1985, 
plotted in the 
year the forecast 
was made. 

t 

Many early forecasts, particularly prior to the oil shocks of the 1970s, were indeed 
made by extrapolation. But trend extrapolation seems naive to many observers, 
who point out-quite correctly-that energy demand forecasts are often the result 
of extensive studies involving detailed, multidisciplinary analysis and sophisti- 
cated models. 

In Sterman (1987, 1988b) I tested the ability of the TREND function to model 
the evolution of forecasts of total US primary energy consumption in 1985 (Figure 
16-5). The input to the forecasts was actual energy consumption. The expected 
fractional growth rate estimated by the TREND function was then projected to 
continue from the current time to the forecast horizon of 1985. 

Specifically, the forecast made in year t of energy consumption in forecast year 
FY, denoted FC,(t), was calculated by 

FC,(t) = PPC(t) * (1 + TREND(t) * TPPC) * exp(TREND(t) * (FY - t)) (16-2) 

where PPC is the perceived present condition of actual energy consumption and 

TREND(t) = TREND(C(t); TPPC, THRC, TPT) (16-3) 

is the expected trend in actual consumption C estimated by the TREND function. 
In equation (16-2) forecasters recognize that the most recent data are out of 

date due to measurement and reporting delays and adjust the perceived present 
condition by the growth expected to have occurred between the date represented 
by the most recent data and the present time. The growth correction is TREND(t) 
* TPPC. As shown in section 16.6, this correction ensures that the perceived pre- 
sent condition will equal the actual value of the input when the input is growing at 
a steady exponential rate. The forecast for some future year is then constructed 
from the estimate of current consumption given by PPC * (1 + TREND * TPPC) 
by assuming consumption will grow at the current perceived TREND between the 
present time and the forecast horizon FY. Equations (16-2) and (16-3) therefore 
yield an unbiased forecast in the steady state of exponential growth in the input. 

I estimated the parameters of the TREND function econometrically for fore- 
casts of energy consumption in 1985. The estimated parameters were TPPC = 1.2, 
THRC = 5.4, and TPT = 3.2 years, respectively. Data for annual energy con- 
sumption at any time were only available through the prior year, at best, due to 
measurement and reporting lags, so the estimated value of TPPC is reasonable. The 
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FIGURE 16-6 
Response of 
TREND function 
with parameters 
eslimated for 
energy forecasts 
Thle input 
begins growing 
exponentially 
at 5%/year at 
timle zero. 
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other parameters are also reasonable. Energy consumption is tied to the size of the 
capital stock in the economy, a stock that turns over only slowly, giving consump- 
tion significant inertia. Forecasts of long-term growth in energy consumption 
should be based on a correspondingly long-term historical view and are likely to 
react slowly; long-term forecasts should not rise and fall with short-term move- 
ments in energy consumption caused by business cycles and other temporary vari- 
ations. Figure 16-6 shows the response of the TREND function with the estimated 
parameters to a step change in the growth rate of the input. The response is quite 
slow: After 5 years, the expected growth rate has adjusted only 25% of the way to 
a change in the growth rate of the input; two decades are required for the expected 
growth rate to adjust 95% of the way. 

Figure 16-7 compares the simulated forecasts to the actual forecasts for 1985. 
As the growth rate of actual consumption rose during the postwar boom, the sim- 
ulated forecasts rise from about 70 quads/year in the early 1950s to about 125 
quaddyear in 1973. The forecasts steadily fall after 1973 as actual consumption 
growth slowed in the wake of 1973 and 1979 oil shocks and the deep recessions of 
1974-75 and 1979-82. The simulated forecasts pass quite close to the median of the 
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FIGURE 16-8 
Forecast and 
actual total 
electricity 
consumption 
in the US 
Forecasts of the 
North American 
Electricity 
Reliability 
Council (NERC), 
1974-1 990. 
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actual forecasts. The mean absolute error between the model and the forecasts as a 
percent of the median forecast exceeds the minimum possible error by just 1 %.6 

Similar behavior is also documented for other fuels. For example, 10-year 
forecasts of total US electricity demand produced by the North American Electric 
Reliability Council, an industry association of electric utilities, exhibit similar 
overshooting (Figure 16-8). Electricity growth before 1973 had been rather con- 
stant at about 7%/year. After 1973 the growth rate fell. The forecasts only slowly 
adapted to the change, leading to more than a decade of grossly overoptimistic 
forecasts. Nelson and Peck (1985) show that the NERC forecasts are modeled ex- 
tremely well by exponential extrapolation of current consumption assuming the 
historic growth rate will continue. They modeled the hstoric growth rate with first- 
order smoothing of the year-to-year growth rate, a procedure similar to the TREND 
function. They found the smoothing time during the 1970s to be about 5 years, 
consistent with the estimated parameters for total energy consumption. 

Forecasts of energy consumption have been made with a wide range of tech- 
niques and models. Many of these models are quite complex and do not appear to 
be simple univariate extrapolations. Yet no matter how sophisticated, each model 
relies upon exogenous variables or parameters. These might include GDP, popula- 
tion, energy prices, and technological progress. Theory provides no strong guid- 
ance in selecting the assumed future values of these inputs, all of which must be 
forecast judgmentally. Along with highly uncertain parameters such as the price 
elasticities of energy demand and the supply curves for different resources, the ex- 
ogenous inputs serve as free parameters modelers use to manipulate the forecasts 
to be consistent with the conventional wisdom of the day. The correspondence of 
the simulated and actual forecasts suggests that the recent trend acts as a strong 
constraint upon choice of these fudge factors. 

I frequently observed such behavior when I worked at the US Department of 
Energy in the late 1970s. Senior officials in the department were keenly aware of 

%rice there are often multiple forecasts for a given year, the minimum possible error is greater 
than zero. 
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the forecasts their agency and other organizations had made the prior year; these 
forecasts constrained what they deemed to be politically acceptable for the current 
forecast. Some officials believed the department could not, for political reasons, 
forecast future consumption to be as low as projected by environmental groups. 
Forecasts in which the economy was assumed to grow at less than historical rates 
or in which conservation reduced energy consumption per capita were considered 
unacceptable. At the same time, they felt it would be unseemly for the government 
to project consumption exceeding the aggressive forecasts of oil companies and 
energy industry associations. The department’s forecasts generally fell near the 
high end of the range. 

A strong herd mentality among forecasters reinforced the dominance of trend 
extrapolation by ensuring that next year’s forecasts were based on and not too dif- 
ferent from last year’s. In 1972 forecasts of US primary energy consumption in the 
year 2000 ranged from a high of nearly 200 quaddyear, projected by the Depart- 
ment of the Interior and Federal Power Commission, to a low of 125 quaddyear, 
projected by environmental activist Amory Lovins. By 1983, as the trend extrapo- 
lation model suggests, the forecasts had fallen by a factor of two. Government and 
industry groups projected consumption in 2000 to be about 100 quaddyear, while 
Lovins projected that consumption could be less than 50 quaddyear if the nation 
pursued a “soft energy path” emphasizing efficiency rather than production. 
Though the forecasts fell by a factor of two in just a decade, the rank order of fore- 
casts within any year remained remarkably stable. Year after year the highest fore- 
casts were those of the energy industry, followed closely by government agencies, 
with environmentalists projecting the lowest totals. The close attention each fore- 
caster paid to the projections of others and the political constraints on departures 
from the range of prior forecasts slowed the adjustment of the forecasts to reality. 
The median forecast followed the path predicted by simple trend extrapolation of 
past growth in actual consumption, with the forecasts of individual groups and or- 
ganizations adjusted above or below the median in accordance with their particu- 
lar ideology and political agenda. 

In such highly politicized environments it is small wonder that many modelers 
cherish the free parameters enabling them to adjust their forecasts to match the ex- 
pectations of their clients. 

CASE STUDY: COMMODITY PRICES 
Smoothing and trend extrapolation also explain forecasts of the prices of many 
commodities. As an example, Figure 16-9 shows the cash price of cattle in the US 
from 1972 to 1986, a period of great price ~olati l i ty.~ Also shown are the one- 
quarter-ahead forecasts of Glenn Grimes, a professor of agricultural economics at 
the University of Missouri and a respected professional livestock market analyst. 
Grimes’ forecasts are widely circulated through the agricultural extension system 
in cattle country. Grimes’ forecasts are also interesting because, as Bessler and 
Brandt (1992) show, his 3-month-ahead forecasts are actually more accurate than 

7Figure 20-2 shows a much longer history of the cattle market, illustrating the persistent cycles 
in prices, production, and stocks. 
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Grimes Forecast 

FIGURE 16-9 
Cattle prices and 
forecasts 
Actual and 
forecast cash 
price for cattle in 
Omaha, $/CWT 
(hundredweight). 
Forecasts are 
one-quarter-ahead 
forecasts of Glenn 
Grimes, plotted 
against the actual 
outcomes. 
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the cattle futures market (specifically, Grimes’ forecasts have lower mean square 
error than the 3-month-ahead futures price). Inspection of Grimes’ forecasts, how- 
ever, reveal a tendency to miss the turning points in the market and to overshoot 
after sustained price movements, for example, after the large rise in prices between 
1977 and 1979. 

The phase lag and overshoot in the predictions suggests Grimes may be fore- 
casting by smoothing recent prices and then extrapolating the recent trend. The 
same formulation used to model the energy demand forecasts is specified to test 
this hypothesis. The one-quarter-ahead forecast of cattle prices, P*(t), is modeled 
by extrapolating the perceived present condition by the expected growth rate g* 
over the one-quarter-year forecast horizon FH: 

P*(t) = PPC(t) * [l + TPPC * g*(t)] * exp(FH * g*(t)) 

g*(t) = TREND(P(t), TPPC, THRC, TPT) 

(1 6-4) 

(16-5) 

As in the case of energy demand, the perceived present condition is adjusted for 
the change expected to occur over the time required to perceive the present condi- 
tion TPPC. The formulation for the simulated forecast will therefore yield an un- 
biased estimate of price in the steady state of exponential growth. 

The parameters were estimated econometrically and found to be TPPC = 0.60, 
THRC = 6.00, and TPT = 0.56 years, all reasonable values. Figure 16-10 shows 
the correspondence between the simulated and actual forecasts. The model repli- 
cates Grimes’ forecasts well: The mean absolute percent error is about 4.5%, and 
the R2 of the model is 0.95. Because smoothing introduces a delay, the simulated 
forecasts, like the actual forecasts, miss major turning points in price. Because it 
takes time for expectations about the trend to change, the model also captures the 
overshoot of the forecasts after the large price rise in the late 1970s when Grimes, 
like the TREND function, predicted price increases to continue for a while even 
though actual price fell. 

Professor Grimes reported that he forecasts by closely monitoring fundamen- 
tals in the market. He stays in close touch with market participants including 
breeders, producers, and packers, and draws on extensive supply-side data in- 
cluding stocks of cattle on feedlots, breeding stocks, and slaughter rates. On the 
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demand side, he tries to assess not only the impact of prices but also changes in 
people's lifestyles such as the trend in the past decades toward leaner diets with 
less red meat. His experience, contacts, and focus on fundamentals did allow him 
to forecast significantly better than participants in the futures market. Nevertheless, 
as observed in the case of energy consumption, univariate extrapolation explains 
the bulk of the variance in the forecasts, leaving only a small residual to be ex- 
plained by the influence of other variables such as the number of cattle on feedlots, 
breeding and slaughter rates, the prices of other commodities, and so on. Past 
prices form a powerful anchor on judgments of future price. Subjective adjust- 
ments in response to other factors have only a weak effect due to their variability, 
uncertain connection to price movements, and lack of salience compared to prices 
themselves. No doubt these factors do have some impact on the forecasts. But sub- 
jective assessments of lifestyle changes causing people to eat less beef, and even 
reports that certain breeders want to increase their herds, are likely to have a weak 
effect indeed compared to a powerful trend in price itself. 

CASE STUDY: INFLATION 
Inflation expectations are critical to decisions throughout all sectors of the econ- 
omy, including monetary policy, the pricing of stocks and bonds, capital invest- 
ment, collective bargaining, projections of tax revenue and government 
expenditures, and your own investment decisions. The stakes are high and the task 
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is daunting: Inflation is volatile (Figure 16-3) and is affected by a host of economic 
events and variables. Consequently, inflation is one of the most intensively studied 
economic indicators. A small army of professional economists in academia, private 
businesses, government agencies, and professional forecasting firms devote the 
better part of their careers to forecasting inflation. How well do they do? 

For more than 50 years, beginning in 1946, the Philadelphia-based financial 
journalist Joseph Livingston conducted a survey of economic forecasters. The 
panel included a wide range of professional forecasters and economists from busi- 
ness, government, and academia. One of the survey questions solicited forecasts of 
the CPI, 6 and 12 months ahead. These inflation forecasts provide one of the 
longest continuous series directly measuring people’s expectations and have been 
extensively analyzed in the economics literature.8 

Figure 16- 11 compares the Livingston panel’s 6- and 12-month forecasts to the 
actual inflation rate through 1985. Actual inflation was quite volatile from the end 
of World War I1 through the Korean war. Inflation was low during the late 1950s 
and early 60s. Between the mid 60s and 1980, inflation generally accelerated and 
fluctuated substantially over the business cycle. After 198 1 inflation fell sharply. 
Comparing the forecasts against the actual outcome highlights 

1. 

2. 

3. 

Bias: The forecasters consistently underpredict inflation during the 1960s 
and 1970s, when inflation accelerated, and overestimate somewhat during 
the 1980s, when inflation fell. 
Phase shift: The peak (trough) of the expected inflation rate lags the peak 
(trough) of the actual inflation rate. Forecasters consistently missed the 
turning points in inflation caused by the business cycle. 
Attenuation: The actual rate of inflation fluctuates significantly over the 
business cycle, particularly in the 1970s and 1980s. The amplitude of the 
forecasts is substantially less than that of actual inflation. 

The bias, phase lag, and attenuation are all suggestive of smoothing and trend 
extrapolation. How well can the TREND function replicate the forecasts of 
the panel? 

In Sterman (1987) I examined the ability of the TREND function to model the 
6-month Livingston forecasts. The output of the TREND function was compared 
against the panel’s forecasts of the inflation rate over the next 6  month^:^ 

Expected Inflation = TREND(CP1; TPPC, THRC, TPT) (16-6) 

In most modeling situations actual expectations data are unavailable and the 
modeler must estimate the parameters judgmentally. While the parameters for the 

*E.g., Croushore (1997), Caskey (1985), Peek and Wilcox (1984), Bomberger and Frazer 
(1981), Jacobs and Jones (1980), Pearce (1979), Mullineaux (1978), and Pesando (1975). 

9The panel actually forecast the level of the CPI. However, because the CPI has risen so much 
since 1946 it is difficult to assess forecast accuracy from the predicted levels of the CPI. Instead the 
rate of inflation implicit in the panel’s forecasts is compared directly against the expected growth 
rate generated by the TREND function. 
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energy and cattle forecasts were estimated econometrically, I used judgmental 
estimates of the parameters to model the inflation forecasts. 

The values chosen to model the 6-month forecasts were TPPC = 2, THRC = 
12, and TPT = 2 months. The Livingston forecasts were dated June and December 
of each year. Carlson (1977) shows that due to lags in reporting the CPI and in the 
time required to administer and tabulate the survey the Livingston panel made their 
forecasts knowing the CPI only through April and October, respectively. Thus the 
panel members were actually making 8- and 14-month forecasts and TPPC is set 
to 2 months to capture the delay in perceiving the current value of the CPI.'O 

The l-year time horizon for the reference condition was selected as follows. 
First, 1 year is a common, convenient, and easily justified reference point. Second, 
comparing the most recent data against the year-ago value is a simple way to filter 
out any residual seasonal variations in inflation (the panel used the seasonally 

'OAfter the 1970s some forecasters probably knew the May and November CPI values, but 
Livingston's procedure does not definitively indicate which values the panel used. 
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FIGURE 16-12 
TREND function 
compared to the 
Livingston panel's 
6-month forecast 
The parameters 
of the TREND 
function are 
TPPC = 2, 
THRC = 12, and 
TPT = 2 months. 
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adjusted CPI but the adjustments are not perfect). Third, the raw inflation data 
(Figure 16-3) are dominated by high-frequency (monthly) noise. Six- and 12- 
month forecasts should not be overly sensitive to monthly changes in reported in- 
flation that may be revised or reversed next month. For professional reasons 
(consistency) and cognitive reasons (minimizing dissonance) forecasters are un- 
likely to revise their expectations dramatically from month to month despite the 
volatility of the data. With a smoothing time of 12 months, the reference condition 
attenuates 97% of the month-to-month noise yet adjusts to 63% of a change in the 
perceived present condition (Forrester 1961, p. 417). 

The trend perception time of 2 months implies respondents' beliefs adjust 
nearly completely to a change in the indicated trend within 6 months (three time 
constants), meaning the forecasters assimilate and respond to apparent changes in 
the trend since their last forecast. One would expect THRC and TPT to be slightly 
longer for the 12-month forecasts." 

Figure 16-12 shows the simulation results for the 6-month forecasts. The 
TREND function reproduces the bias, attenuation, and phase shift apparent in 
the actual forecasts, but the simulated forecasts are high on average compared to 
the Livingston data. In fact the TREND function yields a better forecast than the 
Livingston panel! The mean absolute error (MAE) between simulated and actual 
forecasts is 0.014 (Table 16-2). The Theil inequality statistics (Theil 1966; Sterman 
1984) decompose the mean square error (MSE) into three components: bias, un- 
equal variation, and unequal covariation so systematic error can be separated from 
unsystematic random differences between the simulated and actual data (see chap- 
ter 21). A full 40% of the MSE is caused by bias. The remainder is due to unequal 
covariation, meaning 60% of the MSE is unsystematic. The unequal variation term 
is virtually zero (the two series have equal variances). 

There are two principal competing explanations for the bias. The actual fore- 
casting process used by the Livingston panel may be more sophisticated than the 
univariate TREND function. Other economic variables may be considered, such as 

"But only slightly. The 6-month forecast determines the inflation path for the first half of the 
annual forecasts. Forecasters are unlikely to project a radically different inflation rate for the second 
half of the forecast year. In fact, the 6- and 12-month forecasts are quite similar (Figure 16-11). 
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TAl3LE 16-2 
Error analysis of 
sirriulated inflation 
forecasts 
MAE = Mean 
Absolute Error; 
MSE = Mean 
Square Error; 
UM = Fraction of 
MSE due to bias; 
Us = Fraction of 
MSE due to 
unequal variation; 
Uc = Fraction of 
MSE due to 
unequal 
covariation; 
r = Correlation 
coefficient 
between simulated 
and actual fore- 
casts. See text 
for explanation of 
the three models; 
see chapter 21 ,for 
explanation of the 
Theil statistics. 

Model 
MAE MSE UM Us Uc r 

(1 /years) (1 /years)* (d i mens i o n I ess) 

No anchor 0.01 40 4.0 E-4 0.40 0.00 0.60 0.88 
Fixed anchor 0.0099 2.41E-4 0.08 0.15 0.77 0.88 
Sea anchor 0.0088 1.92E-4 0.16 0.03 0.81 0.91 

money supply growth, the government budget deficit, and the unemployment rate. 
In addition, different information processing routines may be used. Some re- 
searchers, such as Caskey (1985), assume that the Livingston forecasters draw on 
a wide range of macroeconomic indicators and use optimal Bayesian updating to 
predict inflation. This seems unlikely. Experimental evidence suggests people are 
much more conservative in belief updating than Bayes’ Theorem predicts (PIOUS 
1993). Further, any theory that people optimally combine a wide range of cues 
must explain why this more sophisticated process is decidedly inferior to univari- 
ate trend extrapolation. The fact that simple extrapolation of recent inflation rates 
outperforms the professional forecasters suggests accurate modeling of the infla- 
tion forecasting process requires even greater bounds on the rationality of the ex- 
pectation formation process than the TREND function presumes. 

The TREND function assumes forecasters track the actual rate of inflation, 
with a delay. Over time errors will be gradually corrected. However, behavioral de- 
cision theory suggests forecasters may be influenced by several heuristics known 
to cause systematic errors in judgment. In particular, past inflation itself is likely to 
act as a strong anchor on people’s forecasts. Anchoring and adjustment, as de- 
scribed in section 13.2.10, is a common and powerful judgmental heuristic, one 
that often affects judgments inadvertently. The advantage of the anchoring and ad- 
justment strategy is its simplicity and intuitive appeal. The disadvantage is the 
common tendency to underpredict, that is, to revise prior beliefs too little when 
faced with new data. Judgments are often unintentionally anchored to reference 
points that are implicit (such as even odds in a bet or the axis of a graph). People’s 
judgments exhibit anchoring even when the irrelevance of the anchor to the task is 
made salient. 

These considerations suggest the forecasters’ judgments may be influenced by 
an anchor that biases the forecast downward from the values indicated by ex- 
trapolation of the recent inflation rate. The anchoring and adjustment strategy can 
be modeled as follows: Suppose the Livingston panel forms inflationary expecta- 
tions as 

Expected Inflation 
(16-7) 

= (1 - W) * TREND(CP1; TPPC, THRC, TPT) + w * ANCHOR 

In (16-7), the simulated Livingston forecast is a weighted average of the TREND 
function and an ANCHOR, with the anchor given a weight w. The parameters of 
the TREND function are the same as those used in (16-6). The anchor can be 
thought of as an underlying reference point that the panel uses, consciously or un- 
consciously, when forecasting. 
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FIGURE 16-1 3 
Simulated 6-month 
Livingston 
forecasts: fixed- 
anchor model 

The simplest assumption is the “fixed-anchor” model in which ANCHOR = 0. 
Zero price change is a natural choice for the anchor: Zero change is the simplest 
naive model (“tomorrow will be like today”) and zero inflation is a commonly 
stated goal of policy makers. Equation (16-7) then reduces to 

Expected Inflation = (1 - w) * TREND(CP1; TPPC, THRC, TPT) (16-8) 

which implies forecasters will always underpredict the magnitude of inflation. Fig- 
ure 16-13 shows the fit of the fixed-anchor model using w = 0.20. The fit is im- 
proved substantially compared to the “no-anchor” model: The MAE falls by 29%. 
The Theil statistics show the bias is reduced to 8% of the MSE and the bulk of the 
remaining error is unsystematic (unequal covariation). 

The anchoring and adjustment model fits the forecasts better than the TREND 
function alone. However, the fixed-anchor model assumes forecasters always un- 
derpredict and would never learn to correct their optimistic bias even if the rate of 
inflation held steady indefinitely. The fact that the no-anchor model is generally 
high between 1947 and 1983 suggests that the panel felt the underlying inflation 
rate was lower than the actual rate of inflation, biasing their forecasts. However, 
the underestimation by the no-anchor model after 1983 suggests the anchor had 
risen during the high-inflation 70s, causing the panel to continue to forecast high 
inflation in the mid 80s despite much lower actual rates. 

The idea that the anchor represents the panel members’ long-term experience 
of inflation suggests a model in which the anchor itself adjusts very slowly to 
changes in the inflation rate-a “sea-anchor” model. A sea anchor is a large object, 
usually a cone of sailcloth, suspended by a cable in the calmer waters below a ship. 
Sea anchors stabilize a ship’s position in waters too deep for conventional anchors 
to attach to the bottom. The ship still moves with the wind, waves, and currents, 
but the sea anchor slows its motion by creating extra drag. Similarly, panel mem- 
bers’ life experience with inflation, their belief about the underlying inflation en- 
vironment, may act as a sea anchor on their judgments of short-run inflation. 

The anchor is now specified by the TREND function, but with much longer 
parameters: 

ANCHOR z= TREND(CP1; TPPCA, THRCA, TPT,) ( 16-9) 
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where the parameter TPPC, is the time to perceive the present condition for the an- 
chor, and so on. The anchor should respond slowly to changes in the underlying in- 
flation rate and should not respond significantly to temporary changes. The 
parameters were chosen to reflect the long-term nature of the anchor: TPPC, = 1, 
THRC, = 10, and TPT, = 3 years. These values are long enough to attenuate 
changes in inflation more rapid than the short-term business cycle. The initial 
(1947) value of the anchor was set to -3%/year, implying that the panel’s judg- 
ments were initially biased toward mild deflation. Many economists, recalling the 
deflation of the Great Depression and the recession and falling prices that followed 
World War I, worried that the United States would return to depression after World 
War 11. The weight on the anchor was set to 0.25. Figure 16-14 compares the sea- 
anchor and actual forecasts and shows the components of the sea-anchor forecast. 
The anchor reduces the forecasts until 1983, when inflation falls substantially. The 
anchor then keeps the simulated forecast high, improving the fit between 1983 
and 1985. 

The sea-anchor model is theoretically more satisfying and also more robust 
than the fixed-anchor model. It allows for learning: If inflation remains steady the 
model eventually produces unbiased forecasts (as seems to have occurred between 

Sea-Anchor Model vs. 6-Month Livingston Forecast 
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FIGURE 16-15 
Six-month 
Livingston forecast 
vs. actual inflation, 

The plotted values 
of actual inflation 
differ slightly 
compared to 
Figure 16-11 due 
to revisions in the 
CPI since 1985. 

1947-1 997 

FIGURE 16-1 6 
Livingston panel's 
6-month forecast 
compared to sea- 
anchor model, 
1947-1 997 

1958 and 1965). In a hyperinflation the fixed-anchor model would seriously under- 
predict inflation, while the sea-anchor model would learn to expect it. The sea- 
anchor model reduces the MAE by another 11%. The MSE is still primarily 
unsystematic, and the correlation between the simulated and actual forecasts im- 
proves slightly. 

The analysis in Sterman (1987) reported here was done with data from 1947 
through 1985. The sea-anchor model does quite well in explaining the behavior of 
inflation forecasts over this 40-year span. Since 1985, however, the dynamics of 
inflation have changed dramatically. Inflation continued to fall, and the economy 
attained virtual price stability by the mid 1990s. By 1997 many respected econo- 
mists were, for the first time since the Great Depression, seriously discussing the 
dangers of deflation. How does the sea-anchor model hold up in tracking this tur- 
bulent period? Since Livingston's death in 1990 the Federal Reserve Bank of 
Philadelphia has continued the survey. Figure 16-15 shows the 6-month forecasts 
against actual inflation through 1997. Consistent with the sea-anchor hypothesis, 
forecasters generally continued to expect inflation to be somewhat higher than it 
turned out to be throughout the late 1980s and 1990s. 

Figure 16- 16 compares the performance of the sea-anchor model to the actual 
forecasts, using the judgmentally estimated parameters originally chosen in the 
1987 analysis. The model suggests that the underlying long-term trend anchoring 
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the inflation forecasts peaked around 1985 at about 6.5%/year and fell to around 
4%/year by 1997. The simulated forecasts track the actual forecasts reasonably 
well, though the model forecasts are high by an average of about 0.3%/year be- 
tween 1985 and 1997, a small fraction of the standard deviation of the individual 
forecasts comprising the panel mean. 

Clearly, the fit between the data and model is not perfect. The fit could be im- 
proved by incorporating the influence of other economic variables and by estimat- 
ing the parameters econometrically rather than using the original judgmental 
estimates selected in the 1987 paper. 

The historical fit of the model could also be improved by allowing the para- 
meters of the model to vary over time. Over the 50 years examined here the basis 
for and methods of computing the CPI have changed dramatically. These revisions 
in the CPI mean the historic rate of inflation is now different from what it was at 
the time the forecasts were made. The quality and availability of other potentially 
relevant economic data have improved markedly, and the tools available to fore- 
casters were transformed from slide rules and graph paper to computers and so- 
phisticated econometric models. And of course, the membership of the Livingston 
panel has changed completely. Forecasters, reacting to the greater volatility of in- 
flation since the 1970s, may have become more sensitive to recent price changes. 

Nevertheless, the ability of the sea-anchor model to track the forecasts as well 
as it does for half a century, though it relies on only a single cue and uses fixed, 
judgmentally estimated parameters, suggests that the underlying cognitive 
processes people use to forecast inflation are rather simple and stable. 

The TREND function and the sea-anchor model portray inflation forecasting 
as a process that is highly bounded in its rationality. While there are dozens of eco- 
nomic variables people believe to be causally or statistically related to the likely 
future rate of price change, the sea-anchor model assumes forecasts are formed 
solely through consideration of the past trend in prices itself. While many fore- 
casters use complex economic models and sophisticated forecasting methods, the 
sea-anchor model assumes people forecast that recent inflation rates will continue 
but adjust their estimates by their intuitive feeling about the underlying inflation 
environment. The close correspondence of the actual forecasts to the sea-anchor 
model suggests the impact of other potentially relevant economic variables on the 
panel’s forecasts is weak. 

The weak influence of other indicators in the panel’s forecasts is consistent 
with behavioral decision theory. People are incapable of correctly deducing the 
consequences of intricate dynamic systems such as the economy and tend instead 
to process information with simple, incomplete, and erroneous mental models. In 
doing so people prefer relatively certain information to uncertain, noisy informa- 
tion. The future values of potentially relevant variables such as the money supply, 
interest rates, unemployment, economic growth, exchange rates, and budget 
deficits are themselves noisy, uncertain, variable, controversial, and difficult to 
forecast. There is substantial disagreement among economists about the nature of 
the relationships between these variables and the rate of inflation. Recent inflation 
itself, in contrast, provides a powerful, salient, and relevant cue, measured in the 
same units as the target variable, and is likely to form a strong anchor on people’s 
forecasts. 
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As discussed for the case of energy demand, decision aids such as econometric 
models do not solve the problem since the modeler’s judgment is always needed to 
specify the model structure and the future values of the exogenous variables. In 
fact, the forecasts of many econometric models are heavily “add-factored‘’ by the 
modelers. An add factor is simply a quantity added to the output of an econometric 
model to bring the forecast in line with the modeler’s intuition; it is a fudge factor. 
A model might predict inflation was going to be 2% over the next year, but if fore- 
casters believed that was too low, they might add a fudge factor of, say, 1% to 
bring the forecast up to their intuitive judgment that inflation will be 3%/year (see 
chapter 21). Defenders of add factoring argue that it allows them to take the latest 
available data into account, overcomes limitations of the models, and enables them 
to bring their expert knowledge to bear. But experts are prone to many of the same 
judgmental biases observed in the public at large (Tversky and Kahneman, 1974; 
Kahneman, Slovic, and Tversky, 1982). Indeed, Caskey (1985) shows the Livings- 
ton panel’s forecasts of inflation are virtually identical to those generated by DRI 
(Data Resources, Inc.), one of the largest and most successful econometric fore- 
casting firms. In a world of great uncertainty, inflation forecasts are strongly influ- 
enced by recent trends in inflation itself despite the fact that forecasters claim to 
consider a wide range of variables and spend considerable resources on complex 
econometric models. 

The close correspondence of the forecasts produced by different forecasters 
and different methods also reflects a herd mentality in the forecasting community. 
Professional forecasters pay careful attention to the projections of their rivals and 
colleagues. Herding behavior among forecasters arises in part from basic psycho- 
logical factors and social pressures. Research shows people tend to revise their 
opinions toward those of others, even strangers. Asch (1951, 1956) had people se- 
lect which of three lines was the same length as a reference line. Alone, people got 
it right more than 99% of the time. Then people were asked to judge the length of 
the lines after a group of others announced their opinions. The other people, se- 
cretly working with Asch, would deliberately give erroneous answers, saying that 
a line of, for example, 3 inches was the same length as another of 3.75 inches. Asch 
found that groups as small as three caused one-third of the people tested to agree 
that the 3-inch line was in fact equal in length to the 3.75-inch line. The tendency 
to revise opinions toward those of others in a group is stronger when the other 
group members are known to and respected by the subject and when the opinion 
concerns matters more ambiguous and uncertain than the length of a line-for ex- 
ample, the future rate of inflation. 

The incentives forecasters face also reinforce herding. Many believe it is much 
worse to be the only one wrong than to be one of many making the same error. 
When misery loves company it is rational for individuals to shade their forecasts 
toward the consensus view even when market fundamentals or their private infor- 
mation indicate a different forecast. Forecasters herd together, adjusting their fore- 
casts toward the views of and emphasizing the cues used by whomever among 
them has gotten lucky lately and produced an accurate forecast (Froot, Scharfstein, 
and Stein 1992 develop a related game-theoretic model of herding in investor 
behavior). 
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16.5 lMPLlCATlONS FOR FORECAST CONSUMERS 
The results suggest important lessons for forecasters and especially for managers 
and decision makers who must choose which forecasts and forecasting methods 
to buy. 

First, most forecasts are not very good. Forecasts are most accurate when the 
underlying dynamics are stable, as when predicting the influence of regular phe- 
nomena such as seasonal variations. But forecasting methods are particularly poor 
when there are changes in trends, noise, and other sources of turbulence. These are 
precisely the times when people are most interested in forecasts. 

Second, most forecasting methods frequently miss changes in trends and turn- 
ing points in cycles, lagging behind rather than anticipating them. The systematic 
errors in forecasts of inflation, commodity prices, energy use, and other variables 
strongly suggest adaptive expectations and simple trend extrapolation often domi- 
nate professional forecasts. These methods do correct errors over time, but because 
they involve smoothing past data, they inevitably introduce delays that cause the 
forecasts to miss key turning points and shifts in growth rates. 

Third, smoothing and extrapolation of the past trend in the variable itself 
seems to dominate other considerations in forecasting. Though forecasters often 
claim to (and indeed may) examine a wide range of variables in making their fore- 
casts, past values and past trends strongly anchor their forecasts. The influence of 
other variables is weak because their connections to the target variable are poorly 
understood, unstable, noisy, and ambiguous. Forecasters often behave as if they 
were using simple smoothing and naive extrapolation even when they are using 
complicated formal models. They adjust the parameters and values of exogenous 
inputs until the output of the model is “reasonable,” that is, until it matches their 
intuition. Intuition, however, is biased by a variety of judgmental heuristics and 
tends to be strongly anchored to recent trends. 

Fourth, forecasters tend to underestimate uncertainty in their forecasts, often 
failing to provide a range, alternative scenarios, or a list of factors to which their 
forecasts are sensitive (see the overconfidence bias, section 8.2.5). 

How then can managers improve the value they get from forecasts? Fight 
against the overconfidence bias by explicitly challenging assumptions and asking 
how your expectations might be wrong (for practical examples, see Russo and 
Schoemaker 1989). Require forecasters to document their assumptions, make their 
data sources explicit, and specify the methods they are using. Don’t allow fore- 
casters to use add factoring (chapter 21 discusses standards for replicability and 
rigor in modeling). 

Even so, improving forecast accuracy is difficult. The best way to improve the 
benefitkost ratio of forecasting is to reduce the cost. The projections of expensive 
forecasting services and models tend to be dominated by smoothing and trend ex- 
trapolation. Managers can save a great deal of money by smoothing and extrapo- 
lating the data themselves. Forecast accuracy may not improve, but the cost of 
acquiring the forecasts will fall. 

Finally, focus on the development of decision rules and strategies that are ro- 
bust to the inevitable forecast errors. The real value of modeling is not to anticipate 
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and react to problems in the environment but to eliminate the problems by chang- 
ing the underlying structure of the system. Modelers and their clients should be de- 
signers, not diviners. In the words of Antoine de Saint-Exuphry, “As for the future, 
your task is not to foresee, but to enable it.” 

Extrapolation and Stability 
The expectation formation process can dramatically affect the stability and perfor- 
mance of a system. To explore the impact of extrapolative expectations in dynamic 
models, consider the models of new-product growth developed in chapters 9 and 
10. These models did not explicitly include expectations about future demand. Be- 
cause it takes time to build capacity, however, managers in growth markets must 
forecast the demand for their products far in advance. Forecasting too little growth 
leads to capacity shortages, eroding market share (you can’t sell more than you can 
make). Forecasting too much growth, on the other hand, leads to excess capacity, 
destroying profitability. 

Consider the typical life cycle of a successful new durable product. Sales rise 
initially at rapid exponential rates. As the market grows, the fractional growth rate 
slows. Eventually, sales peak, then fall to a rate that covers replacement of dis- 
carded units and growth in the total customer base. The diffusion of VCRs in the 
US shown in Figure 10-8 provides an example. 

Figure 9-22 in section 9.3.6 presents a simple model of the life cycle for 
durable products. Based on the Bass diffusion model, the model represents sales as 
the sum of initial and replacement purchases: 

Sales Rate = Initial Purchase Rate + Repeat Purchase Rate (16-10) 

The model does not include production capacity at all, implicitly assuming capac- 
ity is always adequate and never constrains sales (orders always equal sales equal 
deliveries). The assumption that capacity is always adequate requires either that ca- 
pacity can be adjusted instantly or that demand forecasts are always perfect. Both 
assumptions are false. Capacity acquisition delays in many industries are long, and 
forecasts are often erroneous. 

Modify the model shown in Figure 9-22 to include demand forecasts and ca- 
pacity adjustments. To begin, note that in the original model there are no distinc- 
tions among orders, sales, and deliveries. All are implicitly assumed to be equal. 
When capacity adjustment lags are introduced, you must distinguish between these 
concepts. Let the sales rate in equation (16-10) represent the order rate (demand) 
for the product. The firm can only deliver product if capacity exceeds sales:12 

Delivery Rate = MIN(Sa1es Rate, Capacity) (16-11) 

I2The forniulation for the delivery rate assumes that any sales (orders) that can’t be delivered 
due to capacity constraints are lost forever. Implicitly, customers are highly delivery sensitive and 
forego adoption when the product is unavailable. More realistically, any unfilled orders accumulate 
in a backlog, and the desired delivery rate depends on the size of the backlog, not the current order 
rate. For the purposes of this challenge ignore the backlog (and possible inventories). You might 
add backlogs to test the robustness of your results in this challenge to this important assumption 
about market structure. You can also replace the MIN function with its fuzzy counterpart (section 
13.2.8). 
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It is not necessary to model the stock and flow structure for capacity acquisition in 
detail (chapter 17 develops this structure). Instead, it is sufficient to assume capac- 
ity adjusts to the desired level with a delay (as assumed in the market growth 
model developed in chapter 15). For simplicity, assume the lag in capacity is the 
same for increases and decreases. A third-order delay provides a realistic represen- 
tation of the capacity adjustment process (chapter 11): 

Capacity = SMOOTH3(Desired Capacity, Capacity Acquisition Lag) (16-12) 

Desired capacity represents demand projected into the future by the capacity lead 
time and then adjusted by the normal capacity utilization level: 

Desired Capacity = Projected SalesAVormal Capacity Utilization (16- 13) 

1. Adaptive expectations 
First, assume the firm has myopic expectations and sets projected sales to its 
belief about the recent sales rate. 

Projected Sales Rate = Recent Sales Rate (16-14) 

As explained in chapter 11, it takes time to measure and report sales and 
additional time to filter out short-term noise in sales. Hence the recent sales 
rate is modeled with adaptive expectations (assume first-order exponential 
smoothing): 

Recent Sales Rate = SMOOTH(Sa1es Rate, Sales Perception Time) (16-15) 

To measure the firm’s ability to match capacity to demand, define the 
adequacy of capacity as the gap between normal production and sales. 
Normal production is the production rate given by capacity at normal 
utilization. 

(16-16) 

(16-17) 

(Normal Production - Sales Rate) 
Sales Rate 

Adequacy of Capacity = 

Normal Production = CapacityAVormal Capacity Utilization 

Begin with the parameters for the model shown in Figure 9-23. Assume a 
half-year capacity acquisition delay, a one-quarter-year delay in perceiving 
sales, and normal capacity utilization of 90%. Compare the behavior of 
capacity, projected sales, and sales. How well does capacity match demand? 
Do the forecast errors and adequacy of capacity vary systematically over the 
product life cycle? Explain. Explore how the forecast and capacity errors 
vary with the parameters (both the lags in capacity adjustment and the 
parameters governing the product life cycle). 

2. Extrapolative expectations 
Forecasting by adaptive expectations will always cause capacity to be 
inadequate when demand is growing. Modify projected sales to include the 
expected growth in sales. Assume managers believe recent sales growth will 
continue over the forecast horizon: 

Projected Sales Rate = Recent Sales 
* (1 + Expected Growth in Sales * Forecast Horizon) (1 6- 14a) 
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The forecast horizon is the capacity acquisition lag. Assume the firm 
forecasts sales growth using the TREND function: 

(16- 18) 
Expected Growth in Sales = TREND(Sa1es Rate, Sales Perception 

Time, Historical Horizon for Sales, Time to Perceive Sales Growth) 

Assume the firm looks back over the past year to estimate the trend in sales 
(Historical Horizon for Sales = 1 year) and that the Time to Perceive Sales 
Growth is one-quarter year. By setting TPPC to the Sales Perception Time, 
the perceived present condition equals the Recent Sales Rate. 

Compare the behavior of the revised forecast to the myopic case of 
simple smoothing. Does incorporating the growth in demand improve the 
ability of capacity to track demand during the growth phase of the product 
life cycle? What happens when the market saturates? Is there a trade-off 
between the ability to match demand growth during the growth phase and the 
saturation phase? Explain. 

forecasting method in product life cycle settings. What are its advantages and 
disadvantages? Do you think real firms forecast by extrapolation of recent 
sales growth? What alternative methods might work better?13 

Comment on the effectiveness of extrapolative expectations as a 

16.6 INITIALIZATION AND STEADY STATE RESPONSE 
OF THE TREND FUNCTION 

To be a reasonable model of growth expectation formation, TREND should pro- 
duce, in the steady state, an accurate (unbiased) estimate of the growth rate in the 
input variable. That is, if 

Input = Ioexp(gt) 

then 

lim TREND(1nput) = g (16-20) 
t-71 

The proof relies on the fact that the steady state response of first-order exponential 
smoothing to exponential growth is exponential growth at the same rate as the 
input but with a steady state error: When the input is growing exponentially, the 

(16-19) 

I3Note that the formulation for Projected Sales Rate does not correct for the lag in the perception 
of sales (the recent sales rate). By equation (16-22), recent sales will lag actual sales by g * Sales 
Perception Time. Further, since capacity is modeled as a third-order delay, the proper growth cor- 
rection for the capacity lag is [ 1 + g * (Capacity Acquisition Lag/3)I3 (you can derive this expres- 
sion from the analysis in section 16.6). However, there is no reason to expect real firms to make 
such precise corrections or to avoid steady state error under growth. Doing so requires them to 
understand the length and distribution of the sales perception delay and capacity acquisition delay. 
In experimental product life cycle markets (Paich and Sterman 1993), subjects, including many 
with business experience, generally did not forecast aggressively enough to correct for steady state 
error. Most subjects found themselves short of capacity during the initial growth phase, failed to 
anticipate the saturation of the market, and experienced a significant capacity overshoot as boom 
turned to bust. 
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smoothed variable lags behind the input by a constant fraction of the smoothed 
value. 

The equation for first-order smoothing of an input is 

dOutput 
dt 

= (Input - 0utput)D (16-21) 

where D is the adjustment time. The steady state solution of equation (16-21) for 
the case of an exponentially growing input can be found in many differential equa- 
tions texts: 

Output = Input/(l + gD) ( 16-22) 

That is, the smoothed variable lags the input with a steady state error depending on 
the product of the growth rate of the input and the average lag between input and 
output. The solution can be verified by substitution in the differential equation. In- 
tuitively, the gap between input and output must be just great enough to cause the 
fractional rate of change of the output to equal the fractional growth rate of the in- 
put, that is, in steady state, d(Output)/dt = (Input - Output)/D = goutput. 

In the TREND function, PPC is a smooth of the Input, so in the steady state of 
exponential growth at rate g/period, PPC will also be growing exponentially at 
rate g. Since the reference condition RC is a smooth of PPC, it will also be grow- 
ing at fractional rate g: 

But by equation (16-21) 

dRC - (PPC - RC) - 
dt THRC 

so 

dRC 
g = F / R C =  THRC 

which is precisely the expression 

(16-23) 

(16-24) 

(16-25) 

for the indicated trend, ITREND, equation 
(16- 1). Since TREND is a smooth of ITREND, TREND = ITREND = g in the 
steady state. Thus, in the steady state, TREND yields an unbiased estimate of 
the exponential growth rate in the input. During transients, of course, TREND will 
differ from the true growth rate of the input. 

When using the TREND function, the modeler must specify the initial condi- 
tion for each state variable. The modeler sets the initial value of the perceived trend 
at some value, denoted TREND(t,J. Usually, the initial values of the perceived pre- 
sent condition and reference condition should be set so that the TREND function 
is initialized in steady state at the assumed initial growth rate. From equation 
(16-25), the steady state initial conditions are readily found to be 

INPUT( to) 
(1 + TREND(t,J * TPPC) 

PPC(t,) = ( 16-26) 

PPC(t0) 
(1 + TREND(t,,) * THRC) 

RC(t0) = (16-27) 
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These initial conditions avoid unwanted transients in the adjustment of TREND to 
the actual growth of the input. 

16.7 SUMMARY 
Forecasts and expectations are fundamental to decision making. Theories of fore- 
casting range from rational expectations, in which people are assumed to have a 
nearly perfect understanding of complex systems and never make systematic er- 
rors, to theories in which behavior is simple and people never learn. Experimental 
and field studies support an intermediate theory in which rationality is bounded. 
Behavior and expectations do adapt, but slowly. We often learn the wrong lessons 
from experience and frequently make systematic errors in forecasting and control- 
ling complex systems. 

The chapter introduced and tested a boundedly rational formulation for mod- 
eling the formation of growth expectations, the TREND function. The TREND 
function models the way in which people form expectations about the rate of 
growth in a variable based on the history of the variable itself. 

The TREND function was tested with several examples, including forecasts of 
inflation, commodity prices, and energy consumption. In all cases (and many more 
discussed in the forecasting literature) the forecasts can be modeled well by adap- 
tive learning processes such as exponential smoothing and trend extrapolation. 
Forecasters frequently miss turning points, overreact to trends, and generate other 
systematic errors. Learning is often quite slow relative to the dynamics of the vari- 
ables people seek to forecast. 

Forecasts are often dominated by simple adaptation to past events even though 
forecasters claim to consider a wide range of variables and use complicated mod- 
els to generate their forecasts. The past history and trend in a variable act as a 
strong anchor on people’s judgments and constrain the range of values they con- 
sider reasonable. In situations where the relationships among variables in the sys- 
tem are noisy, unstable, or obscure, the trend in the target variable will loom large 
in the forecasting process and dominate the effect of other predictors. Similarly, 
forecasters often adjust the inputs to their models until the outputs conform to their 
intuition and to social and political pressures. 
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Swpply Chains and the 
Origin of Oscillations 

The distinction between stocks and flows is well known . . . Yet economic 
theories still revolve primarily around flow concepts of supply and demand. . . 
[Sjtock-variable concepts of supply and demand must be incorporated 
explicitly in economic models in order to capture the rich disequilibrium 
behavior characteristics of real socioeconomic systems. 

-Nathaniel J. Mass (1980, p. 97) 

A supply chain is the set of structures and processes an organization uses to deliver 
an output to a customer. The output can be a physical product such as an automo- 
bile, the provision of a key resource such as skilled labor, or an intangible output 
such as a service or product design. A supply chain consists of (1) the stock and 
flow structures for the acquisition of the inputs to the process and (2) the manage- 
ment policies governing the various flows. The next several chapters consider the 
structure and behavior of supply chains in various settings. Supply chains often 
exhibit persistent and costly instability. This chapter lays the foundation by illus- 
trating the behavior of supply chains in important contexts and developing a fun- 
damental formulation-the stock management structure-useful in modeling 
supply chains in all types of systems, not only business systems, but also physical, 
biological, and other systems. 

The stock management structure is used to explain the origin of oscillations. 
Oscillation requires both that there be time delays in the negative feedbacks regu- 
lating the state of a system and that decision makers fail to account for these 
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delay s-ignoring the supply line of corrective actions that have been initiated but 
have not yet had their effect. Though it is foolish to ignore time delays, experi- 
mental evidence shows people often do just that. Case studies of various industries 
suggest these misperceptions of feedback lie at the root of the persistent cycles in 
real estate, shipping, and related industries. 

17.1 SUPPLY CHAINS IN BUSINESS AND BEYOND 
A firm can be viewed as a set of processes: A process for order fulfillment, for 
manufacturing the product, for pricing, for advertising, for hiring, and so on. Each 
of these processes requires various inputs, which must be acquired from suppliers. 
A supply chain is the structure through which the inputs are acquired, transformed 
into an output, and then delivered to a customer. The customer can be external or 
internal. The inputs and outputs can be tangible, such as an automobile and its parts 
and raw materials, or intangible, as in product development where the output is a 
completed design and the inputs include customer specifications. 

Supply chains consist of a stock and flow structure for the acquisition, storage, 
and conversion of inputs into outputs and the decision rules governing the flows. 
The automobile supply chain includes the stock and flow networks of materials 
such as steel. Steel moves from rolls of sheet metal through stamping into body 
parts to assembly and shipment to dealers. At each stage in the process there is a 
stock of parts buffering the different activities (an inventory of sheet steel between 
steel acquisition and usage, an inventory of stamped parts between stamping and 
assembly, an inventory of cars between dealer acquisition and sales). The decision 
structure governing the flows includes policies for ordering steel from suppliers, 
scheduling the stamping of body parts and assembly, shipping new cars to dealers, 
and the customers’ purchase decision. 

Supply chains often extend beyond the boundaries of a single organization. Ef- 
fective models must represent different actors and organizations including suppli- 
ers, the firm, distribution channels, and customers. Because they involve multiple 
chains of stocks and flows, with the resulting time delays, and because the decision 
rules governing the flows often create important feedbacks among the partners in 
a supply chain, system dynamics is well suited for supply chain modeling and pol- 
icy design. Several examples of supply chains have already been discussed (see 
chapter 2 and sections 6.3 and 11.6). 

The concept of a supply chain need not be restricted to business settings or 
even to human systems. For example, the supply of glucose providing the energy 
required for metabolic activity in your body is the output of a supply chain begin- 
ning with the consumption of food and ending with the metabolism of glucose and 
excretion of wastes. There are important time delays in the process, including de- 
lays in the digestion and transport of sugars and in the synthesis and diffusion of 
insulin (see Sturis et al. 1991 for a system dynamics model of the human glucose- 
insulin system). 

17.1 .I Oscillation, Amplification, and Phase Lag 
The purpose of a supply chain is to provide the right output at the right time. As 
customer requirements change, the managers of the supply chain respond by 
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adjusting the rate at which resources are ordered and used. Supply chains are thus 
governed primarily by negative feedback. Because supply chains typically involve 
substantial time delays, they are prone to oscillation-production and inventories 
chronically overshoot and undershoot the appropriate levels. Figure 17- 1 shows 
industrial production in the US. The data exhibit several modes of behavior. 
First, the long-run growth rate of manufacturing output is about 3.4%/year. Sec- 
ond, as seen in the bottom panel of the figure, production fluctuates significantly 
around the growth trend. The dominant periodicity is the business cycle, a cycle of 
prosperity and recession of about 3-5 years in duration, but exhibiting consider- 
able variability. 

The amplitude of business cycle fluctuations in materials production is signif- 
icantly greater than that in consumer goods production (Figure 17-2; again, the ex- 
ponential growth trend has been removed). The peaks and troughs of the cycle in 
materials production also tend to lag behind those in production of consumer 
goods. 

These three features, oscillation, amplification, and phase lag, are pervasive in 
supply chains. Typically, the amplitude of fluctuations increases as they propagate 
from the customer to the supplier, with each upstream stage in a supply chain tend- 
ing to lag behind its immediate customer. 

The amplification of fluctuations from consumption to production is even 
greater in specific industries. The top panel in Figure 17-3 shows the petroleum 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Source: US Federal Reserve, series B50001, 
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FIGURE 17-2 
Oscillation, 
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Source: US Federal Reserve, series B51000 and 853010. 

supply chain (the figure shows the annualized growth rate; all monthly data are 
shown as 12-month centered moving averages to filter out the high-frequency 
month-to-month noise). The amplification is substantial. Production fluctuates 
more than consumption. In turn, drilling activity fluctuates about three times more 
than production, imposing large boom and bust cycles on the suppliers of drill rigs 
and equipment. The middle panel shows the machine tool industry. Fluctuations in 
economic growth lead to much larger swings in motor vehicle sales. During reces- 
sions, people keep their old cars going, leading to unanticipated inventory accu- 
mulation and forcing even larger production cutbacks. The automotive industry 
generates a large share of total machine tool orders. During a production downturn, 
the auto companies postpone or cancel their capital investment plans, causing even 
larger drops in the orders they place for machine tools. During the next upswing 
they scramble to build capacity and orders surge. The phase lag between vehicle 
production and the induced changes in machine tool orders is clearly visible. The 
bottom panel shows the semiconductor industry. Semiconductor production is at 
the upstream end of the supply chain for computers and electronic equipment and 
fluctuates much more than industrial production as a whole. 

17.2 THE STOCK MANAGEMENT PROBLEM 
Supply chains consist of cascades of firms, each receiving orders and adjusting 
production and production capacity to meet changes in demand. Each link in a sup- 
ply chain maintains and controls inventories of materials and finished product. To 
understand the behavior of a supply chain and the causes of oscillation, amplifica- 
tion, and phase lag, it is first necessary to understand the structure and dynamics of 
a single link, that is, how an individual firm manages its inventories and resources 
as it attempts to balance production with orders. Such balancing processes always 
involve negative feedbacks. 

All negative feedback processes involve comparing the state of the system to 
the desired state, then initiating a corrective action to eliminate any discrepancy. In 
such a stock management task, the manager seeks to maintain a stock (the state of 
the system) at a particular target level, or at least within an acceptable range. 
Stocks are altered only by changes in their inflow and outflow rates. Typically, 
the manager must set the inflow rate to compensate for losses and usage and to 
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counteract disturbances that push the stock away from its desired value. Often 
there are lags between the initiation of a control action and its effect and lags be- 
tween a change in the stock and the perception of that change by the decision 
maker. The duration of these lags may vary and may be influenced by the man- 
ager's own actions. 

Stock management problems occur at many levels of aggregation. At the level 
of a firm, managers must order parts and raw materials to maintain inventories suf- 
ficient for production to proceed at the desired rate. They must adjust for variations 
in the usage of these materials and for changes in their delivery delays. At the 
individual level, you regulate the temperature of the water in your morning shower, 
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guide your car down the highway, and manage your checking account balances. At 
the macroeconomic level, the US Federal Reserve seeks to manage the stock of 
money to stimulate economic growth and avoid inflation, while compensating for 
variations in credit demand, budget deficits, and international capital flows. 

17.2.1 Managing a Stock: Structure 
The stock management control problem can be divided into two parts: (1) the stock 
and flow structure of the system and (2) the decision rule used by the managers to 
control the acquisition of new units. 

To begin, consider a situation in which the manager controls the inflow rate to 
the stock directly and there is no delay in acquiring units (Figure 17-4).l Filling a 
glass of water from a faucet provides an example: The delay between a change in 
the state of the system (the level of water in the glass) and the inflow to the stock 
(the rate at which water flows from the tap) is short enough relative to the flow that 
it can safely be ignored. 

The stock to be controlled, S, is the accumulation of the acquisition rate AR 
less the loss rate LR: 

S = INTEGRAL(AR - LR, Sh) (17-1) 

Losses include any outflow from the stock and may arise from usage (as in a raw 
material inventory) or decay (as in the depreciation of plant and equipment). The 
loss rate must depend on the stock itself-losses must approach zero as the stock 
is depleted-and may also depend on sets of other endogenous variables X and ex- 
ogenous variables U. Losses may be nonlinear and may depend on the age distrib- 
ution of the stock: 

LR =AS, X, U) (17-2) 

How should the acquisition rate be modeled? In general, managers cannot add new 
units to a stock simply because they desire to do so. First, the acquisition of new 
units may involve time delays. Second, the acquisition of new units for a stock 
usually requires resources: Production requires labor and equipment; hiring re- 
quires recruiting effort. These resources may themselves be dynamic. The re- 
sources available at any moment impose capacity constraints. For now, assume the 
capacity of the process is ample and that there are no significant time delays in ac- 
quiring new units. Therefore the actual acquisition rate, AR, is determined by the 
desired acquisition rate, DAR: 

AR = MAX(0, DAR) (17-3) 

The MAX function ensures that the acquisition rate remains nonnegative. In most 
situations, the acquisition rate cannot be negative (once concrete is delivered and 

'The discussion assumes the manager controls the inflow to the stock and must compensate for 
changes in the outflow. There are many stock management situations in which the manager's task 
is to adjust the outflow from a stock to compensate for changes in the inflow. A firm must adjust 
shipments to keep its backlog under control as orders vary; managers of a hydroelectric plant must 
adjust the flow through the dam to manage the level of impounded water as the inflow varies. The 
principles for stock management in these situations are analogous to those for the case where the 
managers control the inflow alone. 
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poured at a construction site it cannot be returned to the supplier). In those cases 
where excess units can be returned or discarded, these processes are usually gov- 
erned by different costs and criteria and should be modeled separately, not as a 
negative acquisition rate.2 

The formulation for the desired acquisition rate captures the decision-making 
process of the managers. There are many possibilities. Following the principles 
outlined in chapter 13, such formulations must be based only on information actu- 
ally available to the decision makers, must be robust under extreme conditions, and 
must be consistent with knowledge of the actual decision-making process, even if 
the way people actually make decisions is less than optimal. In most stock man- 
agement situations the complexity of the feedbacks among the variables makes it 

%ee section 13.3.3. All the MIN and MAX functions in the formulations in this chapter can be 
replaced with their fuzzy counterparts if the purpose of the model requires it. 
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impossible to determine the optimal strategy. Instead, people use heuristics or rules 
of thumb to determine the order rate. The ordering decision rule proposed here as- 
sumes that managers, unable to optimize, instead exercise control through a locally 
rational heuristic. The model thus falls firmly in the tradition of bounded rational- 
ity as developed by Simon (1982), Cyert and March (1963), and others and as de- 
scribed in chapter 15. 

The desired acquisition rate represents the rate at which managers would like 
to be adding units to the stock. Two considerations are fundamental to any decision 
rule for desired acquisitions. First, managers should replace expected losses from 
the stock. Second, managers should reduce the discrepancy between the desired 
and actual stock by acquiring more than expected losses when the stock is less than 
desired and less than expected losses when there is a surplus. Thus the desired ac- 
quisition rate is the expected loss rate EL plus an adjustment for the stock AS to 
bring the stock in line with its desired level: 

DAR = EL + AS (17-4) 

The formulation can be interpreted as an example of the anchoring and adjustment 
heuristic (Tversky and Kahneman 1974; chapter 13). Here the anchor is the ex- 
pected loss rate EL. Adjustments are then made to correct discrepancies between 
the desired and actual stock. 

Why does the desired acquisition rate depend on expected losses rather than 
the actual loss rate? The current value of a flow represents the instantaneous rate 
of change. Actual instruments, however, cannot measure instantaneous rates of 
change but only average rates over some finite interval. The velocity of an object 
is calculated by measuring how far it moves over some period of time and taking 
the ratio of the distance covered to the time interval. The result is the average speed 
over the interval. The actual speed throughout the interval can vary, and the veloc- 
ity at the finish line may differ from average. Similarly, the sales rate of a company 
right now cannot be measured. Instead sales rates are estimated by accumulating 
total sales over some interval of time such as a week, month, or quarter. The re- 
ported sales rate is the average over the reporting interval, and sales at the end of 
the period may differ from the average over the interval. No matter how accurate 
the instruments, the rate of change measured and reported to an observer always 
differs from the instantaneous rate of change. 

While in principle all flows are measured and reported with a delay, in practice 
the delay is sometimes so short relative to the dynamics of interest that it can safely 
be omitted from your models. In a stock management situation, the loss rate is 
sometimes directly observable by the decision maker with essentially no delay or 
measurement error so that it is acceptable to assume EL = LR. Most often, how- 
ever, the loss rate is not directly observable and must be estimated, introducing 
measurement, reporting, and perception delays. The expected loss rate might then 
be modeled as an information delay of the actual loss rate (see chapter 11). Some- 
times decision makers extrapolate recent trends in reported losses to compensate 
for expected growth. In these cases the TREND function can be used to model the 
process by which managers form the expected loss rate (see chapter 16). 

The feedback structure of the heuristic is shown in the bottom part of Figure 
17-4. The adjustment for the stock AS creates the negative Stock Control feedback 
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loop. The simplest formulation is to assume the adjustment is linear in the discrep- 
ancy between the desired stock S* and the actual stock: 

AS = (S* - S)/SAT (17-5) 

where S* is the desired stock and SAT is the stock adjustment time (measured in 
time units). The stock adjustment forms a linear negative feedback process. The 
desired stock may be a constant or a variable. 

17.2.2 Steady State Error 
The inclusion of the expected loss rate in the formulation for the desired acquisi- 
tion rate is an important behavioral assumption. Expected losses are included for 
two reasons: First, omitting replacement of expected losses leads to a steady state 
error in which the stock differs from its desired value even in equilibrium. Steady 
state error means a gap between desired and actual states persists even after the 
system has had time to settle into its steady state (i.e., even after the relationships 
among the state variables stop changing). Steady state error can arise despite the 
existence of a negative feedback loop, such as the stock adjustment loop, which 
strives to eliminate discrepancies between the desired and actual state of the 
system. 

Imagine a firm that sets its production target based only on the gap between its 
desired and actual inventory levels. The stock to be controlled is inventory, ship- 
ments determine the loss rate, and production is the acquisition rate. Suppose their 
decision rule is to eliminate any gaps between desired and actual stocks over a 
period of 1 week: 

Production = (Desired Inventory - 1nventory)Anventory Adjustment Time (17-6) 

where the Inventory Adjustment Time = 7 days and the nonnegativity constraint 
on production is omitted. 

The equilibrium condition for inventory is Production = Shipments. Therefore 
the stock of inventory will reach balance only when 

(Desired Inventory - Inventory) 
Production = Inventory Adjustment Time = Shipments (17-7) 

or when 

Inventory = Desired Inventory - Shipments * Inventory Adjustment Time (17-8) 

Producing in response to the size of the inventory shortfall guarantees that the firm 
will, in equilibrium, be operating with less inventory than it desires. When inven- 
tory = desired inventory, production will be zero. But if there are shipments, in- 
ventory will decline, opening a gap between desired and actual inventory. The gap 
grows until it is just large enough to induce production equal to shipments. The 
bigger the loss rate or the weaker the stock adjustment, the bigger the steady state 
error. 

The solution is to include the expected loss rate in the production decision. Ex- 
pected losses might be based on the average order rate: 

Production = Average Order Rate 
+ (Desired Inventory - Inventory)/Inventory Adjustment Time (17-6a) 
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In equilibrium, average orders now equal actual orders, orders will equal ship- 
ments, and inventory will equal its desired level. Average rather than actual orders 
are used because the instantaneous value of the order rate is not measurable and 
firms deliberately average incoming orders to smooth out high-frequency noise 
and avoid costly changes in production. 

Automatic replacement of expected losses improves the performance of the 
decision rule for the desired acquisition rate. However, you may not include a for- 
mulation in your model just because it would make sense. You must also have ev- 
idence that people actually do make decisions that way. The second reason for 
including the expected loss rate in the model is that the evidence suggests people 
do in fact account for the losses they expect when managing stocks (see, e.g., 
Sterman 1989a, b)-provided loss rate information is available. In some situations, 
loss rate information is unavailable or unreliable. In these cases there is likely to be 
a steady state error. Close inspection of the decision process may reveal that the de- 
sired stock includes a safety margin that roughly compensates for the steady state 
error. 

17.2.3 Managing a Stock: Behavior 
The simple stock management structure, as basic as it is, yields important insight 
into the sources of amplification observed in supply chains. To illustrate, consider 
a firm managing its stock of plant and equipment. The loss rate represents the dis- 
card of old buildings and equipment. Assume losses follow a first-order process 
with an average lifetime of 8 years. Also assume the delays in reporting the discard 
of broken-down or obsolete equipment are short relative to the dynamics of inter- 
est, so the expected loss rate can be set equal to the actual loss rate. The stock ad- 
justment time is set to 3 years. These parameters are consistent with the values 
estimated by Senge (1978) for capital investment in various sectors of the US 
economy (see section 11.5.1). 

The desired capital stock depends on the demand for the firm’s products. To 
explore the behavior of a single link in a supply chain, desired capital is exoge- 
nous. Figure 17-5 shows the response of the system to a step increase in desired 
capital. The system begins in equilibrium with a desired stock of 100 units and 
throughput of 12.5 unitdyear. At the start of year 1 the desired stock suddenly in- 
creases to 120 units. The step increase in desired capital immediately opens up a 
gap of 20 units between the desired and actual stock. The adjustment for the stock 
of capital jumps by 20 units/3 years = 6.67 unitdyear, increasing the desired ac- 
quisition rate to 19.17 unitdyear. Because there are no delays or capacity con- 
straints on the acquisition rate, the stock begins to rise. As it does, the capital 
shortfall diminishes, reducing the stock adjustment. The acquisition rate gradually 
falls back to the loss rate. As the stock rises, so too does the loss rate. Because the 
expected loss rate is assumed to equal the actual loss rate, the net change in the 
capital stock is equal simply to the stock adjustment: 

Net Change in Capital Stock = ( S A  - S)/SAT (17-9) 

which is the familiar first-order linear negative feedback system. Therefore, as 
seen in the figure, after three adjustment times (9 years), the capital stock has ad- 
justed about 95% of the way to its new equilibrium. 
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The consequences of the stock management structure for supply chain man- 
agement are profound. First, the process of stock adjustment creates significant 
amplification. Though the desired stock increased by 20%, the acquisition rate in- 
creases by a maximum of more than 53% (the peak acquisition rate divided by the 
initial acquisition rate = 19.2A2.5). The amplification ratio (the ratio of the max- 
imum change in the output to the maximum change in the input) is therefore 
53%/20% = 2.65. A 1% increase in desired capacity causes a 2.65% surge in the 
demand for new capital. While the value of the amplification ratio depends on the 
stock adjustment time and capital lifetime, the existence of amplification does not. 
A longer adjustment time reduces the size of the adjustment for the stock for any 
given discrepancy between the desired and actual stocks and thus reduces am- 
plification, but also lengthens the time required to close the gap and reach the 
new goal. 

Second, amplification is temporary. In the long run, a 1% increase in desired 
capital leads to a 1% increase in the acquisition rate. But during the disequilibrium 
adjustment, the acquisition rate overshoots the new equilibrium. The overshoot is 
an inevitable consequence of the stock and flow structure. The only way a stock 
can increase is for the acquisition rate to exceed the loss rate. The acquisition rate 
must increase above the loss rate long enough to build up the stock to the new de- 
sired level. The firm's suppliers face much larger changes in demand than the firm 
itself and much of the surge in demand is temporary. 
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Exploring Amplification 
Explore the behavior of the simple stock management model with the parameters 
in the example shown in Figure 17-5. Try the following tests: 

1. Explore the response of the acquisition rate to different magnitudes for the step 
increase in desired capital stock. How does the size of the step affect the rate of 
adjustment of the capital stock to the new equilibrium? Does the amplification 
ratio for the acquisition rate depend on the size of the step in desired capital? 
Whylwhy not? 

2. What is the response of the acquisition rate to a 20% step decrease in desired 
capital? What is the response to a 60% decrease? Are there any differences? 
Whylwhy not? 

3 .  How does the amplification of changes in demand depend on the stock adjust- 
ment time? With an adjustment time of 3 years it takes 9 years to reach 95% of the 
desired capital stock. Some managers in the firm argue this is too long. What is the 
amplification ratio generated by an adjustment time of 2 years? 1 year? What are 
the implications of a more aggressive stock adjustment policy for the firm and its 
equipment suppliers? 

4. Explore the dependence of the amplification ratio on the lifetime of capital. 
What happens to the amplification of demand changes as the lifetime of capital in- 
creases? Why? How does this help explain why the amplitude of business cycles 
in the construction industry is greater than that of the service sector? 
5. Can the simple stock management system oscillate? With the base case pa- 
rameters the response to a step increase in desired capital is a single overshoot of 
the acquisition rate: The system amplifies demand changes but does not generate 
oscillation. Are there any parameters that can induce an oscillatory response? 
Whylwhy not? 

6. The step is a simple input that tests the response of a system to an unexpected 
change in the environment. In the real economy the demand for a firm’s product 
(and hence its desired capital stock) exhibits more complex behavior, including 
fluctuations, random shocks, and growth. Test the response of the system to a fluc- 
tuation by assuming desired capital stock fluctuates sinusoidally (assume the sys- 
tem remains in equilibrium until the start of year 1): 

S* = 100 * [l + Asin(2n(t - 1)/P)] for t > 1 

where A is the amplitude of the fluctuation and P is the period. To begin, set 
A = 0.10 and P = 1 year. Calculate the steady state amplification ratio in the 
acquisition rate. The amplification ratio is the ratio of the amplitude of the fluctu- 
ation in the acquisition rate to the amplitude of the fluctuation in desired capital. 
Steady state means you should measure the amplitude of the variables after initial 
transients have died out (after about three time constants SAT have passed). How 
does the amplification ratio depend on the period of the cycle P? How does it de- 
pend on the stock adjustment time SAT? It is helpful to make a graph showing the 
amplification ratio as a function of the ratio P/SAT. 
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7. Now explore the response of the system to growth in the desired capital stock. 
Consider two cases, and once again, assume desired capital stock is constant until 
the start of year 1: 

a. Linear growth (start with a slope of 20 unitdyear). 
b. Exponential growth (start with a growth rate of lO%/year). 

Is there a steady state error for the case of growth in the desired stock? That is, 
does the actual stock eventually equal the desired stock? Why/why not? Find an al- 
gebraic expression for the steady state stock S in terms of the input S* and the other 
parameters in the system. 
8. So far the loss rate has been assumed to be first-order, meaning the likelihood 
any unit in the stock is discarded does not depend on its age. In reality, the proba- 
bility of discard usually rises sharply for older vintages. Disaggregate the capital 
stock into a third-order aging chain. Each vintage (stock of a given average age) 
should have a residence time equal to one-third the average lifetime. Assume there 
are no discards from the first two vintages (the loss rate will therefore be equiva- 
lent to a third-order delay of the acquisition rate). What is the impact of an explicit 
vintaging structure on the behavior of the model? 

17.3 THE STOCK MANAGEMENT STRUCTURE 
The simple model above yields important insights into the behavior of supply 
lines; however, the model invokes a number of unrealistic assumptions. Most seri- 
ous is the assumption that there is no delay in the acquisition process. A firm seek- 
ing to increase its capital stock cannot acquire new units immediately but must 
await construction or delivery. New workers cannot be hired and trained instantly. 
It takes time for your car to stop after you step on the brakes, and it takes time for 
the economy to respond after the Federal Reserve changes interest rates. 

Figure 17-6 modifies the structure of the stock management system to include 
a delay between orders and acquisition. As before, the stock is increased by acqui- 
sitions and decreased by the loss rate; these are formulated as in equations (17-2) 
and (17-3). The stock and flow structure now includes a supply line of unfilled 
orders-those orders that have been placed but not yet received: 

SL = INTEGRAL(0R - AR, SL,) (1 7- 10) 

The order rate OR is now the managers’ decision point. The acquisition rate de- 
pends on the supply line SL of units that have been ordered but not yet received 
and the average acquisition lag AL: 

AR = L(SL, AL) 

AL = ASL, X, U) 

(17-1 1)  

(17-12) 

where the lag function L ( )  denotes a material delay. The acquisition lag could be a 
pipeline delay, a first-order delay, or any other distribution of arrivals around the 
average acquisition lag. In general, the acquisition lag may depend on the supply 
line itself and on the other endogenous and exogenous variables. Often, the aver- 
age acquisition lag is relatively constant up to the point where the required acqui- 
sition rate exceeds the capacity of the process, as for example when the desired 
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FIGURE 17-6 The generic stock management structure 
The determinants of the desired supply line are not shown (see text). 
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construction rate for capital plant exceeds the capacity of the construction industry. 
The acquisition lag can also be influenced by the manager’s decisions, as when a 
firm chooses to expedite delivery of materials by paying premium freight. 

The structure represented by Figure 17-6 is quite general. The system may be 
nonlinear. There may be arbitrarily complex feedbacks among the endogenous 
variables, and the system may be influenced by a number of exogenous forces, 
both systematic and stochastic. The delay in acquiring new units is often variable 
and may be constrained by the capacity of the supplier. Table 17-1 maps common 
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examples into the generic form. In each case, the manager must choose the order 
rate over time to keep the stock close to a target. Note that most of these systems 
tend to generate oscillation and instability. 

Managers still order to replace expected losses from the stock and reduce any 
discrepancy between the desired and actual stock. In the presence of an acquisition 
delay managers must also maintain an adequate supply line of unfilled orders, ad- 
justing it so that acquisitions are close to the desired rate. To formalize this heuris- 
tic, first note that the order rate in most real life situations must be nonnegative: 

OR = MAX(0, IO) (17-13) 

where IO is the indicated order rate, the rate indicated by other pressures. Order 
cancellations are sometimes possible and may sometimes exceed new orders (e.g., 
the US nuclear power industry since the 1970s). As before, the costs of and ad- 
ministrative procedures for cancellations are likely to differ from those for new or- 
ders. Cancellations should therefore be modeled as a distinct outflow from the 
supply line, governed by a separate decision rule, rather than as negative orders 
(see chapter 19 for a suitable formulation). 

The indicated order rate is formulated as an anchoring and adjustment process. 
The desired acquisition rate DAR is the anchor, which is then adjusted by an 
amount designed to bring the supply line of unfilled orders in line with its goal (the 
adjustment for the supply line ASL): 

IO = DAR + ASL (17-14) 

The adjustment for the supply line is formulated analogously to the adjustment for 
the stock: 

ASL = (SL* - SL)/SLAT (17-15) 

where SL* is the desired supply line and SLAT is the supply line adjustment time. 
The supply line adjustment forms the negative Supply Line Control loop. 

Figure 17-6 does not show the feedback structure for the desired supply line. 
In some cases the desired supply line is constant. More often, however, decision 
makers seek to maintain a sufficient number of units on order to achieve the ac- 
quisition rate they desire. By Little’s Law (chapter 11) the supply line must contain 
AL period’s worth of the throughput the decision maker desires to achieve. Several 
measures for desired throughput are common. The decision maker may set the sup- 
ply line to yield the desired acquisition rate DAR: 

SL* = EAL * DAR (17-16) 

where EAL, the expected acquisition lag, represents the decision maker’s current 
belief about the length of the acquisition delay (which, in general, may differ from 
the actual acquisition delay). 

Equation (17-16) assumes a rather high degree of rationality on the part of de- 
cision makers. They are assumed to adjust the supply line to achieve the desired 
acquisition rate, which includes replacement of expected losses and correction of 
temporary gaps between desired and actual inventory. As described in section 17.4, 
experimental evidence shows decision makers are often not so sophisticated. Man- 
agers frequently do not adjust the supply line in response to temporary imbalances 
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in the stock but base the desired supply line on their estimate of long-run through- 
put requirements-the expected loss rate EL: 

SL* = EAL * EL ( 17- 16a) 

The formulation for the desired supply line must depend on empirical investigation 
of the actual decision-making process. 

Whichever formulation for the desired supply line is used, the longer the ex- 
pected delay in acquiring goods or the larger the desired throughput rate, the larger 
the supply line must be. If a retailer wishes to receive 1,000 widgets per week from 
the supplier and delivery requires 6 weeks, the retailer must have 6000 widgets on 
order to ensure an uninterrupted flow of deliveries. The adjustment for the supply 
line creates a negative feedback loop that adjusts orders to maintain an acquisition 
rate consistent with desired throughput and the acquisition lag. Without the supply 
line feedback, orders would be placed even after the supply line contained suffi- 
cient units to correct stock shortfalls, producing overshoot and instability (section 
17.4). The supply line adjustment also compensates for changes in the acquisition 
lag. If the acquisition lag doubled, for example, the supply line adjustment would 
induce sufficient additional orders to restore throughput to the desired rate. 

There are many possible representations for the expected acquisition lag EAL, 
ranging from constants through sophisticated forecasts. It is sometimes acceptable 
to assume the expected acquisition lag equals the actual lag, EAL = AL. Usually, 
however, it takes time to detect changes in delivery times. Customers often do not 
know that goods they ordered will be late until after the promised delivery time has 
passed. The expected acquisition lag can then be modeled by a perception delay 
representing the time required to observe and respond to changes in the actual 
delay: EAL = L(AL, TPAL), where TPAL is the Time to Perceive the Acquisi- 
tion Lag. 

Finally, to ensure the formulation is robust, the equation for the desired acqui- 
sition rate must be modified so that DAR remains nonnegative even when there is 
a large surplus of inventory. 

DAR = MAX(0, EL + AS) (17-4a) 

Every formulation should be evaluated in terms of its robustness, its underlying in- 
formational and computational requirements, and its consistency with the formu- 
lation principles described in chapter 13. The formulation for the order rate 
conforms to these principles. First, the formulation is robust: Orders remain non- 
negative no matter how large a surplus stock there may be, and the supply line and 
stock therefore never fall below zero. Second, information not available to real de- 
cision makers is not utilized (such as the solution to the nonlinear optimization 
problem determining the optimal order rate or the instantaneous value of the loss 
rate or acquisition delay). Finally, the ordering decision rule is grounded in well- 
established knowledge of decision-making behavior, in particular, the anchoring 
and adjustment heuristic. Expected losses form an easily anticipated and relatively 
stable starting point for the determination of orders. Loss rate information will typ- 
ically be locally available and highly salient to the decision maker. Replacing 
losses will keep the stock constant at its current level. Adjustments are then made 
in response to the adequacy of the stock and supply line. No assumption is made 
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that these adjustments are optimal. Rather, pressures arising from the discrepancies 
between desired and actual quantities cause managers to adjust the order rate above 
or below the level that would maintain the status quo. 

17.3.1 Behavior of the Stock Management Structure 
To illustrate the behavior of the stock management structure, consider again a 
firm’s capital investment decision. The stock is the total quantity of capital equip- 
ment and the supply line is the amount of plant and equipment on order or under 
construction. As before, the loss rate is a first-order process with an average life- 
time of 8 years and the stock adjustment time is set to 3 years. In this simple ver- 
sion of the model, the acquisition process is assumed to be a first-order material 
delay (more realistic, higher-order delay distributions are considered below), and 
there are no capacity constraints. The average acquisition delay is therefore con- 
stant and is set to 1.5 years, consistent with the 17-month average found by Mont- 
gomery (1995). Assume the delay in observing and reacting to the discard of old 
equipment is short relative to the other time constants, so the expected loss rate can 
be set to the actual loss rate. Likewise, assume the acquisition delay can be per- 
ceived immediately, so that the expected acquisition lag equals the actual lag. 

Following Senge’s (1978) results, the supply line adjustment time is set to 0.75 
years. The supply line adjustment time is shorter than the stock adjustment time. 
Adjusting the capital stock is difficult, expensive, and time consuming; the long 
lifetime of plant and equipment means mistakes are not easily undone. Hence for 
both managerial and administrative reasons, gaps between desired and actual cap- 
ital are closed only slowly. In contrast the supply line of orders can be adjusted 
much more rapidly. The cost of adjusting orders is much lower than the cost of ad- 
justing the capital stock, and the delay in acquiring new units is much shorter than 
the life of new capital. It still takes time to adjust the supply line. It takes time to 
renegotiate contracts, specify and execute change orders, and make other adjust- 
ments. Further, firms are often reluctant to make large changes in the quantities 
they order from their suppliers since many contracts specify expediting costs or 
cancellation fees. Figure 17-7 shows the stock management structure adapted to 
the capital investment example. 

Figure 17-8 shows the response of the system to a 20% step increase in desired 
capital. Capital stock smoothly approaches the new goal, and the time required to 
reach the new equilibrium is little changed from the case without an acquisition de- 
lay. However, the acquisition delay dramatically increases the amplification gen- 
erated by the system. The maximum change in the order rate is 160% greater than 
the initial level, an amplification ratio of 8.00 (compared to 2.65 without the ac- 
quisition delay). 

When desired capital increases, the desired acquisition rate suddenly rises 
(through the stock adjustment loop). There are two effects on the order rate: First, 
the order rate rises with the desired acquisition rate; second, the desired supply line 
increases in proportion to the rise in the desired acquisition rate. As the desired 
supply line rises above the actual supply line, orders rise above the desired acqui- 
sition rate. Because the supply line adjustment time is relatively short, the adjust- 
ment for the supply line is initially large (in fact larger than the adjustment for the 
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FIGURE 17-7 Adapting the stock management structure to capital investment 
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stock). After about 1 year, the supply line has increased enough to equal the desired 
supply line and the order rate falls back to the desired acquisition rate. As acquisi- 
tions raise the capital stock, the adjustment for the stock falls, and as it does, so too 
does the desired supply line. Because the actual supply line lags behind the desired 
level, the firm finds itself with slightly more capital on order than it requires, caus- 
ing the supply line adjustment to be slightly negative. The order rate continues to 
exceed the loss rate, however, due to the stock adjustment, until capital reaches the 
new desired level. 

The amplification created by the acquisition delay depends of course on the 
parameters, particularly the length of the delay and the supply line adjustment 
time. The longer the acquisition delay, or the shorter the supply line adjustment 
time, the greater the amplification. Given the realistic parameters in Figure 17-8, 
the amplification of orders with respect to desired capital is a factor of eight, a 
value roughly consistent with the amplification observed in the oil and machine 
tool industries (Figure 17-3). 



FIGURE 17-8 
Pararneters:Average Life of Capital = 8.0 years; Average Acquisition Lag = 1.5 years; Stock Adjustment Time = 3.0 years; Supply Line 
Adjustment Time = 0.75 years. 
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Exploring the Stock Management Structure 
Explore the behavior of the stock management structure with the parameters used 
in Figure 17-8. 

1. Repeat the tests in questions 1 and 2 of the challenge in section 17.2.3. How 
does the inclusion of the supply line affect the response of the system to increases 
and decreases in desired capital? 

2. How does the amplification of demand depend on the stock adjustment time? 
With the parameters used in Figure 17-8, it takes about 8 years for capital to in- 
crease 95% of the way to desired capital. How much can the adjustment be accel- 
erated by more aggressive stock and/or supply line adjustments? What is the effect 
of these changes on the amplification of orders? 

3. Can the system oscillate? With the base case parameters the response to a step 
increase in desired capital is a single overshoot of the order and acquisition rate. 
Are there other parameters that can induce an oscillatory response? Why/why not? 
How does this compare to the case where there is no acquisition delay or supply 
line, and why? Contrast the behavior of the system with the two formulations for 
the desired supply line, equations (17-16) and (17-16a). Which is more responsive? 
Can the system oscillate with the formulation in (17-16a)? Explain. 

4. Test the response of the system to a fluctuation in the demand for its product 
by assuming desired capital stock fluctuates sinusoidally as in section 17.2.3: 

S* = 100 * [l + Asin(2v(t - l)/P)] for t > I 

Calculate the steady state amplification ratio in the order rate, acquisition rate, and 
capital stock. How does the amplification ratio depend on the period of the cycle 
P? How does it depend on the stock adjustment time SAT and supply line adjust- 
ment time SLAT? How does it depend on the acquisition lag AL? Make graphs 
showing the amplification ratio as a function of the cycle period relative to these 
parameters. 

5. Repeat the analysis in (4) with the amplitude of the sine wave in desired capi- 
tal A = 0.50. How does the behavior of the system differ from the small amplitude 
case? Calculate the amplification ratios of orders, acquisitions, and the capital 
stock with respect to desired capital. What is the steady state average value of the 
capital stock, and why? 

6. So far the acquisition delay has been assumed to be first-order. As shown in 
chapter 11, the actual capital acquisition process is actually a higher-order process. 
Replace the first-order acquisition delay with a third-order delay (with the same 
average delay time). What is the impact of a higher-order acquisition delay on the 
behavior of the stock management structure? Consider response time and shape, 
amplification, and stability, and consider the sensitivity to different values of the 
parameters including SAT and SLAT, not only the base case. Consider the impact 
of specifying the desired supply line SL* by equation (17-16a). 
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17.4 THE ORIGIN OF OSCILLATIONS 
Chapter 4 discussed the generic structure responsible for oscillations: negative 
feedbacks with time delays. In every negative loop the state of the system is com- 
pared to the desired state and any discrepancy induces a corrective action. When 
there are no time delays, the corrective actions respond immediately to the dis- 
crepancy and immediately alter the state of the system. The result is a smooth ap- 
proach to equilibrium. As shown in chapter 4 and section 8.5.2, negative feedback 
systems without time delays cannot oscillate. Oscillations can arise only when 
there are time delays in at least one of the causal links in a negative feedback loop. 
But not all negative loops with delays oscillate. What are the causes of oscilla- 
tions? Under what circumstances will a system oscillate? 

Delays always involve stocks (chapter 11). When the input and output of a de- 
lay differ, the difference accumulates in a stock of material (or information) in tran- 
sit. Time delays between corrective actions and their effects create a supply line of 
corrections that have been initiated but not yet had their impact. The mere exis- 
tence of the time delay and supply line, however, does not lead to oscillations. In 
the stock management structure adapted for capital investment, for example (Fig- 
ure 17-7), there is a 1.5-year delay between ordering and receiving new capital, yet 
the system does not oscillate (with the estimated parameters). Even though the ac- 
quisition delay means orders placed today do nothing to reduce the gap between 
the desired and actual stock, managers are assumed to recognize when the supply 
line fills enough to solve the problem-and reduce orders appropriately. To oscil- 
late, the time delay must be (at least partially) ignored. The manager must continue 
to initiate corrective actions in response to the perceived gap between the desired 
and actual state of the system even after sufficient corrections to close the gap are 
in the pipeline. 

17.4.1 Mismanaging the Supply Line: 
The Beer Distribution Game 

The Beer Distribution Game illustrates how oscillations arise.3 The game is a role- 
playing simulation of a supply chain originally developed by Jay Forrester in the 
late 1950s to introduce students of management to the concepts of system dynam- 
ics and computer simulation. Since then the game has been played all over the 
world by thousands of people ranging from high school students to chief executive 
officers and senior government officials. 

The game is played on a board portraying a typical supply chain (Figure 17-9). 
Orders for and cases of beer are represented by markers and chips. Each brewery 
consists of four sectors: retailer, wholesaler, distributor, and factory (R, W, D, F). 
One person manages each sector. A deck of cards represents customer demand. 

3The game is described in detail in Sterman (1989b, 1992) and Senge (1990). Information on 
the game and materials are available from the System Dynamics Society at <system.dynamics 
@albany.edu>. There is no real beer in the beer game and it does not promote drinking. When the 
game is used with, e.g., high school students, it is easily recast as the “apple juice game.” Many 
firms have customized the game to represent their industry. 



FIGURE 17-9 The Beer Distribution Game 
The game is a role-play simulation. Each player manages one of the links in the distribution chain from Retailer to Factory. In the game, 
chips of various denominations represent cases of beer and move through the supply chain from Raw Materials to Customers. Customer 
Orders are written on a deck of cards. Each week players place orders with the supplier on their right and the factory sets the production 
schedule. The orders, written on slips of paper, move upstream (left to right). The initial configuration is shown. 
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Each week, customers demand beer from the retailer, filling the order out of in- 
ventory. The retailer in turn orders beer from the wholesaler, who ships the beer re- 
quested from wholesale stocks. Likewise the wholesaler orders and receives beer 
from the distributor, who in turn orders and receives beer from the factory. The fac- 
tory produces the beer. At each stage there are order processing and shipping de- 
lays. Each link in the supply chain has the same structure. 

The players’ objective is to minimize total costs for their company. Inventory 
holding costs are usually set to $0.50 per case per week, and stockout costs (costs 
for having a backlog of unfilled orders) are $1 .OO per case per week. The task fac- 
ing each player is a clear example of the stock management problem. Players must 
keep their inventories as low as possible while avoiding  backlog^.^ Incoming or- 
ders deplete inventory, so players must place replenishment orders and adjust their 
inventories to the desired level. There is a delay between placing and receiving or- 
ders, creating a supply line of unfilled orders. 

The game is far simpler than any real supply chain. There are no random 
events-no machine breakdowns, transportation problems, or strikes. There are no 
capacity constraints or financial limitations. The structure of the game is visible to 
all. Players can readily inspect the board to see how much inventory is in transit or 
held by their teammates. The game is typically played with a very simple pattern 
for customer demand. Starting from equilibrium, there is a small, unannounced 
one-time increase in customer orders, from 4 to 8 cases per week. 

Despite the apparent simplicity of the game, people do extremely poorly. 
Among first-time players average costs are typically an astonishing 10 times 
greater than optimal. Figure 17-10 shows typical results. In all cases customer or- 
ders are essentially constant (except for the small step increase near the start). In 
all cases, the response of the supply chain is unstable. The oscillation, amplifica- 
tion, and phase lag observed in real supply chains are clearly visible in the experi- 
mental results. The period of the cycle is 20-25 weeks. The average amplification 
ratio of factory production relative to customer orders is a factor of four, and fac- 
tory production peaks some 15 weeks after the change in customer orders. 

Most interesting, the patterns of behavior generated in the game are remark- 
ably similar (there are, of course, individual differences in magnitude and timing). 
Starting with the retailer, inventories decline throughout the supply chain, and most 
players develop a backlog of unfilled orders (net inventory is negative). In re- 
sponse, a wave of orders moves through the chain, growing larger at each stage. 
Eventually, factory production surges, and inventories throughout the supply chain 
start to rise. But inventory does not stabilize at the cost-minimizing level near zero. 
Instead, inventory significantly overshoots. Players respond by slashing orders, of- 
ten cutting them to zero for extended periods. Inventory eventually peaks and 
slowly declines. These behavioral regularities are all the more remarkable because 
there is no oscillation in customer demand. The oscillation arises as an endogenous 
consequence of the way the players manage their inventories. Though players are 

4Minimum costs are obtained when inventory i s  zero, but since incoming orders are uncertain 
and backlogs are more costly than inventories, it is optimal to set desired inventory to a small 
positive number. 



FIGURE 17-1 0 Typical results of the Beer Distribution Game 
Top: Orders. Bottom: Net inventory (Inventory - Backlog). Graphs show, bottom to top, Retailer, Wholesaler, Distributor, and Factory. 
Vertical axes tick marks denote 10 units. Note the characteristic oscillation, amplification, and phase lag as the change in customer 
orders propagates from retailer to factory. 
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free to place orders any way they wish, the vast majority behave in a remarkably 
uniform fashion. 

To understand the origin of the oscillation, amplification, and phase lag, con- 
sider the structure and behavior of a typical link in the distribution chain. Figure 
17-11 maps the structure of a single link into the stock management framework 
(chapter 18 develops more realistic supply chain models for manufacturing). Net 
inventory is the stock to be managed. The supply line is the stock of orders the 
player has placed but not yet received, including orders in transit to the supplier, 
the supplier’s backlog (if any), and the goods in the shipping delays. Adapting 
the ordering decision rule to the production-distribution setting in the game is 
straightforward. The expected loss rate is the player’s forecast of incoming orders. 
Analysis of the beer game and related stock management experiments (Sterman 
1989a, b; Diehl and Sterman 1995) showed that most people form their forecasts 
by smoothing or averaging past orders. The data also show that people do not 

FIGURE 17-11 
Shows the structure of a single link in the supply chain. Customer orders are exogenous. Managers 
must place orders with their suppliers to replace shipments to customers and restore inventories to the 
desired level. 
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manage the supply line in the sophisticated manner assumed in equation (17-16). 
The desired supply line does not respond to the inventory adjustment but only the 
replacement of expected losses, as in equation (17-16a). 

Table 17-2 shows what happens when managers completely ignore the supply 
line. The system is simulated in discrete time intervals of 1 week, just as in the ac- 
tual experiment. For illustration, desired inventory is 400 units and the delivery de- 
lay is 3 weeks. Customer orders, and expected customer orders, are constant at 100 
unitdweek. Assume the manager corrects the entire discrepancy between inventory 
and desired inventory each week (SAT = 1 week). To knock the system away from 
the initial equilibrium, 100 units of inventory are unexpectedly lost during week 1, 
reducing inventory at the start of week 2 to 300 cases. The manager responds by 
ordering 200: 100 to replace customer orders and 100 to restore inventory to the 
desired level. The supply line rises to 400 units. Due to the delivery delay, inven- 
tory in week 3 is still only 200. The manager, ignoring the supply line, again re- 
sponds to the inventory gap and orders 200. The supply line rises to 500 units. In 
week 4 the manager again finds inventory is 100 units short, again ignores the sup- 
ply line, and again orders 200 units. The fifth week is the same. 

By the end of the fifth week the first order of 200 finally arrives. Week 6 be- 
gins with inventory restored to its desired level. The manager cuts orders back to 
the equilibrium rate of 100 unitdweek. But the system is far from equilibrium: The 
supply line has swollen to 600 units. The next week, 200 more units are delivered, 
boosting inventory to 500. Facing a surplus of 100 units, the manager now cuts 
orders to zero. Too late: Over the next 3 weeks inventory soars to 700 units. 

Since orders cannot be canceled and goods cannot be returned, inventory re- 
mains high until the supply line is completely drained and deliveries fall to zero 
(week 10). It takes 3 weeks to eliminate the excess inventory. In week 13 inventory 
again equals the desired level, so orders rise to the equilibrium rate of 100 
unitdweek. But there is now nothing in the supply line. Nothing is delivered in 
week 14. Inventory falls to 300, forcing orders to rise 100 units above the order 
rate. Again, nothing is delivered in week 15. Inventory falls another 100 units, and 
the manager now must order 100 to replace customer demand plus 200 to restore 
inventory to the desired level. By the start of week 16 inventory has fallen to 100, 
forcing the manager to order 400 units. By the start of week 17 the first order of 
100 arrives, stabilizing inventory at 100 units. The manager, responding only to the 
inventory shortfall, again orders 400. The supply line has now swollen to 1100 
units. Over the next 3 weeks these orders are delivered, soon pushing inventory 
above the desired level. Though the manager slashes orders to zero, deliveries con- 
tinue, swelling inventory to a peak of 1200 units. And so the cycle continues (Fig- 
ure 17-12).5 

5Given the chosen parameters, the no-supply-line control case generates a limit cycle: The equi- 
librium is unstable and cycle amplitude increases to a maximum determined by the nonlinearities in 
the system, specifically the nonnegativity of orders. You should experiment with different parame- 
ters (delivery delay, inventory, and supply line adjustment times) to explore how stability varies 
with the strengths of the inventory and supply line control loops and the length of the delay in the 
response of inventory to orders. See section 4.3.3. 



TABLE 17-2 
Discrete time simulation of system in Figure 17-11. Desired Inventory = 400 units. Delivery Delay = 3 weeks. Customer Orders = 
100 units/week. Inventory Loss equals shipments of 100 units/week except in week 1 when an additional 100 units are unexpectedly 
removed from inventory. Managers place orders based on the starting inventory for each week (before inventory for week t + 1 is 
known). Managers completely ignore the supply line (SLAT = a). 

Behavior of distribution system when managers ignore the supply line 

Starting + Delivery - Inventory - - Inventory Starting Order - Delivery - - Supply 
Week Inventory Rate Loss t + 1 Supply Line + Rate Rate Line t + 1 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

400 
400 
300 
300 
300 
300 
400 
500 
600 
700 
700 
600 
500 
400 
300 
200 
100 
100 
200 
400 
700 

1000 
1200 
1200 
1100 
1000 

100 
100 
100 
100 
100 
200 
200 
200 
200 
100 

0 
0 
0 
0 
0 
0 

100 
200 
300 
400 
400 
300 
100 

0 
0 
0 

100 
200 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 

400 
300 
300 
300 
300 
400 
500 
600 
700 
700 
600 
500 
400 
300 
200 
100 
100 
200 
400 
700 

1000 
1200 
1200 
1100 
1000 
900 

300 
300 
300 
400 
500 
600 
600 
500 
300 
100 

0 
0 
0 
0 

100 
300 
600 
900 

1100 
1100 
800 
400 
100 

0 
0 
0 

100 
100 
200 
200 
200 
200 
100 

0 
0 
0 
0 
0 
0 

100 
200 
300 
400 
400 
300 
100 

0 
0 
0 
0 
0 
0 

100 
100 
100 
100 
100 
200 
200 
200 
200 
100 

0 
0 
0 
0 
0 
0 

100 
200 
300 
400 
400 
300 
100 

0 
0 
0 

300 
300 
400 
500 
600 
600 
500 
300 
100 

0 
0 
0 
0 

100 
300 
600 
900 

1100 
1100 
800 
400 
100 

0 
0 
0 
0 
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FIGURE 17-12 
Oscillation caused 
by failure to 
consider the 
supply line 
The behavior of 
the system in 
Table 17-2: 
Inventory 
unexpectedly 
falls by 100 units 
in week 1. 
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The oscillation in Figure 17-12 arises not from the time delay alone but 
because the manager places orders without regard to the supply line of unfilled 
orders. The only thing the manager cares about is whether there is enough inven- 
tory right now. 

What happens when the manager fully accounts for the supply line? Table 17-3 
shows a simulation of the system for the same situation except that now the supply 
line is given as much weight as inventory on hand, that is, SLAT = SAT = 1 week. 
As before, inventory unexpectedly drops by 100 units in week 1. Also as before, 
the manager orders 100 units to replace expected customer orders plus an addi- 
tional 100 cases to restore inventory to the desired level, increasing the supply line 
of unfilled orders to 400 units. Due to the delivery delay, inventory remains at 300 
in week 2. The adjustment for inventory is again 100 units. This time, even though 
inventory is still 100 units short, the manager realizes that the total amount of in- 
ventory on hand and on order is equal to the desired level, cuts orders back to the 
replacement rate, and waits patiently for the extra units in the supply line to be de- 
livered. Over the next 2 weeks the extra 100 units make their way through the sup- 
ply line. In week 5 deliveries are 200 units, inventory is restored to the desired 
level of 400, and the supply line drops from 400 back to its equilibrium level of 
300. The inventory and supply line adjustments both return to zero. Equilibrium is 
restored after just 4 weeks, with no oscillation. 



TABLE 17-3 
Conditions are the same as in Table 17-2 except the manager fully accounts for the supply line of unfilled orders (SLAT = SAT = 
1 week). 

Behavior of distribution system when managers account for the supply line 

Starting + Delivery - Inventory - - Inventory Starting Order - Delivery - - Supply 
Week Inventory Rate Loss t + 1 Supply Line + Rate Rate Line t + 1 

0 400 100 100 400 300 100 100 300 
1 400 100 200 300 300 100 100 300 
2 300 100 100 300 300 200 100 400 
3 300 100 100 300 400 100 100 400 
4 300 100 100 300 400 100 100 400 
5 300 200 100 400 400 100 200 300 
6 400 100 100 400 300 100 100 300 
7 400 100 100 400 300 100 100 300 
8 400 100 100 400 300 100 100 300 
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To understand the role of the supply line adjustment in the origin of oscilla- 
tions more formally, substitute the definitions of the adjustment for the stock and 
adjustment for the supply line into the equation for the order rate: 

OR = MAX{O, IO} = MAX{O, EL + AS + ASL} 
= MAX{O, EL + (S* - S)/SAT + (SL" - SL)/SLAT) 

(17-13a) 

Now define the Weight on the Supply Line as the ratio of the two adjustment times: 
WSL = SAT/SLAT. Substituting WSL into equation (17-13a) gives 

OR = MAX(0, EL + (S* - S)/SAT + WSL * (SL* - SL)/SAT} (17-13b) 

Combining terms, 

OR = MAX{O, EL + [S* + WSL * SL* - (S + WSL * SL)]/SAT} (17- 1 3 ~ )  

Now define the effective total stock, ETS, as the sum of current inventory and the 
fraction of the supply line the manager accounts for, ETS = S + WSL * SL. The 
desired effective total stock, ETS* = S* + WSL * SL*, represents the total stock on 
hand and on order the managers believe they need. Substituting ETS and ETS* into 
equation (17- 13c) gives 

OR = MAX{ 0, EL + (ETS* - ETS)/SAT} (17- 13d) 

The interpretation is straightforward. Equation (17-13d) defines a first-order neg- 
ative feedback system in the state variable ETS. If WSL = 1, managers give the 
supply line as much weight as inventory on hand and effective total stock equals 
the actual, true total inventory in the system. Fully accounting for the supply line 
converts the potentially oscillatory negative loop with a delay into an effectively 
first-order negative feedback system. Corrective actions (orders) immediately cor- 
rect the discrepancy between the desired and actual total stock on hand and on 
order, and changes in the total stock immediately affect the order decision. Un- 
anticipated shocks induce no oscillation in the total stock, despite the delay be- 
tween placing and receiving orders. If WSL = 0, however, managers completely 
ignore the supply line. The failure to consider the delay in receiving goods then 
leads to oscillation. As WSL approches 1, the greater the damping and the more 
stable the response of the system to shocks will be. 

The analysis above shows why it is important to recognize the time delays in 
negative loops and supply lines of corrective actions already taken. Yet people 
often fail to do so. In Sterman (1989b) I estimated the decision rule shown in equa- 
tion (17-13d) for a sample of 44 players.6 Overall, the decision rule worked quite 
well, explaining 71% of the variance in the order decisions of the subjects. The es- 
timated parameters showed that most were using grossly suboptimal cue weights. 
The average weight on the supply line was only 0.34. Only 25% of the subjects 
considered more than half the supply line and the estimated value of WSL was not 
significantly different from zero for fully one-third. Figure 17- 13 compares simu- 
lated and actual behavior for the factory in an actual game. The estimated stock 

6To estimate the decision rule the total desired stock ETS* was treated as a constant and the 
expected loss rate (demand forecast) was modeled by first-order exponential smoothing of 
incoming orders. 
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FIGURE 17-13 
Estimated vs. 
actual behavior in 
the beer game 
Factory orders for 
an actual player 
compared to 
estimated orders 
from equation 

Parameters: 
Smoothing time 
for forecast of 
customer orders, 
1.82 weeks; 
desired total stock 
on handandon 
order, 9 cases; 
stock adjustment 
time SAT, 1.25 
weeks; weight 
on supply line 
WSL, 0. 
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Source: Sterman (1 98913). 

adjustment time SAT is just 1.25 weeks-the player reacted aggressively to inven- 
tory shortfalls, ordering nearly the entire inventory shortfall each week. At the 
same time, the estimated weight on the supply line WSL is zero. As you would 
expect, aggressively reacting to current inventory shortfalls while completely ig- 
noring the supply line leads to severe instability and high costs. Because it takes 
3 weeks to receive production requested today, the player effectively ordered three 
times more than needed to correct any inventory shortfall. 

Other experiments (Sterman 1989b; Diehl and Sterman 1995; Brehmer 1992) 
show that the tendency to ignore time delays and underweight the supply line is ro- 
bust. In several of these experiments the supply line was prominently displayed to 
the subjects, yet they ignored it anyway. As discussed in chapter 1, the information 
you use in decision making is conditioned by your mental models. If you don’t rec- 
ognize the presence of a time delay or underestimate its length, you are unlikely to 
account for the supply line even if the information needed to do so is available. 

Many players find these results disturbing. They argue that they took a wide 
range of information into account when placing orders and that their subtle and so- 
phisticated reasoning cannot be captured by a model as simple as equation 
(17-13d). After all, the decision rule for orders only considers three cues (incom- 
ing orders, inventory, and the supply line)-how could it possibly capture the way 
people place orders? Actually, players’ behavior is highly systematic and is ex- 
plained well by the simple stock management heuristic. People are often surprised 
how well simple decision rules can mimic their behavior. 

In fact, one of the games shown in Figure 17-10 is a simulation, not the actual 
play of real people. I simulated the beer game with the decision rule in equation 
(17-13d). The parameters of the rule, for all four players, were set to the average 
estimated values. A small amount of random noise was added to the order rate. Can 
you tell which is the ~imulation?~ 

7Simulated orders were generated by OR, = MAX{O, EL, + [ETS* - (S, + WSL * SLJ]! 
SAT + e,} where ETS* is the desired total stock and e, is a normally distributed random variable 
with standard deviation equal to the mean of the standard errors of the estimated equation over the 
sample. The forecast EL, was formed by first-order exponential smoothing of the actual incoming 
order rate, EL, = (COR, - - EL, - J/TEO, where TEO, the time to form expected orders, is the 
smoothing time constant. The mean of the estimated parameters is TEO = 1.82 weeks, ETS* = 
17 units, SAT = 3.85 weeks, and WSL = 0.34. 
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17.4.2 Why Do We Ignore the Supply Line? 
The beer game clearly shows it is folly to ignore the time delays in complex sys- 
tems. Consider the following situation. You are involved in an automobile acci- 
dent. Thankfully, no one is hurt, but your car is a total loss. Insurance settlement in 
hand, you visit a dealer and select a new car. You agree on a price, but the model 
you want is not in stock-delivery will take 4 weeks. You pay your deposit and 
leave. The next morning, noticing that your driveway is empty-Where’s my 
car!-you go down to the dealer and buy another one. Ridiculous, of course. No 
one would be so foolish as to ignore the supply line. Yet in many real life situations 
people do exactly that. Consider the following examples (Table 17-1 shows how 
they map into the stock management structure): 

You cook on an electric range. To get dinner going as soon as possible, you 
set the burner under your pan to “high.” After a while you notice the pan is 
getting quite hot, so you turn the heat down. But the supply line of heat in 
the glowing coil continues to heat the pan even after the current is cut, and 
your dinner is burned anyway. 
You are surfing the worldwide web. Your computer did not respond to your 
last mouse click. You click again, then again. Growing impatient, you click 
on some other buttons-any buttons-to see if you can get a response. After 
a few seconds, the system executes all the clicks you stacked up in the 
supply line, and you end up far from the page you were seeking. 
You arrive late and tired to an unfamiliar hotel. You turn on the shower, but 
the water is freezing. You turn up the hot water. Still cold. You turn the hot 
up some more. Ahhh. Just right. You step in. A second later you jump out 
screaming, scalded by the now too-hot water. Cursing, you realize that once 
again, you’ve ignored the time delay for the hot water to heat the cold pipes 
and get to your shower. 
You are driving on a busy highway. The car in front of you slows slightly. 
You take your foot off the gas, but the distance to the car in front keeps 
shrinking. Your reaction time and the momentum of your car create a delay 
between a change in the speed of the car ahead and a change in your speed. 
To avoid a collision, you have to slam on the brakes. The car behind you is 
forced to brake even harder. You hear the screech of rubber and pray you 
won’t be rear-ended. 
You are young, and experimenting with alcohol for the first time. Eager to 
show your friends you can hold your liquor, you quickly drain your glass. 
You feel fine. You drink another. Still feeling fine. You take another and 
another. As consciousness fades and you fall to the floor, you realize-too 
late-that you ignored the supply line of alcohol in your stomach and drank 
far too much.8 

*Tragically, young people die every year from alcohol poisoning induced by aggressive drinking 
(a short stock adjustment time, SAT, and failure to account for the supply line of alcohol they’ve 
already ingested, WSL = 0). 
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How often have you fallen victim to one of these behaviors? We may not buy an- 
other car when the first one isn’t delivered immediately, but few of us can say 
we’ve never burned our dinner or been scalded in the shower, never drunk too 
much or been forced to brake hard to avoid a collision. 

Recognizing and accounting for time delays is not innate. It is behavior we 
must learn. When we are born, our awareness is limited to our immediate sur- 
roundings. Everything we experience is here and now. All our early experiences re- 
inforce the belief that cause and effect are closely related in time and space: When 
you cry, you get fed or changed. You keep crying until mother or father appears, 
even when you hear your parents say, “We’re coming” (i.e., despite knowledge that 
your request for attention is in the supply line). As all parents know, it takes years 
for children to learn to account for such time delays. When my son was two he 
might ask for a cup of juice: “Juice please, Daddy.” “Coming right up,” I’d say, 
taking a cup from the shelf. Though he could see me getting the cup and filling it 
up, he’d continue to say, “Juice, Daddy!” many times-ever more insistently-un- 
til the cup was actually in his hand. 

Learning to recognize and account for time delays goes hand in hand with 
learning to be patient, to defer gratification, and to trade short-run sacrifice for 
long-term reward. These abilities do not develop automatically. They are part of a 
slow process of maturation. The longer the time delays and the greater the uncer- 
tainty over how long it will take to see the results of your corrective actions, the 
harder it is to account for the supply line.9 

You might argue that by the time we become adults we have developed the 
requisite patience and sensitivity to time delays. There may be no cost to saying 
“juice” a dozen times, but surely when the stakes are high we would quickly learn 
to consider delays. You don’t burn yourself in your own shower at home-you’ve 
learned where to set the hot water faucet to get the temperature you like and to wait 
long enough for the water to warm up. Most people soon learn to pay attention to 
the supply line of alcohol in their system and moderate their drinking. The condi- 
tions for learning in these systems are excellent. Feedback is swift, and the conse- 
quences of error are highly salient (particularly the morning after). There is no 
doubt in either case that it was the way you made decisions-the way you set the 
faucet or drank too fast-that caused the problem. These conditions are frequently 
not met in business, economic, environmental, and other real world systems (see 
chapter 1 for discussion). Cause and effect are obscure, creating ambiguity and un- 
certainty. The dynamics are much slower, and the time required for learning often 
exceeds the tenure of individual decision makers. Ignoring time delays is also 
sometimes rational for the individual. In a world of short time horizons, of annual, 
quarterly, or even monthly performance reviews, the incentives people face often 
mean it is rational for them to be aggressive and ignore the delayed consequences 
of their actions. 

9More subtly, our childhood experiences reinforce the idea that there is no cost to ignoring the 
supply line. Though my son may have said “Juice, Daddy” 10 times before I could fill his “order,” 
I brought him only 1 cup. He didn’t take the supply line into account, but I did. In that situation, 
there is no cost to overordering, while patience might not work (dad might get distracted and forget 
to bring the juice). In many real stock management situations, there is no central authority to ac- 
count for the time delays and prevent overordering. 
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The French economist Albert Aftalion recognized in the early 1900s how fail- 
ure to account for the time delays could cause business cycles. Using the familiar 
fireplace as an analogy, his description explicitly focuses on the failure of decision 
makers to pay attention to the supply line of fuel: 

If one rekindles the fire in the hearth in order to warm up a room, one has to wait a 
while before one has the desired temperature. As the cold continues, and the ther- 
mometer continues to record it, one might be led, if one had not the lessons of ex- 
perience, to throw more coal on the fire. One would continue to throw coal, even 
though the quantity already in the grate is such as will give off an intolerable heat, 
when once it is all alight. To allow oneself to be guided by the present sense of 
cold and the indications of the thermometer to that effect is fatally to overheat 
the room.1° 

While Aftalion argued that “the lessons of experience” would soon teach people 
not to “continue to throw coal,” he argued that business cycles in the economy 
arose because individual entrepreneurs focused only on current profitability and 
failed to account for the lags between the initiation of new investment and its real- 
ization, leading to collective overproduction. 

Yet even if individuals can’t learn effectively, shouldn’t the discipline imposed 
by the market quickly weed out people who use suboptimal decision rules? Those 
who ignore the supply line or use poor decision rules should lose money and go out 
of business or be fired, while those who use superior decision rules, even by 
chance, should prosper. The selective pressures of the market should quickly lead 
to the evolution of optimal decision rules. 

The persistent cycles in a wide range of supply chains presented at the start of 
this chapter suggest Aftalion was right. Learning and evolution in real markets ap- 
pear to be slow, at best, despite decades of experience and the huge sums at stake. 
Part of the problem is lack of information. Individual firms usually do not ignore 
the supply lines of materials on order or capital under construction. The problem is 
one of aggregation. The individual firm tends to view itself as small relative to the 
market and treats the environment as exogenous, thereby ignoring all feedbacks 
from prices to supply and demand. The individual firm may not know or give suf- 
ficient weight to the supply lines of all firms in the industry or the total capacity of 
all plants under construction. Firms tend to continue to invest and expand as long 
as profits are high today, even after the supply line of new capacity under con- 
struction is more than sufficient to cause a glut and destroy profitability. Each in- 
vestor takes market conditions as exogenous, ignoring the reactions of others. 
When all investors react similarly to current profit opportunities the result is over- 
shoot and instability. 

The financial markets, seen by many as the most efficient and farsighted, 
should rapidly evolve to near-optimality due to the huge stakes and enormous 
talent brought to bear. Yet even the highly sophisticated hedge funds bear the scars 
of self-inflicted wounds from open-loop thinking. These funds use complex mod- 
els developed by PhDs in finance, mathematics, and physics to exploit small 

‘OQuoted in Haberler, G. (1964) Prosperity and Depression. London: George Allen and Unwin, 
pp. 135-136. 
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departures from equilibrium in the markets. In the fall of 1998, Russia defaulted on 
its external debt, throwing stock and bond markets into a sharp correction. The 
hugely successful hedge fund Long Term Capital Management (LTCM) collapsed 
as its highly leveraged bets, based on models assuming certain historical regulari- 
ties would continue, failed. Forced to sell many of their positions at a loss, the cri- 
sis rapidly cascaded beyond LTCM to shake the entire financial world, ultimately 
leading to a multi-billion dollar bailout orchestrated by the US Federal Reserve. 
Kestenbaum (1999, p. 1247) commented: 

Some competitors watched LTCM’s fire sale with a certain glee. “It was hypnotic,” 
one recalls, “then sickening.” Sickening because it started to happen to everyone. 
“It wasn’t supposed to be so hard to sell,” one trader says. “What we missed was 
that other hedge funds were doing the same thing. That wasn’t an input to any- 
body’s model.” 

17.4.3 Case Study: Boom and Bust 
in Real Estate Markets 

Real estate markets are among the most unstable and cyclic asset markets, exhibit- 
ing large amplitude cycles of 10-20 years. Real estate constitutes a large fraction 
of the total wealth in any economy, generates a significant fraction of bankmg 
activity and debt, and strongly affects the job market. Consequently, real estate 
booms are often accompanied by periods of intense speculation involving expan- 
sion of credit and banking activity, stimulating the local and even national econ- 
omy. When the bubble bursts, the resulting bad loans, defaults, and unemployment 
can throw an entire region into recession or even depression. 

Figure 17-14 shows a classic example, the real estate cycle in Chicago from 
1830 to 1932 (Hoyt 1933). Over this period Chicago grew from a small town of a 
few hundred people with property valued at less than $100,000 to an economic 
powerhouse with more than 3 million inhabitants and real estate valued at more 
than $3 billion. Growth, however, was anything but smooth. Land values and de- 
velopment activity went through repeated cycles of boom and bust. Land valua- 
tions fluctuate roughly +50% around the trend, while construction activity surges 
from a low some 60% below average during downturns to more than double the 
average during booms. These amplitudes are much larger and much longer than the 
business cycle-the real estate cycle cannot be blamed on some external variation 
in the pace of economic activity. 

Real estate cycles are not limited to Chicago nor are they an artifact of mere ar- 
chaeological interest. The cycle continues to have a large amplitude and long pe- 
riod. Most recently, North American and European property markets boomed in 
the late 1980s, only to crash resoundingly in the early 1990s. From the 1980s bub- 
ble economy of Japan to the building boom and bust in southeast Asia in the late 
1990s, instability in property markets is alive and well. 

How does the cycle arise? Figure 17-15 shows the causal structure of the mar- 
ket. The demand for commercial space depends on economic activity. The greater 
the employment in the region, the more space is needed, and vacancy rates fall. 
When vacancy rates are low, effective rents start to rise (effective rents are gross 
rents net of tenant concessions such as moving and remodeling expenses). Higher 
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FIGURE 17-1 5 Causal structure of commercial real estate markets 
Additional feedbacks involving the availability of financing, credit standards, developer experience, and feedback from the pace of 
construction activity to economic growth are omitted. 
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rents lead to some reduction in demand as businesses make do with less space per 
worker, but the elasticity of the negative Demand Response feedback (loop B 1) is 
low and the response time is long. On the supply side, rising rents boost the profit- 
ability and market values of existing properties. When prices are high and rising, 
rents and operating profits are high and developers can realize substantial capital 
gains as well. High profits attract new developers, who find no shortage of finan- 
cial backers eager to cash in on the boom. Many new projects are started, swelling 
the supply line of buildings under development. After a long delay (2-5 years), the 
stock of space rises, vacancy rates rise, and rents start to fall, dragging down mar- 
ket values. As profits fall, so does the development rate. The market creates nega- 
tive loops that attempt to balance demand and supply through price (the negative 
Supply Response and Speculation loops B2 and B3). 

In assessing the profitability of a potential new development, developers and 
their investors should forecast the future vacancy rate by projecting the growth of 
demand and supply. To do so they should take the feedback structure of the market 
into account (the Supply Line Control loop B4). In particular, developers should 
consider the supply line of buildings on order and under construction when esti- 
mating future supply. If they did, the rate at which new projects are initiated would 
fall well before prices peak. Developers would realize that there was enough space 
in the pipeline to balance demand and supply even though vacancies remain low 
and profits are high today. Note, however, in Figure 17-14 that construction 
reaches its peak at or after the peak in prices, that is, after the market has already 
developed excess supply, vacancy rates are rising, and rents are falling. Develop- 
ers continue to start new projects as long as they perceive profits are high right 
now, even though it takes 2-5 years to complete a project. Failure to account for 
the supply line contributes to overbuilding during booms, and prevents investment 
from recovering early enough to prevent a tight market after the bust ends. The sit- 
uation has not improved over the last hundred years. Reflecting on the real estate 
bust of the late 1980s, Downs (1991, p. 2) commented: 

Investors are not always swayed by objective evidence--even overwhelming 
evidence-if it leads to conclusions that contradict their immediate interests as 
perceived by the “herd.” Evidence of overbuilding in office and other markets was 
overwhelming by 1987, and probably even earlier. By 1987, the national office- 
space vacancy rate-which was under 5% in 1981-had exceeded 19% for three 
years running. Yet banks accelerated their investments in new construction loans in 
1988 and 1989. Even long-term investors continued to buy real estate at rather high 
prices, although effective rents were falling sharply. 

How can it be that real estate developers ignore the supply line of buildings under 
development? After all, the financial stakes are huge. Buildings under construction 
are visible to all, and even the projects on the drawing board or awaiting approval 
are generally known in the development community. 

In the late ’80s and early ’90s a group of students at the MIT system dynamics 
group investigated this question through a series of field studies and laboratory ex- 
periments. Hernandez (1990) and Thornton (1992) interviewed a range of devel- 
opers. The interviewees were senior executives in leading national or regional real 
estate development or advisory firms, people with bottom-line responsibility for 
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development and financing decisions. The goal was to identify the mental models 
they used to guide development decisions. In particular, we were interested in their 
understanding of market dynamics. Did they account for the feedback structure of 
the market? Did they view the market as cyclical, or did they expect trends in de- 
mand, supply, and prices to continue? Most important, did they account for the 
time delays and supply line of pending projects? 

Eliciting the mental models of decision makers through interviews is difficult. 
There is a danger that the informants will tell you what they think you want to hear. 
The students initially asked neutral questions encouraging the developers to talk 
about how they made development decisions, how they arranged financing, and so 
on. If, without prompting, people mentioned cycles, the supply line, or delays it 
would provide strong evidence that they understood the feedback structure in Fig- 
ure 17-15 and took the time delays into account. The developers were asked ex- 
plicitly about cycles and the supply line only if they made no mention of these 
concepts on their own. 

Amazingly, almost none spontaneously mentioned cycles, time lags, the sup- 
ply line, or any related dynamic concepts. Instead, their descriptions focused heav- 
ily on the detail complexity of the development system-how to select a promising 
site, how to sell a project and win financial backing, how to navigate the permit- 
ting process, and so on: 

Location is a bigger factor than the macro market. I know it’s clich6 but really 
the key to real estate is location, location, location . . . We . . . try to stay within 
San Francisco because we know it. We know the politics. We know the architects, 
engineers, consultants, and subcontractors. (Developer A) 

We did our market analysis kind of haphazard[ly]. [The CEO] had his own 
feelings about markets and submarkets. He did it by gut feel. His ability was amaz- 
ing. He could walk along a street and point to a retail center [in the city]. He’d say, 
“See that center? It’s never in the sun, nobody will walk on that side of the street, it 
will never work‘-little things like that . . . most of our market analysis was micro, 
mainly locational. (Developer B) 

(Developer D) 
Our biggest strength is our knowledge of the political approval process. 

There is no doubt that successful developers must master the detail complexity of 
the process. But the interviews revealed little appreciation for the dynamic com- 
plexity of the market. When asked at the end of the interviews about cycles, most 
were skeptical: 

We don’t consciously pay attention to cycles; more intuitively. We look at the 

We never looked at cycles. Our analysis figured stable, positive economic 

I’d say we looked at cycles in a qualitative, subjective kind of way. We did not 

more micro aspects of the market. (Developer A) 

growth. (Developer B) 

do any empirical analysis of cycles or try to measure the length of the real estate 
cycles. (Developer C) 

We really have no sense for cycles. (Developer D) 
Quite frankly, I am lousy when it comes to cycles. I think they exist but don’t 

pay a lot of attention to them. There are too many other factors that affect supply 
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and demand. External factors make it difficult to look at cycles. In fact, I think they 
probably negate them. (Developer E) 

of expertise.. . I’ll go to these industry forums where people will pull out newspaper 
articles that are talking gloom and doom, and then they’ll tell you these articles are 
from 1929, 1974, and 1981. But even with this supposed evidence of real estate cycles 
in history, [they] won’t change [people’s] minds! The pressure of the system is very 
strong and they can’t resist it either way. (Advisor A) 

Like Developer B, many explicitly acknowledged that they focused on current 
market conditions, extrapolated recent trends, and made minor adjustments to take 
other factors into account: 

Real estate cycles? C’mon. No, we don’t really analyze them; it’s outside our area 

In analyzing market information we would make trend line projections to 
determine if growth would continue and the space that we were contemplating 
building would be absorbed. The same as last year’s benchmark, greater or less. 
And the way you would determine that, is to say most people are bearish, rents are 
coming down, so we won’t do as much. Or the conclusion would be that most 
people are bullish, rents are firm, so we will do a little more. (Developer F) 

What problems do we have in tracking the supply side effects? Estimating a 
correlation between vacancy rates and rental rates is tough. You just kind of wag 
your finger in the air to determine what it might be. (Advisor A) 

We used to use a flat 5% vacancy rate in our pro formas. (Developer E) 

Most confessed that they didn’t consider the supply line of projects under devel- 
opment in their investment decisions. Many projected that rents and prices would 
rise at constant rates, independent of the volume of construction activity. They did 
not recognize the feedbacks among vacancies, rents, profits, construction, and the 
supply of space-an open-loop mental model: 

It’s difficult to assess the supply side. We don’t have a formal way of doing it. 
Word of mouth is usually the best. (Developer A) 

We do nothing formal about analyzing projects that are in the pipeline, nothing 
structured. We just talk to people in the industry, learn our markets. (Developer B) 

Tracking the supply in the pipeline is a real difficult task. Nothing is done for- 
mally. Will the office building down the street go? I don’t know. It is a total guess 
and there is a lot of broker lip service that you have to sift through. (Advisor A) 

There wasn’t any real sophisticated analysis of the supply side. (Developer C) 
We never did a formal or thorough analysis of what supply may be in [the] works 

in competition with one of our developments. In analyzing future supply and demand, 
I think it’s too unpredictable to put a lot of emphasis and time in trying to figure it out. 
(Developer G) 

Even when developers claimed to account for the supply line, they failed to close 
the feedbacks to the market: 

We paid strong attention to the supply side. But we didn’t consider that added 
supply would affect rental rates, we figured it would just affect the amount of time 
it took to lease up the property. (Developer C) 

But when the entire market is overbuilt, even the best projects in the most desirable 
locations suffer: 



704 Part V Instability and Oscillation 

Problem was, even if you were a smart developer you had other guys adding 
space and therefore affecting the rents of your proposed projects. It would even 
affect existing projects fully leased up. Lease renewals became difficult negotia- 
tions and many tenants would want to renegotiate their leases even before they 
expired. (Developer D) 

When evidence of overbuilding eventually became undeniable developers often 
thought other, less desirable projects than theirs would be the ones to suffer, slow- 
ing the reaction to excess capacity: 

Developers are promoters and must motivate people. It’s difficult to be realis- 
tic. You’re always selling and after a while you start believing your own delusions 
of grandeur. (Developer G) 

that their building is better than their neighbor’s. (Developer E) 
Of course developers’ egos had something to do with it. All developers believe 

The sunk cost fallacy, in which people are reluctant to abandon losing strategies, 
further slowed developers’ response to evidence of overbuilding: 

At this point, I am not about to walk away from this project given the time and 
money I have already invested in it.. . I will be a developer no matter how tough it 
may get. It’s a big ego thing. It’s not like you’re producing a homogeneous, mass- 
merchandised product. Development is a more personal thing, like creating a 
work of art. Being a developer I identify with developer groups and it’s like 
being in a fraternity. It’s the majority of my identity that I just can’t walk away 
from. (Developer G) 

Nearly all built spreadsheet models to do costhenefit or discounted cash flow 
(DCF) analysis. However, financial analysis was used primarily to help sell pro- 
jects, not as a tool of inquiry to aid the developers’ understanding. Many develop- 
ers believed making good decisions was primarily a matter of intuition: 

You can tailor the numbers to say anything you want them to say, but I’m 
going to trust my gut. My gut has been rarely wrong. (Developer A) 

All pro forma financial models require assumptions about future rents, expenses, 
market values, and interest rates. These inputs are generally based on extrapolation 
of recent trends. No feedbacks are considered. The inputs are then manipulated to 
make a project appear to be more profitable: 

In-depth market analysis was not done for decision making, it was done to 
obtain financing . . . Frankly, during that period of time [the boom of the late 
1980~1 you were concerned about getting the deal done and didn’t really care about 
cycles-it was all ego and pressure to do the deal. (Developer B) 

Instead of capping today’s income they [developers] trend rents upward period 
by period. For example, the pro forma would show 4% annual revenue increase 
and a 3% annual expense increase. Think about it-those lines never intersect! 
That pro forma and a couple of glossy pictures and the bank gives them the loan! 
(Developer A) 

We would use fifteen page spreadsheets-large sheets with small print-which 
would compute net present values and internal rates of return of projects by using 
costs of the project in great detail . . . Rents were assumed to increase yearly by five 
percent or the inflation rate. At the time I thought that was a conservative estimate and 
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it wasn’t really questioned by lenders . . . I spent much time and human resources in 
tweaking the numbers on these spreadsheets to get the internal rate of return which the 
bank wanted to be willing to finance the project. (Developer G) 

Developers assumed market values would keep on rising, leading to capital gains 
(the Speculation loop B3 in Figure 17-15). Projects that couldn’t make money 
from rental operations can still be made to seem profitable due to the reversion 
(capital gain) anticipated when the developer cashed out a few years later: 

In DCF analysis, one rule of thumb was that we never wanted to get in a 
position where the residual component was 50% of the valuation. Unfortunately, 
we broke this rule a few times. You know how it is-the market was the market at 
that time-you gotta have the building. (Advisor A) 

[During the boom in the SOs] there was so much competition to do deals you re- 
ally began relying on the DCF model, and especially relying too much on the rever- 
sion component. Then we all started running into problems with cash flow because of 
rent concessions.. . It got to be so competitive.. .that you would be [showing] leveling 
operating expenses, use a [low] 10% IRR [internal rate of return], and push the income 
growth and reversion components of the DCF.. . We just relied on the marketplace. 
Mostly we believed that three years down the line we would benefit from appreciation. 
(Developer B) 

As a boom gathers momentum, the capital gains dominate, leading to huge profits. 
For many developers, greed overwhelms reason and experience: 

The guys making the decisions should have been smart enough to know better. 
They should have seen it. It wasn’t just the younger guys either, who hadn’t been 
through a cycle. Everyone sitting on the committee had gray hair and was in their 
forties or fifties. But we all got greedy. When we should have sold we would hold 
out for just a little bit more. They weren’t good sellers. They believed all their own 
[lies], all the [lies] they told the people financing the projects. (Developer B) 

Though developers cook the numbers to make their projects look more attractive, 
they must still obtain financing. Most commercial developments rely heavily on 
OPM (other people’s money). The financial markets are supposed to dampen the 
dreams and schemes of developers, weeding out the unprofitable projects. But 
when rents and market values are high and rising, developers can easily get fi- 
nancing on favorable terms as investors scramble to get in on the boom. Down 
payment and debvequity standards fall, and nonrecourse financing rises as banks 
compete for the fees generated by the frantic rate of development.ll 

[During the boom] it was too easy to get money. Look at it this way. You own a 
piece of property-you are the managing partner. All your equity is in that property. 
Who knows what you paid for it? You prepare a pro forma which includes your 
estimated land value, which is undoubtedly greater than what you paid for it. You 
can then sign an interim note based on that estimated land value. All of a sudden 
you have a check in your hand for the land value of the pro forma. I’m not kidding! 
(Developer D) 

in which I contributed practically no money. (Developer G) 
In the glory days percentages are thrown away all together, and I’ve done projects 

“In nonrecourse financing the project itself is the only collateral. If the developer defaults on 
the loan, the bank cannot recover its loss from the developer’s other assets. 
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Easy money and the erosion of credit standards during booms increase the devel- 
opment rate and contribute to overbuilding, but developers’ reliance on OPM only 
begs the question, Why don’t the investors take account of the supply line when 
evaluating whether to put their money at risk? One problem is the competition for 
up-front fees by lenders. Another is the lack of experience among banks, especially 
during a boom when their real estate operations grow rapidly. Many of the loan of- 
ficers hired during booms are young and have never experienced a market down- 
turn. Finally, without an appreciation for the structure and dynamics of the market, 
the financial community suffers from groupthink and the herd mentality: 

The banks are supposed to be the last line of checks and balances, but they 
were just the opposite. They were too easy . . . The banks had no concept of the 
market. But not only were the banks too easy, they actually helped to drive a lot of 
deals. I remember because I worked at a bank for some of that time. Loan officers 
were given goals that they were pressured to meet: Total amount of loans, total 
amount of fees, total amount of renewal fees. If you put a banker out in the middle 
of [nowhere] . . . and you tell him he is going to be compensated . . . by the amount 
of loans he makes, guess what? He will find a way to make loans! It got so com- 
petitive. Banks were not only making ill-advised loans, they were undercutting 
each other’s fees to get the deal. (Developer A) 

effectively rubber-stamped anything that the lender and developer agreed were 
reasonable . . . It was one big complicitous circle. No one wanted to say no or 
they would lose business. (Developer G) 

sidelines and not making investments and your competitors are collecting fees for 
placing funds, what are you going to do? If the pressure is there to place the money, 
you will find a way to buy. (Advisor A) 

that they will never again lend on real estate. I have an answer for that. All it takes is 
just one generation. A generation of bankers and developers to churn through. A gener- 
ation that hasn’t been through the cycles. (Developer A) 

The interviews strongly suggest developers and investors do not understand the 
feedback structure of real estate markets and do not adequately account for the 
time delays or supply line of pending space. They are overwhelmingly influenced 
by current conditions and tend to extrapolate recent trends. But interviews can be 
misleading. To test the conclusions from the interviews, Bakken (1993) conducted 
an experiment with a management flight simulator representing the real estate 
market. Based on the structure shown in Figure 17-15, players had to manage a 
portfolio of properties and could develop new projects and buy or sell existing 
properties. Professional developers working for what was then one of the largest 
real estate development firms in the US did no better than MBA students at MIT. 
Average performance was a small fraction of that achieved by a simple investment 
rule that accounted for the supply line. Learning was slow and transfer of learning 
to different market conditions was weak. When the professionals went bankrupt in 
the simulation they often criticized the model, claiming that in the real world prices 
could never drop so far or so fast. A few years later, most had lost everything. 

The appraisers, who were supposedly independent, also got involved . . . and 

There is a tremendous pressure to follow the crowd. If you are standing on the 

Will the banks or the developers learn? Well, a number of lenders are now saying 
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17.5 

Expanding the Real Estate Model 
The causal diagram in Figure 17-15 includes only a few of the feedbacks discussed 
in section 17.4.3 and suggested by the interviews with real estate developers. Ex- 
pand the causal diagram to include these other feedbacks. In particular, consider 

1. 

2. 

3. 

4. 

5. 

The impact of market conditions on credit standards, lending practices, and 
the availability of financing for new projects. 
The impact of real estate market and construction activity on the pace of 
economic growth in the region. 
The effect of development activity on the availability and cost of 
architectural and construction firms and how the availability of these 
resources affects planning and construction times and costs. 
The effect of development booms and busts on tax rates, zoning and 
permitting regulations, and other factors that may affect the attractiveness 
of the region to developers and to business in general. 
Other feedbacks and effects you think might be important in understanding 
the full impact of real estate cycles on a community. 

For each new feedback process, assess its likely impact on the period, stability, and 
other characteristics of the market. 

SUMMARY 
Supply chains are fundamental to a wide range of systems and many exhibit per- 
sistent instability and oscillation. Every supply chain consists of stocks and the 
management policies used to manage them. These management policies are de- 
signed to keep the stocks at their target levels, compensating for usage or loss and 
for unanticipated disturbances in the environment. Often there are important delays 
between the initiation of a control action and the result, creating a supply line of 
unfilled orders. 

This chapter developed a generic model of the stock management structure and 
showed how it can be customized to various situations. The model was used to ex- 
plain the sources of oscillation, amplification, and phase lag observed in supply 
chains. These patterns of behavior are fundamental to the basic physical structure 
of stock management systems and supply chains. Oscillation arises from the com- 
bination of time delays in negative feedbacks and failure of the decision maker to 
take the time delays into account. Field and experimental studies show that people 
often ignore the time delays in a wide range of systems. 

The beer game and real estate industry are but two examples of situations 
where cyclical instability arises from the failure of decision makers to account for 
time delays. There is no one single cause for the failure to account for time delays 
and the supply line. A range of factors, from information availability to individual 
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incentives, all contribute. But behind these apparent causes lies a deeper problem. 
True, the supply line is often inadequately measured, but if people understood the 
importance of the supply line they would invest in data collection and measure- 
ment systems to provide the needed information. True, compensation incentives 
often encourage people to ignore the delayed consequences of today’s actions, but 
if investors understood the structure and dynamics of the market they could re- 
design compensation incentives for their agents to focus on long-term perfor- 
mance. Our mental models affect the design of our institutions, information 
systems, and incentive schemes. These, in turn, feed back to our mental models. 
The failure to account for the supply line reflects deeper defects in our under- 
standing of complex systems. Ignoring time delays is one of the fundamental mis- 
perceptions of feedback that leads to poor performance in systems with high 
dynamic complexity (chapter 1). Failure to understand the role of time delays 
worsens the instability we face and leads to more surprises-usually unpleasant- 
reinforcing the belief that the world is inherently capricious and unpredictable and 
strengthening the short-term focus still more. 

What can be done? The next chapters take up the challenge of modeling sup- 
ply chains and oscillations, with special consideration to policies firms can under- 
take to improve performance. 



18 

The Manufacturing Supply Chain 

The central core of many industrial companies is the process of production and 
distribution. A recurring problem is to match the production rate to the rate of 
final consumer sales. It  is well known that factory production rate often 
fluctuates more widely than does the actual consumer purchase rate. It has 
often been observed that a distribution system of cascaded inventories and 
ordering procedures seems to amplify small disturbances that occur at the 
retail level. . . How does the system create amplification of small retail sales 
changes? . . . [W]e shall see that typical manufacturing and distribution 
practices can generate the types of business disturbances which are often 
blamed on conditions outside the company. 

-Jay W. Forrester (Industrial Dynamics, p. 22) 

The stock management structure described in chapter 17 is quite general and can 
be used to model supply chains for a variety of resources. This chapter shows how 
the stock management structure can be adapted to represent the supply chain in 
manufacturing firms. Locally rational policies that create smooth and stable ad- 
justment of individual organizational units may, through interactions with other 
functions and organizations, cause oscillation and instability. Instability can feed 
back to undermine trust among partners in a supply chain, leading to behavior that 
worsens the instability. 

The model is developed in stages. Simplifying assumptions are relaxed one at 
a time and only after the behavior of each version is fully analyzed. This iterative 
process deepens your understanding of the underlying relationships between the 
structure and behavior of dynamic systems and in the long run speeds the devel- 
opment of useful, effective models. 

709 
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18.1 THE POLICY STRUCTURE OF INVENTORY AND PRODUCTION 
Figure 18-1 shows the policy stvuctuve diagram for a simple model of a manufac- 
turing firm.' The firm maintains a stock of finished inventory and fills orders as 
they arrive. In this initial model, assume that customers are delivery sensitive- 
orders the company cannot fill immediately are lost as customers seek other 
sources of supply (section 18.1.7 adds an explicit backlog of unfilled orders). In 
this initial model, customer orders are exogenous. Production takes time. The stock 
of WIP (work in process) is increased by production starts and decreased by pro- 
duction. The key production control and inventory management decisions made by 
the firm include order fulfillment (determining the ability to fill customer orders 
based on the adequacy of inventory) and production scheduling (determining the 
rate of production starts based on the demand forecast and inventory position of 
the firm, including the WIP inventory). The model includes three important nega- 
tive feedbacks. The Stockout loop regulates shipments as inventory varies: If in- 
ventory is inadequate, some items will be out of stock and shipments fall below 
orders. In the extreme, shipments must fall to zero when there is no inventory. The 
Inventory Control and WIP Control loops adjust production starts to move the lev- 
els of inventory and WIP toward their desired levels. In this initial model there are 
no stocks of materials and no capacity constraints (either from labor or capital). 
These extensions are treated below. 

FIGURE 18-1 The policy structure of inventory management 

rn Inventory L1 

Shipment 

Customer 
Order Rate 

'Apolicy structure diagram shows the stock and flow and decision structure of a model at a 
high level (not at the level of the individual equations). The rounded rectangles denote organiza- 
tional subunits, policies, or decision rules and show the boundary of organizational units. Policy 
structure diagrams provide an overview of a model highlighting the feedback structure without 
showing all the details found in the model diagram (Morecroft 1982). 
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18.1 .I Order Fulfillment 
Figure 18-2 shows the structure of the order fulfillment process and shipment rate. 

Inventory coverage is the number of weeks the firm could ship at the current 
rate given its inventory: 

Inventory Coverage = Inventory/Shipment Rate (18-1) 

Inventory = INTEGRAL(Producti0n Rate - Shipment Rate, Inventoryh) (1 8-2) 

The shipment rate normally equals the desired shipment rate, but if inventory is in- 
adequate, some of the items customers request will be out of stock, reducing the 
order fulfillment ratio (the ratio of orders filled to the desired fulfillment rate): 

Shipment Rate = Desired Shipment Rate * Order Fulfillment Ratio (18-3) 

The order fulfillment ratio is a function of the ratio of the maximum shipment 
rate to the desired shipment rate; the values are specified by the Table for Order 
Fulfillment: 

( 18-4) 
Table for Maximum Shipment Rate ( - - Order 

Fulfillment Ratio Order Fulfillment Desired Shipment Rate 

The maximum shipment rate depends on the firm’s current inventory level and the 
minimum order fulfillment time: 

Maximum Shipment Rate = InventoryMinimurn Order Fulfillment Time (18-5) 

The minimum order fulfillment time is determined by the firm’s order fulfillment 
process, the complexity of the product, and the proximity of customers to the 

FIGURE 18-2 Structure of order fulfillment 
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FIGURE 18-3 
Order fulfillment 
as a function of 
inventory 

firm's distribution centers. It represents the minimum time required to process and 
ship an order. 

In this simple model, there is no backlog of unfilled orders, and all orders not 
immediately filled are lost as customers seek alternate suppliers. Hence 

Desired Shipment Rate = Customer Order Rate (1 8-6) 

where the customer order rate is exogenous from the point of view of the inventory 
and order fulfillment subsystem. 

A much simpler formulation for shipments is 

Shipment Rate = MIN(Desired Shipment Rate, Maximum Shipment Rate) (18-3a) 

Why use the fuzzy minimum function in equations (1 8-3) through (1 8-6)? Equa- 
tion (18-3a) says the firm ships what it wants to ship or what it can ship, whichever 
is less. This simple logic is compelling for the case of a single product or stock- 
keeping unit (SKU). However, models often represent firms that carry many dif- 
ferent SKUs, sometimes tens of thousands. Usually it is not necessary for the 
model's purpose to represent each SKU separately. The inventory level in such 
models represents the aggregate of all SKUs. The mix of SKUs requested by the 
customers varies unpredictably, as do the inventory levels of individual items. 
When many items are aggregated, some individual items are likely to be out of 
stock even when the aggregate desired shipment rate equals the maximum ship- 
ment rate. The order fulfillment ratio will then be less than 1. Figure 18-3 shows a 
typical shape for the order fulfillment ratio. 

To interpret the figure, note the two reference lines. Combining equations 
(18-3) and (18-4), 

SR = DSR * OFR = DSR *flMSWDSR) (18-3b) 

1 
Maximum Shipment Rate 

Desired Shipment Rate 
(dimensionless) 

SR = shipment rate; DSR = desired shipment rate; MSR = maximum shipment 
rate. 
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where SR, DSR, and MSR are the shipment, desired shipment, and maximum ship- 
ment rates, respectively, and OFR is the order fulfillment ratio. The horizontal line 
Order Fulfillment Ratio = 1 represents the case where shipments always equal de- 
sired shipments. If the shipment rate SR fell along the 45" line passing through the 
origin, then SR = MSR: Shipments always equal the maximum level inventory 
supports. The actual relationship must therefore be restricted to the region to the 
right and below both reference lines. When the firm has ample inventories, so that 
the maximum aggregate shipment rate is much greater than the desired shipment 
rate, then the chance that any individual item will be out of stock is negligible and 
the order fulfillment ratio is 1-shipments equal desired shipments. As the aggre- 
gate maximum shipment rate falls, the chances that some items will be out of stock 
increase, reducing the order fulfillment ratio. The order fulfillment ratio will there- 
fore be less than 1 at the point where the aggregate maximum shipment rate equals 
the desired shipment rate. Further reductions in availability force the order ful- 
fillment ratio down until goods are being shipped at the maximum rate inventory 
permits. The greater the number of individual items aggregated together, or the 
greater the unpredictability of demand for individual items, the smaller the order 
fulfillment ratio will be for any ratio of the maximum to desired shipment rate. The 
case where the order fulfillment ratio equals the 45" line when MSR < DSR and 
1 when MSR I DSR corresponds to the formulation SR = MIN(DSR, MSR) and 
would represent a situation where either there is only one SKU or where the de- 
mand for each type of inventory is perfectly correlated and predictable. 

The discussion so far assumes the firm will ship an item if it can. In practice 
firms with inadequate inventories may choose not to fill the orders of some smaller 
customers so as to maintain a reserve against the chance that a favored customer 
will place an order. Such strategic product withholding reduces the order ful- 
fillment ratio further below the reference lines, particularly in the region where 
MSR < DSR. 

18.1.2 Production 
Figure 18-4 shows the policy structure of the production rate. Typically production 
involves multiple steps that create significant inventories of work in process 

FIGURE 18-4 Production and WIP inventory 

Production 
Start Rate 

Work in 

Inventory Production 
+ Process L1 

-f Rate 
Manufacturing 

Production Cycle Time 

Inventory L 



71 4 P a t  V Instability and Oscillation 

(WIP). Chapter 6 provides examples of the stock and flow networks for manufac- 
turing processes, showing how the various stages of production can be represented. 
For the purpose of this model, all stages of the process are aggregated together into 
the WIP inventory. 

A third-order delay is used to model the production process: 

= INTEGRAL(Producti0n Start Rate - Production Rate, WIP,) 

= DELAY3(Production Start Rate, Manufacturing Cycle Time) 

(1 8-7) Work in Process Inventory 

(1 8-8) Production Rate 

The manufacturing cycle time represents the average transit time for all items ag- 
gregated together in the model. The fewer items aggregated together, the smaller 
the variance in individual cycle times and the higher the order of the delay that best 
characterizes production. 

18.1.3 Production Starts 
Figure 18-5 shows the structure of the production start decision. For now, no ca- 
pacity constraints are considered: Production starts do not depend on materials 
availability, labor, or capital plant and equipment. 

The production starts decision rule is formulated using the generic stock man- 
agement structure. The Production Start Rate is constrained to be nonnegative but 
otherwise equals the Desired Production Start Rate (since no resource constraints 
are yet considered). Desired Production Starts are determined by the Desired Pro- 
duction rate and the Adjustment for WIP (the supply line of pending production): 

Production Start Rate = MAX(0, Desired Production Start Rate) (18-9) 

Desired Production Start Rate = Desired Production + Adjustment for WIP (1 8- 10) 

The Adjustment for WIP modifies production starts to keep the WIP inventory in 
line with the desired level. Desired WIP is set to provide a level of work in process 
sufficient to yield the desired rate of production given the current manufacturing 
cycle time: 

(18-11) Adjustment for WIP 
= (Desired WIP - Work in Process Inventory)/WIP Adjustment Time 

Desired WIP = Manufacturing Cycle Time * Desired Production (1 8- 12) 

Desired production is determined by the Expected Order Rate, modified by the Ad- 
justment for Inventory. Desired Production is constrained to be nonnegative: 

(18-13) Desired Production 
= MAX(0, Expected Order Rate + Adjustment for Inventory) 

(1 8- 14) Adjustment for Inventory 
= (Desired Inventory - Inventory)/Inventory Adjustment Time 

(18-15) Desired Inventory Coverage 
= Minimum Order Processing Time + Safety Stock Coverage 

To provide adequate inventory as a buffer against unexpected variations in demand 
or production, the firm seeks to maintain a certain coverage of expected demand. 
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Desired inventory coverage includes two components. First, the firm must main- 
tain enough coverage to ship at the expected rate, requiring a base coverage level 
equal to the minimum order processing time. Second, to ensure an adequate level 
of service, the firm maintains additional safety stocks. The higher the coverage 
provided by the safety stock, the greater the service level (fraction of orders filled 
on average) will be. 

18.1.4 Demand Forecasting 
The firm is assumed to forecast demand using first-order exponential smoothing of 
the actual order rate (Figure 18-6). 

Expected Order Rate 
= INTEGRAL(Change in Exp Orders, Expected Order Rate,) (18-16) 

(18-17) 
(Customer Order Rate - Expected Order Rate) 

Time to Average Order Rate 
Change in Exp Orders = 

As shown in chapters 11 and 16, smoothing provides a realistic model of the 
forecasting process used in many firms. The forecasting process could easily be 
augmented to include seasonal adjustments or an extrapolative component to 
anticipate demand growth. 

18.1.5 Process Point: 
Initializing a Model in Equilibrium 

Model testing should be a process of controlled experimentation. For this reason, 
you should strive to initialize your models in a balanced equilibrium. Equilibrium 
means that all stocks in the system are unchanging, requiring their inflows and 
outflows to be equal. A balanced equilibrium further implies that all stocks are 
equal to their desired values. In the present model, equilibrium requires production 
starts = production = shipments (the conditions for WIP and Inventory to be con- 
stant); the change in expected orders must also be zero. In addition, a balanced 
equilibrium requires that Inventory = Desired Inventory, WIP = Desired WIP, and 
that all flows equal their target rates as well: Shipments, desired shipments, ex- 
pected orders, desired production, desired production starts, production starts, and 
production should all equal customer orders. (Note that the model does not include 
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scrap rates; if it did, production would have to exceed shipments by the scrap rate 
to achieve a balanced equilibrium.) 

Initializing your models in a balanced equilibrium facilitates the process of 
model testing because the system remains in equilibrium until disturbed by test in- 
puts you choose to impose. If your model begins out of equilibrium its behavior 
will confound the response to any test input with the transient behavior induced by 
the initial disequilibrium. 

In the present model, a balanced equilibrium is easily achieved with the fol- 
lowing initial conditions: 

Inventoryto = Desired Inventory 

WIP, = Desired WIP 

Expected Order Rate, = Customer Order Rate 

(18-18) 

(18-19) 

(18-20) 

Under these conditions, the adjustments for inventory and for WIP will be zero, 
so desired production starts = desired production = expected orders = customer 
orders; further, when inventory = desired inventory, shipments = desired ship- 
ments = customer orders-provided desired inventory coverage is sufficiently 
large that the order fulfillment ratio is 1. 

Note that the initial conditions are specified in terms of other variables and pa- 
rameters, not as numerical values. By specifying the initial conditions as expres- 
sions depending on other parameters in the model, the stocks will be initialized at 
their equilibrium values for any set of parameters and inputs. Specifying a numer- 
ical value will throw the model out of equilibrium if you change the parameters. 
You should strive to find an algebraic expression for each initial condition so that 
your models always begin in a balanced equilibrium. 

Not all models possess a unique balanced equilibrium or any balanced equi- 
librium at all. In the present model, there is no balanced equilibrium if desired in- 
ventory coverage is set at a level that causes the order fulfillment ratio to be less 
than 100%. For some models there is no equilibrium, balanced or otherwise. Many 
of the models of growth and product diffusion developed in chapter 9, for exam- 
ple, have no nontrivial equilibrium consistent with the situation near the beginning 
of the diffusion process. The market growth model (chapter 15) has no equilibrium 
at all because the base case parameters cause growth in an unlimited market. In 
these cases it is still useful to initialize each subsystem so that it is in equilibrium 
relative to its inputs or to initialize the model in a steady state, if one exists, even 
if that steady state is one of growth. 

Simultaneous Initial Condition Equations 
Sometimes you will find that the algebraic expressions you select for initial condi- 
tions will create a simultaneous equation system. For example, suppose the initial 
value of inventory had been specified as 

(18- 18a) Inventoryto = Desired Inventory Coverage * Shipment Rate 

This formulation appears to be reasonable: The initial inventory should provide 
the desired coverage of initial shipments for the system to be in equilibrium. But 
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specifying initial inventory in terms of the shipment rate creates a situation in 
which initial inventory depends on itself: 

Shipment Rate = Desired Shipment Rate * Order Fulfillment Ratio 
= Desired Shipment Rate * f(Maximum Shipment Ratemesired Shipment Rate) 

= Desired Shipment Rate *f (InventoryMinimum Order Fulfillment Time) 
Desired Shipment Rate 

(1 8-21) 

There are several remedies for situations with simultaneous initial value equations. 
The best solution is to specify the initial value in terms of other parameters that 
do not participate in the loop creating the simultaneity. Initial inventory could be 
expressed as 

Inventoryto = Desired Inventory Coverage * Desired Shipment Rate (18-22) 

The simultaneity is resolved because the desired shipment rate does not depend on 
inventory. The two formulations will differ only to the extent that initial shipments 
fall short of the desired rate. Another approach is to solve the system of simultane- 
ous equations and use the solution as the initial value. Sometimes simple algebra 
will suffice to solve the equations; in other cases the solution is more complex and 
requires linearization of the model’s nonlinear functions. As a last resort, simulta- 
neous initial value equations can be resolved by using a numerical value for one of 
the stocks in the loop. 

Simultaneous Initial Conditions 
Consider the simple macroeconomic model shown in Figure 18-7 (based on 
Samuelson 1939; see also Low 1980). The model provides a simple explanation of 
the consumption multiplier, an important concept in Keynesian analysis of the 
economy. In essence, the demand for goods and services depends on consumers’ 
expectations of their future income. Income expectations, in turn, depend on the to- 
tal income of all households, which, since the entire population is included, is the 
total output of the economy (gross domestic product [GDP]). The result is a posi- 
tive feedback, the consumption multiplier, in which an increase in GDP boosts in- 
come and raises consumption, further increasing aggregate demand and GDP. In 
the simple model here, inventories and the supply chain in the actual economy are 
omitted, so production adjusts to aggregate demand with a short lag. Consumer ex- 
pectations of future income also adjust to actual income (GDP) with a delay. 

The total production of goods and services (GDP) adjusts with a short delay to 
the rate of aggregate demand in the economy. First-order smoothing is assumed, a 
common assumption in many macroeconomic models. The initial value of GDP is 
set to its equilibrium value, aggregate demand AD. When GDP = AD, the change 
in GDP is zero: 

GDP = INTEGRAL(Change in GDP, AD) 

Change in GDP = (AD - GDP)/Time to Adjust Production 

(1 8-23) 

(1 8-24) 
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FIGURE 18-7 A simple macroeconomic model of the consumption multiplier 
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Aggregate demand is the sum of consumption C, government expenditure G, and 
investment I: 

AD = C + I + G (18-25) 

Consumers spend a fraction of their expected income, the Marginal Propensity to 
Consume MPC: 

C = MPC * Expected Income (1 8-26) 

Expected income adjusts to actual income, which in the aggregate is the GDP. 
Many models assume first-order exponential smoothing for the adjustment 
process. The initial value of Expected Income is set to GDP, its equilibrium value: 

Expected Income = INTEGRAL(Change in Expected Income, GDP) (18-27) 

Change in Expected Income 
= (GDP - Expected 1ncome)Expectation Formation Time (1 8-28) 

In this simple model, both government expenditure and investment are exogenous. 
The initial conditions are individually sensible: Each stock is set so that it is 

initially equal to its equilibrium value. But together they create a simultaneous ini- 
tial value equation: The initial GDP depends on aggregate demand, which in turn 
depends on expected income, which equals GDP. 

1. Resolve the simultaneous initial value problem in the multiplier model. Be 
sure your initial values will start the model in equilibrium for any set of parame- 
ters. Which parameters determine the equilibrium? Does the equilibrium depend 
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on the time constants (the time to adjust production and the time to form expecta- 
tions)? Whylwhy not? 
2. Simulate the model with your revised initial values and confirm that the sys- 
tem does begin in equilibrium. In this model it may be obvious from inspection of 
your equations that it will begin in equilibrium. You should still run the test. You 
may have made a typographical error in an equation. In more complex models, 
simulating to confirm that your model does indeed begin in a balanced equilibrium 
is an essential check on your calculated initial conditions. 
3. Typical parameters for the macroeconomy might be MPC = 0.8, Production 
Adjustment Time = 1 year, and Expectation Formation Time = 2 years. Set gov- 
ernment expenditure to 90 and investment to 10. What is the equilibrium GDP? 
Now simulate the model assuming the government stimulates the economy by in- 
creasing government expenditures by 10 units (yielding a 10% increase in aggre- 
gate demand) at the start of year 1. What is the new equilibrium? How long does it 
take to reach it? What is the pattern of adjustment? Why? 

18.1.6 Behavior of the Production Model 
To begin testing of the model, Table 18-1 shows illustrative parameters for a man- 
ufacturing firm. Note that while the minimum order processing time is 2 weeks, 
the firm desires a safety stock of an additional 2 weeks of coverage. Given the as- 
sumed values for the order fulfillment function, inventory coverage equal to the 
minimum order processing time would result in a service level of only 85%. 
Adding a safety stock equal to an additional 2 weeks of expected demand means 
the maximum shipment rate would be twice the desired rate when inventory equals 
its desired value, enabling the firm to fill 100% of the incoming orders. 

Figure 18-8 shows the response of the firm to an unanticipated 20% step 
increase in customer orders. The initial customer order rate is 10,000 widgets 
per week. 

The desired shipment rate rises immediately after the step increase in demand. 
Inventory coverage immediately drops from its initial value of 4 weeks to 3.33 
weeks. At the instant the customer order rate increases inventory has not yet 
changed, so the Maximum Shipment Rate remains the same (20,000 widgets/ 
week). The 20% increase in orders reduces the ratio of maximum to desired ship- 
ments from 2.00 to 1.67. The order fulfillment ratio at that point is over 99%, so 
the firm is initially able to fill nearly all the incoming orders, despite the increase. 
However, because production continues at the initial rate of 10,000 widgetdweek, 
inventory falls. As inventory falls, so too does the firm’s ability to ship. The order 
fulfillment ratio drops to a minimum of roughly 95% about 7 weeks after the de- 
mand shock, causing the firm to lose business (and its reputation as a reliable 
supplier). 

The growing gap between desired and actual inventory forces desired pro- 
duction to rise above expected orders. As it does the quantity of work in process 
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TABLE 18-1 Parameter Base Case Value (Weeks) 

2 Base case 
parameters for the Minimum Order Processing Time 
production model Safety Stock Coverage 2 

Manufacturing Cycle Time 8 
Inventory Adjustment Time 8 
WIP Adjustment Time 2 
Time to Average Order Rate 
Table for Order Fulfillment Ratio: 

8 

2 1 .6 -  

: z  
5; 1.2- 
E o  
3 .a 
s a  0.8- .E 
$E 

= I =  

0.4- 

0.0- 
0.0 0 .4  0.8 1 .2  1.6 2.0 

Maximum Shioment Rate 
Desired Shipment Rate 

(dimensionless) 

OFR 

0.0 0.00 
0.2 0.20 
0.4 0.40 
0.6 0.58 
0.8 0.73 
1.0 0.85 
1.2 0.93 
1.4 0.97 
1.6 0.99 
1.8 1.00 
2.0 1.00 

required to meet the higher production goal also grows, opening a gap between the 
desired and actual level of WIP. Thus the desired production start rate rises further 
above the desired production rate. 

As time passes the firm recognizes that the initial increase in demand is not a 
mere random blip and its forecast of demand gradually rises. Given the %week 
smoothing time for the forecast, it takes about % year for the forecast to adjust 95% 
of the way to the new order rate. During this time, the system cannot achieve a bal- 
anced equilibrium: If inventory and WIP inventory were equal to their desired val- 
ues, production would equal the demand forecast, which, since it is less than 
orders, would cause inventory to fall. 

As expected orders rise, so too does desired inventory, adding to the gap be- 
tween desired and actual inventory and boosting desired production still further. 
Production starts reach a peak more than 42% greater than the initial level about 
4 weeks after the shock, an amplification ratio of 2.12. 

The rapid increase in production starts soon fills the supply line of WIP, but 
production lags behind due to the %week delay. Production does not surpass ship- 
ments until more than 6 weeks have passed; throughout this period inventory con- 
tinues to fall even as the desired inventory level rises. Inventory stops falling when 
production first equals shipments. The system is not yet in equilibrium, however, 



FIGURE 18-8 Response of manufacturing model to a 20% step increase in orders 
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because of the large gap between desired and actual inventory and between orders 
and expected orders. Production eventually rises above shipments, causing inven- 
tory to rise, until it eventually reaches the new, higher desired level. Note that the 
peak of production comes about M year after the change in orders, much longer 
than the 8-week production delay suggests. 

The simulation reveals several fundamental aspects of supply chain behavior. 
First, the initial response of the firm to an unanticipated increase in demand is a de- 
cline in inventory. The production delay means an initial drop in inventory is in- 
evitable-it is a fundamental consequence of the physical structure of the system. 
The reduction in inventory contrasts sharply with the firm’s desire to hold more in- 
ventory when demand increases. 

Second, amplification of the demand shock is unavoidable. Because inventory 
must initially fall, the only way to increase it back to its initial level and then raise 
it to the new, higher desired level is for production to exceed shipments. Produc- 
tion must overshoot the shipment rate long enough and by a large enough margin 
to build inventory up to the new desired level. Production starts must overshoot or- 
ders even more so that the level of WIP can be built up to a level consistent with 
the higher throughput rate. 

Third, the peak production start rate must lag the change in customer orders. 
The adjustment to production from the inventory gap reaches its maximum about 
when the inventory reaches its minimum. Inventory bottoms out only after pro- 
duction has finally risen enough to equal shipments, an event that must lag the 
change in orders. Like amplification, this phase lag, characteristic of many real 
supply chains, is a fundamental and inevitable consequence of the physical stock 
and flow structure. 

The stock management structure thus explains why supply chains generate 
amplification and phase lag. Given the structure of the system (in particular, pro- 
duction delays and forecast adjustment delays), production and production starts 
must overshoot, amplify, and lag changes in demand, no matter how smart the 
managers of the firm may be. 

Though amplification and phase lag are inevitable, oscillation is not. The re- 
sponse of the firm to the demand shock is intendedly rational in the sense defined 
in chapter 15. The response of the firm to the shock is smooth and stable (given the 
base case parameters). Explaining oscillation requires the expansion of the model 
to include additional structure. 

18.1.7 Enriching the Model: Adding Order Backlogs 
So far the model assumes that orders not immediately filled are lost forever. While 
this assumption is reasonable in some settings, such as retail sales and some deliv- 
ery-sensitive industrial products, most manufacturing firms cannot deliver imme- 
diately and maintain a backlog of unfilled orders that accumulates the difference 
between orders and shipments. Backlogs arise whenever there is a delay between 
the receipt and delivery of an order. Such delays can be caused by administrative 
activities such as credit approval and order processing, by the need to customize or 
configure the product to the needs of particular customers, and by delays in ship- 
ping to the customer site, among others. When the value and carrying costs of 
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inventory are very high, firms prefer to maintain backlogs of unfilled orders and 
operate make-to-order systems even if they technically could stock finished prod- 
uct. Boeing does not make 777s to stock.2 Figure 18-9 shows how the order ful- 
fillment subsystem can be modified to include an explicit order backlog. 

An order backlog implies that there is a delay between the placement and re- 
ceipt of orders. By Little’s Law the ratio of the backlog to the order fulfillment rate 
measures the average delivery delay at any moment: 

Delivery Delay = Backlog/Order Fulfillment Rate (18-29) 

Backlog = INTEGRAL(0rder Rate - Order Fulfillment Rate, Backlogh) (18-30) 

The order fulfillment rate is equal to the shipment rate. Every time a widget is 
shipped to a customer, the backlog is decremented by one unit as well. Note that 
while the shipment rate and order fulfillment rate are assumed to be numerically 
equal and both are measured in the same units (widgetdweek), they are distinct 

2More precisely, aircraft manufacturers do not intend to make jetliners for inventory. However, 
an unexpected downturn in the aircraft market leads to order cancellations and can cause un- 
intended inventory accumulation. The excess aircraft must then be mothballed until customers 
can be found. Unsold or surplus jets are often flown to the Mojave desert where they can be stored 
cheaply and safely until they can be sold. 
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concepts. The shipment rate is the rate physical product leaves the firm, while the 
order fulfillment rate represents an information flow. 

In the revised structure the desired shipment rate is now the rate of shipments 
that will ensure orders are filled within the target delivery delay. The target deliv- 
ery delay is the firm’s goal for the interval between placement and receipt of or- 
ders. The actual delivery delay will equal the target when the shipment rate equals 
the desired shipment rate. 

Desired Shipment Rate = Backlog/Target Delivery Delay (1 8-6a) 

Finally, the firm’s order rate is now set to the customer order rate. In models with 
multiple customers, the order rate would be the sum of the individual customer or- 
der rates. To ensure that the model begins in a balanced equilibrium, the initial 
backlog must equal the target delivery delay’s worth of incoming orders: 

Backlog, = Target Delivery Delay * Order Rate (18-31) 

18.1.8 Behavior of the Firm with Order Backlogs 
Figure 18-10 shows a simulation of the model with the target delivery delay set 
to 2 weeks and all other parameters as in Figure 18-8. As before, there is an un- 
anticipated 20% increase in customer orders from an initial balanced equilibrium. 
Though quite similar to the model without backlog, there are some subtle differ- 
ences. Immediately after the increase in orders, shipments continue at the initial 
rate. The backlog therefore builds up, and as it rises, so too does the desired ship- 
ment rate. Actual shipments keep pace initially, but as the firm’s inventory level 
falls, the order fulfillment ratio drops below loo%, causing shipments to drop be- 
low desired shipments. The delivery delay then begins to rise. 

A backlog has two effects. First, because the backlog buffers orders and ship- 
ments, desired shipments rise more gradually than in the case without backlog. As 
a result, the decline in inventory is more gradual, reducing the amplification in pro- 
duction starts slightly, to 1.97 compared to 2.12 in the no-backlog case. The peak 
in the production start rate also lags the change in orders slightly more than in the 
no-backlog case. Second, orders that cannot be shipped immediately are no longer 
lost but remain in the backlog until they can be shipped. The shipment rate there- 
fore must rise above the order rate as the firm works off its excess backlog once 
sufficient inventory becomes available. 

18.1.9 Adding Raw Materials Inventory 
So far the production start rate always equals the desired production start rate, im- 
plying resources such as materials, labor, and capital are always ample. Figure 
18-11 shows how the structure of the model can be revised to include an explicit 
stock of raw materials or components. The materials inventory is modeled as a 
stock management structure analogous to the inventory of finished goods. Produc- 
tion can only begin if there is a sufficient stock of materials, and the firm must or- 
der enough materials to keep the parts inventory at the appropriate level. 

The Production Start Rate is reformulated to equal Feasible Production Starts 
from Materials, the rate at which production can be begun based on the Material 



FIGURE 18-1 0 Response of model with backlog to step increase in orders 
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FIGURE 18-11 Adding a materials inventory 
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Usage Rate (materialdweek) and Material Usage per Unit (materialdwidget), the 
quantity of materials required per unit of output: 

Production Start Rate = Feasible Production Starts from Materials 

Feasible Production Starts from Materials 
= Material Usage Ratematerial Usage per Unit 

(1 8-32) 

(1 8-33) 

The material usage rate is analogous to the shipment rate. The actual material 
usage rate is the desired material usage rate unless the stock of materials is in- 
adequate, in which case usage falls below the desired rate. The Material Usage 
Ratio is the fraction of the desired rate achieved based on the adequacy of the 
materials inventories. Because the model aggregates many types of materials and 
components together, the usage ratio gradually drops below 100% as the maximum 
material usage rate falls below the desired usage rate: 

Material Usage Rate 
= Desired Material Usage Rate * Material Usage Ratio 

Material Usage Ratio 
= f(Maximum Material Usage Ratemesired Material Usage Rate) 

(1 8-34) 

(18-35) 

The function determining the Material Usage Ratio is analogous to the formulation 
for the Order Fulfillment Ratio (see Figure 18-3). 

The desired rate of material use is given by desired production starts and 
material usage per unit: 

Desired Material Usage Rate 
= Desired Production Start Rate * Material Usage per Unit (1 8-36) 

The maximum rate at which materials can be used is determined by the current in- 
ventory and the minimum time required to prepare and deliver materials to the pro- 
duction line. This minimum material inventory coverage depends on the firm’s 
materials handling systems and the transportation time between the materials 
stocks and the production line. 

Maximum Material Usage Rate 
= Materials InventoryMinimum Material Inventory Coverage 

(18-37) 

The stock of materials is increased by the material delivery rate and decreased by 
the material usage rate: 

Materials Inventory 
= INTEGRAL(Materia1 Delivery Rate - Material Usage Rate, Materials,J 

(18-38) 

For now, immediate delivery with no supply constraint is assumed: 
Material Delivery Rate = MAX(0, Desired Material Delivery Rate) (1 8-39) 

The desired material delivery rate is formulated using the stock management struc- 
ture, analogous to the management of finished goods inventory: 

Desired Material Delivery Rate (1 8-40) 
= Desired Material Usage Rate + Adjustment for Material Inventory 
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Adjustment for 
Material Inventory 

- (Desired Material Inventory - Materials Inventory) 
- (18-41) Material Inventory Adjustment Time 

The desired material inventory is determined by the desired usage rate and desired 
materials inventory coverage, which, like finished goods inventory, is set to the 
sum of the minimum coverage required and a safety stock coverage to ensure parts 
stocks do not constrain production starts under normal circumstances: 

Desired Material Inventory (18-42) 
= Desired Material Usage Rate * Desired Material Inventory Coverage 

Desired Material Inventory Coverage 
= Minimum Material Inventory Coverage + Material Safety Stock Coverage 

(1 8-43) 

To facilitate analysis of the model, and without loss of generality, the simulations 
below assume Material Usage per Unit = 1 material unidwidget. Minimum Ma- 
terials Inventory Coverage is l week, and a l-week safety stock coverage is as- 
sumed. The materials inventory adjustment time is set to 2 weeks. The function 
determining the materials usage ratio is assumed to be the same as that used for 
shipments from final inventory. Figure 18-12 shows the response of the model to 
an unanticipated 20% step increase in customer orders. Given the parameters and 
the assumed increase in demand, the materials inventory never constrains produc- 
tion starts. Therefore production starts always equal the desired start rate and the 
behavior of all model variables is the same as shown in Figure 18-10 (this would 
not be true for a larger demand shock). The materials order rate exhibits additional 
amplification caused by the increase in the desired materials stock triggered by the 
surge in desired production starts. The amplification ratio of materials orders rela- 
tive to customer orders is 2.52 (compared to 1.97 for production starts). Adding 
additional delays or stocks in a supply chain increases the amplification of de- 
mand shocks. 

1 81.2 INTERACTIONS AMONG SUPPLY CHAIN PARTNERS 
So far the stock management structure has been applied to a single firm. Real sup- 
ply chains couple multiple organizations together, and the amplitude of fluctua- 
tions usually increases at every link. Producers at the upstream end of these supply 
chains experience much more instability in orders and production than those nearer 
the final customer. 

The model developed so far constitutes a generic model of a firm’s manufac- 
turing process. An industry supply chain can be modeled by linking several of the 
single firm models together. Each member of the supply chain is then represented 
by the same structure, though of course the parameters can differ. The generic 
modules can be linked in an arbitrary network to capture the structure of an indus- 
try or economy, including multiple suppliers, competitors, and customers. 

To illustrate, consider a supply chain consisting of two f m s  (or sectors, such 
as the automobile industry and its principal suppliers). As before, the customer or- 
der rate received by the downstream firm (the producer) will be considered exoge- 
nous. The order rate received by the upstream firm (the supplier) will now be 
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determined by the downstream firm. In the single firm model, actual material de- 
liveries were equal to the desired delivery rate, implying materials orders were de- 
livered instantly and fully. Linking the firm to a supplier means the delivery rate of 
materials to the producer will now depend on the supplier's ability to ship. Delays 
in the response of the supplier to changes in demand might now limit materials in- 
ventories and constrain the output of the producer firm. 

The structure and equations for the upstream supplier are identical to those for 
the producer except that the order rate received by the supplier is now given by the 
producer's material order rate. Likewise, the supplier's forecasts are based on 
the orders it receives. Denoting the supplier by the subscript i and the producer 
by the subscript j; 

Backlog i (1 8-44) 
= INTEGRAL(0rder Rate i - Order Fulfillment Rate i, Backlog ih) 

(Order Rate i - Expected Order Rate i) 
Time to Average Order Rate i 

Change in Exp Orders i = 

Order Rate i = Material Order Rate j 

( 18-45) 

(1 8-46) 

Figure 18-13 shows the structure of the producer's materials supply line. 
Because it takes time for materials to be received from the supplier, the pro- 

ducer keeps track of the supply line of materials on order. The stock of materials 
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FIGURE 18-1 3 Adding a supply line of materials to the model 
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on order is increased by the material order rate and decreased by the material 
arrival rate: 

Materials on Order j 
= INTEGRAL(Material Order Rate j - Material Arrival Rate j, 
Materials on Order j,) 

(1 8-47) 

Note that because Material Order Rate j = Order Rate i and Material Arrival Rate 
j = Material Delivery Rate j = Shipment Rate i, the stock of Material on Order j = 
Backlog i.3 The order rate for materials is formulated using the stock management 
structure. Material orders are determined by the desired material delivery rate 
modified by an adjustment to maintain the supply line of materials on order at the 
appropriate level. The desired stock of materials on order is determined by the 

3Provided Backlog i, = Material on Order jh, which should always be the case. The equilibrium 
Backlog i, = Target Delivery Delay i * Order Rate i. 
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desired production start rate and the firm’s belief about the delivery delay for 
receipt of materials (the expected delivery delay): 

1 (18-48) 
Material Desired Material Adjustment for 

Order Rate j Delivery Rate j Materials on Order j 
= MA$’o,  + 

{Desired Materials - Materials \ 
Adjustment for - / on Order j on Order j) - 

Materials on Order j Supply Line Adjustment Time j 
(1 8-49) 

Desired Materials Expected Materials * Desired Material 
(1 8-50) - - 

on Order j Delivery Delay j Delivery Rate j 

The addition of a materials acquisition delay introduces a new feedback loop, the 
Materials Supply Line Control loop. This negative loop regulates the supply line of 
materials on order by adjusting the order rate so as to achieve the delivery rate the 
firm desires. 

The linked model captures interactions between two firms in a supply chain. 
Customer demand is still exogenous, and the supplier is assumed to receive the 
materials it requires instantly and fully. Labor and capital are again implicitly as- 
sumed to be ample and never constrain production. 

For now, assume the expected materials delivery delay is a constant, even 
though the actual delivery delay may vary if the supplier’s inventory becomes in- 
adequate. A constant expected delivery delay may arise if the customer does not 
monitor delivery delays or if the information system used to control purchasing is 
not updated frequently. 

Figure 18-14 shows the response of the linked model to a 20% step increase in 
customer orders. For the purposes of exposition, the parameters of the two firms 
are assumed to be identical. 

The two-stage supply chain performs much worse than the case where materi- 
als can be acquired fully and without delay. The producer’s materials orders reach 
a peak of about 18,000 unitdweek, an amplification ratio of 4.08 (compared to 
2.52 when materials are instantly available). The increase in amplification is 
caused by the inability of the supplier to deliver on time, causing a large drop in the 
producer’s materials inventory and a consequent increase in producer orders (note 
the behavior of inventory coverage). 

While the producer’s response to the demand increase is still comparatively 
stable, the supplier is whipsawed through large amplitude fluctuations. The sup- 
plier material delivery rate reaches a peak of more than 28,000 unitdweek, an am- 
plification ratio of 2.22 compared to the supplier’s order rate (the material order 
rate of the producer). But because the order rate received by the supplier is itself 
already greatly amplified by the inventory, WIP, materials, and supply line adjust- 
ments of the producer, the amplification ratio of supplier material deliveries rela- 
tive to customer orders is more than a factor of nine. The surge in orders received 
by the supplier causes a severe and prolonged shortage of inventory at the supplier, 
causing stockouts of some items and boosting the supplier lead time to a peak of 
3.5 weeks, 75% greater than normal. Note the “double dip” behavior of the sup- 
plier shipment rate. As incoming orders surge, the supplier’s delivery rate at first 
keeps pace, while production continues at the original rate. Supplier inventory falls 
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sharply, limiting shipments. The backlog swells and delivery delay rises. Eventu- 
ally, new production begins to arrive, and supplier shipments rise to an even higher 
peak as the backlog of unfilled orders is worked off. Eventually, the shipment rate 
stabilizes at the new equilibrium of 12,000 ~nits/week.~ 

The transient surge in producer orders compounds the supplier’s problems. 
Though the supplier smooths incoming orders to filter out short-term fluctuations, 
the supplier’s forecast of orders significantly overshoots the final equilibrium. The 
supplier does not know final sales and cannot tell which orders reflect an enduring 
change in consumer demand and which reflect temporary inventory and supply 
line adjustments. Consequently, the supplier first finds itself with far too little in- 
ventory and materials, leading to aggressive efforts to boost production. But just as 
the tap begins to flow, orders received from the producer fall, leaving the supplier 
with significant surplus inventory and forcing supplier production starts and pro- 
duction to fall far below producer orders. The delays and stock adjustments cause 
supplier production to be nearly completely out of phase with producer orders. 
Supplier output reaches its peak just about the time incoming orders fall to their 
low point. 

The simulated supply chain, though it represents only two links, exhibits all 
three phenomena observed in real supply chains: oscillation, amplification, and 
phase lag. Most important, these attributes arise endogenously. The supplier expe- 
riences oscillation in output even though the external environment does not oscil- 
late at all. The dynamics emerge from the interaction of the physical structure of 
the supply chain with the decision rules of the managers. 

Of course, the step increase in customer demand is not realistic. The step is 
analogous to hitting a bell with a single tap of the clapper. A sudden, permanent 
change in demand suddenly knocks the system out of equilibrium, allowing the 
modeler to observe how the system responds to a single shock. Just as a single 
strike of the clapper causes a bell to ring for many seconds, so too a single change 
in customer demand causes the supply chain to oscillate, in this case, for nearly 
a year. 

In the real world, of course, supply chains are not struck once but are continu- 
ously perturbed by changes in customer orders (and random variations in other key 
rates, including production, materials orders, and so on). As discussed in chapter 4, 
these random shocks constantly knock systems out of equilibrium, eliciting a char- 
acteristic response determined by their feedback structure. A stream of random 
changes in, for example, customer orders, can be thought of as a continuous suc- 
cession of small pulses in demand, each with a random magnitude. Figure 18-15 
shows the response of the two-firm model to a random customer order rate. For 
realism, the random shocks are correlated. Successive values of customer orders 
depend to some extent on recent orders. Such persistence is realistic because all 

4The double-dip behavior of supplier shipments illustrates how a dynamic system can generate 
harmonics (oscillations at various multiples of a system’s fundamental frequency). The production 
of such harmonics is fundamentally a nonlinear phenomenon and could not arise if the equations 
governing the supply chain were linear. In this case, the nonlinear function governing stockouts, 
coupled with the delay in production of new units, causes a harmonic in shipments roughly double 
the frequency of the underlying cycle in orders and production. 
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FIGURE 18-15 
Response of the 
supply chain to 
random variations 
in customer orders 
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real systems have a certain degree of inertia and cannot change infinitely fast (the 
weather 1 hour from now is quite likely to be similar to the weather right In 
the simulation the correlation time constant is 4 weeks, meaning that most of the 
variance in customer orders arises from rapid, week-to-week variations. 

As expected, random shocks in customer orders cause the supply chain to ring 
like a bell. The supplier’s material delivery rate fluctuates with much larger ampli- 
tude and for a much longer period than the changes in customer orders. The stan- 
dard deviation of customer orders is less than 5%, but the standard deviation of the 
supplier’s materials delivery rate is more than seven times greater (37% of the 
average order rate). And while most of the random fluctuation in customer orders 
consists of day-to-day or week-to-week variations, the response of the supply 
chain is a cycle with a period of about X year in duration. 

The purpose of inventories and backlogs in a supply chain is to buffer the sys- 
tem against unforeseen fluctuations in demand. The supply chain does a good job 
of absorbing the very rapid random fluctuations in customer orders. However, 
typical management policies can significantly amplify the slower variations in de- 
mand, leading to persistent, costly fluctuations. These fluctuations are progres- 
sively amplified by each stage. The system selectively attenuates high-frequency 
variations in demand while amplifying low frequencies. Small perturbations in 
demand can result in huge swings in production of raw materials. 

18.2.1 Instability and Trust in Supply Chains 
It is worth pausing to consider the effect of such supply chain instability on the 
beliefs and behaviors of managers in the different firms. In the unstable world il- 
lustrated by the simulations and the industry data shown in chapter 17, trust among 
partners in a supply chain can rapidly break down. Downstream firms find their 
suppliers to be unreliable. Delivery quotes will often not be met, and producers too 
often find the suppliers place their products on allocation (where each customer 
receives less than their full order due to a shortage of supply). In turn, suppliers 
find the ordering patterns of their customers to be volatile and capricious. Inside 

5Technically, the random disturbance is first-order pink noise (see appendix B). 
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each firm, managers find their forecasts of incoming orders are rarely correct and 
always changing. As shown in Figure 18-14, the supplier’s forecast of incoming 
orders (the expected order rate) reaches its peak just as actual incoming orders fall 
below their equilibrium level and begin to approach their minimum. Before long, 
the forecasts, which are typically produced by the sales and marketing organiza- 
tion, lose all credibility with the production and operations people. The marketing 
organization, in turn, complains that unreliable production makes forecasting, not 
to mention selling, difficult. The endogenous instability caused by the structure of 
a supply chain-in particular, management’s own policies-can breed blame and 
mistrust within and between firms in a supply chain. The example of semiconduc- 
tor maker Symbios, presented in chapter 11, illustrates this phenomenon. The fore- 
casts Symbios prepared, based on the customers’ own projections of their future 
requirements, were systematically out of step with the actual situation, degrading 
stability, raising costs, and slowing growth. 

The conflict and mistrust created by supply chain instability feed back to 
worsen the instability in a vicious cycle. In the model so far, the producer manages 
its supply line of materials orders on the assumption that the materials delivery de- 
lay is constant. As shown in Figure 18-14, however, fluctuations in materials 
orders can cause large swings in supplier lead time. In many supply chains, down- 
stream firms have learned to monitor supplier delivery quotes and lead times 
closely and adjust their ordering accordingly. For example, when supplier lead 
times increase and customers are placed on allocation, the customers often respond 
by increasing their desired inventory levels and ordering farther ahead, further 
swelling their supply line and stretching delivery delays out still more. 

Figure 18-16 shows the structure of the modified model. Now the expected 
materials delivery delay the producer uses to manage its materials supply line is a 
variable, responding to changes in the actual supplier lead time. 

The expected delivery delay is now a nonlinear function of the firm’s belief 
about supplier lead times (the perceived materials delivery delay). The function is 
also normalized by the firm’s Reference Delivery Delay, which allows the formu- 
lation to be used in situations with different normal delivery delays: 

- Perceived Materials Delivery Delay Reference * f (  Expected Materials 
Reference Delivery Delay 

- 
Delivery Delay Delivery Delay 

(1 8-5 1) 

The perceived delivery delay adjusts with a delay to changes in the actual supplier 
lead time due to the time required to receive and check the accuracy of supplier 
delivery quotes, the time required to revise beliefs, and the lag in the response of 
the purchasing and procurement systems. First-order smoothing is assumed, with 
an average lag given by the Materials Delivery Delay Perception Time: 

Perceived Materials Supplier Materials Delivery Delay 
Delivery Delay = SMooTH(Delivery Delay, Perception Time 

(18-52) 

Figure 18-17 shows a typical nonlinear function relating the perceived delivery de- 
lay to the expected delay. 
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FIGURE 18-16 
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The function is normalized by the Reference Delivery Delay. The line EDD/ 
RDD = 1 represents the base case in which the firm uses a constant delivery delay 
to manage the supply line of materials orders. The 45" line represents a policy in 
which the expected delivery delay always equals the firm's current belief about 
supplier lead times. The assumed relationship saturates at a maximum for very 
high delivery delays: The purchasing managers of the firm believe very high 



738 Part V Instability and Oscillation 

delivery delays will not persist and do not increase the materials supply line with- 
out limit. The region where the relationship rises above the 



FIGURE 18-1 8 Behavior of the supply chain with forward purchasing by customers 
The top panels show the behavior of the model when the producer’s expected delivery delay for materials is variable, as specified in 
equations (18-51)-(18-52). The bottom panels compare the behavior against the base case in which the expected materials delivery 
delay is constant. 
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the purchasing department must maintain a supply line proportional to the delivery 
delay. From the point of view of the purchasing managers in a firm, it is critical 
that they monitor and respond to changes in supplier lead times, either manually or 
by revising the assumed lead times in their procurement system software. Failure 
to respond to changes in lead times could result in costly accumulation of excess 
parts inventories, or, worse, shortages that could shut down production. 

The mental models of the purchasing managers in downstream firms typically 
treat the supplier lead time as exogenous and outside their control. In some cases 
each firm reasons that it is responsible for only a small part of the supplier’s total 
demand, so changes in its orders won’t affect supplier lead times. Organizational 
routines such as updating the supplier lead time assumptions of the materials re- 
quirement planning (MRP) system based on recent delivery experience implicitly 
presume that the resulting changes in materials orders won’t affect supplier lead 
times. But when all customers act in a similar fashion, the positive loop is closed. 
The mismatch between the mental models of the supplier, in which lead times are 
exogenous, and the actual situation, in which lead times are strongly affected by 
the ordering behavior of the downstream firms, further degrades supply chain per- 
formance and reinforces the view of the different organizations that their partners 
are unpredictable and untrustworthy. 

18.2.2 From Functional Silos to 
Integrated Supply Chain Management 

The supply chain model developed so far treats each firm as a separate entity. The 
information passed between customer and supplier is limited to orders, delivery 
delays, and shipments. Other information is kept private. Indeed, downstream 
firms are quite reluctant to share other information, such as their actual sales rate. 
If their suppliers knew the actual customer sales rate it would be more difficult 
for the firm to manipulate orders to get a larger allocation when delivery delays 
were high. 

To address these issues, many firms have moved to integrate the supply chain 
from customer to raw materials supplier. These policies go by names such as 
ED1 (electronic data interchange), ECR (efficient customer response), and VMI 
(vendor-managed inventory). These policies have enjoyed broad diffusion in the 
1990s as part of  the general trend toward lean manufacturing and just-in-time poli- 
cies. Each attacks a different aspect of the supply chain. ED1 reduces the time 
delays and costs of replenishment ordering so that customers can order smaller 
batches more frequently, smoothing the flow of materials orders received by sup- 
pliers. Other policies, such as ECR, involve additional changes in order fulfillment, 
distribution, and transportation policies to reduce delivery lead times. These poli- 
cies include third-party warehousing, continuous replenishment, use of mixed 
truckload shipping, and so on. Point of sale (POS) data can also be electronically 
shared with suppliers, eliminating delays and distortions in the information suppli- 
ers need to plan production and capacity. Vendor-managed inventory goes further. 
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Under VMI the supplier manages the entire distribution chain and determines how 
much to ship to each echelon, eliminating the need for customers to place orders 
for materials6 

Reeng i nee r i n g the Supply C hai n 
Test the effects of different supply chain integration policies using the two-stage 
supply chain model shown in Figure 18-18. Be sure to consider the effect of each 
policy on the following variables: 

a. The total amplification of the supply chain (the amplification ratio of 
supplier material deliveries relative to customer orders), a measure 
of instability in the overall supply chain. 

b. The supplier’s delivery delay and order fulfillment ratio (measures of the 
supplier’s delivery reliability). 

c. The producer firm’s delivery delay and order fulfillment ratio (measures 
of the producer’s ability to service its customers). 

d. Any other indicators you feel are important, such as materials, WIP, and 
finished inventory levels at the supplier and producer. 

Test the following policies. First, test each policy in isolation, keeping all other 
policies and parameters in place. In each case, explain why the policy works (or 
fails) in terms of the feedback structure of the system. Who benefits? Does one 
partner in the supply chain benefit while the other suffers? What conflicts might 
the policy create? You should test the response of each policy to a 20% step in- 
crease in customer orders and any other test inputs you desire. 

1. Sharing POS data: Assume the supplier bases its forecast of orders on the ac- 
tual customer order rate instead of the incoming materials order rate. To do so, 
modify the input to the supplier’s forecast of demand to be Customer Orders * Ma- 
terials Usage per Unit. 
2. ED1 and quick response: Assume that by moving to electronic data inter- 
change and making improvements in the order fulfillment process the supplier can 
reduce the time required to process, ship, and deliver orders. Implement this pol- 
icy by cutting the supplier’s target delivery delay by 50%. 
3. Lean manufacturing: Lean manufacturing policies reduce the amount of in- 
ventory a firm requires without compromising its ability to fill orders or meet pro- 
duction schedules. Achieving a well-functioning lean production system is far 

%mchi-Levi, Kaminsky, and Simchi-Levi (1999) discuss supply chain management in detail. 
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from trivial and requires changes in many aspects of operations, production sched- 
uling, the layout of plant and equipment on the factory floor, quality improvement 
and maintenance activity, and others (see Womack and Roos 1991). The supply 
chain model does not indicate how to achieve a lean production system. Other 
models would be needed for that. But it can be used to explore how a lean system 
with dramatically shorter cycle times might affect supply chain performance. To 
model the effects of a successful transition to lean manufacturing, consider reduc- 
tions in the manufacturing cycle time (the delay between production starts and 
completion), minimum inventory coverage, and minimum materials inventory 
coverage. Consider these changes individually and for the producer alone, the sup- 
plier alone, and for both firms. 

4. Response to lean manufacturing: Lean manufacturing is more than a reduction 
in cycle times. In addition to changes in physical delays, consider how various 
management policies such as the various inventory adjustment times and the sizes 
of the safety stocks might change once a lean production system is implemented. 

5. Phantom orders and lead time gaming: Suppose the producer firm reacts to the 
unreliability of the supplier by shortening the delay in updating its perception of 
the supplier delivery delay. What is the impact? Why? What is the effect of elimi- 
nating lead time gaming in which firms order farther ahead when supplier lead 
times stretch out? Implement this policy by changing the response of the expected 
delivery delay to the perceived delivery delay. 

6. Vendor-managed inventory: Suppose the supplier manages the distribution of 
materials centrally. There are many variants of VMI. One simple treatment is to as- 
sume the supplier monitors the producer’s materials inventories and ships accord- 
ingly. The supplier is then responsible for ensuring the producer always has the 
materials needed to start production at the desired rate and pays a penalty if it falls 
short. How would you modify the model to capture such a policy? Implement and 
test your formulation. 

7. Try any other policies you wish. For each, consider how the policy might be 
implemented in the real world and how that change can be captured in the model. 

After considering the effects of each policy in isolation, consider their interactions. 
In particular, implement the POS and EDUquick response policies together and 
then in combination with the lean manufacturing policies you prefer. How does the 
response of the system to sharing POS data change when the system is lean com- 
pared to the base case? Why? 

Under what circumstances will different policies for improving supply chain 
performance work? Are there situations in which some of the commonly recom- 
mended policies are likely to fail? Why? 

Finally, recommend a combination of policies to stabilize the supply chain and 
improve customer service. Discuss the challenges firms might face in implement- 
ing your preferred policies. Consider in particular which firms bear the costs of 
each change and which reap the benefits. How might the costs and gains be shared 
among the partners in a supply chain? 
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18.3 SYSTEM DYNAMICS IN ACTION: REENGINEERING THE 
SUPPLY CHAIN IN A HIGH-VELOCITY INDUSTRY7 

The computer and electronics industry is one of the most dynamic and demanding 
industries in the world economy today. Competition is intense. Rapid growth, in- 
creasing complexity of technology, globalization, and other changes pose enor- 
mous challenges for core business processes such as the supply chain and product 
development. Prices fall at a tremendous rate while speed and functionality grow 
with each new product generation. Product life cycles of a year or less mean com- 
panies have only a few months in which to sell sufficient volume of a new product 
at high enough margins to generate the profits needed for product development and 
growth. 

“Fast Growth Electronics” (a pseudonym; hereafter referred to as FGE), the 
client for this system dynamics study, is one of the most successful firms in the in- 
dustry. In the 5 years prior to the modeling project the number of units shipped 
grew about 50%/year and revenue grew about 40%/year (revenue growth is slower 
than shipment growth because computer prices are continually declining). During 
this period FGE’s market share grew steadily. Net income grew about 60%/year. 

18.3.1 Initial Problem Definition 
On first examination FGE was doing extremely well. But beneath the surface stress 
was accumulating. Rapid growth had strained FGE’s systems for order processing, 
forecasting, production planning, materials procurement, and other core opera- 
tions. Quoted delivery dates were typically revised many times. Too often delivery 
commitments were met through expediting and other last-minute heroics. As in 
many firms, quarterly revenue targets led to a severe “hockey stick” pattern in 
which a large fraction of quarterly shipments occurred in the last few days of each 
quarter as people scrambled to meet the target, disrupting workflow throughout the 
system. The supply chain and customer service challenge was brought home force- 
fully in a meeting between FGE’s top management and the CEO of one of its 
largest customers at that time, a large electronics retail chain who said, “You’re the 
best supplier we deal with, but you’re first in a race of pigs.” 

FGE’s CEO set aggressive goals to exceed world class benchmarks for a vari- 
ety of performance metrics. While the potential for improvement was great, the 
challenge was daunting. Even as FGE grew into a formidable global company, bar- 
riers to entry were low and many nimble competitors arose to challenge them. 

Internally, FGE’s growth had outstripped its own systems for managing the 
supply chain and the organization could no longer adequately coordinate its many 
incompatible, overlapping, and undersized systems and processes. For example, 

7I am indebted to “Fast Growth Electronics” and to McKinsey & Company for their permission 
to present this case and help with its preparation. I particularly thank Damon Beyer (Principal at 
McKinsey & Co.) and Nathaniel Mass (formerly a principal at McKinsey & Co.; currently Senior 
Vice President at GenCorp) for their assistance in the preparation of this chapter. I also thank the 
people I interviewed at FGE. 
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product complexity was growing exponentially: The number of SKUs (stock keep- 
ing units) increased by a factor of 35 in 5 years. 

The existing supply chain (including processes for order processing, credit ap- 
proval, production scheduling, product allocation, shipments and returns, demand 
forecasting, materials requirements planning (MRP), parts procurement, expedit- 
ing, supplier qualification, new product launch planning, and product develop- 
ment) had not been designed so much as it evolved from a host of local solutions 
to local problems caused by the growth and increasing complexity of the business. 
By the early 1990s, the system was clearly no longer adequate. Product life cycles 
were 5 to 9 months, yet acquisition times for some key components and materials 
were over 3 months. The delays were worsened by high turnover in the supplier 
base as technology changed. Compounding the procurement delays were long de- 
lays in FGE’s internal planning, forecasting, and purchasing systems. Often 2 to 
3 months were required to prepare and revise production plans and order the re- 
quired components from suppliers. Production planners therefore had to forecast 
demand for new products well in advance of their introduction to the market and, 
more importantly, had to ramp down part procurement and production well before 
the end of the product’s life, often just as sales were heating up. Yet, as is typical in 
such high-velocity industries, the accuracy of demand forecasts over the required 
planning horizon was low, with typical errors of 50% to 100%. Besides the usual 
sources of uncertainty such as the state of the economy, forecast accuracy is low 
because the success of a particular product depends on its price and performance 
relative to the price and performance of competing products. Delays of even a few 
weeks in the introduction of a competitor’s latest offering will send customers your 
way, perhaps turning one of your weak sellers into an unexpected success, while 
introduction of competitor products earlier than expected can turn your strong con- 
tender into an also-ran. Predicting the dates of your own product introductions 
3 months in advance is difficult enough; anticipating the moves of the competition 
is even harder. 

Product development times often significantly exceeded the life cycles of the 
products themselves. Advanced development teams were always designing prod- 
ucts intended to replace products that hadn’t yet been introduced to market. De- 
lays in product introduction could lead to situations where a product was phased 
out before its successor could be built, leading to gaps in the product line. Though 
product line gaps were too frequent, on average FGE was caught with an unac- 
ceptable level of excess inventory at the end of the product life cycle. Because of 
the high rate of technological change, old products have low salvage or remain- 
dering value, forcing the sales force to focus a great deal of attention on moving 
old product to avoid the accumulation of so-called sludge inventory and costly 
write-downs. 

Unanticipated interactions among different functions and between FGE and its 
customers contributed to forecast error and the buildup of obsolete inventory. The 
retail chains and corporate resellers that constituted FGE’s main distribution chan- 
nels typically operated on very thin margins. Often the finance department would 
place customer orders on credit hold, delaying the production planning and pro- 
curement process. As the end of the quarter approached, however, finance would 
come under pressure to lift the credit holds so product groups could meet their 
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TABLE 18-2 
No clear root 
causes or high 
leverage policies 
emerged from 
traditional 
analysis. 

quarterly sales objectives. Distribution channel partners quickly learned to with- 
hold their orders until late in the quarter in the hope of receiving more favorable 
prices or credit terms. Late receipt of orders increased order volatility, decreased 
forecast accuracy, further strained the procurement system, and eroded trust be- 
tween FGE and its customers. 

Since FGE provided full price protection to their channel partners, resellers 
and retailers had strong incentives to order aggressively and could freely cancel or- 
ders as well. The resulting demand volatility made it harder to deliver reliably to 
the channel, strengthening beliefs on both sides that the other was unreliable. 

There was no lack of ideas to address these problems (Table 18-2). Each pol- 
icy had its advocates, was supported by a certain logic, and successful examples of 
each could be found in the business literature. The problem was not generating 
ideas but evaluating which ideas might work, how they might interact, which 
would have the highest leverage, and which should be implemented first. Many 
policies triggered internal conflict: Shrinking procurement lead times conflicted 
with procedures for supplier qualification and component quality assurance; cur- 
tailing expediting decreased marketing flexibility; freezing product introduction 
dates to prevent holes in the product line stressed the product development organi- 
zation. Months of traditional analysis by FGE and its consultants revealed no ob- 
vious policy recommendations and made it hard to motivate the need for change. 
After all, the company was undeniably successful. Some in the organization argued 
away any particular past problem with statements such as “We were just growing 
too fast,” “That was just a bad example . . . [It was the] worst case,” or “We solved 
that one already.” Paralysis threatened. 

Key Problems 

Long delivery times and poor delivery reliability 
Surplus inventory 
Low predictability of demand 
Product line gaps 
Quarterly volatility 

Suggested Policies 

Dramatically cut restaging delays for long lead time materials 
Cut monthly planning cycle by over 80% 
Improve material positioning at new product introduction 
Improve launch predictability 
Increase component commonality 
Get real-time demandhales information 
Improve demand forecast accuracy 
Build to order 
Resolve credit holds earlier 
Innovate with manufacturing cells 

Source: McKinsey & Co. 
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18.3.2 Reference Mode and Dynamic Hypothesis 
At this point, stimulated by senior managers at FGE, the McKinsey team working 
to reengineer FGE’s supply chain turned to system dynamics. The model was de- 
veloped by an experienced system dynamics practitioner, Nathaniel Mass, worlung 
in close collaboration with the McKinsey and client teams. Building on the data al- 
ready collected, the modeling team spent about 2 weeks interviewing various 
members of the client organization, including purchasing managers, materials 
planners, and others responsible for key decisions in the supply chain. The team 
also held several 1%-day workshops with key decision makers from the various 
supply chain functions to elicit information needed to formulate the model. These 
initial meetings focused on the problem characteristics discussed above: long and 
variable delivery times, long delays in supply chain response, quarterly volatility, 
financial pressure to reduce obsolete inventory, etc. The team found that excess in- 
ventory at the end of product life was a severe problem whether the product in 
question was a slow mover or a hot product whose sales greatly exceeded initial 
expectations. This latter result was unexpected and counterintuitive. 

Understanding the source of excess inventory for slow-moving products is 
straightforward. Sales of such a product, for whatever reason, fall short of the fore- 
casts used to determine initial build volumes and materials commitments. A natural 
reluctance to reduce the forecasts even as sales fell below expectations, coupled 
with long lags in the response of the materials planning and production system, 
caused excess inventories to accumulate. 

The accumulation of surplus inventory for hot products, however, was difficult 
to understand. How is it possible to accumulate surplus inventory for a product 
whose sales greatly exceed expectations, a product which is flying off the shelves, 
a product you can’t make fast enough? Figure 18-19 shows the typical behavior 
observed for a hot product, showing how initial backlogs lead to restaging of pro- 
duction and the buildup of excess inventory. Figure 18-20 shows a causal diagram 
capturing the dynamic hypothesis they developed to explain the inventory buildup. 

Prior to product introduction, FGE develops initial sales forecasts and receives 
initial orders for the product from the distribution channel. The channel partners 
adjust their orders until the number of units on order with the manufacturer (the 
channel backlog) equals the channel’s desired order backlog, forming the balanc- 
ing Supply Line Control loop B 1.  

The manufacturer uses the initial sales forecasts and order backlogs to commit 
to a product build schedule and initial staging of long lead time components. When 
a product turns out to be a hot seller, customer purchases rapidly deplete channel 
inventories. The channel partners must then order more from FGE. These unex- 
pectedly large orders soon deplete FGE’s inventories, and shipments fall below re- 
quirements (the balancing Availability loop B2 constrains shipments below desired 
levels). The product is put on allocation and the delivery delay experienced by the 
channel increases. Further, as shipments fall below requirements the predictability 
of deliveries also falls-channel buyers and purchasing agents spend a great deal 
of time trying to get more product and accurate estimates of delivery quantities and 
timing from their account manager. The channel partners, increasingly desperate to 
get more of the hot seller, react to the long lead time by Ordering Ahead: When 
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delivery times stretch out from, say, 2 to 4 weeks, the supply line of product on or- 
der must grow from 2 to 4 weeks’ worth of expected sales. The backlog rises still 
more, further increasing expected lead time and causing the channel partners to or- 
der even more (reinforcing loop Rl). Further, as delivery reliability falls, channel 
purchasing managers react by Ordering Defensively, increasing their desired safety 
stocks and boosting the backlog still more, which further reduces delivery reliabil- 
ity and closes the reinforcing loop R2. The effect of these two positive feedbacks 
is to create a surge of “phantom orders” for hot products, orders placed in reaction 
to the growing scarcity of the product. 

From the perspective of FGE’s channel partners this behavior is entirely ratio- 
nal. When a hot product becomes scarce, each reseller and retailer must compete 
against the others for a larger allocation. When the manufacturer informs them that 
a hot seller is going on allocation each reseller responds by ordering more than it 
really needs in an attempt to get a larger share of the limited pie of production. The 
two positive feedbacks caused by Ordering Ahead and Ordering Defensively mean 
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FIGURE 18-20 Causal loop diagram showing how hot products generate surplus inventory 
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Source:Adapted from a McKinsey and Co. diagram. Used with permission. 

that in the near term, reductions in supply actually increase demand, worsening the 
apparent shortage. 

FGE, like many suppliers, could not distinguish real orders from the phantom 
orders placed in response to product scarcity. Point of sale information on pur- 
chases by final customers was not widely available and resellers and retailers were 
reluctant to share their sales data as they believed it would reduce their ability to 
control their inventories and hedge against variability in product availability by 
manipulating their orders. As sales of a hot product led to shortages, channel orders 
would rise far above final demand, but the customers, if asked, would insist they 
needed every unit they ordered, and more, to meet the ballooning demand. 

Faced with a huge surge in orders, FGE's materials planning and production 
system would strain to respond, reordering critical components and expediting pro- 
duction. Despite these heroics, revising production targets, restaging parts and ma- 
terials inventories, and assembling the product take time (note the delays in the 
links between channel backlog and the build rate). 

Eventually, shipments to channel partners increase and the delivery delay ex- 
perienced by the channel falls. Retailers and resellers find they no longer need to 
order so far ahead and can reduce their order backlog. Soon the product goes off 
allocation and channel partners can readily get everything they order. 

As soon as customers realize that the product is now fully available with short 
lead times they cancel the remaining phantom orders, shrinking the backlog. 
Further, once they can quickly and reliably restock their shelves there is no need 
for them to carry defensive inventory, so orders fall even further as they liquidate 
their safety stocks. The reinforcing feedbacks R1 and R2 now reverse: Rising 
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availability reduces channel orders, shrinking the backlog, reducing lead times and 
increasing delivery reliability, and leading to lower and lower orders. The switch 
from the vicious cycle of deteriorating order fulfillment and still larger backlogs to 
the self-reinforcing collapse of the backlog starts at about the point where produc- 
tion has risen enough to match the rate at which new orders arrive. New produc- 
tion plans and materials orders are slashed as product inventory builds, but the long 
planning delays, along with commitments to suppliers for more components, mean 
production continues for some time. The lagged response of the supply chain 
leaves the manufacturer holding a mountain of excess inventory at the end of the 
product’s life. 

18.3.3 Model Formulation 
Initial model development took about 2 weeks. The team presented the initial 
model to FGE’s senior management team, including the CEO, right away. The 
model was presented in a workshop format-senior managers could suggest tests 
and policies that were run immediately and discussed on the spot, helping to build 
their understanding of and confidence in the model. 

Over the course of the next month they revised the model in response to the 
critiques they received. At each stage they reviewed the interim results in work- 
shops with the senior management team, often including the CEO. In each the 
model was run live with FGE’s executives suggesting tests and policies. Most of 
these could be simulated and discussed during the workshop; others required 
changes in model structure and were reported at the next meeting. 

The model focused on the dynamic complexity of FGE’s supply chain, not the 
detail complexity. There was no attempt to represent every SKU in the product 
line. Instead, the model focused on the interdependencies and feedbacks created by 
the behavior of the actors, particularly interactions between the distribution chan- 
nel, FGE, and its suppliers. The final model tracked a representative product 
through its life cycle. The thousands of different components and materials were 
grouped into seven categories, distinguished by their costs, lead times, and other 
attributes. The model of the production and assembly process captured the com- 
plexity created by multiple configuration options but did not represent every prod- 
uct variation. The model also included the introduction of the next generation 
product to capture the dynamics of product transitions. The model contained 
roughly 500 stocks, or state variables, rendering the rich dynamic complexity of 
the supply chain with sufficient fidelity for the purpose while remaining a man- 
ageable size. 

18.3.4 Testing the Model 
The team tested the model’s ability to replicate the history of two actual products, 
one slow mover and one hot. The purpose of this test was not merely to examine 
the statistical fit between the model and data nor was it to evaluate the forecasting 
performance of the model. The FGE managers were sophisticated model users and 
knew that replication of historical fit alone is a weak test. The model had to be able 
to replicate the patterns observed for both types of products without any changes 
to its structure or the parameters characterizing the order processing system. Only 



750 

50 

25 

Part V Instability and Oscillation 

- 

- Model net inventory 

FIGURE 18-21 
Simulations of 
the full model 
compared to 
history for slow- 
moving and hot 
products 
Top: Simulation 
of a slow-moving 
product. Sales fall 
short of initial pro- 
jections; backlog is 
rapidly depleted 
and excess inven- 
tory accumulates. 
Bottom: Simulation 
of a hot product. 
Strong sales lead 
to huge backlog, 
long delivery de- 
lays, and phantom 
orders by distri- 
bution channel. 
When restaged 
production eventu- 
ally shrinks deliv- 
ery times, channel 
orders are can- 
celed, leading to 
excess inventory. 
Time periods and 
vertical scales 
disguised. 

the assumed pattern of final demand could vary, from that of a weak seller to that 
of a strong seller. The model had to generate the right behavior for the right 
reasons, without the use of fudge factors. Figure 18-21 shows simulations of the 
full model compared to the actual data (the vertical and time scales have been 
disguised). 

The model tracks the behavior of the slow-moving product well, showing the 
depletion of the backlog and transition to sludge inventory in the middle of the pro- 
jected product life cycle. At the time the simulation was made, the slow-moving 
product had already been withdrawn from the market and the actual data were 
available. In contrast, the hot product was still on the market at the time of the 
analysis. Indeed, at the time the simulation was made, there was a large backlog of 
unfilled orders (net inventory was significantly negative) and the lead time was 
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much longer than normal. The model tracked the buildup of the backlog reason- 
ably well. More importantly, the model suggested that the backlog would soon 
shift to a large excess inventory, counter to the expectations of many inside the 
company. Shortly afterward, the backlog collapsed and the firm was left with a 
large surplus inventory. The ability of the model to replicate these two product his- 
tories without extensive parameter adjustment showed FGE’s management that the 
sources of the surplus inventory problem were deeply embedded in the structure of 
the supply chain and were not the result of bad decisions made by particular man- 
agers. The model thus focused attention on redesigning that structure rather than 
the decisions of the people in the system. 

The replication of past experience was not the only test of the model. It is gen- 
erally quite easy to tune a model to fit a given set of data. Building confidence in a 
model involves a much broader series of tests, both of the structure and its re- 
sponse to a wide range of circumstances, not only the limited range of historical 
experience (see chapter 21). 

18.3.5 Policy Analysis 
To begin policy analysis the team first simulated each major policy initiative in iso- 
lation, calculating the change in life cycle profitability. Contrary to the expecta- 
tions of some, improving forecast accuracy or product launch predictability had 
only average impact and reducing the severity of the quarterly hockey stick had a 
weak effect. The stand-alone analysis showed the high leverage point to be reduc- 
ing the delays in the response of the supply chain to changes in demand. But how 
would these policies interact? Might they not interfere with one another or suffer 
diminishing returns? Simulations showed that jointly implementing materials lead 
time reduction, planning cycle time reductions, and a build-to-order policy gener- 
ated a substantial synergy. The total impact exceeded the sum of the benefits of the 
individual policies. 

The sources of synergy can be seen in the causal diagram shown in Figure 
18-22. The cycle time reduction policies (shown in boxes) create synergy by re- 
ducing lead times so the reinforcing feedbacks creating phantom orders operate not 
as vicious cycles, as they had been, but as virtuous cycles, progressively and cu- 
mulatively improving system performance and profitability. As faster order fulfill- 
ment and supply chain response reduce the incidence of initial shortages, phantom 
orders fall and customers require less defensive inventory, stabilizing channel or- 
ders. The less volatile the channel orders, the more accurate FGE’s demand fore- 
casts become, easing the burden on suppliers and leading to fewer instances of late 
product restaging, fewer raw material shortages, and more reliable deliveries-re- 
ducing phantom orders still more. Further, reduction in late restaging of materials 
and components leads to higher component quality and lower raw materials and 
expediting costs. Less expediting and firefighting to get the current product out in- 
crease the time available to plan the introduction of the next generation product, re- 
ducing launch delays and the risk of holes in the product line. More timely new 
product introduction prevents the buildup of phantom orders at the start of the next 
product’s life, reducing delivery lead times further. And so on. 
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FIGURE 118-23 
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Over time, efforts to reduce inventory had actually made the problem worse, 
through the feedback shown in Figure 18-23. As the buildup of sludge inventory 
worsened financial performance, managers throughout the organization came un- 
der intense pressure to reduce inventory costs. They reacted by reducing initial 
staging inventories as each new product was planned. Cutting initial build com- 
mitments was rational from their perspective because they viewed demand to be 
exogenous and unpredictable. From that perspective, smaller initial build volumes 
reduce the likelihood any given product will be a slow mover. However, demand is 
not exogenous but is strongly shaped by FGE's own behavior: The lower the ini- 
tial materials commitments, the greater the chance of initial shortages, triggering 
phantom orders from customers and forcing the organization to engage in expen- 
sive late restaging of critical materials-culminating in even more surplus inven- 
tory and still more financial pressure. Unchecked, this positive feedback could act 
as a death spiral. A key insight emerging from the model was that larger initial 
staging of critical materials could actually reduce the buildup of sludge and lower 
life cycle inventory costs. 

18.3.6 Implementation: Sequential Debottlenecking 
The model analysis identified a number of high leverage policies and showed how 
they would generate substantial synergy from joint implementation. The policy 
recommendations would require complete redesign of the entire order processing, 
production planning, logistics, supplier management, and production systems-a 
huge undertaking requiring a phased approach. To put the insights emerging from 
the model into practice, the modeling team worked with the client to understand 
the optimal sequencing of policy initiatives. Much of the management literature 
suggests that improvement activities should focus on finding and relaxing the cur- 
rent bottleneck inhibiting the throughput of any process (see, e.g., Goldratt and 
Cox 1986). Focusing improvement effort on the current bottleneck immediately 
boosts throughput, while effort to improve nonbottleneck activities is wasted. The 
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modeling team realized, however, that in the high-growth environment of the com- 
puter/electronics industry, relaxing one bottleneck simply enables growth to con- 
tinue until a new part of the process becomes the bottleneck and threatens the 
health of the organization. The pace of expansion and the intensity of competition 
are so great that waiting for each bottleneck to emerge before attacking it could 
slow the growth of the company and erode its competitiveness. 

The team used the model to explore the impact of different implementation se- 
quences. By simulating the effect of implementing one policy, say materials lead 
time reduction, the team could observe when and how growth improved, putting 
even more stress on the rest of the system and creating a new bottleneck, say the 
MRP cycle time. Correcting that bottleneck would enable still more growth, until 
the next bottleneck emerged, say the assembly and build cycle time. By using the 
model to anticipate the shifting sequence of bottlenecks, the team was able to de- 
sign an implementation plan to redesign each aspect of the supply chain before it 
could choke off throughput and slow growth (Figure 18-24). 

The sequential debottleneclung analysis was a critical input to the detailed im- 
plementation plan for the supply chain redesign effort, a massive project spanning 
3 years and involving at its peak over 150 full-time-equivalent FGE professionals 
and an army of systems integration, manufacturing, and other consultants. 

FIGURE 18-24 Sequential debottlenecking 
The bottom curve shows how traditional management practices focus on solving the current problem. 
Growth resumes, causing a new bottleneck to emerge. Growth slows again. The top curve shows 
growth when the model is used to anticipate the emergence of bottlenecks so process redesign efforts 
can eliminate them before they become binding, enabling faster growth, lower volatility, and greater 
value creation. 
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18.3.7 Results 

TAIBLE 18-3 
Project results 

113.4 

Just 3 years after the start of the project the results were substantial. As shown in 
Table 18-3, FGE dramatically reduced its supply chain cycle time, slashed inven- 
tory throughout the supply chain, shortened delivery lead times, and improved de- 
livery reliability. These efforts generated more than $3 billion of benefit by 1997. 

The modeling process also changed the thinking of many of the people in- 
volved. At the start of the system dynamics project, many of the consultants en- 
gaged in the reengineering effort were highly skeptical. By the end of the project 
they had become enthusiastic advocates for the use of system dynamics in such 
complex projects. FGE itself went on to develop other system dynamics models to 
consider issues such as product development and overall growth strategy. 

Order to shipment cycle time by the end of 1996 was 60% below 1993 Q1 . 
Backorders were 60% below 1993 Q1 . 
Major product transitions improved by $200 million margin. 
Inventory carrying costs fell more than $600 million between 1995 and 1997. 
Inventory turns increased from about 4 per year to more than 12 per year by 

$3 billion in cash was generated from the project. 
1997 Q4 and to 16 per year by 1999. 

Source: FGE and McKinsey & Co. 

SUMMARY 
Supply chains are fundamental to a wide range of systems. This chapter showed 
how supply chains are built up from linked instances of the stock management 
structure. The model was used to explain why supply chains in a wide range of in- 
dustries exhibit oscillation, amplification, and phase lag. These features of supply 
chain behavior arise even when all actors in the supply chain are locally rational 
and manage their piece of the system with decision rules that, in isolation, gener- 
ate smooth and stable responses to unanticipated shocks. 

In terms of the modeling process, the model was developed in stages so that 
the sources of amplification, phase lag, and instability could be identified. Simpli- 
fying assumptions were relaxed one at a time. You should build your models in this 
iterative fashion, beginning with a simple formulation, testing it thoroughly, and 
adding additional structure only when you fully understand the model. 
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The Labor Supply Chain and the 
Origin of Business Cycles 

The external theories find the root of the business cycle in the fluctuations of 
something outside the economic system-in sunspots or astrology, in wars, 
revolutions, and political events, in gold discoveries, rates of growth of popu- 
lation and migrations, discoveries of new lands and resources, in scientific 
discoveries and technological innovations. 

The internal theories look for mechanisms within the economic system 
itself which will give rise to self-generating business cycles, so that every 
expansion will breed recession and contraction, and every contraction will in 
turn breed revival and expansion in a quasi-regular, repeating, never-ending 
chain. 

-Paul A. Samuelson (1973, p. 257). 

Chapter 18 used the stock management structure to model the flow of material 
through a manufacturing supply chain. This chapter applies the stock management 
structure to the human resource supply chain. The human resource supply chain is 
then linked with a manufacturing supply chain, showing how production schedul- 
ing and hiring policies can interact to generate instability and oscillation. Chal- 
lenges invite you to explore policies to enhance stability and responsiveness and 
extend the structure to include training and on-the-job learning. The chapter closes 
by considering how interactions of inventory management and the labor supply 
chain contribute to business cycles in the economy as a whole. 

757 
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19.1 THE LABOR SUPPLY CHAIN 
The manufacturing supply chain models in the previous chapter omitted labor and 
capital, implying these resources were always ample or infinitely flexible. Neither 
assumption is correct. This section adapts the stock management structure de- 
veloped in chapter 17 to represent the provision of labor (Figure 19-1 shows the 
structure). 

19.1 .I  Structure of Labor and Hiring 
To begin, aggregate the firm’s labor force into a single stock, which is increased by 
the hiring rate and decreased by the attrition rate: 

Labor = INTEGRAL(Hiring Rate - Attrition Rate, Labor,) (19-1) 

The attrition rate includes voluntary quits and retirements. For now, exclude the 
possibility of layoffs. The attrition rate can be modeled as a first-order process in 
which employees remain with the firm for the Average Duration of Employment: 

Attrition Rate = LabodAverage Duration of Employment (19-2) 

FIGURE 19-1 The stock management structure adapted to human resources 
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The average duration of employment is strongly affected by the state of the job 
market. When the economy is robust and unemployment is low, workers can read- 
ily find better opportunities, so voluntary attrition rises. During recessions, few 
good jobs are available and there are many more unemployed competing for them. 
Workers lucky enough to have jobs tend to keep them and voluntary attrition falls. 
In a model of a single firm, the state of the economy is exogenous and the average 
duration of employment might be assumed constant.' In a model of a regional or 
national economy, however, the average duration of employment and the labor 
market must be modeled endogenously. 

The firm cannot instantly hire the workers it needs. Hiring takes time: Posi- 
tions must be authorized and vacancies must be created. Job openings must be 
posted and advertised, followed by interviews, background checks, training, and 
other delays. In the simplest model all these delays are aggregated into a single 
stock of vacancies. Vacancies are increased by the vacancy creation rate and de- 
creased by the vacancy closure rate, which is equal to the hiring rate. The stock of 
vacancies is the supply line of orders for workers that have been placed but not yet 
filled. The Time to Fill Vacancies represents the average delay between creating 
and filling a vacancy. 

Hiring Rate = Vacancies/Time to Fill Vacancies (19-3) 

Vacancies 
= INTEGRAL(Vacancy Creation Rate - Vacancy Closure Rate, Vacanciesb) 

(1 9-4) 

Vacancy Closure Rate = Hiring Rate (19-5) 

Note that there is no direct physical flow from the stock of vacancies to the labor 
force. The labor force is a stock of people, while the stock of vacancies, though 
measured in people, is information. In this simple model, the source for the hiring 
flow is assumed to be outside the boundary of the model (and hence never con- 
strains the hiring rate). In reality, the pool of unemployed or potentially available 
workers often limits hiring. In these cases, the delay in filling vacancies will be 
longer and variable. 

Because the labor market is not modeled, the vacancy creation rate is set equal 
to the desired vacancy creation rate but constrained to be nonnegative (vacancy 
cancellation will be added later). The desired vacancy creation rate is formulated 
using the standard stock management structure: 

Vacancy Creation Rate = MAX(0, Desired Vacancy Creation Rate) (19-6) 

Desired Vacancy Creation Rate 
= Desired Hiring Rate + Adjustment for Vacancies (19-7) 

'Even when the state of the economy is taken to be exogenous, factors internal to the firm such 
as morale, compensation, and workload may still cause the attrition rate to vary significantly and 
would have to be modeled endogenously. 
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The firm seeks to close the gap between desired and actual vacancies over the 
Time to Adjust Vacancies: 

Adjustment for Vacancies 
= (Desired Vacancies - Vacancies)/Time to Adjust Vacancies (19-8) 

The desired level of vacancies is the number that will yield the desired hiring rate 
given the firm’s belief about how long it takes to fill a position. Desired vacancies 
cannot be less than zero: 

Desired Vacancies (19-9) 
= MAX(0, Expected Time to Fill Vacancies * Desired Hiring Rate) 

Realistically, beliefs about the expected time required to fill positions adjust slowly 
to changes in the actual time as labor market conditions change. The expected time 
to fill vacancies could be modeled using an information delay, similar to the grad- 
ual adjustment of perceived delivery delay to actual delivery delay in the manu- 
facturing model developed in section 18.2. In this simple model, the Expected 
Time to Fill Vacancies is assumed to equal the actual time to fill vacancies. 

Expected Time to Fill Vacancies = Average Time to Fill Vacancies (19-10) 

The firm attempts to replace those employees who leave and eliminate any dis- 
crepancy between the desired and actual number of workers: 

Desired Hiring Rate = Expected Attrition Rate + Adjustment for Labor (19-11) 

Expected Attrition Rate = Attrition Rate (19-12) 

Adjustment for Labor = (Desired Labor - Labor)/Time to Adjust Labor (19-13) 

In this simple model, expected attrition is assumed to equal actual attrition. Like 
the expected time to fill vacancies, it is likely that there is some delay in the re- 
sponse of the organization to changes in the quit rate. In a more complete model 
the expected attrition rate would adjust to the actual attrition rate with a delay. 

19.1.2 Behavior of the Labor Supply Chain 
To test the model, the desired labor force is exogenous. The parameters depend 
strongly on the industry and skill level of the job. For unskilled workers in the fast 
food industry the time to fill vacancies might be a day or two and the average 
tenure of employees may be a few weeks to months. Recruiting highly skilled en- 
gineers can take months, and the recruiting cycle for MBA students begins in the 
fall for jobs that start after graduation the following spring. 

For illustration, the average duration of employment is assumed to be 100 
weeks (2 years) and the average time to fill vacancies is assumed to be 8 weeks. 
With an arbitrary initial labor force of 1000 people, these parameters define an 
equilibrium with quits of 10 people/week and 80 vacancies at any given time. The 
firm is assumed to adjust the number of vacancies to the desired level over a 4- 
week period, reflecting decision-making and administrative delays in the human 
resources department. The labor adjustment time is set to 13 weeks, representing 
the firm’s reluctance to alter the labor force too quickly due to the high costs of 
adding (or cutting) permanent employees. 
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Figure 19-2 shows the response of the model to a 50% step increase in desired 
labor in week 5 from an initial balanced equilibrium. The vacancy creation rate 
immediately rises, both to respond to the increase in the desired hiring rate and to 
increase the number of vacancies to the new desired level. Soon the stock of va- 
cancies rises roughly to the appropriate level. The hiring rate lags behind the 
vacancy creation rate. As the labor force grows, the adjustment for labor falls, 
reducing the desired hiring rate and, gradually, the actual hiring rate. The labor 
force adjusts in a smooth and stable fashion, settling within 2% of the new target 
after about 32 weeks. 
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Except for the differences in time constants, the response is identical to the re- 
sponse of the stock management structure adapted for capital investment in chap- 
ter 17. Both situations represent examples of the basic stock management system 
and have identical structure. Note the characteristic amplification generated by the 
stock management structure: A 50% increase in desired labor causes the vacancy 
creation rate to rise from 10 people/week to a peak of 125 people/week. Small 
changes in the desired workforce induce large swings in the load placed on the hu- 
man resource organization. Of course, if the required rate of activity exceeds the 
capacity of the human resource organization, the delay in filling vacancies would 
increase and the quality of new hires might fall. 

The behavior of the stock management structure as adapted to labor appears to 
be reasonable. However, when testing a formulation, it is important to establish its 
robustness by examining its response to a wide range of inputs. Figure 19-3 shows 
the response of the model to a 50% decrease in desired labor. Now the labor force 
does not reach its desired level for nearly 2 years. There are two principal reasons 
for the slow adjustment. 

First, the large drop in desired labor means desired hiring becomes negative. 
Because there are no layoffs, the workforce can fall at most at the rate of attrition. 
The no-layoff policy introduces an important nonlinearity that causes the response 
to large increases in the desired stock to differ from the response to large decreases. 

Second, note the slow rate of decline of the hiring rate. The large decrease in 
desired labor causes the desired vacancy creation rate to become negative (it 
reaches a minimum of negative 48 people/week). However, the actual vacancy cre- 
ation rate falls at most to zero. Consequently, the stock of vacancies already cre- 
ated continues to be filled. With an 8-week average time to fill vacancies, 80 new 
people are hired over the next few months even though the firm has far too many 
employees. 

While a firm may choose, as a matter of policy, not to lay off unneeded work- 
ers, it is not reasonable to continue to fill all existing vacancies when the firm has 
far more employees than it needs. The problem cannot be corrected by removing 
the MAX function that constrains the vacancy creation rate to be nonnegative in 
equation (19-6). Doing so could, if the surplus work force were large enough, drive 
the number of vacancies negative, a physical impossibility. The solution is to 
model the vacancy cancellation process as a separate rate flowing out of the va- 
cancy stock (section 13.3.3). 

Existing vacancies cannot be canceled immediately. It takes time for the hu- 
man resource organization to cancel a vacancy, and some are so far along in the 
process that they cannot be canceled (for example, those positions for which offers 
have been made). These considerations define a minimum delay in canceling va- 
cancies. The cancellation rate is therefore the lesser of the Desired Cancellation 
Rate or the Maximum Cancellation Rate: 

Vacancy Cancellation Rate 
= MIN(Desired Vacancy Cancellation Rate, Maximum Vacancy Cancellation Rate) 

(19-14) 

Maximum Vacancy Cancellation Rate 
= VacanciesNacancy Cancellation Time 

(19-15) 
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The formulation for cancellations ensures that the stock of vacancies can never 
become negative. If the desired cancellation rate is very large, the actual cancella- 
tion rate and stock of vacancies approach zero exponentially with a time constant 
determined by the Vacancy Cancellation Time. 

The desired rate of cancellations is given by the magnitude of the desired va- 
cancy creation rate whenever that rate is negative: 

Desired Vacancy Cancellation Rate 
= MAX(0, -Desired Vacancy Creation Rate) (19-16) 
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The same formulation can be used to model layoffs. Just as it takes time to cancel 
a vacancy, so too it takes time to terminate employees. 

Layoff Rate = MIN(Desired Layoff Rate, Maximum Layoff Rate) (19-17) 

Maximum Layoff Rate = LabodAverage Layoff Time (19-18) 

The Average Layoff Time is the mean time required to terminate employees. The 
desired layoff rate is the magnitude of the desired hiring rate whenever that rate is 
negative: 

Desired Layoff Rate 
= Willingness to Lay Off * MAX(0, -Desired Hiring Rate) (19-19) 

The parameter Willingness to Lay Off represents the firm’s layoff policy. If the 
firm has a no-layoff policy, then Willingness to Lay Off = 0. If Willingness to Lay 
Off = 1, the firm is just as willing to fire people as to hire people. 

Figure 19-4 shows the response of the revised model to the unanticipated 50% 
decrease in desired labor. The Average Layoff Time is set to 8 weeks, with Will- 
ingness to Lay Off = 1. The Vacancy Cancellation Time is 2 weeks. 

As soon as desired labor falls, the firm starts to cancel existing vacancies and 
lay off workers. Vacancies fall to zero after about 6 weeks, compared to more than 
30 weeks in the original model. Through layoffs the labor force comes into balance 
after about a year, compared to nearly 2 years in the original model. 

Including explicit vacancy cancellation and layoffs increases the realism and 
flexibility of the model. The model includes important nonlinearities capturing 
basic physical constraints (vacancies and the labor force can never be negative). 
The formulation also enables the modeler to represent important asymmetries 
in the reaction of a firm to excess labor compared to a situation of insufficient 
labor.2 The structure for layoffs and vacancy cancellation can be used in other ap- 
plications of the stock management structure such as the acquisition of plant and 
equipment, the return of purchases from a consumer to a supplier, or the transfer of 
workers between different jobs within a firm (for example, between production 
and marketing). 

19.2 INTERACTIONS OF LABOR AND INVENTORY MANAGEMENT 
This section augments the models of production and inventory management de- 
veloped in chapter 18 by adding labor as an explicit factor of production, using the 
simple model of the labor supply chain developed above. 

*The speed of layoffs versus hiring can be further differentiated by revising the model so the 
labor adjustment time LAT depends on whether there is excess or insufficient labor: 

LATH if Desired Labor 2 Labor 
LAT, if Desired Labor < Labor 

Labor Adjustment Time = 

where LATH is the time constant when the firm seeks to hire and LATL is the time constant when 
the firm needs to fire excess workers. A firm that dislikes layoffs will have LATH < LATL; a firm 
that is quick to fire but slow to hire will have LATH > LAT,. 
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Consider the first inventory management model described in section 18.1. The 
model represents stocks of work in process and finished inventory, along with the 
production scheduling decision. The model includes some strong simplifying as- 
sumptions. Customer orders are exogenous. Order backlogs and materials inven- 
tories are omitted, as are interactions with suppliers and customers. Most 
important, production starts always equal desired production starts. In reality, pro- 
duction is determined by the availability of materials, plant and equipment, labor, 
and other inputs. Section 18.2 relaxed the assumption that materials were always 
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available. This section focuses on the role of labor as a determinant of production. 
Capital plant and equipment are assumed to be ample. The Production Start Rate 
then becomes 

Production Start Rate = Labor * Workweek * Labor Productivity (19-20) 

Production starts, in widgets per week, are determined by the labor force, the av- 
erage number of hours these people put in per week, and their productivity (mea- 
sured in widgets produced per person-hour of effort). 

To meet production requirements the firm must adjust its labor force. Desired 
labor is based on the desired production start rate, the standard workweek, and ex- 
pected productivity: 

Desired Labor 
= Desired Production Starts/(Standard Workweek * Expected Productivity) 

(19-21) 

Management’s estimate of productivity can, and often will, differ from true pro- 
ductivity. For the purposes of this simple model, however, assume the standard 
workweek is 40 hours and that expected productivity equals actual productivity. 
These parameters affect only the number of workers needed to produce a widget, 
not the dynamics of the labor supply chain. For testing, set the actual workweek 
equal to the standard workweek and set productivity to 0.25 widgets per person- 
hour. 

Figure 19-5 shows the structure of the inventory management and labor sec- 
tors. The labor sector includes the structure for layoffs and vacancy cancellation. 

19.2.1 Inventory-Workforce Interactions: Behavior 
Figure 19-6 shows the response of the full system to an unanticipated 20% step in- 
crease in customer orders. The parameters for the labor sector are the same as in 
section 19.1.2. The parameters of the inventory sector are the same as used in sec- 
tion 18.1.6 except the Inventory Adjustment Time has been set to 12 weeks and the 
WIP adjustment time has been set to 6 weeks. 

Adding the labor supply chain means production starts adjust to desired starts 
with a delay. After the demand shock, inventory therefore falls farther than the no- 
labor case, boosting production to a higher initial peak and increasing the amplifi- 
cation ratio of production starts relative to customer orders to 2.07, compared to 
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1.61 for the model without labor. Most important, the system now oscillates vigor- 
ously, with a period of about 1 year. The oscillation is quite lightly damped, re- 
quiring about 3.5 years for production starts to settle within 2% of the new 
equilibrium. 

19.2.2 Process Point: Explaining Model Behavior 
Adding the labor supply chain to the inventory management model introduces im- 
portant delays in the negative feedbacks through which the firm regulates its in- 
ventories. These delays cause the system to oscillate, as you should have predicted. 

However, explaining the behavior by saying that production oscillates because 
the system contains negative loops with delays is not sufficient. Good modelers 
must strive for a deep understanding of the causes for the behavior observed in 
their models (whether it is oscillatory or not). 

It is seductively simple to develop explanations for model behavior that are flat 
out wrong. And it is all too easy to make errors in formulations, parameter values, 
and initial conditions. Many times I’ve observed people develop intricate theories 
to explain the behavior of their model, often supported by complicated causal dia- 
grams and argumentation, only to discover that the behavior was an artifact of a 
poor formulation or even a typographical error. Failure to analyze the behavior of 
your model in depth increases the chances these errors will go undetected, slowing 
your learning and reducing the confidence you and your clients can have in your 
analysis. The antidote to such self-delusion is the rigorous use of sensitivity analy- 
sis, extreme conditions testing, and other standard tests designed to uncover flaws 
in dynamic models (see chapter 21). 

Understanding model behavior goes beyond the invocation of simple arche- 
types such as “the oscillation is caused by negative loops with delays” or 
“S-shaped growth results from the limits to growth on a reinforcing feedback.” 
While true, these statements don’t provide the deep insight into model structure 
and behavior required to develop your intuition about dynamics or your ability to 
identify high leverage policies. You should be able to explain why a model does 
what it does in detail, in terms your client can understand, and without contradict- 
ing yourself. 

Explaining Oscillations 
Before continuing, write an explanation for the behavior produced by the step 
increase in orders shown in Figure 19-6. You may find the explanation emerges 
naturally as you answer the following questions: 

Why isn’t the system in equilibrium when inventory first equals desired 
inventory? 
Why isn’t the system in equilibrium when production starts first equal 
orders? When production first equals orders? 
Why does production overshoot its equilibrium value? 
Why does it undershoot? 



FIGURE 19-5 Inventory-workforce model 
Top: Inventory management sector. Bottom: Labor supply chain. The two sectors are coupled through Labor (determining the Production 
Start Rate) and Desired Labor (determined by the Desired Production Start Rate). The inventory management sector is described in 
section 18.1. Customer orders are exogenous. 
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FIGURE 19-6 Cycles generated by the interaction of inventory management with the labor supply chain 
Response to unanticipated 20% step increase in customer orders in week 5. Inventory Adjustment Time = 12 weeks; WIPAdjustment Time 
= 6 weeks. 
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Your analysis should proceed step by step, explaining at each juncture what is 
occurring and why. Make a causal loop diagram showing how the production 
scheduling and hiring policies interact with the stock and flow structure to create 
the important feedbacks in the system. It is helpful to plot the behavior of every 
variable in the model. Check that each variable is behaving appropriately given 
your knowledge of the real system and the structure and decision rules of the 
model. Make sure basic stock and flow relationships are captured. If production 
exceeds shipments, inventory must be rising. Strive for an internally consistent 
history of the firm, expressed in managerially meaningful terms your client can 
understand. 

19.2.3 Understanding the Sources of Oscillation 
Begin by tracing the effects of the demand shock through the system (Figure 19-6). 
Immediately after the increase in demand in week 5, the firm tries to boost ship- 
ments to the new rate of 12,000 widgetdweek. Production, however, remains con- 
stant at the initial rate of 10,000. Inventory therefore falls. As inventory falls, and 
as the firm’s demand forecast gradually rises, desired production begins to rise. As 
it does so too does desired WIP. Desired production starts rise sharply. In the orig- 
inal model without labor actual production starts equal desired starts, so WIP in- 
ventory begins to rise immediately. Now, however, the rise in desired starts has no 
immediate effect on actual starts. Instead, desired labor rises above actual labor. 
The firm’s human resource department struggles to create additional vacancies. 
The vacancy creation rate rises sharply to a peak nearly 7 times greater than the 
initial equilibrium rate. These vacancies begin to be filled after a delay, gradually 
lifting the labor force. By about week 15, enough new people have been hired to 
boost production starts to the customer order rate. Inventory, however, continues to 
fall until production is completed. 

By week 20, expected orders have nearly adjusted to the new rate of customer 
orders. Production finally rises to match customer orders in about week 23. Inven- 
tory actually reaches its minimum and begins to rise a few weeks earlier, since the 
low level of inventory has constrained shipments below orders. The inventory gap 
stops growing, so desired production peaks and starts to decline. As it does, the de- 
sired level of WIP inventory also falls. Actual WIP continues to rise since produc- 
tion starts still exceed production. Consequently, desired production starts, and 
desired labor, fall sharply. By week 24, desired and actual labor meet. Actual labor 
continues to lag behind the desired level, peaking by week 27 even as desired la- 
bor continues to fall. Labor then falls, but remains above the equilibrium level, so 
production starts continue to exceed production, which in turn exceeds shipments. 
Therefore WIP and finished inventory keep rising. By week 29, inventory levels 
have risen enough for desired production starts to fall back to customer orders. De- 
sired labor therefore falls back to its new equilibrium level of 1200 workers. Ac- 
tual labor still lags behind. Production starts continue to exceed shipments. By 
week 36 inventory reaches the desired level for the first time since the demand 
shock. Inventory does not reach equilibrium, however. Labor and production are 
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FIGURE 19-7 
Phase plot for 
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workforce model 
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shoots the desired level. 
Excess inventory now causes desired production starts to drop below customer 

orders, forcing desired labor below the equilibrium level. Actual labor, while 
falling, still lags behind. Production starts do not drop back to customer orders un- 
til week 39, with production falling to customer orders only in week 48. Through- 
out this period excess inventory continues to accumulate, forcing desired 
production starts and desired labor ever lower. The human resource department 
finds itself with so many workers that it now scrambles to cancel unfilled vacan- 
cies. Layoffs begin around week 28. 

After week 39, with labor below equilibrium, shipments exceed production 
starts. Aggregate inventory falls. Desired production starts to rise. As before, the 
lag in adjusting the workforce means labor continues to fall, reaching its minimum 
in week 53. Desired production starts once again reach customer orders in week 
55, but actual starts lag behind, so inventory falls farther than desired. By week 63, 
inventory is again below the desired level and falling rapidly, the labor force is too 
small, and the next cycle begins. 

Adding the labor supply chain to the inventory management model does not 
change the essential feedback structure of the system. Production starts still re- 
spond to the gap between desired and actual inventories. But the hiring process in- 
troduces delays in the negative inventory control loop, causing the key state of the 
system-inventory-to oscillate around the desired level. The impact of the delay 
in adjusting production starts is illustrated in Figure 19-7, a phase plot showing 
production starts versus desired starts. 

If the firm were able to match actual starts perfectly with desired starts, then 
the system's trajectory would always lie along the 45" line. Instead, the system spi- 
rals around the equilibrium. With the parameters used here the system is lightly 
damped. Starting at the initial equilibrium of 10,000 widgets per week, the demand 
shock rapidly increases the desired start rate. When desired starts first reach the 
new equilibrium of 12,000 widgetdweek, actual starts lag far behind. By the time 
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actual starts have reached the new equilibrium, inventory is so low that desired 
starts are near their peak. When desired starts fall back to the equilibrium, actual 
starts are near their peak, forcing inventory to overshoot and pushing desired starts 
down. And so it goes-the lag in the adjustment of actual to desired production 
starts forces the system to chase its tail, spiraling around the equilibrium instead of 
adjusting smoothly to it. 

As discussed in chapter 17, oscillation requires both delays in the negative 
feedbacks controlling a stock and that the managers’ decision rules ignore the sup- 
ply line of corrective actions in process. The supply line of unfilled orders and 
work in process inventory in a manufacturing supply chain are easily measured 
and taken into account (though experiments show people often fail to do so). The 
decision rules of the model fully account for the supply line of WIP. However, the 
supply line of corrective actions in process created by the delays in the hiring 
process is not so obvious. Vacancies and the stock of labor itself represent the po- 
tential to produce at a certain rate, not a particular quantity of goods on order or in 
production. They are not measured in widgets and cannot be compared easily to in- 
ventory in the production scheduling decision. 

Policy Design to Enhance Stability 
Now you can begin to use the model to explore policies to stabilize the firm. 
Before policy analysis is meaningful, however, you must be clear about your 
objectives. 

1. Instability such as illustrated by the inventory-workforce model is undesir- 
able. The goal of policy analysis here is to identify high leverage policies that can 
improve stability without degrading other aspects of system performance, particu- 
larly the ability of the firm to provide good customer service (to fill 100% of in- 
coming orders), even in the face of unpredictable changes in demand. Provide a 
brief explanation of what stability means in this context. 
2. To improve the performance of the system as you define it in ( l) ,  should the 
Inventory Adjustment Time and WIP Adjustment Time be increased or decreased? 
Write down your answer before simulating the model. 
3 .  Test your intuition by simulating the model with Inventory Adjustment Time 
and WIP Adjustment Time each lengthened or shortened by 50%, according to 
your prediction in (2). Is your intuition confirmed? Try other values for these pa- 
rameters until you are satisfied you understand their effects on the behavior. Ex- 
plain the effect of the change on stability in terms of the feedback structure of the 
system. 
4. Repeat the analysis in ( 3 )  for the other important time constants in the model, 
including the behavioral parameters ( e g ,  the Labor Adjustment Time and Vacancy 
Adjustment Time) and the physical delays (e.g., the Manufacturing Cycle Time 
and Average Time to Fill Vacancies). Write down your prediction for each para- 
meter before simulating. Briefly explain how each parameter affects the model and 
why. Do all the parameters have the same effect on stability? Why or why not? 
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5. What policies would you recommend at this point? You can consider combi- 
nation policies. Give specifics regarding how each policy might be implemented in 
reality. 

19.2.4 Adding Overtime 
So far, the workweek has been constant-workers always produce, whether their 
output is needed or not. The assumption of constant labor utilization is not a bad 
approximation for many traditional manufacturing environments, particularly 
those where performance is evaluated on the basis of overhead absorption, labor 
utilization, and other metrics designed to maximize gross throughput or those nor- 
mally operating around the clock. However, in many settings, the workweek varies 
in response to the need to increase or decrease production. 

To introduce the possibility of over-undertime, the workweek becomes a func- 
tion of schedule pressure, as in section 14.2: 

Workweek 
= Standard Workweek * Effect of Schedule Pressure on Workweek 

Effect of Schedule Pressure on Workweek = ASchedule Pressure) 

(19-22) 

(19-23) 

Schedule pressure is the ratio of Desired Production Starts to Standard Production 
starts: 

Schedule Pressure = Desired Production StartdStandard Production Starts (19-24) 

Standard starts is the rate of starts the firm would attain when the current labor 
force puts in the standard workweek, given the firm's estimate of productivity: 

Standard Production Starts 
= Labor * Standard Workweek * Expected Productivity (19-25) 

High schedule pressure means the firm needs to produce more than the standard 
rate permits; low schedule pressure means there is excess capacity. Now con- 
sider the shape of the nonlinear relationship between schedule pressure and the 
workweek. 

To specify the workweek as a function of schedule pressure, note that the ref- 
erence line Effect of Schedule Pressure on Workweek = 1 means the workweek 
never varies. The 45" reference line, in contrast, represents a situation where the 
firm always produces at the desired rate. The 45" line entails: 

Effect of Schedule Pressure on Workweek 
= f(Schedu1e Pressure) = Schedule Pressure 

Substituting this expression in the equation for the workweek, 

Workweek = Standard Workweek * Schedule Pressure 

(19-23a) 

(19-22a) 

Schedule Pressure is the ratio of desired to standard production starts: 

(19-22b) i Desired Production Starts 
Standard Production Starts 

Workweek = Standard Workweek * 

Substituting the definition of standard starts into the equation for workweek yields 
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Workweek = Desired Production Starts/(Labor * Expected Productivity) (19-22c) 

Substituting equation (19-22c) into the equation for production starts (19-20) 
yields 

( 19-20a) Labor * Productivity * Desired Production Starts 
Labor * Expected Productivity Production Start Rate = 

Assuming the firm has an accurate estimate of productivity, equation (19-20a) re- 
duces to 

Production Start Rate = Desired Production Start Rate (19-20b) 

Hence an overtime policy lying along the 45" line would enable the firm to hit its 
production targets at all times, independent of the workforce. 

The workweek function must lie in the area between the two reference lines in 
Figure 19-8. In the region Schedule Pressure > 1, indicating insufficient capacity, 
it is not reasonable to assume that the workweek would rise more than needed to 
lift production starts beyond the desired rate. Likewise, in the region Schedule 
Pressure < 1, it is not reasonable for the workweek to be cut back so much that 
production starts fall below the desired rate. Similarly, excess capacity should 
never cause a firm to schedule overtime and insufficient capacity should never lead 
to undertime. 

The workweek cannot increase indefinitely. The relationship must saturate at a 
maximum value. A reasonable maximum workweek for the entire workforce might 
be 50 or 60 hours per week. Figure 19-8 shows workweek rising to a maximum 
25% greater than the standard, or to an average of 50 hours per week for the entire 
workforce when the standard is 40 hourdweek. This figure represents an average 
over the entire labor force: Some workers would be putting in longer hours and 
some, ~hor te r .~  

3Note that the maximum effect of schedule pressure on workweek and the standard workweek 
are not independent. Given a maximum workweek of 50 hours, the effect saturates at a value of 
1.25 when the standard workweek is 40 hours but at 1.43 when the standard workweek is 35 hours. 
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What happens when there is excess capacity? Many firms are unwilling to re- 
duce the workweek below normal (especially when they are contractually oblig- 
ated to pay for a full week). Faced with excess capacity, many prefer to stockpile 
additional units for future sale, waiting for attrition and layoffs to reduce the labor 
force and eliminate the need for undertime. Firms may also choose to maintain 
production in the face of low schedule pressure to keep worker skills from eroding. 
The function shown in Figure 19-8 captures a policy in which the workweek never 
falls below 75% of normal, or 30 hourdweek. The slope of the function is less 
than 1 in the normal operating region (where schedule pressure is near one), corre- 
sponding to a compromise between the pressure to maintain full labor utilization 
and the need to adjust production starts to the desired rate. 

Other workweek policies are possible, including the policy of no undertime 
(the function is one when schedule pressure is less than one) and a policy in which 
production starts fall to zero as schedule pressure falls to zero. Under the latter pol- 
icy, the firm is willing to sacrifice labor productivity to avoid the buildup of excess 
inventory. In such a firm, the workers may use their extra time in training, mainte- 
nance, or process improvement activities. 

19.2.5 Response to Flexible Workweeks 
Figure 19-9 shows the response of the model with the ovedundertime policy to the 
20% step increase in orders. The response is dramatically smoother and more sta- 
ble. Production starts, of course, still overshoot customer orders, but the oscillation 
is nearly eliminated (the system is almost critically damped). The amplification of 
production starts relative to customer orders falls from 2.07 without workweek 
flexibility to 1.52. The need to rebuild inventory still forces the labor force to over- 
shoot its new equilibrium, but the firm is able to prevent the accumulation of ex- 
cess inventory by cutting the workweek while downsizing through attrition. There 
is no need for layoffs. Customer service improves as well. Order fulfillment drops 
only to a low of 93%, compared to 88% in the constant workweek case, and the to- 
tal number of lost orders is reduced. 

The improvement in stability arises because the variable workweek allows 
production starts to track desired starts better than before. Production starts still 
fall short of desired starts because the assumed overtime policy has a slope 
less than 1 (note the smaller variation of the workweek compared to schedule 
pressure). 

Figure 19-10 shows the phase plot for production starts against desired starts. 
Workweek flexibility means the firm can align actual starts to nearly match desired 
starts, and, compared to Figure 19-7, the trajectory of the system does lie much 
closer to the 45" line. Consequently, damping is increased, and the system spirals 
into the new equilibrium much faster. 

Figure 19-11 shows a causal diagram illustrating the feedback structure of the 
system. The system oscillates because the negative Workforce Adjustment loop in- 
volves long delays caused by the hiring process. Workweek flexibility creates a 
new feedback, the balancing Over-Undertime loop. The overtime and workforce 
adjustment loops have the same goal: to bring aggregate inventory (finished in- 
ventory plus WIP) in line with the desired value. However, the overtime loop 
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FIGURE 19-10 
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operates with no delay, allowing the system to recover from shocks without gener- 
ating the cycles seen in the constant workweek case. 

The more aggressively the firm uses overtime, the closer production starts 
track desired starts and the greater the ability to balance inventories without forc- 
ing labor above its equilibrium value. The more flexible the workweek, the more 
dominant the first-order overtime loop becomes, and the less the system must rely 
on the oscillatory workforce adjustment process to restore inventories to their de- 
sired levels. In the limiting case of perfectly flexible workweeks, the inventory sec- 
tor reduces to the original model in which production starts always equal desired 
starts and oscillation does not occur because the negative feedbacks controlling ag- 
gregate inventory become effectively first-order. 

The effect of workweek flexibility illustrates a general principle: The stability 
of oscillatory systems can always be enhanced by adding or strengthening first- 
order negative feedbacks that help the system reach its goals without significant de- 
lays. As intuition might suggest, adding first-order positive loops to an oscillatory 
system is destabilizing. As an example of such a positive feedback, consider the ef- 
fect of schedule pressure on fatigue and error rates (section 14.4.3). If high sched- 
ule pressure and long workweeks lead to stress and fatigue, errors may increase, 
reducing throughput and causing a further increase in schedule pressure. The pos- 
itive feedback is destabilizing because it pushes the state of the system farther from 
its goal, forcing larger excursions in the oscillatory workforce adjustment loop4 

for Enhanced Stability 
Using the model with overtime, design an ensemble of policies to enhance the sta- 
bility of the firm while also improving customer service. Draw on the policies you 

4See Graham (1977) for a good nontechnical discussion of the determinants of stability in 
oscillatory systems. 
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explored in the previous challenge but consider now how these policies may inter- 
act with a flexible workweek. Once you have arrived at a set of policies you be- 
lieve can enhance stability and performance, consider again the response of the 
system to shorter inventory and WIP adjustment times. To boost performance in 
the reengineered system, should these time constants be increased or decreased? 
Write down your answer before testing the model. Next, carry out the experiment 
by altering both these parameters by 50% in the direction you suggested. Was your 
intuition correct? Why or why not? Compare the impact of shorter inventory and 
WIP adjustment times in the constant workweek case to their impact in the reengi- 

19.2.6 The Costs of Instability 
The inventory-workforce model developed so far focuses on the core processes of 
inventory management and the labor supply chain. To keep it simple the model 
does not include any accounting or financial variables. While you can examine the 
impact of various policies on the stability of the system, its period, damping, and 
so on, you cannot assess the impact of your policies on profitability or cash flow. 
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Do the benefits of each policy (enhanced use of overtime, accelerated hiring and 
training, or reduced manufacturing cycle time) outweigh the costs? Without the 
ability to assess how your policies affect the bottom line, your model will be of lit- 
tle use to your client. 

You can easily expand the model to include a full set of financial accounts, in- 
cluding the flow of funds, income statement, and balance sheet. You can also eas- 
ily model a firm’s managerial accounting system, generating variables such as unit 
direct costs, overhead absorption, and labor utilization  variance^.^ However, the 
model is then likely to underestimate the benefits of enhanced stability. Cost ac- 
counting systems do not contain a line item for “Costs of Instability.” There is no 
entry in the income statement for charges against net income due to self-inflicted 
fluctuations. Yet there is no doubt that instability and oscillation are costly. Mod- 
eling the standard accounting system, while necessary to build client confidence in 
your model, is not sufficient. Indeed, the standard accounting system will be biased 
against policies that enhance stability, because the costs of implementing the pol- 
icy will be accounted for while the benefits will not. To properly assess the impact 
of your policies you need to identify the costs of instability and include them in the 
analysis. 

CI-IALLENGE Adding Training and Experience 
The model developed above assumes productivity is constant. In reality, many 
feedbacks cause productivity to vary. These include changes in worker experience, 
fatigue, and morale effects. The model of the labor supply chain developed so far 
does not distinguish between new and experienced employees. In most settings, 
however, new recruits are substantially less productive than experienced workers, 
as described in section 12.1. Firms that suffer from chronic business cycles go 

5For an example, see Lyneis (1980). Sterman, Repenning, and Kofman (1997) also develop a 
model with full financial and cost accounting sectors. 
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through periods of rapid hiring where the average experience of the workforce 
falls, cutting productivity. 

Modify the labor sector of the inventoryworkforce model to include the effect 
of employee experience on productivity. Use the aging chain structure developed 
in section 12.1 in which new employees are distinguished from experienced em- 
ployees. Include the structure for the impact of mentoring and on-the-job (OTJ) 
training on the time experienced workers have available for production. 

You will need to modify the aging chain to include the possibility of layoffs 
from both categories of workers. To keep the model simple assume the probability 
of layoff is the same for rookie and experienced employees. (How would you for- 
mulate layoffs if the firm follows a strict policy of reverse seniority, firing experi- 
enced people only after all new employees have been fired?) 

Be sure the revised formulation for hiring takes both the rookie and experi- 
enced workers into account when assessing the adjustment for labor. 

Based on your experience and judgment, select parameters for the time re- 
quired to become experienced, the rookie attrition rate, and the relative productiv- 
ity of new employees. To begin, assume rookies do not reduce the time that 
experienced employees can devote to production. 

Next, you will need to modify the formulation for expected productivity. Be- 
cause there will be some roolue employees in equilibrium (to compensate for those 
experienced employees leaving the firm), average productivity will be less than the 
productivity of experienced workers. Referring to section 12.1, derive an algebraic 
expression for equilibrium productivity. Set expected productivity equal to that ex- 
pression. 

Before running the full model, conduct partial model tests of your revised la- 
bor supply chain. In your tests, make desired labor exogenous. Make sure the labor 
supply chain begins in equilibrium. Then test its response to various shocks to de- 
sired labor, including a step up and a step down, both small and large. Examine the 
responses of the labor force and of productivity, checking for any anomalies or un- 
realistic responses. Correct any flaws you find. 

Once you are satisfied the revised labor supply chain is functioning properly, 
run the full model. To generate a baseline for comparison, assume rookies are just 
as productive as experienced employees. In this case, the model should behave 
nearly the same as the original model without training. Next, set the parameters to 
reflect lower rookie productivity. How does the inclusion of worker training affect 
the behavior of the model? Consider the effects on the period and stability of any 
oscillation. Examine the amplification generated on the production side and in the 
labor supply chain. 

Next, add the effect of mentoring and OTJ training. Select a reasonable value 
for the impact of rookies on the time experienced workers have available for pro- 
duction. What new feedback loop does the effect create? How does it alter the be- 
havior of the system? 

Explore the sensitivity of the model to variations in the parameters of the re- 
vised labor supply chain. 

What are the implications of your analysis for firms with long training delays 
and significant OTJ mentoring? Training delays and OTJ learning are particu- 
larly important in industries heavily dependent on skilled trades and engineering 
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know-how, including aerospace, construction, and machine tools. Interestingly, 
these industries are all far upstream in their supply chains and experience a great 
deal of instability in demand. How does extreme demand volatility interact with 

1 9.3 INVENTORY-WORKFORCE INTERACTIONS 
AND THE BUSINESS CYCLE 

How realistic is the behavior of the model? With the illustrative parameters used 
here, the natural period of the cycle is about 1 year. In reality, such a cycle would 
be entrained with, and probably blamed on, seasonal variations in demand or ma- 
terials availability. Indeed, many firms experience annual demand cycles and be- 
lieve these represent externally imposed seasonal variations. There is no doubt that 
such seasonal fluctuations exist, from the rhythms of agriculture to the winter lull 
in construction to the December spike in the demand for consumer goods. How- 
ever, firms often amplify the natural variations in demand, destabilizing operations 
even as they seek to respond to the seasonal variations. Forrester (1961, appendix 
N) showed that a firm can mistakenly “learn” that its demand is seasonal and be- 
gin to generate strong self-sustaining annual cycles in production, employment, in- 
ventories, profit, and orders, even when consumption of the product is perfectly 
random and has no seasonal cycle at 

The economy also exhibits cycles with longer periods, including the business 
cycle, the construction cycle, and the so-called economic long wave (see Forrester 
1979 and Sterman 1986). The business cycle has an average period of about 3 to 
5 years; the construction cycle has a period in the range of 10 to 20 years, and the 
long wave period is roughly 50 to 70 years. The business cycle is also highly vari- 
able, ranging in the US from as little as 19 months to 8 years or more (see Moore 
1983 and Gordon 1986 for  detail^).^ 

What is the role of inventory-workforce interactions in creating or amplifying 
business cycles? Economists have debated the origin of business cycles for more 
than a century and there is no agreement yet (for a survey see Zarnowitz 1992). 
Theories emphasizing the role of lagged responses to demand shocks and, in 

6Forrester’s 196 1 model of self-generated seasonal cycles constitutes one of the earliest formal 
models of learning and temporal self-organization. 

’Empirical assessment of business cycles is difficult. The National Bureau of Economic Re- 
search, the official arbiter of business cycles in the US, defines a recession roughly as two con- 
secutive quarters of decline in aggregate economic activity (falling GDP). This definition 
underestimates the number of cyclical downturns in the economy because it focuses on absolute 
decline in economic activity. Since the US economy grows at an average rate of 3.4%/year, a down- 
turn in the business cycle may not cause economic activity to fall long enough to meet the defini- 
tion for a full-fledged recession, even though activity clearly falls against trend. Such “growth 
cycles” punctuated the long booms of the 1960s, 1980s, and 1990s. When the long-term growth 
trend in the economy is removed from the data, the remaining cyclical fluctuations have an average 
period of about 3 years (see Moore 1983). 
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particular, the role of inventory-workforce interactions have long been central to 
many business cycle theories. 

The model developed in this chapter represents a single firm and omits many 
important structures, including the full supply chain, plant and equipment, back- 
logs, consumer demand, labor markets, prices, capital markets, and so on. Hence, 
the period and damping of the cycle it generates are not typical of the entire econ- 
omy. System dynamics models incorporating the inventory-workforce structure 
and other important feedbacks operating at the aggregate level have been devel- 
oped and calibrated for various industries and for the economy as a whole (e.g., 
Mass 1975; N. Forrester 1982; Senge 1978; Sterman 1986). Figure 19-12 shows 
the behavior of the model developed in this chapter when parameterized with val- 
ues typically estimated in macroeconomic models.8 Customer demand is random, 
varying around a constant level with a 5% standard deviation. The behavior of the 
system is strongly oscillatory. The period of the cycle is now approximately 3 
years, quite close to the period of the actual business cycle. 

The phase lags in the simulation closely approximate the observed leads and 
lags in the economy. In the actual economy, vacancies, hiring, and the workweek 
are leading indicators, peaking before aggregate output (gross domestic product). 
Employment is a coincident indicator (in phase with production) and inventory is 
a lagging indicator (peaking after production). As seen in the figure, the model ex- 
hibits all these phase relationships. Of course, the correspondence between the 
model and actual business cycle behavior is not perfect, as expected, given the ex- 
treme simplicity of the model. Adding additional structure to capture the important 
omitted feedbacks in the macroeconomy further enhances the correspondence of 
the model to the actual business cycle. 

The inventory-workforce interaction lies at the core of the short-term business 
cycle. Business cycles are not caused by the actions of central banks, changes in 
government fiscal policy, or random shocks such as oil crises, wars, or technolog- 
ical breakthroughs. Rather, the business cycle arises from the fundamental struc- 
ture of an industrial economy-fi-om the interaction of inventory management and 
hiring policies with the stock and flow structure of production and employment. 
The natural period of the inventory-workforce interaction is similar to the ob- 
served period of the business cycle but the cycle is highly dissipative-the 

8The parameters, roughly consistent with Senge (1978) and N. Forrester (1982), are Time to 
Average Order Rate = 26, Manufacturing Cycle Time = 40, Inventory Adjustment Time = 26, 
WIPAdjustment Time = 40, Minimum Order Processing Time = 8, Safety Stock Coverage = 8, 
Average Layoff Time = 16, Average Time to Fill Vacancies = 26, Labor Adjustment Time = 16, 
Vacancy Adjustment Time = 16, Vacancy Cancellation Time = 16, Average Duration of Employ- 
ment = 150. The Effect of Schedule Pressure on Workweek is (0,0.83), (0.25,0.86), (0.5,0.9), 
(0.75,0.95),(1, 1),(1.25, l.05), (1.5, 1.10),(1.75, 1.14),(2, l.l7).Notethatparameterchanges 
alone cannot convert the model into a good representation of the macroeconomy. The level of 
aggregation captured in a model affects the details of the formulations used. For example, in the 
model the firm either hires or lays off workers but does not do both at the same time. In the econ- 
omy, an industry, or even in a large firm, however, labor needs are not perfectly correlated across 
all firms or sites, so some divisions, firms, and regions are hiring while others are laying workers 
off. In aggregate models the layoff rate might be formulated as the product of the labor force and 
a fractional layoff rate, which in turn would equal a normal fractional rate modified by various 
pressures arising from, e.g., schedule pressure and profitability. See, e.g., Mass (1975). 
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FIGURE 19-12 
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response of the economy to a single shock is highly damped. The business cycle 
persists because the economy is constantly perturbed by random shocks, as seen in 
Figure 19-12. These shocks are not the cause of the cycle but the triggering events 
that elicit the latent pattern of behavior generated by the underlying feedback 
stru~ture.~ 

9Economists have debated since at least Frisch (193311965) whether the business cycle is a 
damped oscillation kept alive by random shocks or a self-sustaining cycle requiring no random 
shocks. Research in the system dynamics tradition suggests the short-term business cycle is 
damped, while the economic long wave or Kondratiev cycle appears to be a self-sustaining limit 
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The observation that the business cycle is a highly damped mode of behavior 
excited by random shocks explains the variability in the duration and details of in- 
dividual cycles. Both in the economy and in the simulations of the model, the ran- 
dom shocks cause each cycle to have a unique character. Some are longer than 
average, some are shorter. The amplitude of the fluctuation varies from cycle to 
cycle. The extent to which the leading and lagging indicators lead and lag varies 
from cycle to cycle. 

19.3.1 Is the Business Cycle Dead? 
The hypothesis that the business cycle arises from inventory-workforce inter- 
actions and related feedbacks has important implications. It means the business 
cycle originates in the private sector from the ordinary, everyday decision-making 
processes of millions of firms and individuals. It also means stabilization of the 
business cycle through government monetary and fiscal policy is difficult. 

Policy levers such as tax and interest rates do not alter the underlying feed- 
backs or parameters of the inventory-workforce structure and thus are unlikely to 
alter its inherent oscillatory behavior. Changes in tax and interest rates create 
shocks that perturb the system and may themselves excite rather than damp out the 
cycle. Economists across the political spectrum, from Milton Friedman 
(1956/1973) to A. W. Phillips (1954), have long argued that monetary and fiscal 
policies intended to stabilize the business cycle may actually be destabilizing. Poli- 
cies such as raising interest rates when the economy overheats and lowering them 
when recession threatens are designed to create negative feedbacks whose goal is 
to counteract variations in unemployment, inflation, or output. However, there are 
long delays in the measurement and reporting of the data, in the decision to alter 
monetary and fiscal policies, and in the time required for any changes in interest 
rates, transfer payments, or tax rates to have their effects. These delays are long rel- 
ative to the period of the business cycle and may actually destabilize it, counter to 
the intention of policy makers. 

Under rational expectations, well-informed rational agents and central bankers 
understand the structure of the economy and perfectly account for time delays and 
feedback effects. In the real world, they don't. Alan Blinder (1997, pp. 9-10), re- 
flecting on his experience as Vice Chairman of the US Federal Reserve, described 
with refreshing candor how easy it is even for experienced policy makers to under- 
estimate delays using the familiar thermostat-with-time-delay analogy: lo 

cycle (see chapter 4 for the distinction and Sterman 1986 for discussion). Though beyond the scope 
of this chapter, the analysis here raises the question of entrainment. Even if individual firms oscil- 
late in response to random shocks, why do these oscillations occur in phase? That is, why is there a 
business cycle at the level of the macroeconomy rather than a host of individual cycles that cancel 
out at the aggregate level? Entrainment of individual cycles is common in the natural world, from 
the entrainment of the orbital and rotational period of the moon (accounting for its dark side) to the 
beating of your heart (life-threatening fibrillation occurs when this entrainment breaks down) to the 
synchronized flowering of certain species of bamboo. Haxholdt et al. (1995) discuss entrainment of 
economic cycles using a simple model. Strogatz (1994) provides an excellent introduction to the 
mathematics of entrainment. 

of systems in which people ignore the supply line of corrective actions discussed in chapter 17. 
"Compare Blinder's thermostat system to Aftalion's coal-thermostat analogy and the discussion 
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Lags in monetary policy . . . tend to be trivialized or ignored in academia . . . But 
they pose a huge practical problem for policy makers. Failure to take proper 
account of lags is, I believe, one of the main sources of central bank error. 

One reason is simple . . . All central bankers understand that there are long 
lags in monetary policy. But when policy is being either tightened or eased, policy 
makers typically have no usable quantitative estimate of what are often called 
“pipeline effects,” that is, the lagged effects of previous monetary policy actions 
that have not yet shown through in the data. 

The second problem with lags runs much deeper and is, at least in part, psy- 
chological. Put plainly, human beings have a hard time doing what homo economi- 
cus does so easily: waiting patiently for the lagged effects of past actions to be felt. 
I have often illustrated this problem with the parable of the thermostat. The follow- 
ing has probably happened to each of you; it has certainly happened to me. You 
check in to a hotel where you are unfamiliar with the room thermostat. The room 
is much too hot, so you turn down the thermostat and take a shower. Emerging 
15 minutes later, you find the room still too hot. So you turn the thermostat down 
another notch, remove the wool blanket, and go to sleep. At about 3 A.M., you 
awake shivering in a room that is freezing cold. 

ing out the window.” At each decision point, the central bank takes the economy’s 
temperature and, if it is still too hot (or too cold), proceeds to tighten (or to ease) 
monetary policy another notch. With long lags, you can easily see how such my- 
opic decision making can lead a central bank to overstay its policy stance, that is, 
to continue tightening or easing for too long. 

. . . I cannot tell you how many times, both at the Federal Reserve and at 
meetings with foreign central bankers, discussions of future policy were cut short 
with phrases like “let’s see what happens” or “we’ll have to wait until next month 
(or next meeting).” 

The corresponding error in monetary policy leads to a strategy that I call “look- 

If activist government policy isn’t likely to stabilize the economy, perhaps techno- 
logical innovations and learning will. Information technology and so-called lean 
manufacturing techniques should enable firms to integrate their entire supply 
chain, reduce inventories, anticipate the delays in adjusting resources, and stabilize 
the cycle. 

Changes in production scheduling and hiring policies and changes in the 
lengths of hiring and production delays can alter the characteristics of the cycle. As 
seen in the simulations and policy analysis, greater flexibility in workweeks and 
capacity utilization, by strengthening the first-order negative feedbacks regulating 
inventories, are stabilizing. Cutting the delays in adjusting production capacity, 
employment, and training is also stabilizing. Reducing inventory coverage 
throughout the supply chain can also reduce the period and increase the stability of 
the cycle. Over the past two decades the lean manufacturing revolution has begun 
to reduce inventory coverage throughout the economy. Information technology is 
helping to link partners in a range of supply chains, shortening information report- 
ing and decision-making delays. 

These changes should help to stabilize the business cycle. Indeed, the evidence 
suggests the business cycle was slightly less violent in the late 20th century than in 
the 19th, at least in the developed economies. However, the impact of these wel- 
come changes should not be overestimated. They may arise simply from the nat- 
ural evolution toward a service-based economy. 
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FIGURE 19-1 3 
The insurance 
underwriting cycle 
Underwriting 
profits fluctuate 
sharply though 
there are 
no physical 
inventories or 
raw materials in 
the insurance 
supply chain. 

In the 19th century agriculture and manufacturing dominated the economy. 
Both sectors involve significant inventories, long supply chains, and long delays in 
adjusting production to changes in demand. Over the past century, the share of 
GDP and employment arising from these sectors has fallen, while the share arising 
from services and government has steadily risen. Service industries involve much 
smaller inventories than manufacturing. As shown in the simulations and policy 
analysis above, reducing inventory coverage in the supply chain shortens the pe- 
riod and increases the damping of the cycle. Thus the transition to a service econ- 
omy may reduce the duration and severity of business cycles, independent of any 
technological progress or learning by firms. 

The transition to services, however, is unlikely to eliminate business cycles al- 
together. Though many service industries do not involve significant physical in- 
ventories, the service delivery supply chain often involves long delays. For 
example, the insurance industry carries no inventories of physical product and no 
raw materials stocks. Yet the delays between writing insurance policies and the re- 
alization of losses, and between losses and the resolution of claims, contribute to 
the persistent underwriting cycle that has plagued the industry for at least a century 
(Figure 19- 13). 

Even in manufacturing, there are limits to lean. Inventory reductions generated 
by just-in-time (JIT) and lean manufacturing policies implemented by one firm are 
often offset by increases in inventories held by suppliers or customers. When a 
manufacturer moves to JIT materials delivery, its suppliers must deliver more 
frequently and with much higher reliability. To meet these more stringent require- 
ments suppliers often carry additional inventory. Large firms often cut the inven- 
tories carried on their balance sheets through third-party warehousing in which 
materials inventories remain at the producer’s site but are still owned by the sup- 
plier until they are used. Such policies reduce the inventory levels of individual 
firms but don’t appreciably change inventory levels for the economy as a whole. 
Figure 19-14 shows aggregate inventory coverage in the US manufacturing sector. 
As in the model here, inventory coverage fluctuates strongly over the business 
cycle. From the 1950s through about 1990 coverage oscillated around a rela- 
tively constant level of about 1.7 months. Since 1990, as lean production practices 

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 

Source: 1910-1 970, Stock insurance firms, Historical Statistics of the US, Series 
X-956; 1974-1 996, property and casualty/liability firms, Statistical Abstract of the US, 
various years. 



788 Part V Instability and Oscillation 

FIGURE 19-14 
Inventory 
coverage, US 
manufacturing 
Inventories relative 
to shipments in 
US manufacturing 
industry. Does not 
include finished 
inventories held by 
retailers and other 
distributors outside 
the manufacturing 
sector. 
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Source: US Census Bureau, M3 Survey. 

diffused through the economy, coverage has gradually declined to an average of 
about 1.4 by the late 1990s, a drop of less than 20%. 

No doubt further adoption of lean manufacturing and further developments 
in information technology will enable inventory coverage to decline still more. 
Nevertheless, it would be unwise to predict that technological progress spells the 
death of the business cycle. Over the past century, the business cycle has been pro- 
nounced dead many times, usually after long periods of expansion such as the 
1920s, 1960s, and 1990s. Each time, the cycle emerged again, often with renewed 
vigor. Business cycles have existed since the beginning of the industrial age, con- 
tinuing over more than two centuries, despite unimaginable changes in the prod- 
ucts, technologies, markets, transportation and communication technologies, 
economic institutions, government policies, and dominant nations in the world 
economy. 

The persistence of business cycles despite the complete transformation of 
every aspect of the global economy testifies to the enduring and fundamental char- 
acter of the structure underlying the cycle. Though many of the products and tech- 
nologies used today would be unrecognizable to Adam Smith, manufacturing firms 
still maintain inventories and still require labor. It still takes time to alter produc- 
tion, acquire materials, and buy new equipment. It still takes time to hire and train 
workers. An unanticipated increase in demand still causes a drop in inventory, and 
the only way to rebuild it is to boost production above shipments. Boosting pro- 
duction still requires more resources, including labor. Most of the changes in tech- 
nology, market structure, products, and so on over the past 200 years, despite their 
undoubted impact on our lives, can be well represented in the model by modest 
changes in parameters. 

19.4 SUMMARY 
This chapter showed how the stock management structure can be applied to the la- 
bor supply chain. A simple model of labor acquisition was developed, including 
vacancy creation, hiring, and layoffs. The model was then linked to the manu- 
facturing supply chain model. The resulting model of inventory-workforce inter- 
actions oscillates with characteristics closely resembling the business cycle. The 
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cycle arises from the negative feedbacks through which firms seek to maintain in- 
ventories at appropriate levels. Delays in these feedbacks caused by the hiring 
process mean production cannot be adjusted instantly to desired levels. The delays 
in these negative loops cause the oscillation. 

The chapter also showed how flexibility in the workweek and capacity utiliza- 
tion can help stabilize such oscillations. In general, you can stabilize an oscillatory 
system by creating first-order negative loops that short-circuit the delays in exist- 
ing loops that create instability. 

In terms of modeling skills, the chapter provided examples of formulating ro- 
bust decision rules and nonlinear behavioral relationships. Guidelines for analyz- 
ing and explaining model behavior were also developed. 





20 

The Invisible Hand Sometimes 
Shakes: Commodity Cycles 

Corrective feedback forces are provided in competitive economies by changing 
profit possibilities that have tended to direct capital . . . into “appropriate” 
channels. The implied feedback has been complicated by two human 
characteristics: the tendency to envisage the future on the basis of linear 
projections of the recent past, and a follow-the-leader tendency among those 
who make investment decisions. These characteristics decreed that the 
economies systematically undershot and overshot . . . , lurching their way 
through history in perpetual disequilibrium. 

-W. W. Rostow (1993, pp. 14-15) 

Up to now the focus has been models of individual firms. Market forces-the feed- 
backs between price and demand and supply-were omitted. These supply chain 
models tend to oscillate in response to shocks. Do market forces attenuate or am- 
plify such oscillations? Many industries experience chronic cyclical instability. 
Most commodities, whether animal, vegetable, or mineral, experience cycles in 
prices and production with characteristic periods, amplitudes, and phases. Indus- 
tries with long construction delays and long asset lifetimes such as shipbuilding, 
paper, chemicals, and real estate likewise exhibit strong cyclical dynamics. Even 
service industries such as insurance exhibit characteristic cycles in price, prof- 
itability, and investment. The diversity of these cycles suggests they arise endoge- 
nously within each industry. In these markets the negative feedbacks through 
which price seeks to equilibrate supply and demand often involve long time delays, 
leading to oscillation. 
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20.1 

Part V Instability and Oscillation 

This chapter develops a generic commodity market model. Where prior chap- 
ters focused on the response of a firm to changes in orders, this chapter adds the 
role and response of prices and profitability. A formulation for price setting useful 
in a wide range of market settings is developed and tested. The chapter develops 
your formulation skills, including principles for formulating decision rules that 
represent an aggregate industry rather than a single firm, while still grounding the 
formulations in knowledge of the individual decision makers. Challenges invite 
you to elaborate the model and to design and test policies to improve performance. 

COMMODITY CYCLES: FROM AIRCRAFT TO ZINC 
Commodities include mineral products such as copper, iron, and mercury; forest 
products such as lumber, pulp, and paper; and agricultural products such as coffee, 
cocoa, and cattle.' Many commodities suffer from persistent cyclical instability in 
prices, production, profitability, and investment. Instability is costly for the af- 
fected industries and their customers. From the cost of your morning coffee and 
newspaper to the price of steel, commodity prices affect you in countless ways. 
Many developing nations depend on commodity exports for the bulk of their hard 
currency. Fluctuations in prices and demand have forced devaluations, plunged 
whole nations into depression, and triggered political unrest. 

A common explanation for commodity cycles is that demand is cyclical. It is 
of course true that the overall economy rises and falls with the business cycle, and 
these movements induce some corresponding fluctuation in commodity markets. 
Yet many commodity markets fluctuate far more than the economy as a whole, ex- 
hibit cycles with different periods, and are not entrained to the business cycle, sug- 
gesting that a feedback structure endogenous to the particular commodity is 
responsible. 

Figures 20-1 through 20-6 show some typical examples. Hog prices and pro- 
duction (Figure 20- 1) fluctuate with roughly a 4-year period, while the cattle cycle 
averages about 10-12 years (Figure 20-2). Cycles in copper prices are well docu- 
mented back to at least 1840 (Figure 20-3). The data show rather regular, large am- 
plitude cycles of about 8-10 years around the long-term trend. The trend exhibits 
the effects of postwar inflation but also shows a long cycle associated with the eco- 
nomic long wave. 

Commodity cycles not only arise in raw materials and agricultural products but 
also in high-tech and highly differentiated products. As an example, Figure 20-4 
shows that commercial aircraft orders and production fluctuate with a large ampli- 
tude cycle of roughly 10 years. Figure 19-13 presented the insurance underwriting 
cycle, showing that cyclical instability is not limited to commodities but also 
plagues highly differentiated service industries. 

'The notion of a commodity implies an undifferentiated product, often supplied by many small, 
independent producers so that the market is approximately competitive. However, chronic cyclical 
instability arises also in industries dominated by a small number of large producers and in indus- 
tries offering highly differentiated products, including commercial aircraft, real estate, shipbuilding, 
semiconductors, and insurance. 



FIGURE 20-1 The hog cycle 
Top left: US federally inspected hog slaughter (<I950 in million Ibs; scales set for average live weight of 270 Ibs). Top right: Hog price, 
wholesale (< 1964 at Chicago; 2 1964 at Sioux City), Middle left: Frozen pork inventories. Middle right: Hogkorn ratio (bushels of #2 yellow 
corn required to buy 100 Ibs live hogs, at Omaha). Bottom: US live hog stocks. Note different time scale. 
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FIGURE 20-2 The cattle cycle 
Top: US cattle stocks. Micfde: Slaughter rate. Bottom: Price. Right side shows ratio of variable to the trend. Trends calculated by locally 
weighted least squares estimation. 

4 
P 
(D 

0 I , I . I , I I . . , . I . , / ,  ~ , , , , , ,  I / I  , , , , . , , . / , . , , , , , , / / , , , , , , ,  I , , , , , .  ~ , , , , , . , , ,  ~ 

1930 1940 1950 1960 1970 1980 1990 2000 

7 5 -  

Q, .p 
2 g  
$2 

5 0 -  
n- 

z v  

2 5 -  

0 , , I  / , , , , , , , , ,  I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1930 1940 1950 1960 1970 1980 1990 2000 

Source: Commodity Research Bureau, Commodify Yearbook, various years. 

0 
S 
0 

z s  
O Q  

- 
ln'Z 1.10-  

,o .E 
2; 

G Z S  
1.00- + 

0 

0 

m 

+. 

.- + 

K 0.90 , . ,  , / / ,  / / ,  , , / , ,  , , , ,  , , , ,  , , , , ,  , , , .  , , ,  , , , , . , / ,  , ,  , ,  , . . ,  , , , ,  , , , , , , , , , I  , ,  , , ,  , 
1930 1940 1950 1960 1970 1980 1990 2000 

h 
ln 
ln 
Q - g 1.10 

d '&i 

L E  
$ 5  1.00 

d S  

?z c- 

0.90 - 
0 .- * 

OC 0.80 
1930 1940 1950 1960 1970 1980 1990 2000 

0 - 

I .  1 

1930 1940 1950 1960 1970 1980 1990 2000 



FIGURE 20-3 Copper prices and production 
Tog !eft: Copper prices, 1840-1 996. Log scale, with trend (ca!cu!ated by !ocs!1y weighted least squares). Bottcm /ef t  Copper prices, ratio to 
trend. Top right: US Cu production, 1924-1 996, with trend (best-fit exponential). Bottom right: US production, ratio to trend. 
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FIGURE 20-4 8 0  
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As you should expect, these cycles are not perfectly regular and the influence 
of events external to the markets, such as business cycles, wars, and weather, is 
clearly discernible (e.g., the price controls on copper during World War 11). 

Many industries generate at least two distinct cycle periods. As shown in Fig- 
ure 20-18, the paper industry experiences a roughly 4-year cycle most prominent 
in inventories, production, and price, and also a longer, 10-15 year cycle most ap- 
parent in capacity. Likewise the oil tanker industry (Figure 20-6) exhibits high- 
frequency cycles of a few years in price but also a large amplitude capacity cycle 
of roughly 20 years. The amplitude of the short-term cycle in price depends on the 
phase of the 20-year capacity cycle: Prices are high and volatile when world fleet 
utilization is high; when there is excess capacity, prices and price variability are 
low. Real estate markets (Section 17.4.3; Figure 17-14) are similar: Prices and con- 
struction activity respond to the pulse of the short-term business cycle but are dom- 
inated by a 10-20-year cycle of much larger amplitude. Slade (1982), using 
spectral analysis, found cycles of 10-14 years in the prices of metals including alu- 
minum, copper, iron, lead, silver, tin, and zinc, along with more rapid fluctuations 
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. . . . . . . . . . . . . . . . . . . . . . . . . .  



FIGURE 20-6 Cycles in the oil tanker industry 
Spot rates: Monthly; worldscale units (100 = normal). Trade and capacity: Seaborne trade in crude and petroleum products, billion ton- 
miledyear. Capacity eqiials 70% of the theoretical maximum rate given the world fleet. Capacity utilization: Ratio of seabme trade to 
capacity. Order, delivery, and scrap rates: Billion ton-miledyear per year. 
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20.2 

corresponding to the short-term business cycle. A good model of commodity 
industries must explain the origin of both the short-term inventory cycle and the 
slower capacity cycles observed in these markets.2 

A GENERIC COMMODITY MARKET MODEL 
The underlying feedback structure responsible for commodity cycles is shown in 
Figure 20-7.3 Building on the basic feedback structure of markets introduced in 
section 5.5, Figure 20-7 shows the stock and flow structure of commodity produc- 
tion and the perceptual and administrative delays in the main behavioral decision 
processes. The stock and flow structure for production and inventory at the top of 
the diagram represents the supply chain for the commodity (such as inventories of 
copper ore and refined metal); the stock and flow structure for production capacity 
(such as mines, ore crushers, and smelters) appears at the left. 

Consider first the stock and flow structure for production capacity and pro- 
duction. Production capacity is increased by capacity acquisition and decreases as 
capacity depreciates and is discarded. Capacity acquisition often involves long 
delays, creating a supply line of capacity on order and under construction. Capacity 
and capacity utilization determine the production start rate. Production usually 
takes time, creating a significant supply line of inventory in process. Avail- 
able inventory of the commodity is increased by production and decreased by 
consumption. 

2The classical economic theory of commodity cycles is the so-called cobweb model which 
posits that demand (D) responds to price (P) immediately but supply (S) responds with a lag: 
D, =f,(P,); S, =fs(P, - 
equal to twice the interval between time periods. First, linearize the supply and demand curves 
around the equilibrium point: D, = do + dlP,; St = so + s,Pt ~ ,; s1 > 0, d, < 0. Next, assume the 
market clears every period and equate demand and supply to yield a single first-order linear differ- 
ence equation: P, = (so - do)/dl + (sl/dl)P, - 1. The solution is P, = P, + [Po - P,](S,/~,)~, where Po 
is the initial price and P, = (so - do)/(dl - sl) is the equilibrium price. While cobweb models do 
capture the core structure underlying commodity cycles-the time delay in the negative feedback 
for the response of supply to price-they are unsuitable for serious modeling of market dynamics. 
First, they do not represent the stock and flow structure of real markets (including inventories, work 
in process, and production capacity). Second, they are formulated in discrete time. Discrete time 
models often generate spurious dynamics, akin to the integration error that arises when differential 
equation models are simulated with too large a time step (so-called DT error [Appendix A]). Third, 
the interval between periods is assumed to correspond to the time required to produce the com- 
modity, such as the gestation and maturation time for livestock. However, the observed periods 
of commodity cycles are much greater than twice the production delays. The gestation-maturation 
delay for hogs is 11 months, but the period of the hog cycle is 4 years; the construction time for 
commercial buildings is about 3 years, but the real estate cycle ranges from 10 to 20 years. Fourth, 
they do not distinguish between production capacity and capacity utilization and so cannot explain 
the multiple oscillatory periods observed in many industries. Proper commodity cycle models, like 
all dynamic models, should represent the stock and flow structure, time delays, and behavioral 
decision processes of the market. The delays should be set to their actual values, not multiples 
of some arbitrary time period, and the models should be formulated in continuous time. 

early system dynamics model of commodity cycles and applied it to livestock. See also Weymar 
(1968). Giivenen, Labys, and Lesourd (1991) provide a good overview of modern commodity 
models. 

You can easily show that the cobweb model oscillates, with a period 

3The models developed in this chapter were inspired by Meadows (1970) who developed an 



FIGURE 20-7 Generic structure of commodity markets 
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Figure 20-7 shows the three principal feedbacks helping to equilibrate supply 
and demand. On the demand side, the demand for any commodity depends on its 
price relative to substitutes, the number and purchasing power of consumers, and 
social and technical factors unrelated to price (such as a trend toward low-fat diets 
that might reduce beef consumption). High prices reduce the relative value of the 
commodity, causing demand to fall through the Substitution loop B 1. Substitution 
often involves substantial delays: While consumers can rapidly switch from beef 
to pork when pork prices fall, the response of oil demand to price is very slow due 
to the long lifetimes of oil-consuming capital stocks such as cars and buildings (see 
Figure 5-11). 

On the supply side, higher prices lead to higher utilization of existing capacity 
(the balancing Capacity Utilization loop B2). If high prices persist, capacity will 
expand, boosting production through the Capacity Acquisition loop B3. While both 
utilization and capacity acquisition respond to price, these decisions differ in im- 
portant ways. The utilization decision responds to the expected profitability of cur- 
rent operations. Expected operating profitability, in turn, depends on the variable 
costs of operations and the price producers expect to realize when production 
started today is available for sale. The expected profitability of new investment in 
contrast depends on the total costs of new capacity, both fixed and variable, and on 
investors’ forecasts of what prices will be over the long term. These may differ 
from the short-run price expectations used to drive utilization. 

The current or spot price of a commodity depends on the balance of supply and 
demand. The current supply is the available inventory, be it ingots of copper or 
frozen pork bellies. Demand is the current order rate or order backlog. Prices tend 
to rise when inventory coverage (the ratio of inventory to consumption) falls. 
Prices are also influenced by other factors, such as the cost of inventory compared 
to the costs of storage and risk of spoilage or obsolescence, the degree of compet- 
itiveness in the market, beliefs about the costs of substitutes, and so on. 

Note also the balancing Availability loop (BO), which limits consumption 
whenever inventory is inadequate. In many markets, prices, demand, and produc- 
tion usually adjust quickly enough to prevent shortages. But markets do not always 
clear by price alone. Availability often plays a large role in balancing consumption 
with production. Shortages are experienced as lengthening delivery delays, prod- 
ucts placed on allocation, or simply stockouts. Availability also plays a key role in 
markets for differentiated products where prices adjust slowly (such as real estate 
or commercial aircraft) or where social norms for fairness limit price increases 
when supplies are short (Thaler 1991). Even in commodity markets where prices 
normally adjust rapidly, extreme conditions such as price controls or a run of panic 
buying can overwhelm the price feedbacks and force shipments below orders. 

The Substitution, Utilization, and Capacity Acquisition loops all involve de- 
lays of various types and may therefore cause instability and oscillation. If the pro- 
duction delays are long enough, oscillations may arise as capacity utilization 
adjusts in response to changes in price. The delays in the capacity acquisition feed- 
back are much longer and may produce even longer cycles. Both supply side loops 
include physical delays (the capacity acquisition and production lags) and infor- 
matiodperceptiorddecision-making delays (the delays in forming price expecta- 
tions, assessing expected profitability, and making investment plans). 
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20.2.1 Production and Inventory 
To move from the conceptual model in Figure 20-7 to a formal model, begin with 
the supply chain for production (Figure 20-8). The supply chain is captured very 
simply as a two-stock chain with WIP and finished goods inventories. Backlogs 
and other stages of processing and storage, both upstream and downstream, are 
omitted. Of course, it is a simple matter to replace the two-stock supply chain used 
here with one of the more sophisticated versions developed in earlier chapters or 
with one of your own design. The stock and flow chain is formulated as 

Inventory = INTEGRAL(Producti0n Rate - Shipment Rate, Inventoryh) (20- 1) 

WIP Inventory 
= INTEGRAL(Producti0n Start Rate - Production Rate, WIP,) 

FIGURE 20-8 IManufacturing supply chain and capacity utilization sectors 
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Shipments are determined by customer orders and the Order Fulfillment Ratio: 

Shipment Rate = Desired Shipment Rate * Order Fulfillment Ratio 

Order Fulfillment Ratio 
= f(Maximum Shipment Ratemesired Shipment Rate) 

Maximum Shipment Rate = Inventory/Minimum Order Processing Time 

(20-3) 

(20-4) 

(20-5) 

Desired Shipment Rate = Customer Orders (20-6) 

The order fulfillment ratio is the fraction of orders filled and is a function of the 
Maximum Shipment Rate relative to the Desired Shipment Rate. The maximum 
shipment rate is determined by inventory and the minimum time required to 
process and fill an order. The meaning and derivation of the order fulfillment func- 
tion are described in section 18.1.1. Desired shipments here equal customer orders 
(backlogs are omitted). 

Production is modeled as a delay. A third-order delay provides a reasonable 
distribution of completions around the average Manufacturing Cycle Time: 

(20-7) Production Rate 
= DELAY3(Production Start Rate, Manufacturing Cycle Time) 

Capacity and capacity utilization determine production starts: 

Production Start Rate = Production Capacity * Capacity Utilization (20-8) 

Capacity utilization captures variations in the intensity of production above or be- 
low the normal rate. Utilization may vary due to deliberate management decisions 
to respond to current profitability or production pressure or due to undesired fac- 
tors such as equipment breakdowns, materials shortages, or shortages of storage 
capacity for output. Labor is not modeled explicitly but is instead implicit in the 
delay in adjusting utilization to the indicated level. 

20.2.2 Capacity Utilization 
Utilization depends on producers’ expectations regarding the current profitability 
of operations (Figure 20-9). In reality, utilization also responds to inventory and 
backlog levels. For example, production of many commodities is constrained by 
the available storage capacity-when storage capacity is approached, production 
must be cut back, even if profitability remains high (see Homer 1996 for an exam- 
ple in the chemicals industry). Likewise, shortages will lead to increased utiliza- 
tion at any given level of profitability. The decision structure for these effects is 
considered in chapters 17-19. For now, the impact of these inventory adjustments 
on utilization is omitted; the challenge in section 20.3 invites you to add them to 
the model and explore their impact on market stability. 

Utilization cannot generally be changed immediately. It takes time for produc- 
ers to gather data on costs and profitability. Even when data are available fre- 
quently, it takes time to filter out noise and detect changes in the trend. Even after, 
say, a drop in operating profit is recognized, producers are reluctant to shut down 
a line or plant, waiting in the hope that profitability will rebound. Once the deci- 
sion to adjust utilization is made, it takes further time to implement (for example, 
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to change the labor force). For simplicity the delay in the adjustment of utilization 
to the desired level is formulated as first-order exponential smoothing: 

Capacity Utilization (20-9) 
= SMOOTH(1ndicated Capacity Utilization, Utilization Adjustment Time) 

where the Utilization Adjustment Time aggregates the data collection, decision- 
making, and implementation delays. Indicated utilization depends on the expected 
profitability of operations, indicated by the Expected Markup Ratio, the ratio of ex- 
pected price to expected unit variable costs. 

Indicated Capacity Utilization = JExpected Markup Ratio) 

Expected Markup Ratio 
= Short-Run Expected PriceExpected Variable Costs 

(20-10) 

(20- 11) 

Utilization depends only on variable costs because the decision to run existing ca- 
pacity depends only on marginal revenue (the price) compared to the marginal cost 
of an increase in utilization. For the purpose of the utilization decision, capacity is 
a sunk cost and should not matter.4 

The effect of expected markup on utilization captures the short-run supply 
curve for the aggregate industry-how much additional output is generated by an 
increase in price, given existing capacity. Specifying the shape and likely values of 
the function requires first considering the utilization decision for an individual 
plant or piece of equipment and then aggregating over the population of facilities 
in the industry. 

41n practice, people often fall victim to the sunk cost fallacy, continuing to invest in losing posi- 
tions in an attempt to recover their prior investment (throwing good money after bad). In the con- 
text of capacity utilization, the sunk cost fallacy means producers would continue to operate even 
when price falls below unit variable costs in an attempt to recover their fixed costs. Cost accounting 
systems that penalize operators for underrecovery of overhead reinforce the tendency to operate at 
a loss. To the extent the sunk cost fallacy occurs, capacity utilization will be greater than zero even 
when the average expected markup ratio is less than 1. 
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Economic theory suggests firms should operate any equipment for which the 
markup ratio is greater than 1, that is, as long as price exceeds the variable costs of 
producing another unit with that equipment. The equipment should be shut down 
when price falls below unit variable costs.5 While the theoretical utilization func- 
tion for a single unit of capacity is sharply discontinuous (reflecting the decision to 
operate or shut down), the aggregate utilization function for an entire industry will 
be a smooth curve, rising gradually as the expected markup increases. Why? There 
is a distribution of productivities and costs-some equipment can operate more 
cheaply than others. Further, expected prices and expected variable costs represent 
the average beliefs of all producers. At any moment some will be more optimistic 
and others will be more pessimistic than average. Thus, as shown in Figure 20-9, 
utilization is greater than zero even when the average expected markup ratio is less 
than 1. When the markup is low, only the most efficient plants, and the producers 
with the most optimistic expectations, find it worthwhile to operate. As the ex- 
pected markup rises, more and more producers believe their capacity can be oper- 
ated profitably and utilization rises rapidly. Once most of the facilities have been 
recruited into production, further increases in expected markup yield diminishing 
returns, until utilization saturates at 100%. The greater the dispersion in productiv- 
ity across producers, or the greater the differences of opinion about expected prices 
and variable costs, the smoother the aggregate utilization curve will be.6 

Equilibrium markup and utilization will depend on the capital intensity of the 
particular industry. In capital intensive industries where most costs are fixed, in- 
cluding semiconductors, paper, and chemicals, the equilibrium markup ratio is 
high, firms will normally operate at high-utilization levels, and utilization will be 
relatively unresponsive to variations in the markup ratio. In industries where most 
costs are variable (e.g., some agricultural commodities), equilibrium utilization 
will be lower and the sensitivity of utilization to markup variations will be 
greater-the industry will normally operate on the steeper shoulder of the utiliza- 
tion curve represented by Figure 20-9. 

The expected markup depends on producers’ expectations for price. These 
short-run price expectations may differ from the long-term price expectations used 
in the decision to invest in new capacity. As discussed in chapter 16, price expec- 
tations in commodity markets and many other settings are characterized well by 
adaptive expectations (possibly with some trend extrapolation as well). First-order 
exponential smoothing is assumed for the expectation formation process: 

(20-12) Short-Run Expected Price 
= SMOOTH(Price, Time to Adjust Short-Run Price Expectations) 

it is possible to increase the output of a machine above normal (e.g., through overtime 
or by speeding up the production process), but these steps usually raise the marginal cost of produc- 
tion and are therefore undertaken only when the markup rises above normal. Such flexibility further 
spreads out the aggregate short-run supply curve. 

6The utilization function can be estimated econometrically if utilization, price, and cost data 
series are available. However, even when data are available, the markup rarely spans the full range 
over which the function must be specified, so extreme conditions considerations will be important 
in specifying the function (see chap. 14). 
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The time constant for the formation of short-run price expectations should be re- 
lated to the length of the manufacturing supply line and the volatility of demand. 
The longer the delay in altering production, the longer producers will wait before 
they decide a change in price is enduring enough to justify a change in utilization. 
Likewise, the noisier the price, the longer it takes for producers to discern an en- 
during change in prices amid the temporary variations. 

20.2.3 Production Capacity 
Production capacity is the rate of output generated at full utilization by existing 
plant and equipment. In the paper industry, capacity corresponds to the number and 
productivity of pulp and paper mills. In the copper industry it depends on mine, 
crusher, and smelter capacity. The acquisition and loss of capacity are modeled by 
using the standard stock management structure adapted for capital investment (de- 
veloped and documented in chapter 17). Figure 20-10 shows the capacity sector for 
the generic model. 

Without loss of generality, capacity is measured in arbitrary capacity units, and 
the productivity of capacity is defined to be one. Hence each capacity unit corre- 
sponds to the amount of plant and equipment needed to produce one unit of output 
per year. The productivity of capacity is, for now, con~tant.~ 

Production Capacity = Capital Stock * Capital Productivity (20- 13) 

The supply chain for capacity assumes a first-order discard process and third-order 
capacity acquisition delay. The Capacity Acquisition Delay and Average Life of 
Capacity are assumed constant. The stocks are initialized to their equilibrium 
values. 

(20-14) 
Capital Stock 

Capital Stock, 

= INTEGRAL(Acquisition Rate - Discard Rate, Capital Stockb) 

= (Reference DernandKapacity Utilizationb)/Capital Productivity (20-15) 

Discard Rate = Capital StocHAverage Life of Capacity (20-16) 

Acquisition Rate = DELAY3(0rder Rate, Capacity Acquisition Delay) 

Capital on Order 
= INTEGRAL(0rder Rate - Acquisition Rate, Capital on Orderb) 

(20-17) 

(20- 18) 

Capital on Orderto = Discard Rate * Capacity Acquisition Delay (20-19) 

The order rate is formulated with the standard stock management structure. Orders 
are constrained to be nonnegative (for now no order cancellations are allowed): 

(20-20) Order Rate = MAX(0, Indicated Order Rate) 

71n reality, the productivity of capital depends on the level of technology embedded in the capi- 
tal stock, cumulative learning effects, scale economies, and other feedbacks. Structures to model 
these processes have been described in earlier chapters. For example, embedded technical progress 
can be modeled with a coflow structure that keeps track of the level of technology and other input 
requirements associated with each unit of capital from the time it is ordered through construction, 
startup, aging, and finally discard (see section 12.2). 
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FIGURE 20-1 0 Production capacity sector 
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The indicated order rate is the desired acquisition rate adjusted by the adequacy of 
the supply line. Producers seek to correct the gap between the desired and actual 
supply line over the Supply Line Adjustment Time. 

(20-21) 

(20-22) 

Indicated Order Rate 
= Desired Acquisition Rate + Adjustment for Supply Line 

(Desired Supply Line - Capital on Order) 
Supply Line Adjustment Time 

Adjustment for Supply Line = 

The desired supply line is the amount of capital firms must have on order and un- 
der construction to yield the desired acquisition rate. By Little’s Law, producers 
must therefore maintain a supply line equal to the expected acquisition delay times 
the desired acquisition rate. For simplicity, the expected acquisition delay is as- 
sumed to equal the actual delay. A more realistic model would capture the delays 
in the adjustment of producer beliefs about the time required to acquire capacity. 

(20-23) Desired Supply Line 
= Expected Acquisition Delay * Desired Acquisition Rate 

Expected Acquisition Delay = Capacity Acquisition Delay (20-24) 
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The desired acquisition rate, in turn, consists of the replacement of expected dis- 
cards, adjusted in response to the gap between desired and actual capital stocks. 
Expected discards, for simplicity, are assumed to equal the actual discard rate. 

Desired Acquisition Rate 
= Expected Discard Rate + Adjustment for Capacity 

(Desired Capacity - Capacity) 
Capacity Adjustment Time 

Adjustment for Capacity = 

(20-25) 

(20-26) 

Expected Discard Rate = Discard Rate (20-27) 

The response of the capacity acquisition sector to test inputs is described in sec- 
tion 17.3. 

20.2.4 Desired Capacity 
In commodity markets where individual producers are small relative to industry 
demand, profitability is the chief determinant of investment in new capacity. Ex- 
isting producers will expand and new players will enter the market when the ex- 
pected profitability of new investment is high; sustained low profitability leads to 
contraction and exit. Of course, just as production pressures such as inventories, 
backlogs, and order rates may affect utilization, so too these direct indicators of 
demand may affect the decision to invest, particularly in concentrated industries 
with only a few major producers. Adding these feedbacks is left as an exercise. In 
the generic model individual producers are assumed to expand or contract their 
production capacity solely in response to their beliefs about the long-run prof- 
itability of new capacity (Figure 20-11). 

How much capacity should each producer have? Many economic models cal- 
culate optimal capacity based on expected prices and costs and then adjust actual 
capacity to that level. These formulations implicitly assume producers can solve 
for optimal capacity and, acting independently, choose targets that, somehow, yield 
exactly the proper aggregate level of capacity. Such models violate the Baker Cri- 
terion (chapter 13). No one knows the long-run equilibrium stock of productive 
capital in a commodity market. The optimal capital stock depends on highly un- 
certain factors such as future economic growth, consumer preferences for the 
commodity, the price elasticity of demand, the development and costs of substi- 
tutes, the productivity of capital, and so on. Behavioral decision theory suggests 
such uncertain factors will have little weight in the capacity decision. In contrast, 
each producer can estimate, albeit imperfectly, whether a new investment is prof- 
itable. As long as producers believe new capacity will be profitable, each would 
like to have more than he or she currently does and new producers will enter the 
market. When the industry is expected to be unprofitable, producers seek to reduce 
their capacity and some will exit. 

The formulation used here is based on the anchoring and adjustment heuristic 
commonly used in decision making. Desired capital is anchored to the current level 
then adjusted up or down based on the expected profitability of new investment. 
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FIGURE 20-11 Desired capacity sector 
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As shown in Figure 20- 11, this formulation creates a positive feedback loop, the 
Capacity Goal Adjustment loop. Producers increase desired capital above current 
levels when they believe new investment is profitable. Eventually, capital stock 
rises, and, as long as new investment is still expected to be profitable, producers 
then reset their aspirations and raise their capital stock goal further. The floating 
goal for capital stock functions as a hill-climbing heuristic in which capacity grows 
as long as profits are higher than normal and falls as long as return on investment 
falls short (section 13.2.12). Thus, 

Desired Capital = Capital * Effect of Expected Profit on Desired Capacity (20-28) 

Effect of Expected Profit on Desired Capacity 
= f(Expected Profitability of New Investment) 

Expected Profitability of New Investment 
- (Expected Long-Run Price - Expected Production Costs) 
- 

Expected Long-Run Price 

(20-29) 

(20-30) 
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FGURE 20-1 2 
Effect of expected 
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Expected profitability for new investment is the difference between the long-run 
expected price and expected costs of new capacity (including both fixed and vari- 
able costs). Expected costs include the normal return to capital investors require, 
so that when expected price equals expected cost, producers are earning the normal 
profit and are just content with the capital they currently have. Expected profit- 
ability is normalized by the expected price to provide a dimensionless ratio. 

The effect of expected profit on desired capacity is upward sloping. Like the 
effect of operating margins on utilization, there is a distribution of cost and price 
expectations in the market. Therefore the function is zero only when profitability 
is sufficiently negative that even the most efficient producers, with the most opti- 
mistic expectations about future price and costs, believe the industry will be so un- 
profitable in the future that they seek to abandon it altogether. As expected 
profitability rises, the function rises. The effect eventually saturates at a maximum 
representing limits on the financing and absorption of new capacity (Figure 20-12). 

The steeper the Effect of Expected Profit on Desired Capacity the more re- 
sponsive desired capital is to a given change in expected profit. The responsiveness 
of desired capital to expected profit around the equilibrium point depends on two 
main factors. First, it depends on the responsiveness of individual producers and 
potential producers to expected profit. Second, it depends on the distribution of 
costs, prices, and expectations among the population of producers and potential 
producers. As discussed for the case of capacity utilization, the greater the disper- 
sion in costs and beliefs across the population, the smoother and more gradual the 
aggregate relationship will be compared to the typical curve for an individual. The 
responsiveness of desired capital to expected profit for individual producers and 
potential producers also depends on a variety of factors. These include the avail- 
ability and reliability of the information about costs and prices needed to assess the 
profitability of a new investment. Psychological factors play an important role, in- 
cluding the willingness of producers and entrepreneurs to undertake risk, their 
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eagerness to expand when profit beckons and their willingness to contract in the 
face of losses, and the extent to which they derive nonmonetary satisfaction from 
participating in the industry. Institutional and structural features of the market can 
affect their response as well, including access to financing, the scale of the invest- 
ment required, barriers to entry and exit, and adjustment costs such as startup and 
decommissioning costs. To expand or enter the market, producers and potential 
producers must be able to marshal the various resources needed to invest. These re- 
sources include financial backing, of course, but also technical know-how, the abil- 
ity to assemble a qualified team to oversee the project, and, often, political 
connections and social capital to grease the skids of site selection, line up suppli- 
ers, and win commitments from customers. 

The formulation for desired capacity represents the aggregate actions of all 
producers and potential producers in the market. In equilibrium, desired capital 
equals capital and investment just replaces the loss of old facilities. It is a dynamic 
equilibrium. New players, with more optimistic expectations than average, will al- 
ways be entering the market even when there are no excess profits, but these are 
balanced in equilibrium by the exit of others whose expectations are more pes- 
simistic. 

Long-run price forecasts are formed by first-order adaptive expectations. The 
time constant governing the price expectations driving investment decisions is 
longer than that used in the utilization decision. Producers must be confident a 
change in price will persist long enough for investment undertaken today to be 
profitable when it comes on line. 

(20-3 1) Expected Long-Run Price 
= SMOOTH(Price, Time to Adjust Long-Run Price Expectations) 

Similarly, producers and investors must form expectations regarding the costs of 
new investment. Due to the long delays in capacity acquisition and long capacity 
life and to uncertainty about future interest rates, capital costs, and operating costs, 
these expectations are likely to change only slowly. 

Expected Production Costs 
= SMOOTH(Unit Costs, Time to Adjust Expected Costs) 

Unit Costs = Unit Variable Costs + Unit Fixed Costs 

(20-32) 

(20-33) 

Intended Rationality of the Investment Process 
Design and execute partial model tests of the desired capacity and capacity acqui- 
sition sectors to demonstrate whether the formulation for desired capacity is in- 
tendedly rational. Chapter 15 describes partial model testing and provides 
examples. For the purpose of your tests, link the capacity sector (section 20.2.3) 
and desired capacity sector (section 20.2.4). Treat price and costs as exogenous in- 
puts. Initialize your model in equilibrium with the capital stock set to an arbitrary 
level of 100 units and with Price = Unit Costs so that initial expected profit is zero. 
Confirm that Capital = Desired Capital and that investment just offsets discards. 
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Next, test the response of the system to various test inputs in price and/or cost. 
What happens when price rises permanently above unit costs? What happens when 
price falls permanently below unit costs? Consider the effect of small and large 
changes in profitability. Explore the sensitivity of the response to the key parame- 
ters, including the Effect of Expected Profit on Desired Capacity and the time con- 
stants in the stock management structure for capital acquisition. Is the behavior 
consistent with the intended rationality of the decision process assumed for the in- 
dividual producers in the market? How do the responsiveness and stability of ca- 
pacity depend on the parameters? 

As discussed above, the responsiveness of desired capital to profitability de- 
pends on a variety of factors, including the availability of information, investor at- 
titudes, barriers to entry and exit, and access to financing and other resources. In 
light of these considerations, evaluate the likely response of desired capital to ex- 
pected profit for the following industries: Coffee, commercial real estate, copper, 
hog farming, oil, pulp and paper, and shipbuilding. Rank them from strongest to 
weakest, that is, from the steepest slope to the smallest. Explain briefly. 

How might you estimate the slope of the effect of expected profitability on de- 
sired capital for these industries to test your judgmental estimates? Consider both 
statistical and field-based approaches. 

20.2.5 Demand 
The demand (order rate) for commodities can be modeled at various levels of 
detail. A simple demand sector is sufficient for the purposes of the generic model 
developed here (Figure 20- 13). 

In modeling particular commodities or industries, it will often be essential to 
capture the inventories of product in the downstream supply chain and to model 
the substitution process in more detail. For the purpose of the generic model, how- 
ever, the essential dynamic feature is that demand falls when prices rise, though 
possibly with a lag. The adjustment delay aggregates the time required for cus- 
tomers to form price expectations with the delays in their response (finding substi- 
tutes, redesigning products to use substitutes, retrofitting or replacing capital 
stocks dependent on the commodity, etc.). 

Customer orders are modeled as the product of an underlying industry demand 
and the effect of other factors on demand, an exogenous input capturing noise and 
other short-term variations in demand such as the business cycle. 

Customer Orders = Industry Demand * Other Factors Affecting Demand (20-34) 

Industry demand adjusts with a lag to the demand indicated by the price of the 
commodity. In general, the delay may be of high order, but for simplicity, a first- 
order response is assumed: 

(20- 3 5 )  
Industry Demand 

= SMOOTH(1ndicated Industry Demand, Demand Adjustment Delay) 
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FIGURE 20-1 3 
Demand sector 
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Indicated Industry Demand responds to price relative to a reference price repre- 
senting the price of substitutes. For simplicity, a linear demand curve is assumed. 
The demand curve is normalized to generate the Reference Industry Demand at the 
Reference Price: 

Maximum 
= MIN[ Indicated 

Industry Demand Consumption, 
Demand * ( Price - Reference Price 

O’ 
+ Curve Slope Reference Industry Demand 

(20-36) 

Reference 
Industry Demand 

The MAX function ensures that demand does not fall below zero no matter 
how high the price. The MIN function ensures that demand remains less than a 
specified maximum no matter how low the price. Between these limits, the de- 
mand curve is linear. The slope of the demand curve is chosen by the modeler by 
setting the elasticity of demand at the initial equilibrium:* 

Demand Curve Slope 

) (20-37) -Reference Industry Demand * Reference Industry Demand Elasticity 
Reference Price 

8The demand elasticity e is the fractional change in demand D for a given fractional change in 
price P: e = (dD/D)/(aP/P). Since the demand curve slope s is aD/dP, the slope where price and 
demand equal their reference values PR and D,, respectively, is given by s = eRDR/PR, where eR is 
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The dynamics of the demand sector in isolation are straightforward. A permanent 
change in price induces a permanent change in indicated industry demand. Actual 
demand adjusts to that level with some delay. Appropriate choice of the length and 
order of the delay offers reasonable flexibility in modeling the response of demand 
to price. If the purpose of the model warrants the extra detail, the demand model 
can be elaborated to include additional structure, including the distribution chan- 
nel and consumer stocks of product, cross elasticities with substitute products, and 
investment in the development of substitutes. The demand adjustment delay can be 
modeled in more detail. Short-run changes in desired inventory levels can be sep- 
arated from long-run changes in the input requirements of the consuming sector. 
As an example, Figure 5-11 provides a causal diagram illustrating the multiple 
feedbacks affecting the demand for gasoline. 

20.2.6 The Price-Setting Process 
Price setting offers one of the most difficult formulation challenges in economic 
modeling. The prices of some goods and services are very stable, while others 
change from moment to moment. There are as well many different price-setting in- 
stitutions. One common form is the posted-price system, where one party (usually 
the seller) posts nonnegotiable prices (price tags) on each item. Seller-posted price 
is the dominant pricing institution in retail sales (some internet brokers use buyer- 
posted prices, where buyers state the price they are willing to pay for an item and 
suppliers respond yea or nay). A variant of posted prices is one-on-one haggling, 
where an individual buyer negotiates with an individual seller, usually starting 
from a posted aslung price (a system common in real estate and retail auto sales). 
At the other end of the spectrum, various types of auctions bring multiple buyers 
and/or sellers together at once. Perhaps the most dramatic is the open outcry dou- 
ble auction, in which multiple buyers and sellers call out bids and offers simulta- 
neously, striking deals whenever they hear a bid or offer they like. Double oral 
auctions are used in many commodity trading pits and stock markets around the 
world. 

The different price institutions provide different information to the buyers and 
sellers and involve different decision rules. For example, in an English auction, all 
bidders know the bids, and often the identities, of their rivals, while in a sealed bid 
auction they do not. Likewise, prices for many retail and industrial products are set 
by markup pricing, where the direct costs per item are marked up by a standard ra- 
tio to yield the list price. Store or product line managers have limited discretion to 
adjust prices in response to supply and demand or competitor prices. 

The goal of this section is to create a simple and robust model of price setting 
consistent with the behavioral decision processes of and information available to 

the demand elasticity at the reference price. Note that the elasticity at other prices differs from eR: 
As price rises above the reference level, the elasticity of demand increases, and as price falls below 
the reference level, the elasticity of demand decreases. The linear demand curve is obviously a sim- 
plification but is more robust than the constant elasticity demand curve D = DR(P/PR)e, which gen- 
erates infinite demand when price is zero and gives finite demand for very high prices. 
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the market makers. The model is generic; detail can easily be added to customize 
it to particular pricing institutions as the purpose of the model  warrant^.^ 

In many economic models, price P is formulated as an equilibrium price P*, 
adjusted by a function of the current demandsupply balance: 

P = P* *f(DemandlSupply) (20-38) 

where the functionf() is upward sloping. The equilibrium price is constant and is 
usually the average price over the range of available data. While attractive for its 
simplicity, a moment’s reflection shows the equilibrium price cannot be constant. 
Imagine a permanent change in the costs of production. The equilibrium price will 
permanently change, but since the expected equilibrium price is fixed, the market 
is forced into permanent disequilibrium. In an inflationary environment the equi- 
librium price will be rising continuously, something the formulation cannot gener- 
ate without an ever-growing imbalance between demand and supply. Even more 
fundamentally, assuming market participants know the equilibrium price violates 
the Baker Criterion. It is necessary to model the process of price discovery-the 
process by which market participants form expectations about the level of price 
that would balance demand and supply and clear the market (see section 13.2.12). 

Just as investors do not know the equilibrium level of capacity that would clear 
the market, so too no one knows the true equilibrium price level. If prices rose 
above current beliefs about the equilibrium price and remained there, traders 
would gradually begin to revise their estimate of the equilibrium price until it ulti- 
mately reached the actual level of prices. In other words, traders’ expected price- 
the level of price they believe will clear the market-adjusts gradually to the actual 
level of prices. The evidence suggests expectations about prices are strongly con- 
ditioned by past prices and can often be modeled well by some form of adaptive 
expectations, such as exponential smoothing (see chapter 16): 

P* = SMOOTH(Price, Expectation Adjustment Time) (20-39) 

Given traders’ expected price, how then are actual prices determined? Short-term 
pressures arising from imbalances of supply and demand or changes in costs or 
competitor prices will cause traders to bid prices up or down relative to their belief 
about the equilibrium price. That is, prices are set by an anchoring and adjustment 
process (section 13.2.10) in which various cues move the price away from the 
anchor: 

P = P* *fi(Cue,) *f2(Cue2) * . . . *f,(Cue,) (20-40) 

where the cues represent factors such as demandhupply balance, unit costs, 
competitor price, and perhaps others that may cause traders to adjust prices. The 

9Differences in information availability and procedures can affect optimal strategy for buyers 
and sellers in different price institutions, and experimental studies show that actual behavior 
often differs from optimal behavior. For example, experimental posted price markets converge 
more slowly than double auction markets; bidders in experimental sealed bid markets often pay 
too much for items with uncertain value (the winner’s curse); and double auctions often lead to 
speculative bubbles (see Hogarth and Reder 1987, Thaler 1992, and Smith, Suchanek, and Williams 
1988). These features of specific pricing institutions can be modeled explicitly if they are important 
to the model purpose. 
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anchor, the expected equilibrium price, itself adjusts to past experience. Prices are 
anchored to expected prices, and the anchor in turn gradually adjusts to the actual 
level of prices, closing a positive feedback loop. Like the capacity acquisition 
process described above, such a price-setting process forms a hill-climbing search 
procedure in which prices rise as long as demand exceeds supply and fall as long 
as there is excess capacity (within limits described below). The hill-climbing pro- 
cedure enables market makers to discover the market clearing price without hav- 
ing to know the preferences of consumers or the cost structure of producers; that 
is, without having to know the supply and demand curves for the product and all 
potential or actual substitutes. 

The formulation for price developed here incorporates additional structure to 
ensure robustness and behavioral realism. As shown in Figure 20-14 price is an- 
chored on the Traders’ Expected price, representing traders’ beliefs about the mar- 
ket-clearing price.1° Actual price is adjusted up or down from the anchor in 
response to various pressures. In this simple model, adjustments arise from the de- 
mandsupply balance and traders’ beliefs about the underlying costs of production. 

Price = Traders’ Expected Price 
* Effect of Inventory Coverage on Price * Effect of Costs on Price (20-41) 

Other factors may also cause price to adjust away from the equilibrium level, such 
as news about new technologies, substitute products, changes in the macro- 
economy, and so on. In this model these are omitted, though they are easily mod- 
eled either as noise or as part of the feedback structure (substitute development will 
be affected by prices and, in turn, the availability and cost of substitutes may affect 
prices). l1 

Traders’ beliefs about the underlying equilibrium price adjust to past prices. 
First-order adaptive expectations are assumed, with a time constant given by the 
Time to Adjust Traders’ Expected Price. 

Traders’ Expected Price 
= INTEGRAL(Change in Traders’ Expected Price, Priced 

Change in Traders’ Expected Price 
- (Indicated Price - Traders’ Expected Price) - 

Time to Adjust Traders’ Expected Price 

Indicated Price = MAX(Price, Minimum Price) 

(20-42) 

(20-43) 

(20-44) 

Note that the expected price adjusts to the Indicated Price, not the actual price. 
Market makers know that equilibrium prices cannot fall below the minimum costs 
of bringing product to market. Here the minimum price is set to the expected unit 
variable cost of production: Price may fall temporarily below variable costs but 

‘OIn the context of a posted-price system such as retail sales, the Traders’ Expected Price might 
represent the list price or manufacturer’s suggested retail price (MSRP), with the actual selling 
price of the goods adjusted above or below list in response to supply and demand, costs, and 
possibly other pressures. 

“The model is developed here as a model of the aggregate price of a commodity. When used to 
represent the pricing decision of an individual firm, other adjustments may be relevant, particularly 
the price of competitor products. 
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FIGURE 20-1 4 Price setting 
Compare to Figure 13-7. 
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over the long run, production will cease if producers cannot cover their operating 
costs. 

Minimum Price = Expected Variable Costs (20-45) 

In the discussion thus far, prices are assumed to respond to the balance of demand 
and supply, without specifying how supply and demand are perceived by market 
participants. There are several possibilities. In commodity markets, producers are 
most concerned about the level of inventory they must store and finance. On the 
demand side, consumers are concerned about the ability of sellers to make deliv- 
eries in full and on time. Inventory coverage (the ratio of available inventory to 
shipments) is an excellent measure of both inventory carrying costs for producers 
and the ability of buyers to receive reliable, timely deliveries. Consistent with 
many commodity models and substantial empirical evidence, price is adjusted 
above (below) the expected equilibrium level as inventory coverage falls (rises) 
relative to a normal, or reference, level. 
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i Effect of Inventory - Perceived Inventory Coverage 
Coverage on Price - f (Reference Inventory Coverage 

81 7 

(20-46) 

Several functional forms for the effect are plausible. A simple and flexible function 
is given by the power function y = xa where the exponent a, the Sensitivity of 
Price to Inventory Coverage, must be negative (higher inventory coverage leads to 
lower prices): 

Sens of Price to Inv Conv 

(20-47) Effect of Inventory - Perceived Inventory Coverage 
Coverage on Price - (Reference Inventory Coverage 

Price depends on perceived coverage, not instantaneous coverage, because the in- 
stantaneous shipment rate is not known. It takes time to gather and report data on 
inventory and shipments. For simplicity, perceived coverage is modeled with first- 
order smoothing. The Coverage Perception Time would be short in markets with 
very good data or high sensitivity of storage costs to inventory levels and longer in 
markets with poor quality data or less sensitivity to storage costs. 

Perceived Inventory Coverage 
= SMOOTH(1nventory Coverage, Coverage Perception Time) 

Inventory Coverage = Inventory/Shipments 

(20-48) 

(20-49) 

In other contexts the demandsupply balance may be indicated by other variables. 
In modeling an individual manufacturing firm the demandsupply balance is cap- 
tured well by the ratio of desired production to capacity (schedule pressure), where 
desired production responds to imbalances in inventories and backlogs. In a ser- 
vice setting where there are no inventories, desired production depends primarily 
on the backlog of orders or queue of customers, and the demandsupply balance 
would still be well represented by the ratio of desired to potential output.12 

Prices are also assumed to respond to changes in traders’ beliefs about the 
costs of production relative to the expected equilibrium price. The strength of the 
effect is determined by the Sensitivity of Price to Costs. 

- l] (20-50) 
Expected Production Costs 

Trader’s Expected Price 
Effect of Costs 

on Price 
= 1 +  

12Novice modelers often use capacity utilization or delivery delay as measures of the 
demandsupply balance. These variables are not robust, however, and should not be used. Consider 
utilization. When desired production is high relative to capacity, utilization saturates at its maxi- 
mum and therefore cannot indicate the magnitude of excess demand faced by the firm or industry. 
High utilization does not indicate whether demand is 5% or 500% greater than capacity, yet clearly 
prices would rise farther and faster in the latter case. Similarly, delivery delays cannot fall below 
the minimum time required to process and ship an order, no matter how large inventories are. 
Therefore when delivery delay is at its minimum value it is not possible to tell whether inventory 
coverage is 2 or 10 times the desired level, though the downward pressure on price is greater in 
the latter case. 
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If the Sensitivity of Price to Costs = 0, then cost information is ignored in price 
setting. If Sensitivity of Price to Costs = 1, then traders' beliefs about the equi- 
librium price are ignored and prices are anchored on expected costs instead. In an 
aggregate commodity market, unit costs differ from producer to producer. In global 
markets fluctuating exchange rates further complicate cost assessment. Informa- 
tion about production costs even for a single producer is uncertain and unreliable. 
Behavioral decision theory suggests such unreliable cues are likely to have less 
weight in decisions than more certain and reliable cues. Thus in commodity mar- 
kets the response of price to costs is likely to be weak (Sensitivity of Price to 
Costs < 1) and expected production costs themselves are likely to adjust slowly to 
new information (equation (20-32)). 

The behavior of the proposed formulation for price can be quite subtle. Con- 
sider first the response of price to a change in expected production costs, assuming 
demand and supply remain in balance. The system will always move exponentially 
to a new equilibrium in which Price = Traders' Expected Price = Expected Pro- 
duction Cost. The adjustment time will depend on the adjustment time for 
the trader's expected price, of course, but also depends on the sensitivity of price 
to costs. 

To see why, note that as long as expected cost remains greater than the mini- 
mum price, the rate of change in expected price reduces to 

Change in Traders' Expected Price = dP*/dt = (P - P*)/T" (20-43a) 

where P denotes the price, P* denotes the Trader's Expected Price, and T" denotes 
the Time to Adjust Traders' Expected Price. Assuming inventory coverage is at the 
normal value and denoting the Effect of Costs on Price as fc gives 

Change in Traders' Expected Price 
= dP*/dt = (P* * fc - P*)/T" = P* * (fc - l)/Te (20-43b) 

Now substitute into this expression the equation for the Effect of Costs on Price, 
fc = 1 + Sc * [(C*/P*) - I], where Sc is the Sensitivity of Price to Costs and C* is 
Expected Production Cost, and collect terms: 

Change in Traders' Expected Price = dP*/dt 
= P*(l + sc * [(cap*)  - 11 - 1) /P  
= Sc * (C* - P*)/T" 
= (C* - P*)/(Te/Sc) 

(20-43~) 

You should recognize equation (20-43c) as the formulation for a first-order linear 
negative feedback loop in which the Traders' Expected Price adjusts exponentially 
to Expected Costs with a time constant equal to (Te/Sc). As long as Sc > 0, the 
positive Price Adjustment feedback is dominated by the negative Cost Pressure 
loop and the system converges to the proper equilibrium with Price = Expected 
Price = Expected Production Costs. The weaker the impact of price on costs, the 
longer the adjustment will take. Figure 20-15 confirms the results. The figure 
shows a partial model test in which expected costs suddenly double. Inventory 
coverage remains constant at the reference value. The adjustment time for ex- 
pected price is 1 year, and the sensitivity of price to costs is 0.50. Price immedi- 
ately rises by 50% of the change in costs. In response to the gap between price and 
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expected price, the expected price starts to rise. As it does, so too does price, but 
because the ratio of costs to expected price falls as expected price rises, price in- 
creases at a slower rate than expected price, until they converge at the new equi- 
librium. As expected, the time constant for the adjustment is Te/Sc = 2 years (it 
takes 2 years for expected price to move 63% of the way to the new equilibrium). 
The response to a decrease in expected costs is symmetric. 

Now consider the response of price to imbalances between demand and sup- 
ply. First, consider the case where the sensitivity of price to cost is zero. Then the 
equation for the change in the expected equilibrium price becomes 

Change in Traders' Expected Price 
= dP*/dt = (P* * fI - P*)/Te 2 P* * (fI - 1 ) P  (20-43d) 

where fI denotes the Effect of Inventory on Price. You should recognize this ex- 
pression as the equation for a linear first-order feedback system. If there is insuffi- 
cient inventory, then (fI - 1) > 0 and the system is dominated by the positive Price 
Adjustment loop. The expected equilibrium price P* will grow exponentially at 
fractional rate (fI - l)/Te. If there is excess inventory, then (fI - 1) < 0 and the 
system is dominated by the negative Expectation Adjustment loop. The expected 
equilibrium price will decay exponentially at fractional rate (fI - l)/Te, until price 
falls to the minimum level. 

Figure 20-16 presents partial model tests for these cases. Before year 1, the 
system is in equilibrium. In year 1, relative inventory coverage falls to 0.8. The 
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FIGURE 20-1 6 
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assumed sensitivity of price to inventory coverage is - 1, so price immediately 
rises 25%. Traders gradually begin to revise their expectations about the underly- 
ing equilibrium price in the belief that higher prices will clear the market and re- 
store inventory coverage to normal. Instead, the inventory shortage persists, the 
actual price remains above the expected equilibrium price and traders continue to 
revise their beliefs about the level of price that will clear the market. The expected 
equilibrium price chases its own tail in a positive feedback. As long as inventory 
coverage remains less than normal, prices continue to rise exponentially. In year 3 
relative inventory coverage suddenly returns to normal. Price immediately drops to 
the expected level. Note, however, that the expected equilibrium price has now 
risen to more than 160. In this test, where costs have no impact on price, price will 
remain at the new, higher equilibrium until there is another imbalance in inventory. 
In particular, price cannot fall back toward the initial level unless there is a surplus 
of inventory. Traders have learned that the higher price is needed to clear the mar- 
ket and will only revise their beliefs if there is new evidence of disequilibrium at 
that price. 

Inventory coverage rises 40% above normal at the start of year 5. Responding 
to the imbalance, traders immediately adjust prices downward by 29%. The market 
does not immediately clear, so their beliefs about the equilibrium price now begin 
to drop. Since inventory coverage remains excessive, price remains lower than the 
expected equilibrium level and traders reduce their estimate of the market-clearing 
price still more. Price and the expected equilibrium price decay exponentially. 
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Price continues to fall until the expected price drops to the limit imposed by unit 
variable costs (assumed to be $60/unit).13 

What happens when prices respond to both inventory coverage and expected 
costs? Suppose inventory coverage is less than normal. Prices will start to rise. But 
as the expected price rises above costs, the effect of cost on price will begin to off- 
set the effect of inventory. What happens then depends on the functions chosen for 
the effects of each pressure on price and the magnitude of the assumed inventory 
shortage. Given the equations and parameters above, small inventory imbalances 
will eventually be balanced by the cost effect and price will reach equilibrium 
when it has risen just high enough that the cost effect offsets the inventory effect. 
The Cost Pressure loop dominates. However, if the effect of inventory on price is 
large enough, the cost effect will never overcome it. The positive Price Adjustment 
loop dominates, and price rises exponentially until the inventory imbalance is re- 
solved. Figure 20- 17 illustrates the shift in loop dominance. Inventory coverage 

Coverage falls to 
Relative Inventory 

13Readers familiar with control theory will recognize that the response of expected price to 
the demandsupply balance is an example of integral control because expected price continues 
to change as long as there is an imbalance between demand and supply. The response of expected 
price to costs, in contrast, is an example of a proportional controller. The integral response to the 
demandsupply balance allows price to adjust to whatever level balances demand and supply. How- 
ever, integral control can lead to instability because the control action is strongest just when the gap 
between the desired and actual state of the system is eliminated. See, e.g., Ogata (1997). 
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falls to 75% of normal in year 1. Prices rise but the cost effect slows the increase. 
Given the parameters, the system returns to equilibrium when prices double. By 
year 7 the expected equilibrium price has nearly reached that level. In year 7, in- 
ventory coverage returns to normal. Price and expected price now regress toward 
traders’ beliefs about the long-run unit costs. By year 12 the adjustment is nearly 
complete. In year 12, however, relative inventory coverage falls to 48% of normal. 
Now the effect of inventory coverage on price is so great that even infinite price 
cannot generate enough cost pressure to overcome it, and price rises exponentially 
without bound. In the real world, of course, price could not continue to rise forever 
since very high prices would trigger production increases and demand reductions 
that would eventually bring inventory coverage back down. l4 

The rich array of behaviors generated by the price formulation, even in partial 
model tests, arises from shifts in the dominant feedback loops governing price ad- 
justments. For small inventory imbalances the negative loops dominate and ex- 
pectations are regressive, tending to return to traders’ beliefs about the long-run 
fundamental value of the commodity. Larger imbalances cause loop dominance to 
shift to the positive Price Adjustment loop, and the stabilizing impact of beliefs 
about the fundamental value of the good is overwhelmed. Such behavior may seem 
unreasonable, but in markets where fundamental value is difficult to assess-or 
viewed as irrelevant-prices often rise by many orders of magnitude, even after 
years of comparative calm. As an example, Figure 4-13 showed the bubble in sil- 
ver prices in the late 1970s. Silver rose by a factor of 700% in just 2 years, before 
collapsing even faster. Clearly, any notions people may have had about silver’s 
fundamental value or long-run production costs had little if any impact during the 
speculative frenzy. 

The price formulation developed above is quite general. It can represent price 
setting at the level of an industry or market, as developed here, or modified to rep- 
resent the price set by individual firms. In that case, the expected price may repre- 
sent the list price and price may respond to other factors besides cost and the 
demandsupply balance, such as the price of competitors’ products. With suitable 
parameters, it can represent markets where price expectations and prices change 
quickly (such as the stock market) or markets where prices are sluggish (e.g., real 
estate or retail goods). The process by which expected prices are formed can be en- 
riched, for example, by including a term for the expected rate of inflation. You are 
free to choose different functional forms for the effects of various pressures on 
price as the case-specific data suggest. 

The model provides a formulation for the price discovery process that is ro- 
bust, generates a rich array of behaviors, and is consistent with the principles of 
bounded rationality. The two key formulations, price setting as an anchoring and 
adjustment process and the adaptation of the anchor to past prices, are also sup- 
ported by a number of studies. Econometric studies routinely show that commod- 
ity prices respond to inventory coverage and unit costs. To pick a typical example, 

14As a challenge, derive an analytic expression for the equilibrium price as a function of relative 
inventory coverage and identify the point at which the equilibrium ceases to exist. Explore how the 
existence and character of equilibrium depend on the shape of the function defining the effect of 
inventory coverage on price. 
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Gerlow, Irwin, and Liu (1993) show that hog prices respond both to the 
demandsupply balance and to the so-called hog/corn ratio (the price of hogs rela- 
tive to the price of corn; corn is the primary variable input to hog farming and 
much more variable in price than other inputs). Although he did not estimate the 
full price setting model, Williams (1987) found in experimental double auction 
markets that traders’ price expectations were best modeled as adapting to past 
prices. The data strongly rejected the rational expectations hypothesis that traders 
optimally and immediately incorporate all relevant information so that their ex- 
pectations are, on average, correct. 

Outside the laboratory, price expectations in many commodity markets have 
been shown to adjust gradually to past prices and other information such as costs. 
Chapter 16 presented evidence that expectations for a wide range of variables, in- 
cluding prices, are often formed adaptively, though in some cases such as cattle 
prices there is evidence of an extrapolative component as well. Frankel and Froot 
(1987) found that expectations of future currency exchange rates among central 
bankers, traders, and other participants in foreign exchange markets included both 
adaptive and regressive components. Expectations adjusted gradually to recent 
spot exchange rates (’just as traders’ expected price adjusts to the actual price in the 
model) but also tended to regress slowly to purchasing power parity (analogous to 
the gradual adjustment of expected prices to long-run expected unit costs). Typical 
of many such studies, the data strongly reject rational expectations. 

The pricing model has also been applied in a number of cases, with generally 
good results. Taylor (1999) analyzed the paper industry with a model similar to the 
one described here. Homer (1996), in modeling a commodity chemical market, no- 
ticed that prices tended to rise when inventories were low and fall when invento- 
ries were high and showed that a pricing formulation similar to that proposed here 
worked quite well. Hines (1987) applied the formulation to interest rates. The 
Traders’ Expected Price represented the beliefs of bond traders about the under- 
lying equilibrium interest rate that would balance the supply and demand for funds. 
Traders then adjust the actual interest rate above or below the expected equilibrium 
level in response to variations in demand and supply, measured by the free reserves 
of the banking system. Free reserves are reserve accounts held by banks and other 
financial institutions in excess of their desired level and represent unexploited 
lending capacity. Hines estimated the model parameters econometrically from 
1959 to 1980, one of the most turbulent periods in US bond market history. The 
model explained a substantial fraction of the variation in interest rates. The esti- 
mated sensitivity of interest rates to free reserves was about -4 (a 1% drop in free 
reserves caused interest rates to rise about 4% above the underlying equilibrium 
expectation). The estimated time constant for the expected equilibrium interest rate 
was 1.4 years. The adjustment time may seem long, but behavioral decision theory 
suggests that expectations adjust slower when the information causing the ad- 
justments is uncertain. As in the case of inflation expectations (chapter 16), the fac- 
tors affecting interest rates are numerous, poorly understood, difficult to measure, 
and hard to forecast. Thus expectations about the underlying rate environment 
formed during a person’s career as a trader or banker are likely to be durable, ad- 
justing slowly and filtering out short-term movements in interest rates caused by 
temporary swings in liquidity or unpredictable economic and political events. The 
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estimated time constant is approximately the same as the delay in updating infla- 
tion expectations estimated in chapter 16. 

20.3 APPLICATION: CYCLES IN THE PULP AND PAPER INDUSTRY 
The pulp and paper industry provides a typical example of a commodity. As shown 
in Figure 20- 18, the industry is highly cyclical. Production, inventories, capacity 
utilization, prices, and investment all exhibit a large amplitude cycle of about 3-5 
years. The amplitude of the cycle is very large in price, which typically moves 
from 40% above its average value to 40% below it (there is a long-term declining 
trend in real prices due to economies of scale, learning, and technical progress in 
the industry). Inventory coverage fluctuates about 220% around its average. 
Capacity utilization averages about 90% and moves comparatively little over the 
cycle, typically varying between 85% and 95%. Capacity exhibits almost no vari- 
ations in the 3-5 year range but does exhibit longer, slower movements. The ca- 
pacity, production, and investment data in Figure 20- 18 have been detrended by 
plotting the ratio of output and capacity to the long-run exponential growth trend. 
Capacity (and production) both rose relative to the average growth trend between 
the late 1940s and about 1973. After 1973, the growth rate fell sharply, with ca- 
pacity and production declining relative to trend. The roughly 60-year rise and fall 
of paper demand and capacity reflects the impact of the economic long wave (see 
section 19.3). A close look at the capacity data also reveals an intermediate cycle 
in capacity. The cycle is most easily seen in the graph of detrended Canadian pulp 
capacity. Relative to the long-run trend, capacity peaked in 1975 and again in 1992 
(17 years). The intermediate cycle is also weakly visible in the US capacity data. 
Capacity cycles in the 12-20 year range have been noted in a wide range of indus- 
tries since the 1800s and are also known as construction or Kuznets cycles, after 
the economist Simon Kuznets, a pioneer of national income accounting who was 
among the first to study them (see Kuznets 1953). 

The generic model can be applied to the pulp and paper industry without any 
structural changes. On the demand side, Taylor (1999) found a demand elasticity 
of roughly -0.5 with a 6-month adjustment delay. On the supply side, the paper 
supply chain is long, progressing from logging through pulping (debarking, chip- 
ping, digestion, bleaching, and filtration), paper making (impregnation of pulp 
with additives and colorants, running pulp through the paper machine), then fin- 
ishing (coating, drying, rolling, cutting, and packing), and finally into distribution 
channels. The paper supply chain involves significant inventories of work in 
process and finished in~ent0ries.l~ 

'There are idiosyncracies specific to the paper industry, as in most markets, which would re- 
quire modifications to the stock and flow structure in a more detailed model. These include the 
ability to dry, store, and trade pulp and the growing importance of recycled fiber. Taylor (1999) 
develops a detailed model of the pulp and paper industry that considers these issues. Similarly, 
paper is not a pure commodity (few goods are), coming in a huge variety of grades and types. 
Paper products are highly differentiated along dimensions including color, weight, acidity, fiber 
composition, delivery times, and others. Risch, Troyano-Bermitdez, and Sterman (1995) analyze 
the strategic implications of differentiation for a major paper supplier. These issues are beyond 
the scope of this chapter. 



FIGURE 20-1 8 Cyclical behavior of the pulp and paper industry 
All data US unless specified otherwise. Capacity, production, and investment: Ratio to long-run exponential trend in production. 
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TABLE 20-1 
Parameters for the 
paper industry 
model 
The effect of 
expected markup 
on utilization and 
effect of expected 
profitability on 
investment are 
specified as 
shown in Figures 
20-9 and 20-1 2. 
The model is 
initialized with 
reference demand 
and price set to 
100, representing 
1 00% of their 
long-run values. 

Parameter Value Units 

Capital Productivity 
Average Life of Capacity 
Capacity Acquisition Delay 
Capacity Adjustment Time 
Supply Line Adjustment Time 
Time to Adjust Long-Run Price Expectations 
Time to Adjust Expected Costs 
Reference Inventory Coverage 
Minimum Order Processing Time 
Manufacturing Cycle Time 
Utilization Adjustment Time 
Time to Adjust Short-Run Price Expectations 
Time to Adjust Expected Variable Costs 
Initial Variable Cost Fraction 
Reference Industry Demand Elasticity 
Demand Adjustment Delay 
Maximum Consumption 
Sensitivity of Price to Inventory Coverage 
Coverage Perception Time 
Sensitivity of Price to Costs 
Time to Adjust Traders’ Expected Price 

1 
20 
4 
3 
1 
2 
2 
0.2 
0.1 
0.5 
0.5 
1 
1 
0.4 
0.5 
0.5 
co 

-1 
0.167 
0.5 
1 

Units/year/capital unit 
Years 
Years 
Years 
Year 
Years 
Years 
Years 
Years 
Years 
Years 
Year 
Year 
Dimensionless 
Dimensionless 
Years 
U ni ts/yea r 
Dimensionless 
Years 
Dimensionless 
Year 

Capacity acquisition delays are even longer. The capacity acquisition delay for 
pulp and paper mills is roughly 4 years (including site selection, financing, per- 
mitting, and contractor selection, as well as the design and construction process). 
The average lifetime of the plant and equipment in pulp and paper mills is about 
20 years. 

Table 20-1 summarizes the parameters used to adapt the generic model to the 
pulp and paper industry. The nonlinear functions used for utilization and the effect 
of expected profit on desired capital are the same as shown in Figures 20-9 and 
20- 12. 

Since the focus of this analysis is the cyclical behavior of the industry the 
model is initialized with demand equal to 100 units/year at the reference price, rep- 
resenting 100% of the long-run trend. Likewise, the price is set to 100 (represent- 
ing 100% of its initial equilibrium). While the absolute level of initial price and 
production are unimportant to the dynamics, the mix of costs and the normal ca- 
pacity utilization level do matter. Paper production involves relatively high fixed 
costs, roughly 60% of total costs. Due to the high fixed costs, firms seek to run 
their paper machines continuously. Accounting for normal maintenance downtime, 
normal utilization is about 90% (as seen in Figure 20- 18). 

Figure 20-19 shows a simulation of the system with the approximate paper in- 
dustry parameters. The model is initialized in equilibrium. At the start of year 1, a 
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Note: Time scale of top two panels is 10 years to show the 3.6-year cycle caused by the 
Utilization Adjustment loop. Time scale of bottom panel is 40 years to show the 14-year 
cycle caused by the Capacity Acquisition loop. 

pulse equal to 25% of equilibrium demand is added to customer orders, causing an 
immediate drop in inventory. The response of the system shows two distinct oscil- 
latory modes. First, inventory, price, utilization, and production oscillate with a 
period a little less than 4 years. Second, capacity oscillates with a period of about 
14 years. The short period is generated by the delays in the negative Capacity Uti- 
lization loop (Figure 20-7) and the 14-year period is generated by the longer delays 
in the negative Capacity Acquisition loop. Note the phase lag between inventory 
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coverage and price: Price is not simply the mirror image of inventory coverage. 
Rather, price is rising when coverage is at its minimum and continues to rise for a 
little while even after coverage begins to recover. The phase lag is partly a conse- 
quence of the (quite short) time required for traders to perceive changes in cover- 
age and largely a consequence of the price discovery process, in which prices tend 
to rise as long as inventory coverage is inadequate.16 

Figure 20-20 shows a more realistic test in which demand begins to vary ran- 
domly at the start of year 1, simulating the unpredictable short-term variations in 
customer orders. The random noise has a standard deviation of 5% and an auto- 
correlation time constant of 1 year (the noise is introduced through equation 
(20-34), Other Factors Affecting Demand. 

The simulation exhibits the two cyclical modes but with the irregularity you 
should expect given the random shocks perturbing the system. The capacity uti- 
lization loop generates a 3-5 year cycle most apparent in price, utilization, pro- 
duction, and inventory coverage. The capacity acquisition loop, with its longer 
delays, generates a cycle ranging from about 12-20 years. These periods are con- 
sistent with the data for the pulp and paper industry shown in Figure 20-18. The 
relative amplitudes of the key variables are also consistent with the data. Capacity 
and capacity utilization vary the least. Utilization generally remains in the 85-95% 
range and capacity varies roughly % 10% around its equilibrium. Inventory and 
prices have much larger amplitudes, fluctuating between about 60% and 150% of 
their equilibrium values. Finally, the capacity acquisition rate, which serves as a 
proxy for capital expenditures, has the largest amplitude, from about 30% to nearly 
200% of its equilibrium value. The phase relationships among the variables are 
also similar to those observed in the data. 

The model is not perfect and no great attempt has been made to calibrate the 
model parameters (most of which are set to round numbers). The simulated indus- 
try is smoother than the actual data because only one source of random variation 
was included. In reality, not only demand but also utilization, production, invest- 
ment, costs, and other variables also experience random shocks. Econometric esti- 
mation of the parameters and further disaggregation would no doubt improve the 
correspondence of the model to the data. Nevertheless, the model captures the 
phase relationships and relative amplitudes of the two different cyclical modes 
seen in the industry quite well. 

Sensitivity to Uncertainty in Parameters 
Imagine you have just presented the results of your paper industry model to mem- 
bers of your client team. They find your explanation for the cycles in the industry 
intriguing but wonder how sensitive your results are to your assumptions. Your 
clients know that the parameter estimates you used are approximate and many are 
likely to be wrong. For example, how do the periods, relative amplitudes, and 

I6Close examination shows that price peaks and begins to fall before coverage returns to normal 
due to the effect of costs on price, which tends to pull price back to its equilibrium level. 
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stability of the inventory and capacity cycles (the 3-5 year and 12-20 year cycles) 
depend on the parameters? Where are the high leverage points for action? 

Sensitivity analysis is important for several reasons. First, it helps develop 
your intuition regarding the relationship between the structure and behavior of 
complex dynamic systems. Second, sensitivity analysis helps you and your client 
test the robustness of your conclusions with respect to uncertainty in the estimated 
parameters. Third, sensitivity analysis guides your data collection efforts. All pa- 
rameters are uncertain. Most, given enough time and money, can be estimated 
more accurately. However, you can never estimate parameters perfectly and must 
always decide which to focus on and when to stop. A parameter that strongly 
affects the behavior may be a good candidate for additional data collection lead- 
ing to a better and more reliable estimate. Conversely, for those with but little ef- 
fect you can be confident that your results are robust even with an approximate 
estimate, saving time and effort. Modelers often spend too much time refining 
estimates for parameters that simply do not matter. Finally, parameters that 
strongly affect the behavior of the model may be high leverage points for policy 
intervention. 

Before running the tests, write down your expectations. What do you predict 
the impact of each change in parameters will be, and why? Recording your predic- 
tions in advance-and the rationale for them-provides a great opportunity for you 
to improve your intuition. After running the tests, go back and compare the out- 
come to your expectations. Reformulate your explanation for the effect of each 
change, and test your new theory with additional experiments. This iterative 
process of testing will soon develop your ability to understand, explain, and antic- 
ipate the behavior of complex systems. 

How much should you vary each parameter? One rule of thumb is to estimate 
the likely range of uncertainty in each parameter and then vary it by more (because 
people are often overconfident and underestimate the uncertainty in their esti- 
mates, whether these are judgmental or statistical. If you thought the uncertainty in 
a parameter was t 2 0 % ,  you might vary it 250% or more. An alternative and often 
highly effective strategy is to try extreme changes. What happens when you zero 
out an effect, effectively eliminating a feedback from the model? To build your in- 
tuition about parameter sensitivity it is important to conduct controlled experi- 
ments in which you vary each parameter in isolation, one at a time, so you can be 
sure any changes in behavior are due to the change in the parameter. A caveat: In 
complex nonlinear systems, the results of such univariate sensitivity analysis may 
provide limited guidance to the response of the system to multiple parameter 
changes. Because real systems (and realistic models of them) are highly nonlinear, 
the impact of multiple parameter changes is in general not the sum of the impact of 
the individual changes, and the impact of a 50% change in a parameter is not nec- 
essarily twice the impact of the 25% change. In general, you must also conduct 
multivariate sensitivity analysis to understand the full range of responses of the 
system. For the purpose of this challenge, though, it is sufficient to conduct uni- 
variate tests. Chapter 21 takes up model testing and sensitivity analysis in more 
detail. 
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CHALLENGE 

Consider parameter changes in the following sectors of the model: 

Capacity utilization and production 
1. 
physical delays such as the manufacturing cycle time and the decision-making 
delays such as the time required to form price expectations or alter utilization. 
2. 
of the 3-5 year inventory cycle enhanced if utilization is more responsive to 
markup or less responsive? What is the impact of increased responsiveness of 
utilization on the period, stability, and amplitude of the capacity acquisition 
cycle? Why? To answer this question, you may want to review the impact of the 
OverNndertime loop in the inventory-workforce model developed in chapter 19. 

Production capacity 
3 .  
physical delays such as the capacity acquisition time and the decision-making 
delays such as the time required to form price expectations. 
4. Vary the slope of the effect of expected profitability on desired capital. Is 
stability enhanced if desired capital is more or less responsive to expected profit? 

Demand 
5. Vary the demand elasticity and demand adjustment time. Given the compara- 
tively short demand adjustment time assumed in Table 20-1, is the negative Sub- 
stitution feedback stabilizing or destabilizing, and why? 

Price setting 
6. Vary the parameters in the price-setting process. What happens if prices 
are more responsive to inventory coverage? If traders update their beliefs about 
the underlying equilibrium price faster or slower? If costs are more influential 
or less? 

In each case, explain the results in terms of the feedback structure of the model. 
How well were you able to anticipate the impact of the parameter changes? What 
are the high leverage parameters, the parameters that have a large impact on the pe- 
riod, amplitude, and stability of the system? How could these parameters be altered 
in the real world? That is, what policies could be implemented, either by individ- 
ual producers or by larger institutions such as governments, to stabilize commod- 
ity markets? 

Vary the time delays in the Capacity Utilization loop. Consider both the 

Vary the slope of the effect of expected markup on utilization. Is the stability 

Vary the time delays in the Capacity Acquisition loop. Consider both the 

Sensitivity to Structural Changes 
Sensitivity analysis involves more than varying model parameters. All models are 
approximations-to build a model, every modeler must omit some feedback 
processes, aggregate different actors and entities, and assume the sources and sinks 
for the stock and flow structures have unlimited capacity. It is not sufficient to 
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consider the sensitivity of your results to uncertainty in the parameters within the 
model. You must also examine the sensitivity of your results to plausible alterna- 
tive structural assumptions, including changes in the model boundary and level of 
aggregation (chapter 21). 

After satisfying your client regarding the sensitivity of your model to uncer- 
tainty in parameters, skeptical members of the client team then challenge your re- 
sults because you have omitted some feedbacks they think might be important. For 
each of the following, modify the model to incorporate the hypothesized effect. 
Use your best judgment to estimate the new parameters. To understand the likely 
effects of the new structures it is helpful to modify your causal diagram of the mar- 
ket to include the new feedbacks. As with parametric sensitivity analysis, write 
down your expectations regarding the effects of the new feedbacks on the period, 
stability, and other features of model behavior before running the model. After- 
ward, check to see if your intuition was correct, and continue to test until you un- 
derstand why the new structure does what it does. You may need to experiment 
with different parameters for the strengths of the new feedbacks. You can add these 
effects in isolation to the base case model or add them cumulatively. In either case, 
be sure you understand the impact of each new structure fully before making addi- 
tional changes. 

1. Variable capacity lifetime: The clients point out that in your model the 
useful life of capacity is fixed. In reality, they say, the useful life of 
capacity varies with economic conditions in the industry. Producers can 
decommission existing facilities when profitability is low, and they can keep 
old plants running longer when there is a shortage of capacity and profits are 
expected to be high. 

Modify the model to include a variable lifetime of capital. Make the 
average lifetime of capital equal to a normal lifetime modified by a function 
of long-run expected profitability (the expected profitability of new 
investment). Specify the function so that the lifetime of capital equals the 
normal lifetime in equilibrium. Estimate values for the function using your 
best judgment and following the guidelines in chapter 14. Explain your 
choice. Which factors would affect the willingness of producers to accelerate 
or postpone the decommissioning of existing capacity? Identify any new 
feedback loops created by the new structure. What effects will the new 
structure have on the behavior of the system? 

Next, test your hypotheses by comparing the behavior of the revised 
model to the base case. Consider a variety of test conditions. Were your 
expectations about the impact of the new structure correct? 

2. Canceling orders for new capacity: Another member of the client team 
points out that the model does not allow orders for new capacity to be 
canceled. Add the possibility of canceling orders for capital in the supply 
line. Remember that the supply line of capital on order includes both orders 
for new capacity in the planning stage and the stock of capital under 
construction. Orders may sometimes be canceled, but projects under 
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3. 

(20-3 la) 

construction rarely are. You may wish to adapt the structure developed in 
section 19.1 to model layoffs and vacancy cancellation. Select appropriate 
parameters and justify your choices. 

As above, identify any new feedbacks created by order cancellations, and 
predict their impact on the behavior of the model. Then test your intuition by 
running the model. 

Extrapolative expectations: Members of the client team point out that 
you’ve assumed price expectations are formed adaptively, by smoothing. 
One says, 

During market booms a kind of euphoria spreads throughout the industry. 
Pretty soon, industry analysts and trade publications begin to project continued 
price increases. We never succumb to these pie-in-the-sky forecasts, but many 
of our competitors are taken in. This leads to overinvestment and worsens 
the next slump. Then everyone becomes excessively pessimistic, delaying the 
recovery. 

Recalling chapter 16, you modify the formulation for the long-term expected 
price to capture the clients’ hypothesis that price expectations respond to the 
recent trend in price: 

Expected Long-Run Price 
= Recent Price * Effect of Trend on Expected Price 

(20-5 1) 
Recent Price 

= SMOOTH(Price, Time to Adjust Long-Run Price Expectations) 

(20-52) Effect of Trend on Expected Price 
= JExpected Trend in Price, Forecast Horizon) 

The Effect of Trend on Expected Price captures the impact of perceived price 
trends on the forecast of price used in investment decisions. Presumably, the 
higher the expected inflation rate in price or the longer the forecast horizon 
(the farther in the future the price trend is projected), the greater the effect. 

The forecast horizon should be related to the time between initiating and 
realizing investment in new capacity: The longer the capacity acquisition 
delay, the longer the forecast horizon must be. The expected rate of inflation 
can be modeled with the TREND function defined in chapter 16: 

Expected Trend in Price = TREND(Price, Price Perception Time, 
(20-53) Historical Horizon for Price Trend, Time to Perceive Price Trend) 

Here the Price Perception Time is the time required to perceive price and 
smooth out high-frequency noise, the Historical Horizon for Price Trend 
represents how far back in history investors look in assessing price trends, 
and the Time to Perceive Price Trend represents the time required to update 
beliefs about price trends. 

There are many plausible functions for the Effect of Trend on Expected 
Price. A simple starting point is the assumption that investors expect the 
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current inflation rate in price to remain constant over the forecast horizon. 
In that case, 

Effect of Trend on Expected Price 
= exp(Expected Trend in Price * Forecast Horizon) (20-52a) 

If the forecast horizon is zero, the revised formulation reduces to the original 
model in which long-term expected prices are formed by smoothing actual 
price.17 

judgment to select reasonable parameters. 

and other characteristics of the cycle? You may want to start by running the 
model with a single demand shock to get a feel for the behavior of the 
forecast and the phase relationships of the forecast and actual price, but be 
sure to consider the response to random demand as well. Experiment with 
different parameters for the formation of the expected trend in price and for 
the forecast horizon. What are the implications for producers and investors? 

4. The long-run supply curve: The costs of new capacity in the model are 
constant and independent of the scale of the industry. In economic terms, the 
long-run supply curve is flat: Capacity could double without any change in 
marginal costs. In some industries, this is a reasonable assumption. In others, 
such as many mineral and agricultural commodities, the marginal cost of new 
capacity rises as industry capacity grows. Expanding copper production 
means ores of lower quality must be mined; expanding oil production 
capacity means drilling deeper and in more remote locations; expanding 
cocoa production means cultivating land that is less productive or more 
distant from the market. 

Modify the model to account for the feedback from production capacity 
to the marginal cost of new capacity. For simplicity, assume both unit fixed 
costs and unit variable costs rise by the same proportion as capacity grows. 
Normalize the function you select so that costs equal their reference levels 
when capacity equals its reference level. Set the reference level to the initial 
equilibrium. Select an appropriate shape for the dependence of marginal 
costs on production capacity. Typically, costs rise slowly at first but at 
progressively steeper rates as capacity grows. 

Identify the new feedbacks introduced by the long-run supply curve and 
predict the impact of the new feedback structure on the behavior. Design and 
implement tests to examine the impact of the long-run supply curve. 

5. Separating average and marginal cost: Adding the feedback from capacity 
to costs captures the long-run supply curve, but the clients then point out that 

Implement the formulation for extrapolative expectations. Use your best 

What is the impact of extrapolative price expectations on the stability 

17The assumption that investors believe current trends will continue over the forecast horizon is 
not likely to hold for very high inflation rates or very long forecast horizons. A more realistic model 
would replace the exponential function with a function that approximates the exponential for small 
inflation rates but saturates at a maximum and minimum value at the extremes of very high or low 
inputs. The saturation nonlinearities capture the idea that investors expect extreme rates of price 
change to moderate over time. 
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6. 

the model does not distinguish between the marginal cost of new investment 
and the average costs of operating existing capital. Investors develop the 
least expensive sources of supply first, turning to more expensive sites only 
as rising prices justify the added cost. The next copper mine to be opened 
will have lower grade ore than the average of existing mines, and new paper 
machines are much more productive than the machines available three 
decades ago. The decision to invest in a new facility will depend on the fixed 
and variable costs of new capital, but each producers’ decision to operate 
depends on the variable costs of existing facilities. 

investment and the average unit costs of existing capital. To do so you must 
introduce coflows to keep track of the fixed and variable costs associated 
with each new unit of capital from the time it is ordered until it is discarded. 
Section 12.2 describes the relevant structure. Utilization of existing capacity 
will now depend on average unit variable costs over the stock of existing 
capacity, not the unit variable costs associated with new investment. 

Test the revised model by assuming an exogenous rate of technical 
progress that lowers the marginal costs per unit of new capacity at some rate, 
say 5%/year. How does such technical progress affect the dynamics of the 
market? 

the profitability of old capital compared to new capital. Older facilities are 
less productive and have higher operating costs than new ones. During 
market upswings, when prices are high, even old, unproductive plants can 
operate at a profit. During downswings, the least productive plants are 
shut down first as prices fall. Eventually, a plant becomes so costly that 
management is forced to scrap it (or invest in expensive retrofitting to boost 
productivity). The decommissioning decision therefore depends on the 
profitability of existing capital, which differs from the expected profitability 
of new facilities. When old capital is much more costly to operate, 
decommissioning and retrofitting are accelerated. Revise your formulation 
for the variable lifetime of capital so the life of capital depends on the 
expected profitability of existing capital rather than the profitability of new 
investment. What is the impact on the feedback structure and behavior of the 
model? 

Modify the model to distinguish between the unit costs of new 

The clients also point out that the decommissioning decision depends on 

Feedback of inventory to capacity utilization: The clients point out that 
capacity utilization in the model depends only on the expected markup ratio. 
They argue instead that utilization is affected directly by the inventory 
position of the producers. The decision to shut down a facility because it is 
unprofitable is typically made at corporate headquarters, not by the plant 
managers. They argue that production schedules at any plant respond 
primarily to the order and inventory position of the plant. Indeed, as 
discussed above, shortages of product will stimulate utilization and 
limits on physical storage capacity can force production to fall when 
inventories grow too large, no matter how profitable the industry may 
appear to be. 
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CHALLENGE 

Taking your high-level causal diagram of the market (Figure 20-7), they 
redraw it to capture the feedbacks from inventory to utilization (Figure 
20-21). The modified diagram shows a new feedback from inventory to 
utilization, the Inventory Control loop (shown with heavy lines). Indicated 
capacity utilization in the revised model now responds to both expected 
markups and Schedule Pressure, defined as the ratio of the desired 
production start rate to production capacity. 

You decide to modify the model to incorporate the direct feedback from 
inventory to capacity utilization. You decide to use the structure for desired 
production starts developed in chapter 18. In that structure, shown in Figure 
18-5, desired production starts depend on the forecast of customer orders 
modified by an adjustment to bring inventory in line with desired inventory 
and a similar adjustment for the work in process inventory. This structure 
generates the rate of output producers would like to attain based on their 
aggregate inventory position, including WIP, and taking their forecast of 
orders into account. Choose appropriate values for the parameters such as the 
inventory, WIP, and forecast adjustment times. You will have to modify the 
formulation for capacity utilization and indicated utilization to incorporate 
both the effects of profitability (expected markup) and schedule pressure. 
Consider whether the delays in the effects of markup and schedule pressure 
may differ. Your revised formulation should allow the relative importance 
of these two factors to be varied in sensitivity tests, from the original 
formulation with markup as the only input to utilization to the other extreme 
where schedule pressure is the only input. Be sure your revised model begins 
in equilibrium. 

Implement and test the revised formulation. How does the behavior 
change when both schedule pressure and markup affect utilization? Also test 
the extreme condition in which schedule pressure is the only determinant of 
utilization. What is the effect of the Inventory Control loop on the period, 
stability, and other properties of the short-term cycle and the capacity 
acquisition cycle? Explain in terms of the feedback structure of the revised 
system shown in Figure 20-21. 

Finally, critique your new utilization formulation. What defects do you 
see? How could you reformulate the model to improve the representation 
of utilization? Under what circumstances would such elaboration be 
appropriate? 

Implementing Structural Changes- 
Modeling Livestock Markets 
As illustrated in Figures 20-1 and 20-2, the hog and cattle industries experience 
persistent oscillations. The period of the hog cycle is about 4 years, while the cat- 
tle cycle is about 10-12 years. 

Adapt the generic commodity model to the livestock industry. In nonagricul- 
tural markets production capacity is independent of the manufacturing supply 
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chain: Pulp mills and pulp aren’t the same thing. In livestock markets, however, 
production cannot take place without a breeding stock. Producers must choose 
whether to send their stock to market now or to keep animals on the farm to in- 
crease the future supply. In plain terms, it takes hogs to make hogs. This funda- 
mental biological fact requires the stock and flow structure of production to be 
altered, as shown in Figure 20-22. 

The production supply chain is disaggregated into three categories: the gesta- 
tion delay, immature stock, and mature stock. For cattle and hogs, mature animals 
are typically kept on corn feedlots until they reach the optimal weight and will 
fetch the best price. The key difference between the livestock production process 
and other commodities, however, is that production starts are not directly con- 
trolled by the producer. Production starts correspond to the breeding rate, which 
depends on the size of the breeding stock (along with the number of litters per year 
and the average litter size). Producers control the size of the breeding stock. The 
breeding stock is increased when producers withhold mature animals from market. 
In adapting the model to livestock you will need to specify the order of each delay 
in the gestation-maturation process, remembering that your model aggregates all 
producers (see chapter 11 for guidelines). 

The decision to increase the breeding stock, shown in Figure 20-22 as the In- 
dicated Breeding Stock Increase Rate, can be modeled with a variant of the stan- 
dard stock management structure. Producers need to replace older breeding stock 
sent to market and adjust the actual breeding stock toward the desired breeding 
stock. You should model the desired breeding stock as the product of production 
capacity and indicated capacity utilization. That is, producers will increase their 
desired breeding stock (to increase future supply) when the expected markup ratio 
is high and will reduce their breeding stocks when it is low. The total size of the 
breeding stock is limited by production capacity, representing the capacity of 
ranches, farms, and feedlots in the industry. 

Take care that your reformulated model is robust under extreme conditions: 
The stocks of animals must remain nonnegative and total breeding stock must re- 
main within the capacity of the industry. The principal parameters for both hogs 
and cattle are shown in Table 20-2. Use your best judgment and other available 
information to estimate the other parameters and behavioral relationships in the 
model. 

Parameter Hogs Cattle Units 

Average Litter Size 8.0 1 .o Animaldlitter 
Litters per Year 2.0 1 .o LitterdanimaVyear 
Gestation Period 0.31 0.83 Years 
Maturation Time 0.42 1.67 Years 
Mature Stock Feeding Period 0.17 1 .o Years 
Average Breeding Period 2.5 2.5 Years 

Sources: Meadows (1 970); Commodity Research Bureau, Commodity Yearbook, various years. 
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Run the model for the case of both hogs and cattle and contrast its behavior 
against the data. Does the model reproduce the period and other characteristics of 
the hog and cattle cycles? Explore the sensitivity of your results to parameters. 

Because the only way to increase the supply of hogs or cattle in the long run is 
to withhold some mature animals from market, the short-run response of an in- 
crease in the expected markup is a reduction in supply. What type of feedback 
process is created by this biological reality? What effect does this loop have on the 
stability of the market? Design and execute sensitivity tests to explore the impor- 
tance of this feedback. Is the effect strongest for the hog or cattle market, and why? 

Assume that, from equilibrium, the price of corn suddenly and permanently in- 
creases. Design and implement this test in the model. What is the long-run behav- 
ior of the market (price, production, breeding stock, etc.)? What is the short-run 
response? How does the response of the desired breeding stock to the cost increase 
affect producer profitability in the short run? What are the implications for pro- 
ducers in the livestock markets?Is 

Policy Analysis 
Commodity cycles result from the interaction of long delays in the response of 
supply to price with the bounded rationality of producers. Producers and investors 
form expectations of profitability and price adaptively and do not appear to ac- 
count adequately for the time delays in the system or the impact of other pro- 
ducers’ decisions on future investment, production, and prices. 

Can you design policies that improve performance and profitability in cyclical 
markets? Such policies might involve changes in the information used to form 
price expectations or make investment decisions or other changes in the invest- 
ment, utilization, and price expectation formation decisions. Design and test your 
policies in the model (either the base case model, the enhanced model including 
the structural changes described in the challenges above, or the livestock version 
of the model). Contrast the performance of your policies against the original model 
for a variety of cases, including various one-time demand and cost shocks and 
random variations in demand. How could these policies be implemented in reality? 

Economists often argue that oscillations in commodity markets cannot long 
endure because they provide arbitrage opportunities. If there were a cycle, savvy 
investors could make extraordinary profits by timing their investments to buy at 
cycle troughs and sell at cycle peaks. As more people pursued such countercyclical 
strategies, their actions would cause the cycle to vanish. Even if people can’t learn 
at all, markets, by transferring wealth from those using poor decision rules to those 
with superior rules, would quickly cause the population of producers to evolve un- 
til all were using (nearly) optimal strategies. While the logic of the argument 
sounds compelling, the persistence of cyclical movements in so many commodity 
markets over very long periods (more than a century for many industries) suggests 

I8Rosen, et al. (1994), Mundlak and Huang (1996), and Hayes and Schmitz (1987) offer 
contrasting models and empirical analyses of the livestock markets. 
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learning and arbitrage aren’t quite that simple. Critique the arbitrage argument. 
Which features of commodity markets favor learning and suggest persistent cycles 
would disappear? Which features work against learning? Consider physical 
features such as time lags in capacity acquisition, institutional features such as the 
degree of concentration in the market and the incentives facing individual in- 
vestors, cognitive and informational features such as the complexity of the market 
and number of relevant cues required for good performance, and sociological fac- 
tors such as the backgrounds and training of typical market players. In which mar- 
kets would learning be most rapid? Least rapid? How might the rate of learning be 
measured? 

20.4 SUMMARY 
This chapter developed models of markets in which price functions to balance 
supply and demand. The generic industry model introduced several important and 
useful formulations, including price setting and the response of investment to ex- 
pected profitability. These formulations are useful across multiple levels of aggre- 
gation, from individual firms to the economy as a whole. The model explains the 
origin of the chronic fluctuations observed in a wide range of commodity indus- 
tries. Commodity cycles arise from the interaction of the physical delays in pro- 
duction and capacity acquisition with boundedly rational decision making by 
individual producers and investors. The persistence of cycles in industries from 
copper to cattle and rubber to real estate suggests learning and market forces that 
might stabilize the cycles are weak. In market economies price lies in the center of 
a network of negative feedbacks which act to eliminate imbalances between de- 
mand and supply, thus promoting the efficient allocation of resources: the invisible 
hand. Yet in many markets the reactions of demand and supply to price are very 
slow. Negative feedbacks with time delays are prone to oscillation and instability: 
The invisible hand sometimes shakes. 
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Truth and Beauty: 
Validation and Model Testing 

A model is a work offiction. 
-Nancy Cartwright (1983, p. 153) 

William James used topreach the “will to believe. ’’ For my part, I should wish 
to preach the “will to doubt.” . . . What is wanted is not the will to believe, but 
the wish to find out, which is the exact opposite. 

-Bertrand Russell (1928/1961, pp. 104-106)’ 

No I ain ’t got a witness and I can’t prove it 
But that’s my story and I’m stickin’to it. 

-Lee Roy Parnell and Tony Haselden, 
“That’s my Story,” sung by Collin Raye 

What makes a good model? As a modeler, how do you know the results can be 
trusted? As a model consumer, when should you accept a model as the basis for ac- 
tion? What questions should you ask, what evidence should be used, and what 
standards should be applied? Who decides? This chapter describes model testing 
and focuses on the process by which you and your clients can build confidence that 
a model is appropriate for the purpose. Unfortunately, testing is often designed 
to “prove” the model is “right,” an approach that makes learning difficult and 

‘Sceptical Essays, 1928. 1961 edition, London: Unwin Books. 

845 



846 Part VI Model Testing 

ultimately erodes the utility of the model and the credibility of the modeler. Worse, 
many important tests are simply never done. Many modelers focus excessively on 
replication of historical data without regard to the appropriateness of underlying 
assumptions, robustness, and the sensitivity of results to assumptions about the 
model boundary and feedback structure. Modelers often fail to document their 
work, preventing others from replicating and extending it. Modelers and clients of- 
ten suffer from confirmation bias, selectively presenting data favorable to their pre- 
conceptions, and then stickin’ to their story despite the evidence. Model testing 
should instead be designed to uncover errors so you and your clients can under- 
stand the model’s limitations, improve it, and ultimately use the best available 
model to assist in important decisions. The chapter also describes specific tests and 
procedures you should follow to test the suitability of a model for your purpose, 
uncover flaws, and improve the chances your model will be used and useful. The 
tests can be applied by modelers and model consumers and range from examina- 
tion of model boundary assumptions to quantitative assessment of the model’s his- 
torical fit. Examples illustrate how the tests can be applied and how failure to do 
so often results in absurdity or project failure. 

VALIDATION AND VERIFICATION ARE lMPOSSlBLE 
Many modelers speak of model “validation” or claim to have “verified” a model. 
In fact, validation and verification of models is impossible. The word “verify” de- 
rives from the Latin verus-truth; Webster’s defines “verify” as “to establish the 
truth, accuracy, or reality of.” “Valid” is defined as “having a conclusion correctly 
derived from premises . . . Valid implies being supported by objective truth.” 

By these definitions, no model can ever be verified or validated. Why? Be- 
cause all models are wrong. As described in chapter l ,  all models, mental or for- 
mal, are limited, simplified representations of the real world. They differ from 
reality in ways large and small, infinite in number. The only statements that can be 
validated-shown to be true-are pure analytic statements, propositions derived 
from the axioms of a closed logical system, because, as stated by the philosopher 
A. J. Ayer (1952, p. 3 l), “They do not make any assertion about the empirical 
world, but simply record our determination to use symbols in a certain fashion.” 

Some modelers have long recognized the impossibility of validation in the 
sense of establishing truth. Forrester (1961, p. 123) wrote: 

Any “objective” model-validation procedure rests eventually at some lower level 
on a judgment or faith that either the procedure or its goals are acceptable without 
objective proof. 

Forrester’s view, controversial at the time, is now more widely shared among mod- 
elers. In an influential assessment of the state of policy modeling in the mid 1970s, 
Greenberger, Crenson, and Crissey (1976, p. 70-7 1) concluded that 

No model has ever been or ever will be thoroughly validated. . . “Useful,” “illumi- 
nating,” “convincing,” or “inspiring confidence” are more apt descriptors applying 
to models than “valid.” 
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More recently, Oreskes, Shrader-Frechette, and Belitz (1994, p. 644) wrote, “Mod- 
els are representations, useful for guiding further study but not susceptible to 
proof.” 

The impossibility of validation and verification is not limited to computer 
models. Any theory that refers to the world relies on imperfectly measured data, 
abstractions, aggregations, and simplifications, whether the theory is embodied in 
a large-scale computer model, consists of the simplest equations, or is entirely lit- 
erary. The differences between analytic theories and computer simulations are dif- 
ferences of degree only. 

Many argue that while the truth of a model cannot be established, surely its fal- 
sity can. The late Sir Karl Popper’s philosophy of refutationism or falsificationism 
remains popular among many scientists, modelers, and economists (e.g., Bell and 
Senge 1980; Redman 1994; McCloskey 1994). While the truth of any empirical 
statement can never be established, Popper famously argued that it is possible to 
show a theory to be false. Empirical statements such as “all swans are white” can 
never be verified. No matter how many swans we find to be white, we can never 
be sure we’ve tested them all or that the next swan to hatch will be white. How- 
ever, observation of a single black swan shows the statement to be false. Popper 
argued that to be scientific a theory had to be subject to refutation, that is, it had to 
be possible to falsify it by experiment or other empirical test. Once a theory is fal- 
sified empirically it has to be discarded and replaced by some new, more accurate 
theory. Only those theories that have not yet been refuted should be accepted and 
that acceptance is always conditional. 

The widely taught story of Galileo’s experiment at the leaning tower of Pisa 
provides a classic example. Galileo reportedly dropped cannonballs of different 
weights from the tower, showing that they hit the ground at the same time. The old 
theory that heavy objects fall faster than light ones was falsified and replaced with 
the new theory that gravity causes all objects to accelerate earthward at a constant 
rate, independent of m a s 2  

Popper called on scientists to seek the “crucial experiment” that, like Galileo’s, 
could falsify their theories. If the proponents of a theory cannot describe an exper- 
iment or evidence that would persuade them to abandon their theory, then, Popper 
argued, it cannot be considered scientific, but must be recognized as a dogma no 
different in principle from any matter of faith. He pointed to the claims of psycho- 
analysis, Marxism, and astrology, among others, as prime offenders. 

This naive version of Popper’s approach enjoys continued popularity due to its 
simplicity and intuitive appeal. There are indeed many cases where superstition 
and ideology cloak themselves in the authority of science. Popper’s criterion of 
falsifiability shows the emperors of these pseudosciences to be naked. 

Unfortunately, many people are taught the sound-bite version of refutationism 
in introductory classes, never digging more deeply into the philosophy of science 

2Actually, Galileo measured the rate at which balls rolled down inclined planes (to slow their 
acceleration and improve the accuracy of his measurements), and the story of the leaning tower 
may be apocryphal. Simon Stevin of Bruges was likely the first to carry out the dropped-weight 
experiment, publishing the results in 1587, prior to Galileo’s work (Boyer 1991). 
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to discover its subtleties and  limitation^.^ Most obviously, since all models are 
wrong, all can be falsified by some test or other. A rock falls faster than a feather, 
and even Galileo’s weights did not all fall to earth at exactly the same time-dense 
objects consistently fall faster than less dense ones, refuting the theory of constant 
acceleration. Since all models are false and refutable, which are we to use? 

Paradoxically, at the same time that all models are wrong, any particular theo- 
retical proposition can always be rescued from apparent falsification. Accurate 
measurement shows that objects of different masses and shapes do fall at different 
rates. Does this falsify the theory? No. As all grade school students are taught, ob- 
jects would fall at the same rate ifthere were no air friction. The theory is saved by 
invokmg an auxiliary hypothesis. During a 1971 Apollo 15 moonwalk, astronaut 
David Scott famously demonstrated the role of air friction by simultaneously drop- 
ping a hammer and a feather. Both fell to the surface at the same time. But suppose 
the feather hadn’t fallen as quickly as the hammer. Would physicists around the 
world have shouted, “The theory has been falsified!” and abandoned the idea that 
gravitational acceleration is independent of mass? Of course not. They would have 
invoked auxiliary hypotheses to explain the discrepancy. Perhaps static electricity 
in Scott’s glove slowed the feather’s descent. If static electricity were ruled out by 
subsequent tests, scientists would still not have rewritten the textbooks. Perhaps 
magnetite in the lunar surface accelerated the hammer’s fall. If this were ruled out, 
we would have postulated some other, unknown force. A favored hypothesis can 
always be saved by invoking other, auxiliary hypotheses. 

Tests of any theory take place at a particular time and place, with particular 
equipment and instruments. Experiments can never test the theory alone, but only 
the joint hypothesis consisting of the theory and the auxiliary assumptions that the 
equipment is properly set up, that the instruments work as expected, and that there 
are no sources of uncontrolled variation. No matter how carefully an experiment is 
done an infinite number of possible sources of uncontrolled variation always exist; 
therefore, there is always an infinite number of auxiliary hypotheses that can be in- 
voked to save any theory from disconfirmation. This realization, known as the 
Quine-Duhem thesis, means all theories can always be adjusted to accord with any 
data whatsoever without discarding the core propositions. 

The introduction of auxiliary hypotheses to save a favored theory is sometimes 
a rewarding path to knowledge. After the discovery of Uranus, observations re- 
vealed that its orbit did not follow the path predicted by Newton’s laws. Instead of 
discarding or modifying the inverse square law of gravitation, astronomers in- 
voked the auxiliary hypothesis that a more distant planet was perturbing its orbit. 
Assuming Newton was right, astronomers calculated where the new planet should 
be and Neptune was indeed found nearby in 1846. In this case, holding fast to 
Newton’s laws despite evidence contradicting the theory was a good strategy. 

Most often, however, auxiliary hypotheses serve to insulate a theory from 
confrontation with unfavorable data. Pre-Copernican astronomers reconciled 

3Lakatos (1976) provides a more sophisticated development of falsificationism. 
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discrepancies between the Ptolemaic system and observation by invoking ever 
more complex epicycles. The epicycles preserved the favored hypothesis that the 
earth reigned supreme at the center of the universe. Postulating yet another epicy- 
cle could always eliminate any discrepancies revealed by more accurate observa- 
tions. Copernicus, working with essentially the same evidence, abandoned the 
geocentric theory and argued that the planets circled the sun. The evidence did not 
determine the choice. Indeed, for a long time, the Ptolemaic system provided more 
accurate predictions than the Copernican. 

Invoking auxiliary hypotheses to save a favored theory remains a central tac- 
tic in battles between contending worldviews to this day. The most popular theory 
of the big bang, known as inflation, initially required the total mass of the universe 
to be much larger than observation suggested. Rather than abandon inflation in the 
face of this apparent disconfirmation, physicists hypothesized that the universe 
contains “missing matter” in the form of brown dwarves (unignited stars too dim 
to see), WIMPS (weakly interacting massive particles undetectable by our instru- 
ments), and even the presence of a “cosmological constant”-a mysterious force 
hypothesized to push all matter apart. Only time will tell whether any of these aux- 
iliary hypotheses will be supported by new data and become the new orthodoxy or 
whether future physicists will look back on them as foolish errors. Physicists are 
not alone in their mastery of the auxiliary hypothesis. In the face of laboratory 
experiments and field data showing that people violate the axioms of rationality 
and that markets are not perfectly efficient, some economists invoke auxiliary as- 
sumptions, epicycles on epicycles, to preserve the core axioms of rationality and 
equilibrium. Typical moves to save homo economicus from extinction include in- 
vocation of information asymmetries, transaction costs, search and deliberation 
costs, limitations on the repertoire of actions available to the agents, unusual util- 
ity functions, and so on (see Simon 1984). Rationality and equilibrium are not em- 
pirical facts but the central tenets of a deeply felt faith.4 

Theories built on such nonfalsifiable foundations constitute paradigms in the 
sense of the late Thomas Kuhn (1970). Paradigms are self-consistent communities 
of like-minded scientists, sharing a worldview encompassing not only a body of 
theory and evidence but also methods of inquiry, standards of proof, textbook ex- 
amples, and heroes. Kuhn argued that different paradigms are fundamentally in- 
commensurable, meaning that rational choice between paradigms based on 
evidence is not possible and does not drive changes in the dominant scientific the- 
ories of an era. 

The real significance of Kuhn’s paradigms and the Quine-Duhem thesis is this: 
The decision to abandon a theory is never forced upon us by reality but is always 
and essentially a human choice. When theory and data clash, we necessarily 

4This discussion is not meant to single out economics. All serious scientific theories include 
a core of favored beliefs that are not subject to refutation. Try to imagine an experiment or em- 
pirical result that could persuade a system dynamics modeler that feedback loops don’t exist. 
See Meadows (1980). 
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choose between them using nonevidential criteria, such as parsimony, elegance, or 
conformance to religious, political, or aesthetic beliefs. 

Validation is also intrinsically social. The goal of modeling, and of scientific 
endeavor more generally, is to build shared understanding that provides in- 
sight into the world and helps solve important problems. Modeling is therefore 
inevitably a process of communication and persuasion among modelers, clients, 
and other affected parties. Each person ultimately judges the quality and appropri- 
ateness of any model using his or her own criteria. The physicist turned sociologist 
of science John Ziman notes, “The objective of Science . . . is a consensus of ra- 
tional opinion over the widest possible field” (1968, p. 9). C. West Churchman, a 
pioneer in the management sciences, goes further (1973, p. 12): 

A point of view, or a model, is realistic to the extent that it can be adequately inter- 
preted, understood, and accepted by other points of view. 

Recognizing the fundamentally subjective and social nature of model evaluation 
does not mean model testing is unscientific or that in practice any test or criterion 
is just as good as any other. Likewise, the Quine-Duhem thesis is not a justification 
for avoiding empirical tests, ignoring evidence, or stonewalling critics. For those 
who believe the US government covered up the alleged 1947 crash of an alien 
spacecraft in Roswell, New Mexico, any government denials are simply further ev- 
idence of the conspiracy. These believers are extremely creative in invoking auxil- 
iary hypotheses to interpret any information, no matter how negative, as consistent 
with the truth as they see it. Whether used in the service of a cult or a scientific the- 
ory, such behavior results in an internally consistent worldview sealed off from 
surprise and immune to evidence. Modelers should focus on tests that can reveal 
the limitations of our current models, mental and formal. Oreskes et al. (1994) 
write: 

We must admit that a model may confirm our biases and support incorrect intu- 
itions. Therefore, models are most useful when they are used to challenge existing 
formulations, rather than to validate or verify them. Any scientist who is asked to 
use a model to verify or validate a predetermined result should be suspicious. 

If validation is impossible and all models are wrong, why then do we bother to 
build them? As a leader you must recognize that you will be using a model-men- 
tal or formal-to make important decisions. Your choice is never whether to use a 
model but only which model to use. Your responsibility is to use the best model 
available for the purpose at hand despite its inevitable limitations. The decision to 
delay action in the vain quest for a perfect model is itself a decision, with its own 
set of consequences. Experienced modelers likewise recognize that the goal is to 
help their clients make better decisions, decisions informed by the best available 
model. Instead of seelung a single test of validity models either pass or fail, good 
modelers seek multiple points of contact between the model and reality by draw- 
ing on many sources of data and a wide range of tests. Instead of viewing valida- 
tion as a testing step after a model is completed, they recognize that theory 
building and theory testing are intimately intertwined in an iterative loop. Instead 
of presenting evidence that the model is valid, good modelers focus the client on 
the limitations of the model so it can be improved and so clients will not misuse it. 
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21.2 

211.3 

QUESTIONS MODEL USERS SHOULD ASK- 
Bu-r USUALLY DON’T 

In most debates over particular models philosophical considerations are like the 
official ideology an army fights for: great in principle but forgotten in the heat of 
battle. In practice, models fall on the field of organizational conflict for more 
mundane and avoidable reasons. Meadows and Robinson (1985) reviewed nine 
models designed to address various public policy questions in the areas of eco- 
nomic development, resources, and the environment. The models used methods in- 
cluding econometrics, linear programming, and inputloutput analysis, as well as 
system dynamics. Though the models were “identified as ‘better than average’ ” by 
the authors and by “other modelers, clients, and sponsors,” Meadows and Robin- 
son (p. 104) found “mismatches of methods with purposes, sloppy documentation, 
absurd assumptions buried in overcomplex structures, conclusions that do not even 
follow from model output, and project management strategies that destroy the pos- 
sibility of influencing actual policy.” The record in the world of business models is 
at least as dismal. 

As an antidote, Table 21-1 lists a variety of questions modelers, and especially 
model users, should ask but usually don’t. These questions are designed to assess 
the overall suitability of the model to your purpose, its conformance to fundamen- 
tal formulation principles, the sensitivity of results to uncertainty in assumptions, 
and the integrity of the modeling process. 

PRAGMATICS AND POLITICS OF MODEL USE 
Once we recognize that all models are wrong and abandon the black and white 
dualism of truth and falsification, we can focus on the important questions: Is the 
model useful? Do its shortcomings matter? To answer these questions you must 
first ask: Useful for what purpose? Matter to whom? 

Model users must critically assess the model’s boundary, time horizon, and 
level of aggregation in light of their purpose. The model boundary determines 
which variables are treated endogenously, which are treated exogenously, and 
which are excluded altogether. Factors relevant to the purpose must be captured 
endogenously. Treating a concept as exogenous, or omitting it, cuts all feedbacks 
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TABLE 21 -1 
Questions model 
users should 
ask-but 
usually don’t 

Part VI Model Testing 

Purpose, Suitability, and Boundary 
What is the purpose of the model? 
What is the boundary of the model? Are the issues important to the 
purpose treated endogenously? What important variables and issues are 
exogenous, or excluded? Are important variables excluded because there 
are no numerical data to quantify them? 
What is the time horizon relevant to the problem? Does the model include 
the factors that may change significantly over the time horizon as 
endogenous elements? 
Is the level of aggregation consistent with the purpose? 

Does the model conform to basic physical laws such as conservation of 
matter? Are all equations dimensionally consistent without the use of 
fudge factors? 
Is the stock and flow structure explicit and consistent with the model 
purpose? 
Does the model represent disequilibrium dynamics or does it assume the 
system is in or near equilibrium all the time? 
Are appropriate time delays, constraints, and possible bottlenecks taken 
into account? 
Are people assumed to act rationally and to optimize their performance? 
Does the model account for cognitive limitations, organizational realities, 
noneconomic motives, and political factors? 

makers actually have? Does the model account for delays, distortions, 
and noise in information flows? 

Physical and Decision-Making Structure 

Are the simulated decisions based on information the real decision 

Robustness and Sensitivity to Alternative Assumptions 
Is the model robust in the face of extreme variations in input conditions or 

Are the policy recommendations sensitive to plausible variations in 
policies? 

assumptions, including assumptions about parameters, aggregation, and 
model boundary? 

Pragmatics and Politics of Model Use 
Is the model documented? Is the documentation publicly available? Can 
you run the model on your own computer? 
What types of data were used to develop and test the model (e.g., 
aggregate statistics collected by third parties, primary data sources, 
observation and field-based qualitative data, archival materials, 
interviews)? 
How do the modelers describe the process they used to test and build 
confidence in their model? Did critics and independent third parties review 
the model? 
Are the results of the model reproducible? Are the results “add-factored” 
or otherwise fudged by the modeler? 
How much does it cost to run the model? Does the budget permit 
adequate sensitivity testing? 
How long does it take to revise and update the model? 
Is the model being operated by its designers or by third parties? 
What are the biases, ideologies and political agendas of the modelers and 
clients? How might these biases affect the results, both deliberately and 
inadvertently? 
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very expensive or time-consuming to run the model, it is a sure bet that adequate 
sensitivity analysis has not been done, eroding the confidence you can have in the 
reliability of the results. More insidious, when a model cannot be revised and run 
quickly, the modelers tend to resist pressures to change it. Often, the modeler will 
become defensive, arguing that suggested revisions or potential flaws are not im- 
portant. The consequence of defensiveness is loss of client confidence that the 
model can be useful, leading to implementation failure. 

You should also determine whether the model is being operated by its design- 
ers or by third parties. The developers of models are often promoted or move into 
other responsibilities, leaving their model to be maintained and run by others who 
may not understand its assumptions or be able to modify it as conditions change. 

21.3.1 Types of Data 
Forrester (1980) identifies three types of data needed to develop the structure and 
decision rules in models: numerical, written, and mental data. Numerical data are 
the familiar time series and cross-sectional records in various databases. Written 
data include records such as operating procedures, organizational charts, media re- 
ports, emails, and any other archival materials. Mental data span all the informa- 
tion in people’s mental models, including their impressions, stories they tell, their 
understanding of the system and how decisions are actually made (as opposed to 
what is written in procedures manuals), how exceptions are handled, etc. Mental 
data cannot be accessed directly but must be elicited through interviews, observa- 
tion, and other methods. 

The numerical data contain only a tiny fraction of the information in the writ- 
ten database, which in turn is miniscule compared to the information available only 
in people’s mental models. Most of what we know about the world is descriptive, 
impressionistic, and has never been recorded. Such information is crucial for un- 
derstanding and modeling complex systems. Imagine trying to manage a school, 
factory, or city using only the available numerical data or even the written data. 
Without the expertise of the participants, the result would be chaos. 

Those constructs for which quantitative metrics and numerical data are avail- 
able are sometimes termed “hard data” or “hard variables.” “Soft variables,” in 
contrast, are those for which numerical metrics and data are not available, includ- 
ing factors such as goals, perceptions, and expectations. The term “hard” is in- 
tended to show that numerical data are more accurate and real than qualitative data, 
seen by many as insubstantial and unreliable. In reality, Disraeli was right: There 
are “lies, damn lies, and statistics”-both hard and soft data can be biased, dis- 
torted, and unreliable. Further, no numerical data are available for many of the 
variables known to be critical to decision making. These might include customers’ 
perceptions of product quality, the level of trust between a manager and subordi- 
nates, a purchasing manager’s belief about the reliability of a supplier, employee 
morale, and investor optimism. 

Despite the critical importance of qualitative information some modelers re- 
strict the constructs and variables in their models to those for which numerical data 
are available and include only those parameters that can be estimated statistically. 
These modelers defend the rejection of soft variables as being more scientific than 
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“making up” the values of parameters and relationships. How, they ask, can the ac- 
curacy of estimates about soft variables be tested? How can statistical tests be per- 
formed without numerical data? 

Omitting structures or variables known to be important because numerical data 
are unavailable is actually less scientific and less accurate than using your best 
judgment to estimate their values. “To omit such variables is equivalent to saying 
they have zero effect-probably the only value that is known to be wrong!” (For- 
rester 1961, p. 57). Of course, you must evaluate the sensitivity of your results to 
the uncertainty in your assumptions-whether you estimated your parameters 
judgmentally or by statistical means. 

That said, it is important to use proper statistical methods to estimate parame- 
ters and assess the ability of the model to replicate historical data when numerical 
data are available. Many apparently soft variables such as customer perceptions of 
quality, employee morale, investor optimism, and political values are routinely 
quantified with tools such as content analysis, surveys, and focus groups. The 
quantification of soft variables often yields important insight into the dynamics of 
a ~ y s t e m . ~  

At the same time, the data you need to build and test your model are rarely 
available without significant cost and effort. Modelers must constantly make judg- 
ments about whether the time and cost of additional data gathering are justified. In 
the earliest phase of modeling it is often worthwhile to use experiential data and es- 
timate parameters judgmentally so you can get the initial model running as soon as 
possible. Sensitivity analysis of the initial model can then identify those parame- 
ters and relationships to which the behavior and policy recommendations are sen- 
sitive. Parameters that do not significantly affect the results need not be estimated 
with high accuracy, allowing you to focus your limited resources on those factors 
that do matter so they can be modeled and estimated more accurately. 

Some modelers go to the other extreme and discount the role of statistical pa- 
rameter estimation and numerical data in general. They argue that qualitative in- 
sights are more important than numerical precision and that model behavior is 
insensitive to variations in most parameter values. This is a serious error, even 
when the purpose of a model is insight and when behavior is insensitive to plausi- 
ble parameter values. Ignoring numerical data or failing to use statistical tools 
when appropriate is sloppy and lazy. It increases the chance that the insights you 
derive from your model will be wrong or harmful to the client. Rigorously defin- 
ing constructs, attempting to measure them, and using the most appropriate meth- 
ods to estimate their magnitudes are important antidotes to casual empiricism, 
muddled formulations, and the erroneous insights we often draw from our mental 
models. Forrester (1961, p. 59), while stressing the importance of experiential data, 
soft variables, and judgmental parameter estimates, cautions: 

These comments are not to discourage the proper use of the data that are available 
nor the making of measurements that are shown to be justified . . . Lord Kelvin’s 

50f  course, there are subtle measurement issues in survey and related methodologies. Wording 
and question order can make large differences to responses, and, as observed in the case of the 
drug use surveys described in section 7.3, self-reports are often systematically biased. 
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famed quotation, that we do not really understand until we can measure, still stands. 
But before we measure, we should name the quantity, select a scale of measure- 
ment, and in the interests of efficiency we should have a reason for wanting to 
know. 

21.3.2 Documentation 
Perhaps the most important pragmatic issue for modelers is documentation. Docu- 
mentation is an integral part of the modeling process, at once one of the most im- 
portant and most often neglected activities. 

Documentation is required to ensure that your results can be understood, repli- 
cated, criticized, and extended by others. Without proper documentation, your 
work is neither scientific nor useful. 

Most important, documentation is essential for you. Few things are more frus- 
trating than trying to reconstruct the meaning of or rationale for your own model 
because you didn’t take the time to document your work at the time. Document as 
you build the model the first time. Don’t wait until you are finished with the “more 
important” work of building the model-by then you may have forgotten why you 
did what you did. Documenting as you go helps uncover errors that otherwise 
might not be detected until much later, preventing costly rework. One of the sad- 
dest sights I know is the look of panic on a thesis student’s face when, on the eve 
of graduation, we discover an error in the model that early documentation would 
have revealed. Table 21-2 presents guidelines for documentation. Follow them rig- 
orously. 

21.3.3 Replicability 
Replication allows others to build on your work, provides an important check that 
reveals errors, improves the transparency and utility of modeling work, and also 
uncovers the occasional fraud. 

Unfortunately, replication is rarely done in the social and management sci- 
ences.6 Hubbard and Vetter (1991, 1992) examined more than 2700 empirical 
papers in economics and finance. They found only one pure replication. Only 
about 4% of journal pages were devoted to replications with extensions of the orig- 
inal work. 

The need for replication is great. In a pioneering study, Dewald, Thursby, and 
Anderson (1986) worked with the Journal of Money, Credit and Banking to repli- 
cate empirical studies received for consideration. Disturbingly, they found one- 
third of the authors of previously published papers did not respond to repeated 
requests to supply their data sets. Half the remainder chose not to submit their data 
or could not locate them. Response rates were much higher for those whose papers 

~~ 

6There are many senses of the term “replication” including checking for errors, repeating an ex- 
periment or study with exactly the same methods and data, repeating the study with similar experi- 
mental conditions or with a new sample of data drawn from the same population, conducting a new 
study aimed at testing the same hypotheses as the original, and others. For the nuances and different 
views on replication, see the references cited above and also Collins (1991) and Cartwright (1991); 
Wulwick (1996) provides a compelling example of the importance of replication. 
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TABLE 21 -2 
Guidelines 
for model 
documentation 

Your results must be fully replicable. 
Ensure that independent third parties can replicate all your results using 
only your written documentation. 
Make your model and its documentation publicly available (for academic 
research and public policy models). Create a website that allows anyone 
to download and run your model. 
Make your model available to all members of the client team (for business 
models where there may be proprietary data). Include all those who will 
be involved in or affected by implementation, even your critics. 

Remember that you are writing for an audience. 
Be sure that your documentation, simulation output, and text conform to 
high standards for professional communication in the relevant field. 
Describe the assumptions of the model: its structure, boundary, parameter 
values, data sources, and overall rationale. Documentation is not merely a 
printout of model equations. 
Organize your documentation by model subsystem. 
Present a structural diagram followed by an equation description for each 

Present and describe your equations in a logical sequence, by 
subsystem or key decision. 

subsystem, so that readers do not have to refer to an alphabetical 
equation listing. 

symbols. “Production Starts = Labor * Workweek * Productivity” is better 
than “PS = L * W * P .  

abbreviated), the units of measure, a description of the rationale and 
function of the formulation, and the sources for any parameter values 
or data. 
Specify the units of measure for every variable and parameter, and make 
sure all equations are dimensionally consistent. 
Prepare a succession plan. Document the model so others can 
understand, run, and modify it without having to ask you a lot of 
questions. Recruit and train others who understand and can use the 
model. Once you get promoted you won’t want to get email from your 
successor asking how to use the model. 

Use descriptive names or phrases for variable names, not acronyms or 

Include for each equation the full name of the variable (if it was 

were under consideration or just published. Among those who did respond, 
Dewald et al. found 69 instances of error in or inability to replicate results in 54 
data sets. They conclude, “Inadvertent errors in published empirical articles are a 
commonplace rather than a rare occurrence” and cautioned that “The frequency 
and magnitude of errors in empirical articles raise serious questions regarding the 
integrity of the refereeing process of professional journals.” In a follow-up article, 
Anderson and Dewald (1994) were disappointed to find that “A decade after the 
JMCB project, the replication of previous studies as a part of new research seems 
an infrequent occurrence.” 
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Why is there so little replication? Replicating and extending someone else’s 
study is viewed as uncreative drudge work by most researchers. Of those few repli- 
cations that are attempted, journals are far more likely to publish those that contra- 
dict the original findings, creating incentives for researchers to withhold their data 
from others. Hubbard and Vetter (1991, 1992) found only 20% of the few repli- 
cations and extensions in their sample provided full confirmation of the original 
 finding^.^ 

Demanding that all models be fully documented and all results be fully replic- 
able also defends against add-factoring-the practice of adding a fudge factor to 
the output of a model so that it squares with the modeler’s intuition (Sterman 
1988c; chap. 16). Add-factoring allows modelers to generate results they like while 
avoiding the troublesome bother of actually using the model to reach conclusions 
from well-documented assumptions. 

In one infamous study the Joint Economic Committee of the US Congress 
(through the politically neutral General Accounting Office) asked the three leading 
econometric forecasting firms to run their models under different assumptions 
about monetary policy. Each firm supplied their forecasts and analysis of the dif- 
ferent scenarios. In addition, the GAO repeated the simulations using the same 
models, providing an independent replication test. In a scenario where the money 
supply was held constant, one firm projected interest rates after a decade to be 
7%/year. However, this apparently reasonable value was not the result of the 
model. The GAO’s simulation of the same model yielded an interest rate of 
34%/year, a result totally contrary to both economic theory and historical experi- 
ence. What had happened? Faced with this ridiculous result, the model managers 
at that firm had not bothered to correct the flaws in the model but simply add- 
factored the interest rate down by the modest amount of 79%. The other models 
fared little better (Joint Economic Committee 1982). The GAO’s replication test 
revealed both the inability of the models to yield meaningful results and the ex- 
tensive ad hoc adjustments made by the forecasters to cover up the flaws in their 
models. 

Add-factoring is fraudulent and deceptive even when the modeler does not 
keep it secret. Add-factoring allows unethical modelers to sell their mental models, 
with all their ambiguity, hidden assumptions, and limitations, while at the same 
time cloaking them in the authority of science. Add-factoring removes all con- 
straints that might provide a check on the modelers’ biases and hubris. The late 
Otto Eckstein, founder of the highly successful econometric forecasting firm Data 
Resources, Inc., who coined the term “add factor,” admitted in a 1983 interview 
that DRI’s forecasts were 60% model and 40% judgment. He conceded that his 
forecasts sometimes reflected an optimistic view, modestly commenting that “Data 
Resources is the most influential forecasting firm in the country . . . If it were in the 
hands of a doom-and-gloomer, it would be bad for the country” (The Wall Street 
Journal, 17 February 1983). 

7The low incidence of replication and high rate of nonreplicability are not unique to economics. 
Indeed, these researchers and journals should be commended for their willingness to undertake and 
publish studies highlighting the problem. 
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Despite the continuing need, replication remains rare in the social sciences. 
The situation in public policy debates and corporate modeling, where feedback 
from peer review and refereeing are often absent and where models are kept secret 
to protect their proprietary content, is far worse. The lack of replication and qual- 
ity control undercuts the effectiveness of all modeling. You should not accept any 
result generated by a model you can’t replicate. 

21.3.4 Protective versus Reflective Modeling 
Table 21-3 summarizes two polar approaches to model testing and the modeling 
process. Modelers can use their models in a protective fashion, covering up im- 
portant assumptions, using data selectively to support their prejudices, and acting 
like an oracle. The protective mode of modeling is self-defeating. It seals the mod- 
eler off from learning, weakening the model and reducing the chances of discover- 
ing errors. It undercuts the credibility of the model and modelers, ultimately 
destroying the possibility of successful implementation. Alternatively, modelers 
can use their modeling in a reflective mode in which testing is designed to uncover 
flaws and hidden assumptions, challenge preconceptions, and expose assumptions 
for critique and improvement. Paradoxically, a reflective testing process designed 
to uncover errors helps build confidence in the model and ultimately increases the 
chances for sustained success. 

21.4 MODEL TESTING IN PRACTICE 
System dynamics modelers have developed a wide variety of specific tests to un- 
cover flaws and improve models (e.g., Forrester 1973; Forrester and Senge 1980; 
Barlas 1989, 1990, 1996). These tests help you answer the big-picture questions 
discussed above and summarized in Table 21-1. Table 21-4 summarizes the main 
tests, the purpose of each, and the principal tools and methods used in each. 

TABLE 21 -3 Protective: Models used to Protective and 
reflective uses of Prove a point Promote inquiry 
models 

Reflective: Models used to 

Keep assumptions hidden 
Use data selectively 
Support preconceptions and 

buttress preselected answers 
. . . and cover up the preselection 
Promote the authority of the 

Expose hidden assumptions 
Motivate widest range of empirical tests 
Challenge preconceptions and 

support multiple viewpoints 
. . . and involve the widest community 
Promote the empowerment of the 

modeler clients 

Source:Adapted and revised from lsaacs and Senge (1992, p. 191). 



Chapter 21 Truth and Beauty: Validation and Model Testing 859 

TABLE 21 -4 Tests for assessment of dynamic models 

Test Purpose of Test Tools and Procedures 

1. Boundary 
Adequacy 

____ 

Are the important concepts for 
addressing the problem 
endogenous to the model? 
Does the behavior of the model 
change significantly when 
boundary assumptions are 
relaxed? 
Do the policy recommendations 
change when the model boundary 
is extended? 

2,. Structure 
Assessment 

3. Dimensional 
Consistency 

4. Parameter 
Assessment 

Is the model structure consistent 
with relevant descriptive 
knowledge of the system? 
Is the level of aggregation 
appropriate? 
Does the model conform to basic 
physical laws such as 
conservation laws? 
Do the decision rules capture the 
behavior of the actors in the 
system? 

Is each equation dimensionally 
consistent without the use of 
parameters having no real world 
meaning? 
Are the parameter values 
consistent with relevant 
descriptive and numerical 
knowledge of the system? 
Do all parameters have real world 
counterparts? 

Use model boundary charts, subsystem 
diagrams, causal diagrams, stock and flow 
maps, and direct inspection of model 
equations. 
Use interviews, workshops to solicit expert 
opinion, archival materials, review of 
literature, direct inspection/participation in 
system processes, etc. 
Modify model to include plausible additional 
structure; make constants and exogenous 
variables endogenous, then repeat sensitivity 
and policy analysis. 
Use policy structure diagrams, causal 
diagrams, stock and flow maps and direct 
inspection of model equations. 
Use interviews, workshops to solicit expert 
opinion, archival materials, direct inspection 
or participation in system processes, as in 
(1) above. 
Conduct partial model tests of the intended 
rationality of decision rules. 
Conduct laboratory experiments to elicit 
mental models and decision rules of system 
participants. 
Develop disaggregate submodels and 
compare behavior to aggregate formulations. 
Disaggregate suspect structures, then repeat 
sensitivity and policy analysis. 
Use dimensional analysis software. 
Inspect model equations for suspect 
parameters. 

Use statistical methods to estimate 
parameters (wide range of methods 
available). 
Use partial model tests to calibrate 
subsystems. 
Use judgmental methods based on 
interviews, expert opinion, focus groups, 
archival materials, direct experience, etc. 
(as above) 
Develop disaggregate submodels to estimate 
relationships for use in more aggregate 
models. 

(Continued) 
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TABLE 21 -4 (Continued) 

Test Purpose of Test Tools and Procedures 

5. Extreme Does each equation make sense 
even when its inputs take on 
extreme values? 
Does the model respond plausibly 
when subjected to extreme 
policies, shocks, and parameters? 

Conditions 

6. Integration Are the results sensitive to the 
choice of time step or numerical 
integration method? 
Does the model reproduce the 

Reproduction behavior of interest in the system 
(qualitatively and quantitatively)? 
Does it endogenously generate 
the symptoms of difficulty 
motivating the study? 
Does the model generate the 
various modes of behavior 
observed in the real system? 
Do the frequencies and phase 
relationships among the variables 
match the data? 
Do anomalous behaviors result 
when assumptions of the model 
are changed or deleted? 
Can the model generate the 

instances of the same system? 
Does the model generate 

Behavior previously unobserved or 
unrecognized behavior? 
Does the model successfully 
anticipate the response of the 
system to novel conditions? 

Error 

7. Behavior 

8. Behavior 
Anomaly 

9. Family 
Member behavior observed in other 

IO. Surprise 

Inspect each equation. 
Test response to extreme values of each 
input, alone and in combination. 
Subject model to large shocks and extreme 
conditions. Implement tests that examine 
conformance to basic physical laws (e.g., 
no inventory, no shipments; no labor, no 
production). 
Cut the time step in half and test for changes 
in behavior. Use different integration methods 
and test for changes in behavior. 
Compute statistical measures of 
correspondence between model and data: 
descriptive statistics (e.g., R2, MAE); time 
domain methods (e.g., autocorrelation 
functions); frequency domain methods (e.g., 
spectral analysis); many others. 
Compare model output and data qualitatively, 
including modes of behavior, shape of 
variables, asymmetries, relative amplitudes 
and phasing, unusual events. 
Examine response of model to test inputs, 
shocks, and noise. 
Zero out key effects (loop knockout analysis). 
Replace equilibrium assumptions with 
disequilibrium structures. 
Calibrate the model to the widest possible 
range of related systems. 

Keep accurate, complete, and dated records 
of model simulations. Use model to simulate 
likely future behavior of system. 
Resolve all discrepancies between model 
behavior and your understanding of the real 
system. 
Document participant and client mental 
models prior to the start of the modeling 
effort. 

(Continued) 
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Test Purpose of Test 

I 1. Sensitivity Numerical sensitivity: Do the 

significantly. . . 
Behavioral sensitivity: Do the 
modes of behavior generated by 
the model change significantly . . . 
Policy sensitivity: Do the 
policy implications change 
significantly. . . 
. . . when assumptions about 
parameters, boundary, and 
aggregation are varied over the 
plausible range of uncertainty? 
Did the modeling process help 

Analysis numerical values change 

12. System 
Improvement change the system for the better? 

Tools and Procedures 

Perform univariate and multivariate 
sensitivity analysis. 
Use analytic methods (linearization, local 
and global stability analysis, etc.). 
Conduct model boundary and aggregation 
tests listed in (1) and (2) above. 
Use optimization methods to find the best 
parameters and policies. 
Use optimization methods to find parameter 
combinations that generate implausible 
results or reverse policy outcomes. 

Design instruments in advance to assess 
the impact of the modeling process on 
mental models, behavior, and outcomes. 
Design controlled experiments with 
treatment and control groups, random 
assignment, pre-intervention and post- 
intervention assessment, etc. 

Source: Adapted and extended from Forrester and Senge (1980). 

21.4.1 Boundary Adequacy Tests 
Boundary adequacy tests assess the appropriateness of the model boundary for the 
purpose at hand. The first step is to determine what the boundary is. Helpful tools 
for this purpose include model boundary charts and subsystem diagrams (chapter 
3). If the modeler does not supply these you should construct your own by direct 
inspection of the model equations. Search the model equations for exogenous in- 
puts to confirm that the list of exogenous variables is complete. Remember that all 
constants are exogenous but may in fact be variable over the time horizon of inter- 
est. You should inspect model diagrams, if provided, or construct causal diagrams 
from the model equations to identify constants that might properly be considered 
variable. 

Once the model boundary is established, consider whether there are potentially 
important feedbacks omitted from the model. Of course the list of omitted concepts 
and variables is infinite. Your concern is whether any feedbacks omitted from the 
model, if included, might be important given the purpose of the model. Interviews 
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with key participants and outside experts, review of the relevant literature and 
archival materials, and direct experience with the system may suggest some 
processes that perhaps should be made endogenous. Construct a dynamic hypoth- 
esis suggesting how the inclusion of the candidate feedback might alter the dy- 
namics or policy implications of the model. If review of the data suggests the new 
structure might matter, you should add it to the model and examine its effects on 
the behavior (not only for the base case but also for a wide range of sensitivity 
tests). 

If an additional structure has a significant impact on the behavior or policy im- 
plications of the model then it must be included. If it has no impact, you can 
choose to omit it so your model is smaller and easier to explain or retain it if it 
builds client confidence in the model. 

Example: Model Boundary Assumptions in the Debate over NAFTA 
During the congressional debate over the North American Free Trade Agreement 
(NAFTA) in the early 1990s, proponents of NAFTA argued that free trade would 
boost the incomes and standard of living of all trading partners. The traditional 
economic theory of comparative advantage suggests trade benefits both parties be- 
cause each can produce more of what it is best at and trade for the rest, instead of 
producing all the goods and services it consumes with lower efficiency. NAFTA 
opponents, however, argued that companies would divert capital investment from 
the US, with its high wages and comparatively strict environmental regulations, to 
Mexico, destroying US jobs and harming the environment. They argued that capi- 
tal mobility would lead to a “race to the bottom” that would drag down wages, 
safety standards, and environmental quality as different countries competed for 
factories and jobs. 

Dozens of econometric models were used to predict the effects of NAFTA on 
the health of the US, Canadian, and Mexican economies and their results were 
used to buttress the arguments in the debate. The vast majority of these models 
suggested NAFTA would be a boon to all three economies, with little or no short- 
run costs. The models were used to argue that concerns over capital flight from the 
US were misplaced. 

The Congressional Budget Office (1993) examined 19 models used to make 
forecasts of the impact of NAFTA. Of the 19 models, 14 did not consider invest- 
ment flows at all. Of the five that did, four assumed there would be no impact on 
US investment. Implicitly, they assumed all NAFTA-induced investment in Mex- 
ico would come from nations other than the US. The one study that treated invest- 
ment endogenously concluded that NAFTA would transfer $2.5 billion per year in 
investment from US to Mexico, resulting in a loss of about 375,000 US jobs over 
5 years. 

Following standard practice since the days of Smith and Ricardo, most 
NAFTA modelers assumed that capital and labor were fixed and immobile. Goods 
flowed between nations in trade but capital and labor could not. The theory of 
comparative advantage works under these conditions. But when capital is mobile, 
comparative advantage no longer operates because businesses will locate in the re- 
gion with the greatest absolute advantage. Assuming immobile capital eliminated 
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important feedbacks from the model boundary, feedbacks that changed the out- 
come of the policy analysis. 

This discussion is not to argue that NAFTA was a mistake. Rather, the point is 
that the results of the models depended on boundary assumptions that were at the 
very least questionable and that were certainly not made explicit by the modelers. 
None of the models endogenously treated NAFTA's effect on illegal and legal im- 
migration, the effects of border development on environmental quality, water de- 
mand, demographic patterns, and so on. Partisans (on both sides) selected models 
consistent with their political views and did not make their assumptions available 
for review. In the debate over NAFTA, as so often in public policy, models were 
not used honestly as tools of inquiry to build shared understanding but as clubs to 
beat down the other side. 

21.4.2 Structure Assessment Tests 
Structure assessment tests ask whether the model is consistent with knowledge of 
the real system relevant to the purpose. Structure assessment focuses on the level 
of aggregation, the conformance of the model to basic physical realities such as 
conservation laws, and the realism of the decision rules for the agents. 

In both boundary adequacy and structure assessment testing, you should look 
for free lunches, inconsistencies, and inappropriate assumptions about the avail- 
ability, flexibility, and cost of the resources needed for activity to occur. Identify 
externalities and side effects that should be captured endogenously. Make sure the 
full costs and benefits of actions are captured. If necessary, create new model struc- 
ture to account for these costs, even if the accounting systems in the real system do 
not (see, e.g., the discussion of the costs of instability in chapter 19). 

Violations of physical laws such as conservation of matter or energy usually 
arise because the model does not appropriately capture the stock and flow structure 
of the system. Other common violations of physical law involve stocks that can 
become negative. Real quantities such as inventories, populations, and cash bal- 
ances cannot be negative. Therefore the outflows from all such stocks must ap- 
proach zero as the stock approaches zero. This means there must be a first-order 
negative feedback loop that restricts all the outflows from real stocks so that the 
flow is zero when the stock is zero (section 13.3). These loops must be first-order 
because any time delay in the loop could cause the rate to continue even after the 
stock reaches zero, a physical impossibility. You can check for the presence of 
first-order control by direct inspection of the equations. 

Free lunches arise when activities that require important resources in the real 
system are assumed to occur without those resources in the model. For example, 
the first supply chain model in chapter 18 assumed production starts equaled the 
desired production start rate, implying the firm could adjust starts to the desired 
rate instantly and without cost. Relaxing this assumption significantly alters the 
dynamics of a supply chain. 

Structure assessment tests are carried out using many of the same tools useful 
in boundary assessment. Subsystem diagrams and stock and flow maps help reveal 
the level of aggregation. Policy structure and causal diagrams reveal the informa- 
tion cues used in each decision. Direct inspection of the equations reveals the 
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heuristics assumed at each decision point. Partial model tests (chapter 15) can 
demonstrate the intended rationality of the individual decision rules. In addition, 
laboratory experiments can reveal how people actually make decisions in situa- 
tions analogous to those represented in the model (e.g., Sterman 1989a, b). Another 
technique to test the appropriateness of aggregation assumptions is to develop a 
more detailed submodel, then compare its behavior to that of the more aggregate 
formulation. As in boundary adequacy tests, disaggregation of a suspect structure 
may show that the extra detail is important. When disaggregation does not signifi- 
cantly affect model results and policy implications (relative to the purpose, as al- 
ways) then the original, simpler model can be retained. 

Example: Water Flowing Uphill 
The Pecos river originates in New Mexico and also flows through Texas. Begin- 
ning in the 1940s both states claimed its water. The dispute led to a series of law- 
suits over water rights. Engineering and hydrologic studies of the watershed dating 
as far back as 1949 were used by both states to plead their case with various courts. 

As described by Allison et al. (1994, p. 21), a review in the 1980s revealed that 
the model used by New Mexico “violated basic physical flow relations . . . For 
some reaches of the river. . . water would have had to flow upstream to satisfy the 
hydrological mass balance requirements.” The model developers failed to conduct 
basic tests for conformance to physical laws. Even more remarkably, the error went 
undetected for years despite the scrutiny applied to expert testimony in an adver- 
sarial proceeding. Once the error was discovered it formed a key part of the case 
for Texas. The US Supreme Court ultimately ruled in favor of the Lone Star state. 

Example: Reversing irreversible Decisions 
A linear programming model of the leather market consistently outperformed the 
actual market. Examining why the model did so much better than real people, the 
developers discovered that the model made exceptionally good use of its equations 
describing the supply of leather. During periods of economic downturn, the model 
simply converted the leather back into cows.* 

Example: Negative Stocks 
Andersen and Sturis (1988) proposed a model of a manufacturing firm to explore 
chaotic dynamics in a management setting. The model included the following 
structure for the shipment rate: 

Inventory = INTEGRAL(Producti0n Rate - Shipment Rate, Inventoryb) (21- 1) 

Shipment Rate = Customers * Average Sales per Customer (21-2) 

where Average Sales per Customer was constant. The stock of customers was in- 
creased by recruitment resulting from sales effort and decreased as customers de- 
fected to other suppliers. 

Customers = INTEGRAL(Customer Recruitment - Customer Defection, Customersh) 
(21-3) 

8Source: Prof. Marshall van Alstyne, University of Michigan, personal communication. 
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The customer loss rate increased dramatically whenever inventory fell below the 
desired level, as customers responded to low product availability: 

Customers 1 * Effect of Availability 
= (Normal Customer Life on Defection 

Effect of Availability - - Desired Inventory - Inventory 
on Defection ( Desired Inventory 

(21-4) 

(21-5) 

Inspection of the equations shows the model lacks first-order negative feedback 
control over the shipment rate (setting inventory to zero does not immediately 
force shipments to zero). Though zero inventory does cause the stock of customers 
to fall rapidly, the drop is not instantaneous, allowing inventory to fall below zero. 
Imagine the case where a fire destroys all inventory one night. The next morning, 
there has not yet been any change in the stock of customers, so shipments continue 
though there is no product to ship. Reformulating the model to correct this and 
other flaws significantly changes its dynamics and stability. 

Example: Recovery of the US Economy from Nuclear War 
During the Cold War the US government commissioned studies to assess the eco- 
nomic impact of nuclear war. One such model, dubbed the “Economic Recovery 
Model” (Dresch and Baum 1973) was used to evaluate the effects of different So- 
viet attacks on the US, including a 500 megaton attack. To put that in perspective, 
the bomb that destroyed Hiroshima yielded 14 kilotons, 36,000 times less. The 
model suggested that the gross national product (GNP) of the US would recover to 
80% of preattack production after just 9 years-and that’s total GNP, not GNP per 
capita. They also examined the effects of an attack directed at the petroleum sec- 
tor. Officials feared that a few missiles, by destroying the petroleum sector and 
causing massive fuel shortages, might cripple the entire e c ~ n o m y . ~  The model sug- 
gested there was nothing to worry about. Immediately after a 250-megaton attack 
directed at the petroleum sector, total GNP fell to 22% of the preattack rate. But 
after 1 year, GNP jumped to 61% of prior output, and after 5 years it reached 94% 
of preattack output. 

The amazing recovery potential suggested by these results means both the US 
and USSR needed very large arsenals of nuclear weapons to ensure that they could 
“win” a nuclear war and thus serve as a deterrent. Results such as these were cited 
by cold warriors as evidence that the US needed still more nuclear weapons. 

Sastry, Romm and Tsipis (1987) conducted boundary and structure assessment 
tests on the model and found a number of unreasonable assumptions. Though os- 
tensibly dynamic, it was actually a general equilibrium input/output model in 
which the entire economy was assumed to be in equilibrium at all times. The 
model did not represent stocks of materials, energy, and other resources as dy- 
namic quantities that could affect the ability of industries to function. In equilib- 
rium, stocks are constant, so they are usually omitted from general equilibrium and 
I/O models, which treat only the steady state flows of goods and services through 

9Destroying the petroleum industry requires targeting oil fields, ports, and refineries (nearly the 
entire east, west, and Gulf coasts of the US, plus Texas, Oklahoma, Alaska, Ohio, and other states 
where oil fields and refineries are located), causing a regrettable number of civilian casualties. 



866 Part VI Model Testing 

the economy. Whether equilibrium is a reasonable assumption for the economy 
under normal circumstances can be debated. But the notion that the economy im- 
mediately returns to equilibrium after a nuclear war, without any shortages of ma- 
terials, energy, labor, and other resources upon which production depends, beggars 
belief. 

Dresch and Baum (1973), noting the flaws in their own model, commented 
that the near trebling of GNP in a single year “is largely a consequence of the two- 
year lag assumed to be required for capital replacement.” In their model capital 
stocks always reached optimal levels in 2 years independent of the capacity of the 
capital-producing industries, their ability to acquire the necessary raw materials 
and energy, the availability of liquid fuels to operate construction equipment and 
ship product to customers, the availability of skilled workers, and the ability of the 
government to maintain order-in short, without regard to the effects of the very 
attack their model was designed to evaluate. 

Sastry et al. (1987) modified a system dynamics model developed for the Fed- 
eral Emergency Management Agency to eliminate these free lunches and equilib- 
rium assumptions. In the revised model, small attacks focused on petroleum 
refineries could cripple the economy through a cascading chain of fuel shortages 
that shut down production of key industries such as transportation, construction, 
and manufacturing, thwarting efforts to rebuild the energy sector and causing food 
shortages that led to starvation and anarchy. The results implied that a very small 
strategic arsenal provided sufficient deterrent capability and that the strategic mis- 
sile defense system (so-called star wars) then advocated by the Reagan adminis- 
tration would have to be nearly perfect to protect the US. 

21.4.3 Dimensional Consistency 
Dimensional consistency is one of the most basic tests and should be among the 
very first you do. You should always specify the units of measure for each variable 
as you build your models. Do not wait until afterward to fill in the units and check 
for consistency. Dimensional inconsistency may reveal nothing more than a typo- 
graphical error, an inverted ratio, or a missing time constant. More often, units 
errors reveal important flaws in your understanding of the structure or decision 
process you are trying to model. 

Some simulation software packages for system dynamics now include auto- 
mated dimensional analysis so you can test for dimensional errors with a single 
command. However, a model that generates no error messages when you run the 
dimensional consistency check does not necessarily pass the test. Every equation 
must be dimensionally consistent without the inclusion of arbitrary scaling factors 
that have no real world meaning. The only way you can identify such fudge fac- 
tors is by direct inspection of the equations. Parameters with meaningless names, 
strange combinations of units (widgets2/$/month3), or nondimensionless parame- 
ters with values of unity are suspect. 

21.4.4 Parameter Assessment 
Before deciding how a parameter should be estimated or whether its value is rea- 
sonable make sure every constant (and variable) has a clear, real-life meaning. 
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Next you must decide how to estimate the values of each parameter. The basic 
choice is formal statistical estimation from numerical data, or judgmental estimation. 

The estimation of parameter values from numerical data receives a great deal 
of attention in modeling, particularly the econometric tradition. System dynamics 
modelers are well advised to study econometrics and other approaches to formal 
parameter estimation. It is essential to know how the important regression tech- 
niques work, what their maintained hypotheses and limitations are, and when each 
tool is appropriate. The maintained hypotheses are the assumptions about the data 
and model that must hold for the estimation technique to give reliable and accurate 
results. The most common method, multiple regression by ordinary least squares 
(OLS), is often not appropriate in dynamic models. OLS estimates are not accurate 
in the presence of collinearity (where the variables on the right-hand side are mu- 
tually correlated), autocorrelation (where the dependent variable depends on its 
own past values, that is, where there is feedback), and heteroscedasticity (where 
the variance of the variables is not constant throughout the sample). Other, more 
robust estimation methods are available, ranging from relatively simple maximum 
likelihood and GLS (generalized least squares) methods to sophisticated methods 
such as Kalman filtering. Each has its strengths and weaknesses; you should know 
how to select the simplest method that is appropriate to the feedback structure of 
your model and the statistical properties of the data.'O 

At the same time, limitations on numerical data availability mean it is often 
impossible to estimate all parameters in a model. You must also develop the abil- 
ity to estimate parameters judgmentally using expert opinion gleaned from inter- 
views, workshops, archival materials, direct experience, and other methods (see 
chapter 14). Parameters can also be estimated by developing a disaggregated sub- 
model (see the example below).'l 

In practice, statistical and judgmental methods are used together. Knowledge 
of the real system constrains the plausible range for many parameters; statistical 
estimation provides a check on judgmental estimates. 

In a large model it is usually impractical to estimate all the critical parameters 
simultaneously. Even when possible, simultaneous estimation can lead to problems 
since large models are often underidentified (i.e., more than one set of parameter 
values fit the data equally well). In these cases judgmental estimates grounded in 
knowledge of the system are essential in selecting reasonable parameters. 

Partial model estimation (Homer 1983b) is also useful for parameter selection. 
As in partial model testing for intended rationality (chapter 15), the modeler iso- 
lates a key structure or decision rule, cutting the feedback loops in the full model. 
The inputs to each decision rule or formulation are then driven by the actual his- 
torical data and the parameters are chosen (judgmentally or formally) so the output 

'OTexts such as Berndt (1991) and Greene (1993) provide solid coverage of econometric 
techniques and applications. 

"Response surface methods (e.g., Box and Draper 1987) allow you to capture the response of 
a complex disaggregate model with a few equations. In essence, the behavior of the full model is 
captured by a polynomial approximation corresponding to the f i s t  few terms of the Taylor series 
expansion of the underlying system in the relevant parameters and policy instruments. The approxi- 
mation can then be embedded in a larger model. 
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of the subsystem best fits the data (for examples see Homer 1983b; Fiddaman 
1997; Oliva 1996; and Taylor 1999). 

A caution: The statistical significance of parameters relating variables in an 
equation is not an indicator of the correctness of the relationship. Statistical signif- 
icance indicates how well an equation fits the observed data; it does not indicate 
whether a relationship correctly characterizes causal relationships in the real world. 
A statistically significant relationship between variables shows only that they are 
highly correlated and that the apparent correlation is not likely to have been the re- 
sult of mere chance. Asserting a relationship is causal is a value judgment to be 
made by considering all the evidence, numerical and qualitative. 

Using statistical significance as the test of model validity can also lead model- 
ers to reject equations describing important relationships. A relationship may be 
statistically insignificant simply because there are too few data points or because 
the data don’t vary enough. When direct knowledge of the system suggests a rela- 
tionship is real and important, you must include it, using your best judgment to es- 
timate its values even if the numerical data do not allow you to estimate its 
strength . 

Example: Statistical Estimation of Soft Variables 
Oliva (1996) developed a model to explore the determinants of service quality in 
high-contact settings and applied it to retail banking. As discussed in section 14.3, 
Oliva was able to estimate statistically the response of the workweek and time al- 
located to each customer to workload. Results showed that loan officers were 
nearly twice as willing to cut corners by spending less time with each customer 
than to work overtime when the workload was high. Oliva further hypothesized 
that loan officers’ standards for the time they should spend on each customer in- 
quiry were variable, adjusting over time to the actual time spent. The time spent 
with each customer correlated highly with the customers’ judgment about service 
quality. 

In many models with dynamic goals, norm adjustment is symmetric-norms 
rise as fast as they fall. Others suggest norm erosion is asymmetric, with quality 
norms falling more readily than they rise. Oliva tested for asymmetric norm ad- 
justment by estimating the time constants in the nonlinear smoothing structure de- 
scribed in section l l .4. l. Surprisingly, the estimates showed that while quality 
norms fell quickly when the workload was high, they never rose, even when the 
workload was light: The estimated value of the time constant for revising the time 
per customer norm upward was essentially infinite. Further discussions and review 
of the data showed that the organization did not have any instruments in place to 
monitor customer satisfaction and feed it back to the managers. Whenever work- 
loads were high, workers reduced the time they spent with each customer to clear 
the backlog and soon became habituated to the new levels. Without any way to 
measure the resulting drop in customer satisfaction, management interpreted the 
drop in quality as an improvement in productivity. When work was slow, the work- 
ers felt continuing pressure to meet the organization’s new, lower norms for the 
time spent per customer (appendix B provides further discussion). 

The formal estimation process revealed an important feature of the dynam- 
ics that prior work had not and motivated additional research that confirmed 
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the results of the statistical estimation process. The combination of formal and 
judgmental parameter estimation methods, fieldwork, and archival data analysis 
yielded a more accurate and reliable understanding of the organization’s dynamics 
than any method alone. 

Example: Developing a Detailed Submodel 
Parameters can often be estimated by statistical or modeling work below the level 
of aggregation of the model itself. Homer (1999) developed a model designed to 
improve the performance of a semiconductor equipment manufacturer’s field ser- 
vice organization. An important structure in the model relates field service deliv- 
ery to the availability of technicians and the extent to which technicians are 
cross-trained on the company’s multiple product types. In the real system, there are 
different technicians in different locations, each with his or her own skills, backlog 
of work orders, and availability. The full model aggregated these different re- 
sources and demands into a simple structure consisting of an aggregate backlog of 
service requests and an aggregate capacity to provide service, both treated as con- 
tinuous variables. Service levels were modeled as a simple function of the ratio 
of the backlog and aggregate capacity, modified by a nonlinear effect of cross- 
training. To test whether the aggregate structure was appropriate, Homer de- 
veloped an independent submodel treating the arrival of work and dispatch of 
technicians using a stochastic, queuing theory framework combined with a linear 
programming algorithm for period-to-period optimization of service throughput. 
Individual jobs and technicians were modeled as discrete entities with empirically 
estimated probabilities for arrival and completion of work for each type of product 
and job (e.g., repair, preventive maintenance, or engineering change). The detailed 
submodel showed that the aggregate structure was acceptable for the purpose of 
the full, strategic model and allowed Homer to derive the shape and values of the 
nonlinear function governing the effect of cross-training. 

21.4.5 Extreme Condition Tests 
Models should be robust in extreme conditions. Robustness under extreme condi- 
tions means the model should behave in a realistic fashion no matter how extreme 
the inputs or policies imposed on it may be. Inventories can never drop below zero 
no matter how large the demand may be. The demand for products must fall to zero 
when the price rises high enough. Production cannot occur without materials, 
labor, equipment, and other resources. Extreme condition tests ask whether mod- 
els behave appropriately when the inputs take on extreme values such as zero or 
infinity. 

Extreme condition tests can be carried out in two main ways: by direct inspec- 
tion of the model equations and by simulation. You should examine each decision 
rule (rate equation) in the model and ask whether the output of the rule is feasible 
and reasonable even when each input to the equation takes on its maximum and 
minimum values. Be sure to consider the response of the equation when all inputs 
simultaneously take on their extreme values. 

You should also impose extreme conditions as policies in simulations of the 
model. By using switches that zero out variables and test inputs such as the step 
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and pulse you can simulate conditions such as the complete removal of all workers 
from the firm or a factor of one billion increase in the price of the firm’s product. 
In the former case, production must immediately go to zero. In the latter case, the 
demand for the firm’s products must immediately drop to zero. Such tests, termed 
“reality checks” by Peterson and Eberlein (1994), quickly uncover flaws, a great 
advantage in a large model. In addition, whole model extreme condition tests may 
reveal subtle flaws that direct inspection may miss. When an extreme condition 
simulation generates implausible behavior you should examine the equations of the 
affected formulations to identify the precise source of the flaw. 

Example: Extreme Conditions in the Energy System 
In 1979 I worked for the US Department of Energy. The department used a variety 
of models, including system dynamics models, to analyze energy demand, supply, 
prices, and so on. A critical issue was the feedback between the energy sector 
and the rest of the economy. Would energy price hikes reduce the gross na- 
tional product, boost unemployment, and accelerate inflation? What would be the 
economic consequences of another oil embargo? Lacking an in-house model of 
energy-economy interactions, the department solicited a proposal from a highly re- 
spected macroeconomic forecasting firm, which claimed its model could do the 
job. I was given the task of evaluating the suitability of the model. The first test 
I conducted was an extreme condition test. I asked what would happen to the GNP 
of the United States if all energy sources (oil, gas, coal, nuclear, hydro, etc.) in- 
stantly and unexpectedly disappeared. Suddenly deprived of all forms of energy, 
the GNP must rapidly drop close to zero (as soon as inventories are depleted). 
Accessing the model via a time-sharing link, I implemented the test. The result: 
The GNP went up. 

Examining the model equations showed that, consistent with its origins as a 
traditional demand-side Keynesian model, GNP was formulated as depending on 
aggregate demand. Aggregate demand consists of consumption, investment, gov- 
ernment expenditure, and net exports (the famous identity GNP = C + I + G + X 
familiar from introductory macroeconomics). C, I, and G were formulated as de- 
pending on factors such as consumers’ incomes, business profitability, interest 
rates, and so on. Output of goods and services did not require inputs of energy, and 
a 100% embargo did little. Why then did the GNP go up? Oil imports fell to zero, 
so net exports increased. 

You may object, as the model’s developers did, that the test was irrelevant 
since such extreme conditions could never arise in reality. The model replicated the 
historical behavior of the economy and the energy sector quite well, so, they ar- 
gued, it was a reliable guide to their likely behavior in the future. These arguments 
are mistaken. 

The test uncovered limitations of the model that rendered it unusable for our 
purpose. We needed to know how a physical shortage of oil (caused by possible 
embargoes) would affect the economy. A model in which production requires no 
energy cannot answer such questions. The energy sector had been tacked on as a 
set of ad hoc additions to the original model. Production drove energy consump- 
tion in the model but energy availability had no impact on production. Lacking 
such basic physical realities, the only way the modelers could answer the questions 
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we posed was through still more ad hoc adjustments to model structure, or add- 
factoring based on their mental models. 

The fact that a model replicates historical data well is irrelevant if it fails im- 
portant extreme condition tests. Models are usually intended to design policies to 
solve problems, improve performance, or analyze contingencies for which experi- 
ence provides no guide. The goal of policy design is to move the system outside 
the limited range of historical experience. Extreme condition tests provide a criti- 
cal test of the extent to which models capture underlying physical realities and con- 
straints that affect behavior outside the conditions observed in the past. 

Extreme Condition Tests 
For each of the following, use extreme condition tests to evaluate the proposed 
formulations. If you identify any problems, propose a solution and show that your 
solution passes the extreme condition test. 

1. 
until they are shipped. An analyst proposes the following structure to model the 
firm's orders, shipments, and revenues. 

A firm operates a make-to-order system. Orders accumulate in a backlog 

Backlog = WTEGRAL(0rders - Shipments, Backlogb) (21-6) 

The order rate responds to price; the analyst assumes a constant elasticity 
demand curve with elasticity ed < 0: 

Orders = Reference Orders * (PriceReference Price)"d (21-7) 

The firm recognizes revenue when the product is shipped: 

Revenue = Price * Shipment Rate 

Shipments are determined by capacity and capacity utilization: 

Shipment Rate = Capacity * Capacity Utilization 

Capacity Utilization = ADesired ProductiodCapacity) 

(21-8) 

(21-9) 

(2 1 - 10) 

Desired Production = Backlog/Target Delivery Delay (21-11) 

Assume the capacity utilization function is well formulated, withf(0) = 0, 
f(1) = 1, andf(m) = f,, = maximum utilization. 
2. 
was modeled as the accumulation of net production capacity receipts PCR: 

In Forrester's (1968) original market growth model production capacity PC 

PC = WTEGRAL(PCR, PC,J (21-12) 

Net capacity receipts were determined by production capacity orders PCO with a 
delay given by the production capacity receiving delay PCRD. Forrester assumed 
a third-order material delay: 

PCR = DELAY3(PCO, PCRD) (2 1 - 13) 

The stock of capacity on order accumulated capacity orders less receipts: 

PCOO = INTEGRAL(PC0 - PCR, PCOOJ (2 1 - 14) 
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The firm expands capacity by a net capacity expansion fraction, CEF, per year: 

PCO = PC * CEF (2 1 - 15) 

The capacity expansion fraction depends on the perceived delivery delay relative 
to the company’s goal, as in chapter 15. 
3. Models of competitive dynamics among firms must model the demand for 
each firm’s products as it depends on factors such as price, availability, market- 
ing, quality, and so on. Consider the following formulation: 

Demand = a, + a,Price + a,Delivery Delay + a,Advertising + a,Quality (21-16) 

The coefficients ai capture the response of attractiveness to each product at- 
tribute. The linear form of the equation facilitates estimation by regression. 
Estimation results show, as expected, that al and a, are negative while a3 and a, 
are positive. 

Consider also the loglinear variant of equation (21-16): 

Demand = a, * Price”1 * Delivery Delay”2 * Advertising+ * Quality“. (21-17) 

where, again, a,, a, < 0 and a3, a, > 0. 
4. In a model of a complex product development project, an analyst proposes the 
following formulation for stock of work remaining and the rate at which work is 
completed: 

Tasks Remaining 
= INTEGRAL(New Tasks Assigned - Completion Rate, Tasks,) (21-18) 

Completion Rate 
= MIN(Tasks RemainingDT, Labor * Productivity * Workweek) (21-19) 

where DT is the time step used in the simulation. The backlog of tasks remaining 
aggregates activities including design, prototype fabrication, and testing. The 
modeler notes that the MIN function in (21-19) prevents the stock of tasks 
remaining from dropping below zero no matter how large the labor force. 

21.4.6 Integration Error Tests 
System dynamics models are usually formulated in continuous time and solved by 
numerical integration. You must select a numerical integration method and time 
step that yield an approximation of the underlying continuous dynamics accurate 
enough for your purpose. The results of your models should not be sensitive to the 
choice of time step or integration method; the wrong time step or integration 
method can introduce spurious dynamics into your model. Always test for such “DT 
error” by cutting the time step in half and running the model again. If the results 
change in ways that matter, the time step was too large. Continue until the results 
are no longer sensitive to the choice of time step. Likewise run the model with al- 
ternate integration methods. The integration error test should be the first simulation 
test you carry out, since failure here renders all model results meaningless. Appen- 
dix A describes the numerical integration process and various integration methods. 
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Example: Discovering and Correcting Integration Error 
Shantzis and Behrens (1973) developed a system dynamics model of the Tsembaga 
tribe in Papua New Guinea. The Tsembaga, like many indigenous peoples in the 
region, practiced slash and burn agriculture and also kept pigs, a major source of 
wealth and status. Every 12 to 15 years they held an elaborate festival during 
which most of the pigs were slaughtered, followed by the lifting of a taboo against 
war with neighboring clans. During these wars about 10% of the population was 
killed. After highly ritualized funerals, a truce was concluded and conflict was pro- 
hibited until the next pig festival, at which time unavenged deaths from the last war 
provided the impetus for the next cycle of conflict. Early western observers found 
these rituals bizarre and took them as evidence for the savagery of indigenous peo- 
ples. In a pathbreaking study, anthropologist Roy Rappaport (1968/1984) showed 
how pig festivals and wars were triggered by population growth, thus preventing 
the degradation of land fertility. Instead of a cruel and irrational ritual, the pig-war 
cycle was actually a finely honed feedback system that kept the human and pig 
populations within the carrying capacity of the environment, enabling the Tsem- 
baga to live sustainably in their fragile forest ecosystem. 

Shantzis and Behrens created a system dynamics model to test Rappaport’s 
theory. One of the earliest formal models integrating biological, agricultural, de- 
mographic, and cultural variables, it endogenously represented the human and pig 
populations, food production, and the quantity and fertility of the land. The pig fes- 
tivals and wars were triggered endogenously as the pig and human populations be- 
gan to outstrip food production. The model reproduced the observed behavior of 
periodic festivals and wars. Shantzis and Behrens showed that the pig festivaywar 
cycle kept Tsembaga society stable. Their policy analysis further showed that the 
introduction of western culture and technology, such as a ban on war and improved 
health care, could cause population to outstrip the carrying capacity of the land. 
Declining land fertility and food production would then lead to starvation, forced 
migration from their lands, and the destruction of their culture. 

Kampmann (1991) analyzed the robustness of these results. The original 
model was completely documented and fully replicable. However, the model failed 
the integration error test. The original model used a time step of 1 year. Shortening 
the time step caused the behavior to change dramatically. With a small time 
step the model generated a continuous small skirmish rather than an intense war 
followed by a long truce. Instead of a great pig festival every decade, the daily 
lunch was a ham sandwich. 

The time step in models is not a feature of reality but an artifact of the numer- 
ical method used to solve the model. Hence the decision rules in models cannot de- 
pend on the time step. Shantzis and Behrens were inadvertently using the long time 
step as a behavioral parameter to control the duration of the war and the number of 
casualties. The sensitivity of the results to the time step threw all their results into 
question. 

Kampmann reformulated the model so that the duration and lethality of 
the festival and war were specified as explicit parameters. He also corrected a 
number of other formulation errors. The periodic pig-war festivals reemerged in 
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the corrected model. Kampmann’s analysis identified a major error, but in the end 
the reformulated model strengthened the conclusions of the original study. l2 

21.4.7 Behavior Reproduction Tests 
Many tools are available to assess a model’s ability to reproduce the behavior of a 
system. Most common are descriptive statistics to assess the point-by-point fit. 
Point-by-point metrics compute some measure of the error between a data series 
Xd and the model output X, at every point for which data exist and then report 
some sort of average over the relevant time horizon. Table 21-5 lists some of the 
most common measures of point-by-point fit. 

The most widely reported measure of fit is R2, the coefficient of determination. 
R2 measures the fraction of the variance in the data “explained” by the model. 
If the model exactly replicates the actual series, R2 = 1; if the model output is 
constant, R2 = 0. R2 is the square of the correlation coefficient, r, which measures 
the degree to which two series covary.13 

The mean absolute error, MAE; mean absolute percent error, MAPE; mean ab- 
solute error as a percent of the mean, MAEIMean; and (root) mean square error, 
(R)MSE all provide measures of the average error between the simulated and ac- 
tual series. MAE weights all errors linearly; RMSE weights large errors much 
more heavily than small ones. Both measure the error in the same units as the vari- 
able itself. MAPE should not be used, of course, if the data series includes any 
points close to zero. In such a case, the MAE divided by the mean of the data pro- 
vides a more robust dimensionless measure. 

Which measures are best? MSE (and RMSE) penalize large errors far more 
than small ones; usually there is no strong basis for preferring RMSE over MAE. 
The MAPE and MAE/Mean provide dimensionless metrics for the error, which are 
easier to interpret. R2, though it is widely reported and your audience may expect 
it, is actually not very useful. Two series with the same absolute error can generate 
very different values for R2 depending on their common trend. Consider the situa- 
tion X, = X,exp(gt); X, = X, + e. The data and model grow exponentially at the 
same rate g and the model is perfect except for a random error, e. The higher the 
growth rate, the greater the correlation r between the model and data and, there- 
fore, the higher the value of R2, though the error between the model and data is the 
same in all cases. 

It is important to know the sources of error as well as the total size of the error. 
Large errors may be due to a poor model or a large amount of random noise in the 
data. The total error may be large if a mode of behavior in the real system is delib- 
erately excluded as irrelevant to the model purpose. While there is ultimately no 

l2Karnpmann’s critique of the Tsembaga model provides an exemplary application of the tests 
described in this chapter and is well worth consulting, whether your main concern is anthropology, 
biology, or business (see also chapter 14). 

I3The traditional formula for R2 used in regression analysis, R2 = 1 - 2e2/Z(X, - x,)’, 
where the error e = X, - Xd, assumes that the means of the simulated and actual series are equal 
(bias = 0). The equivalent formulation R2 = r2 works even when there is a bias. 
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TABLE 21 -5 
Common summary statistics for assessing model fit to data 

Metric Def i nit ion Formula 

R2 

MAE 

MAPE 

MAE/Mean 

(H)MSE 

Theil’s 
Inequality 
S’tatistics 

Coefficient of determination; the 
fraction of the variance in the 
data “explained” by the model 
(dimensionless). r = correlation 
coefficient between model and 
data series 
Mean Absolute Error (units) 

Mean Absolute Percent Error 
(dimensionless) 

Mean Absolute Error as a fraction 
of the mean (dimensionless) 
(Root) Mean Square Error 
(RMSE: units; MSE: units’) 
Decomposes MSE into three 
components: bias (UM), unequal 
variation (Us), and unequal 
covariation (Uc) (dimensionless); 
UM + us + uc = 1 

1 
MAE = n E Ix, - XdI 

M A P E = - ~  Ixm - xdl; (multiply by 100 for %) 

MAE/Mean = MAE/%; (multiply by 100 for 70) 
n xd 

1 
n MSE = - 2 (X, - xd)2; RMSE = w. 

All summations are carried out over the set of data points. 

substitute for plotting the simulated and actual data together, several statistical 
methods help decompose the error into systematic and unsystematic components. 

The Theil inequality statistics (Theil 1966) provide an elegant decomposition 
of the error by dividing the MSE into three components: bias, unequal variation, 
and unequal covariation. Bias arises when the model output and data have different 
means. Unequal variation indicates that the variances of the two series differ. 
Unequal covariation means the model and data are imperfectly correlated, that is, 
they differ point by point. Dividing each component by the MSE gives the fraction 
of the MSE due to bias (UM), the fraction of the MSE due to unequal varia- 
tion (Us), and the fraction of the MSE due to unequal covariation (Uc). Since 
UM + Us + Uc = 1, the inequality statistics provide an easily interpreted break- 
down of the sources of error. Table 21-6 illustrates the interpretation of the Theil 
statistics for different situations. 

A large bias, indicated by both a large MSE and a large UM, reveals a system- 
atic error, as seen in case (a). Errors due to bias are potentially serious and are usu- 
ally due to errors in parameter estimates. Errors due to unequal variance may also 
be systematic. When unequal variation dominates the MSE, the model and data 
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TABLE 21 -6 Interpretation of the Theil inequality statistics 

Example UM Us Uc Characterization Interpretation 

a. 

b. 

C. 

d. 

1 0 0 X,=X,+ BIAS 
Simulated variable 
equals actual data 
translated by a bias 

Systematic error: 
bias in model should 
be corrected 
by parameter 
adjustment 

0 1  

0 1  

0 1  

0 x, = % f k(Xd - x) 
Simulated variable is 
a stretched version of 
the actual data about 
their common mean 

Systematic error: 
model and data 
have different trends 

0 Same as above Systematic error: 
model and data 
have the same 
phasing but 
different amplitude 
fluctuations 

o X, = X,;  xd = % + f(t) Systematic error 
Simulated variable if r-mkl Purpose 
equals mean of data; 
actual has noise or 
cycles. Model and Unsystematic if 
data are uncorrelated 
because model 
variance = 0 the purpose 

x, = xd + Asin(wt - p) phasing important 
Model fluctuates with 
the same mean, 
amplitude (A), and historical data; 
frequency (w), as unsystematic if 
data but with a 
phase shift (p). random noise 

Model tracks actual mean and h-ends as 
data except for an data but differs from 
error term e(t) with data Point-bY-Point. 
zero mean. Unsystematic error 

unless purpose is 
to study the cycles 
in the data 

involves study of the 
cycles in the data. 

cycles and noise 
are not relevant to 

1 x d  = + Asin(wt) Systematic if 

to purpose and if 
model driven by 

model driven by 

0 a I - a X, = f(t); Xd = f(t) + e(t) Model has same 

“Data” shown by solid line; “simulation” shown by dashed line. 
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match on average and are highly correlated but the variation in the two around 
their common mean differs. One variable is a stretched out version of the other. In 
case (b), Us is large because the trend in the two variables is different. Such a case 
reveals systematic error and directs attention to the assumptions of the model. Sys- 
tematic error is also the verdict in case (c), in which the model does not capture the 
magnitude of a cyclical mode in the data, though the phasing is correct. Such a 
case would direct attention to the factors controlling the amplitude and damping of 
the cycle. 

If both series have the same mean (UM = 0) and either the model or data series 
is nearly constant, then Uc will be small because the standard deviation s, or s d  

will be small. As shown in case (d), the error would reflect random noise or a 
cyclic mode in one of the series not present in the other. The interpretation depends 
on the purpose of the model. If the model is designed to investigate the cycle in the 
data, failure to generate the cycle would clearly be a systematic error. If the pur- 
pose of the model is analysis of long-run behavior that abstracts from short-term 
movements, failure to capture the cycle is unimportant. The cycle becomes unsys- 
tematic noise relative to the model purpose. 

If the majority of the error is concentrated in unequal covariation, Uc, the 
model captures the mean and trends in the data well, differing from the data only 
point by point (cases e and f). These cases might indicate a fairly constant phase 
shift of a cyclical mode otherwise reproduced well. More likely, a large Uc indi- 
cates the presence of noise or cyclical modes in the data series not captured by the 
model. When Uc is large the majority of the error is unsystematic; a model should 
not be faulted for failing to match the random component of the data. 

The Theil statistics help you characterize the sources of error. Ideally, the error 
(indicated by MAPE, RMSE, etc.) should be small and unsystematic (concentrated 
in Uc). Large errors and large bias or unequal variation fractions indicate system- 
atic error and should lead to questions about the assumptions of the model. The cri- 
teria for deciding whether an error is large or systematic depend on the purpose of 
the model. If the errors arise from modes of behavior excluded from the purpose, 
then the errors do not compromise the utility of the model for that purpose. 

Error measures such as MAPE and R2 measure the point-by-point correspon- 
dence of the model and data. There are several circumstances in which you should 
not expect your model to correspond to the data on a point-by-point basis. Many 
systems, including the supply chains and commodity markets examined in chap- 
ters 17-20, selectively amplify certain frequencies in the random shocks that 
constantly perturb them. Since no model can capture all the random variations in 
the environment, model dynamics can diverge from the data even ifthe model is 
pe$ectZy specified. l4 Further, in path-dependent systems small differences in ran- 
dom events can dramatically alter the trajectory of the system, including its ulti- 
mate equilibrium (see, e.g., Figure 10-25). The data might show a certain product 

141n chaotic systems it is even worse. Because chaotic systems have the property known as 
sensitive dependence on initial conditions, the model diverges from the true system exponentially 
even when there are no random shocks, given only a small error in initial conditions. 
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growing to dominate its market. Running the model with different random pertur- 
bations might cause that product to win sometimes and lose to the competition 
sometimes. The real world that generated the data can be thought of as just one re- 
alization of the process; small differences in unobservable perturbations might 
have led to a completely different outcome. 

In general, the greater the extent to which the model’s dynamics are driven by 
exogenous inputs, the greater the point-by-point correspondence of the model and 
data should be. The exogenous inputs, including their blips and dips, force the 
model to dance to a particular beat. In a model that is not forced by any historical 
data series it is often necessary to excite the model’s latent modes of behavior with 
random noise. Even when the random noise is drawn from the correct distribution, 
the point-by-point values will differ from historical experience, and so will model 
output. 

Figure 21-1 illustrates this dynamic with two simulations of the inventory- 
workforce model developed in chapter 19. The system is disturbed from equilib- 
rium by a random variation in labor productivity with a standard deviation of 5% 
and a correlation time of 4 weeks (see appendix B). These random shocks cause 
the system to oscillate irregularly. One simulation can be interpreted as the real 
data and the other, as the output of the model. The model is a perfect replica of the 
real system-identical structure, initial conditions, and parameters. The trajectories 
of the two simulations are identical as long as the “model” is driven by exactly the 
same random shocks as the “real system.” Beginning in week 200, the random 
shocks perturbing the model begin to differ. The random variations are drawn from 
the same distribution, with the same variance and correlation time, but differ point 
by point. The behavior of the model quickly diverges from the data. The inertia of 
the system causes the trajectories to remain close for only a few weeks; after that 
there is no point-by-point correspondence between the model and the real system 
though the model is perfect. Obviously, point-by-point measures of error such as 
R2, MAPE, or RMSE would be grossly misleading as indicators of the realism and 
utility of the model. 

Point-by-point error measures are not meaningful when a model is highly sen- 
sitive to noise. Instead, a good model should exhibit the same modes of behavior 
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observed in the data. Fluctuations should have the same frequencies and am- 
plitudes. The phase relationships (leads and lags) among the variables should be 
the same as observed in the data. The variability of features such as amplitude, 
frequency, and phase lags should also correspond to the data. The ability of a 
model to generate the appropriate patterns of behavior can be assessed qualita- 
tively, by judgment, or statistically. Tools such as spectral analysis measure the 
strength of fluctuations at each frequency. The autocorrelation function quantifies 
the inertia or persistence in a variable; cross-correlation functions show how one 
variable depends on current and past values of another. Barlas (1989, 1990) 
describes how these and related tools can be used to quantify the correspondence 
of the model and data in terms of relative amplitudes, frequencies, phase lags, and 
other relationships. 

Even when you use statistical measures to assess the correspondence of the 
model to the data you should always plot the simulated and actual data together. 
Examine the model to see if it captures asymmetries and other subtle features of 
the behavior observed in the data. 

Beware a modeler who asserts that the model’s ability to fit the data indicates 
that the model is valid or confirms the model. Any such assertion is logically fal- 
lacious. Behavior reproduction tests cannot prove a model is correct or reliable. To 
argue that fitting the data implies that the model must be correct or superior to 
other models commits the fallacy of affirming the consequence: There may be 
many models that replicate the data well; observing that one does can never show 
that the behavior of the real system was generated by any particular structure. 

As shown in section 9.3.2, different models can fit a data set equally well yet 
give radically different forecasts or policy results outside the historical range. In- 
deed, given any set of data, there always exists an infinite number of models that 
fit those data to any arbitrary degree of accuracy you care to specify, all yielding 
different behavior outside the range of experience. l5 

The proper use of the behavior reproduction test is to uncover flaws in the 
structure or parameters of the model and assess whether they matter relative to the 
purpose. Instead of showing how well your model fits, you should point out to 
your clients all the places it doesn’t. These discrepancies mark the trails that can 
guide you to erroneous parameter estimates and inappropriate assumptions you 
should revise before using the model for policy analysis. Every discrepancy should 
be discussed. Those discrepancies you believe are significant must lead to model 
revision, until you and your client agree that the remaining differences between the 
behavior of the model and the data do not matter to the purpose and need not be 
corrected. The revisions you undertake to resolve important discrepancies between 
model behavior and data must also be consistent with all the other formulation 
principles discussed above. It is not acceptable to introduce fudge factors or ex- 
ogenous variables whose sole function is to improve the historical fit of the model. 

I5This is because any data set can be approximated arbitrarily well by different families of func- 
tions, such as the Taylor series or Fourier series, if enough terms are included. Adding additional 
higher-order terms to these functions changes their behavior outside the range of historical data. 
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Doing so serves only to lull the client into accepting the model while covering up 
its underlying flaws. 

Example: Capital Punishment 
What is the effect of capital punishment on the murder rate? This emotionally 
charged issue has been the subject of many empirical studies. Often, regression 
techniques are used to estimate how the murder rate differs between states with and 
without the death penalty. Learner (1983) conducted a boundary adequacy test by 
exploring the robustness of such regressions to different sets of explanatory vari- 
ables. The dependent variable is the murder rate per 100,000 people, and the ex- 
planatory variables include measures of deterrence such as the probability of 
execution given conviction for murder, the median time served given conviction, 
and the probability of conviction given arrest. Of course, since the different states 
vary in more ways than whether they execute convicted murderers, the regressions 
must include additional explanatory variables in an attempt to control for these 
other sources of variation. The choice of these “nuisance variables” is a matter of 
judgment, and different investigators select different explanatory variables based 
on their ideological perspective. Learner selected a set of control variables com- 
monly used in such studies, including economic indicators (e.g., median family or 
personal income, the fraction of households below the poverty line, the unemploy- 
ment rate, labor force participation) and social variables (e.g., racial composition, 
the fraction of the population younger than 25, the fraction of the population living 
in large cities, the fraction of two-parent families). 

Selecting different sets of explanatory variables gives wildly different results, 
all statistically significant: A single execution could deter as many as 29 murders 
or actually lead to an increase of more than 12 murders. The extreme sensitivity of 
the results to choice of model variables left Learner (1983, p. 42) “with the feeling 
that any inference from these data about the deterrent effect of capital punishment 
is too fragile to be believed.” 

21.4.8 Behavior Anomaly Tests 
Data limitations often mean it is not possible to establish the significance or 
strength of important relationships or formulations by statistical means. Behavior 
anomaly tests examine the importance of these structures by asking whether anom- 
alous behavior arises when the relationship is deleted or modified. Anomalous be- 
havior generated by deletion of a relationship provides you with some evidence for 
its importance. 

Loop knockout analysis is a common method to search for behavior anomalies. 
In loop knockout tests you zero out a target relationship. For example, in decision 
rules of the form Corrective Action = (Desired State - State)/Adjustment Time, 
you knock out the loops passing through the corrective action by setting the 
adjustment time to an essentially infinite value. You can also eliminate loops by 
setting the delay times in information delays to infinity and by setting nonlinear 
functions y = f(x) to unity for all values of x. Anomalous behavior resulting from 
a knockout test suggests the importance of the loop and may help establish a plau- 
sible range for the parameters and relationships. 
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Loop knockout analysis can be revealing when the model is operating under 
historical conditions but is particularly effective in conjunction with extreme con- 
dition tests. Often a loop is not active under normal operating conditions but be- 
comes dominant in unusual circumstances. If a loop knockout test generates 
bizarre or physically impossible behavior under extreme conditions you have evi- 
dence that the relationship is important and must be included, even if it is not nor- 
mally active and cannot be estimated statistically from the data. 

Another form of behavior anomaly test replaces a disequilibrium structure 
with a simplified structure that assumes a subsystem is in equilibrium. For exam- 
ple, perception and material delays can be eliminated, in effect assuming decision 
makers can instantly recognize changes in the states of the system and instantly al- 
ter those states. Senge (1978, 1980) used behavior anomaly tests as a complement 
to econometric estimation to show that certain disequilibrium formulations were 
important in capital investment (section 11.5). For example, assuming manu- 
facturing firms based capital investment only on their forecast of orders, implicitly 
assuming inventories and backlogs were always in equilibrium, generated implau- 
sible behavior under both historical and extreme conditions. 

21.4.9 Family Member Tests 
The family member test asks whether the model can generate the behavior of other 
instances in the same class as the system the model was built to mimic. A model of 
corporate growth should not only explain why one particular company grew but 
also why some other companies, with different policies and parameters, experience 
growth punctuated by periodic crises, why some stagnate, and why some fail alto- 
gether (Figure 3-6). A model of urban growth such as Forrester’s Urban Dynamics 
model, “with appropriate choice of parameters . . . should behave like cities as 
different as New York, Dallas, . . . Berlin and Calcutta” (Forrester and Senge 1980, 
p. 221). Chapter 20 showed that the generic commodity model generated the cyclic 
behavior observed in the pulp and paper industry. It should also generate the ap- 
propriate frequencies, amplitudes, phase relationships, and other characteristics ob- 
served in commodities such as copper, cocoa, and coffee when the parameters 
characterizing these commodities are used. With suitable structural changes to rep- 
resent livestock, the same model should generate the hog cycle when calibrated 
with hog gestation times, litter sizes, and so forth, and the cattle cycle when cali- 
brated with cattle parameters. 

The more diverse the instances of a system a model can represent the more 
general the theory it embodies. The family member test is particularly helpful 
when the class of systems the model addresses includes a wide range of different 
patterns of behavior. You should be suspicious of any model that can exhibit only 
a single mode of behavior. Consider innovation diffusion. Models such as the Bass 
diffusion model (chapter 9) can only generate one mode of behavior: S-shaped 
growth. In reality, many new products and new innovations fail. Others fluctuate 
as they move in and out of fashion. A general innovation diffusion model should be 
capable of capturing all these patterns. In contrast to the simple growth models, 
Homer (1983a, 1987) developed a rich behavioral model for the diffusion of new 
medical technologies. Besides the basic word of mouth and marketing feedbacks 
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in the Bass model, it included endogenous technological progress, experience di- 
lution and learning curves among clinicians, changes in the indications governing 
the use of the technology, changes in patient outcomes, and follow-up studies as- 
sessing the effectiveness of the new technology. The model successfully replicated 
very different emergence patterns for several medical innovations ranging from 
highly successful devices such as the cardiac pacemaker, to failures, to an antibi- 
otic whose sales fluctuated as side effects were discovered and new applications 
were found. The model has since been used to examine new medical technologies 
ranging from drugs to artificial skin. 

21.4.1 0 Surprise Behavior Tests 
Discrepancies between model behavior and expectation indicate that there are 
flaws in the formal model, the mental model, or both. Often, of course, discrepan- 
cies between model output and your understanding of the system’s dynamics indi- 
cate defects in the formal model. Occasionally, however, it is your mental model 
and your understanding of the data that require revision. The surprise behavior test 
is passed when a model generates a certain behavior, previously unrecognized, and 
it does indeed occur in the real system. Einstein’s theory of general relativity pro- 
vides a famous example. Einstein suggested that gravity bends the fabric of space- 
time, causing light to follow what appear to be curved paths. In 1919 the British 
astronomer Sir Arthur Eddington tested the theory by photographing stars whose 
light passed near the sun during a total eclipse. General relativity predicted that the 
light from these stars would curve by a certain amount as it passed close by the 
sun. Eddington showed that the apparent positions of these stars, briefly visible 
during the eclipse, were indeed shifted by an amount consistent with the predic- 
tions of Einstein’s theory. Finding the unexpected behavior gave general relativity 
a powerful boost. 

To take an example from business, Forrester once developed a model for a 
large automotive components manufacturer. The company had been losing market 
share for some years despite the technical superiority of their products. Many in 
the company blamed increasing competition. Most assumed market share was 
eroding faster during expansions than recessions, reasoning that customers would 
turn to the competition only when the firm’s products were in short supply. How- 
ever, in the simulations market share fell faster during recessions than booms. 
Initially, Forrester suspected there was a problem in the way he had captured 
the firm’s inventory management policies. Further testing, however, revealed no 
errors. The counterintuitive result arose from the firm’s extreme aversion to 
holding inventories. Whenever orders turned down, they slashed part orders and 
production so aggressively that the product was actually less available during mar- 
ket downturns than during expansions. A close review of the data showed that 
market share was in fact falling fastest during recessions. This surprising result 
eventually prompted a change in the firm’s production policies (Forrester, personal 
communication). 

Note that the surprise behavior test does not require the model to predict future 
events such as who will win the Kentucky Derby next year. The sun had been 
warping space-time all along, but until Einstein suggested the surprising result that 
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gravity could bend light, no one thought to look. So it is with models of less cos- 
mic significance: Until Forrester’s model suggested the counterintuitive result that 
product could actually be less available during recessions than booms, the idea that 
recessions led to product gluts went unchallenged. We never have all the data, nor 
the time to search for all the important patterns. A main benefit of modeling is sug- 
gesting what to look for. 

For the surprise behavior test to be effective you must analyze model behavior 
closely. Look at the behavior of all variables, not only the major indicators. Track 
down the sources of all unexpected or anomalous behavior (Mass 1991). Like any 
good scientist you should keep a laboratory notebook that documents your work. 
You must also overcome the problems of hindsight bias and reconstructive mem- 
ory. After you present your analysis it is common for the client or audience to 
claim that the results are obvious, saying “You don’t need a model to figure that 
out” or “I knew it all along.” Because modeling is iterative, learning is often grad- 
ual, and people find it hard to remember how they perceived the situation before 
the project began. To overcome hindsight bias you should carefully document the 
mental models of the client team prior to the modeling effort (an important part of 
the process of establishing the purpose of the effort in any case). 

21.4.11 Sensitivity Analysis 
Since all models are wrong you must test the robustness of your conclusions to un- 
certainty in your assumptions. Sensitivity analysis asks whether your conclusions 
change in ways important to your purpose when assumptions are varied over the 
plausible range of uncertainty. 

There are three types of sensitivity: numerical, behavior mode, and policy 
sensitivity. 

Numerical sensitivity exists when a change in assumptions changes the nu- 
merical values of the results. For example, changing the strength of the word of 
mouth feedback in an innovation diffusion model will change the growth rate for 
the new product. All models exhibit numerical sensitivity. 

Behavior mode sensitivity exists when a change in assumptions changes the 
patterns of behavior generated by the model. For example, if plausible alternative 
assumptions changed the behavior of a model from smooth adjustment to oscilla- 
tion or from s-shaped growth to overshoot and collapse, the model would exhibit 
behavior mode sensitivity. 

Policy sensitivity exists when a change in assumptions reverses the impacts or 
desirability of a proposed policy. If cutting prices boosted market share and prof- 
itability under one set of assumptions but led to ruinous price wars and bankruptcy 
under another, the model would exhibit policy sensitivity. 

The types of sensitivity of concern in any project depend on the purpose of the 
model. Numerical sensitivity matters a great deal in the models NASA uses to plan 
the trajectory of the space shuttle. The purpose of these models demands tremen- 
dous precision, and there is little uncertainty in model structure or the laws of 
physics that govern the dynamics. In models of human systems, however, numeri- 
cal sensitivity may matter little, if at all. The purpose of most business models is 
not to predict when the next sales slump will come but to redesign the supply chain 
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so sales are more stable; not to predict what profits will be next quarter but to de- 
sign policies to help the firm become profitable. For most purposes what counts is 
behavior mode sensitivity and especially policy sensitivity. 

Sensitivity analysis requires much more than varying parameters. You must 
also consider the sensitivity of your results to assumptions about the boundary of 
the model, to changes in the level of aggregation, and to changes in the way peo- 
ple are assumed to make decisions. The uncertainty in parameter values is impor- 
tant and must be tested. But models are typically much more sensitive to 
assumptions about the boundary and formulations than to uncertainty in numerical 
values. 

In assessing sensitivity to parametric assumptions you should first identify the 
plausible range of uncertainty in the values of each parameter or nonlinear rela- 
tionship. You should then test the sensitivity to those parameters over a much 
wider range. As discussed in section 8.2.5, people tend to be overconfident in their 
judgments. Judgmental parameter estimates are likely to be more uncertain than 
people’s intuitive confidence bounds suggest. Overconfidence also arises when pa- 
rameters are estimated statistically. Formal estimation procedures such as regres- 
sion yield confidence bounds around the best estimate. The estimated value of, say, 
the price elasticity of demand might be -0.5, with the 95% confidence bounds 
ranging from -0.4 to -0.6, indicating that there is only a 5% chance that the true 
value lies outside this range. These confidence bounds likely underestimate the 
true uncertainty in the parameter because they account only for one source of un- 
certainty-sampling error. The confidence bounds estimated in regression do not 
include the effects of measurement error, faulty specification of the model, or vio- 
lations of the maintained hypotheses of the regression method. These sources of er- 
ror are likely to be much larger than the estimated standard errors reported for the 
regression coefficients, but because they are difficult or impossible to quantify they 
are often ignored. A good rule of thumb is to test over a range at least twice as wide 
as statistical and judgmental considerations suggest, though consideration of the 
sources of uncertainty in particular cases may suggest a much wider range. 

Most system dynamics and simulation software packages include automated 
sensitivity analysis tools. First, you specify which parameters to vary, then provide 
a range of values for each. The software then runs the model as many times as you 
like, using the specified values for each parameter, either one at a time (univariate 
testing) or all at once (multivariate testing). 

Comprehensive sensitivity analysis is generally impossible even when re- 
stricted to parametric sensitivity. Since most models are significantly nonlinear the 
impact of combinations of assumptions may not be the sum of the impacts of the 
assumptions in isolation. Comprehensive sensitivity analysis would require testing 
all combinations of assumptions over their plausible range of uncertainty. The 
number of combinations is overwhelming even in models of modest size. Given 
the limited time and resources in any project, sensitivity analysis must focus on 
those relationships and parameters you suspect are both highly uncertain and likely 
to be influential. A parameter around which no uncertainty exists need not be 
tested. Likewise, if a parameter has but little effect on the dynamics it need not be 
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FIGURE 21-2 
Best and worst 
case sensitivity 
ana.lysis 
Simulations of the 
new-product 
diffusion model in 
Figure 9-22. 
Best case: 
Advertising 
Effectiveness = 
0.75 * Base Case; 
Contact Rate = 
0.75 * Base Case; 
Consumption per 
Adopter = 2 * 
Base Case. 
Worst case: 
Advertising 
Effectiveness = 2 
* Base Case; 
Contact Rate = 
1.5 * Base Case; 
Consumption per 
Adopter = 0.5 * 
Base Case. 

tested even if its value is highly uncertain because estimation errors are of little 
consequence. 

A number of tools help you explore sensitivity efficiently. One common 
method is to define best and worst case scenarios. In the best (worst) case scenario 
you set the values of all parameters and relationships to the values most (least) fa- 
vorable to the outcomes you desire or the policies you want to test. Consider the 
new-product diffusion model described in Figure 9-22. The model relates sales to 
advertising, word of mouth, and consumption per capita. Suppose your clients are 
using the model to plan capacity acquisition. They worry about boom and bust, 
where sales of a new product initially rise very rapidly only to collapse as the mar- 
ket saturates, leaving them with excess capacity. The worst case scenario to ad- 
dress their concern might assume relatively strong word of mouth and advertising 
effects and low replacement purchases per capita. The best case scenario might 
assume weak word of mouth and advertising effects, and high consumption. Fig- 
ure 21-2 compares these scenarios to the base case. In the base case, the effective- 
ness of advertising is O.Ol/year, the contact rate is 100/year, and consumption per 
adopter is 0.2 units/year/adopter. The best (worst) case sets advertising effective- 
ness to 0.0075 (0.02), the contact rate to 75 (150), and per capita consumption to 
0.1 (0.4). In the base case, sales fall to about one-third of peak levels when the 
market saturates. The pattern of behavior in the best and worst cases is the same, 
but the implications for capacity acquisition are very different. In the best case, 
slower demand growth and higher replacement consumption mean the drop from 
the peak is only about 40%. Higher consumption also means the peak sales rate 
is about the same as the base case. In the worst case, demand peaks after just 
1.5 years, then plummets by 90% over the next year. The best and worst cases pro- 
vide bounds for the behavior the firm is likely to face. 

The extreme situations represented by best and worst cases are not the most 
likely outcomes. Monte Carlo simulations allow you to generate dynamic confi- 
dence intervals for the trajectories of the variables in your models. In Monte Carlo 
analysis, you specify a probability distribution that characterizes the likely values 
of each parameter. For example, you might assume the values of each parameter 
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are distributed normally around your best estimates and specify the standard devi- 
ation for each. The software randomly draws a value for each parameter from the 
distributions you choose, then simulates the model. The trajectories generated in a 
large sample of simulations define dynamic confidence bounds for each variable. 

Figure 21-3 shows the results of a Monte Carlo simulation of the product dif- 
fusion model. The figure shows the 50%, 75%, and 95% confidence bounds for 
sales in a sample of 500 simulations. Advertising effectiveness, the contact rate, 
and per capita consumption are all assumed to be distributed normally and inde- 
pendently with standard deviations of 25% of their base case values.16 Given these 
assumptions, there is a 50% chance that sales will be between about 35 and 75 mil- 
lion unitdyear in year 2 and a 95% chance that sales will be between 10 and 90 
million unitdyear. Note how the confidence intervals widen during the growth 
phase, then narrow again as the market stabilizes. The uncertainty in sales is much 
greater during the growth phase because the positive word of mouth feedback 
dominates. Small changes in the parameters controlling the word of mouth loop 
compound to yield large differences in peak sales. After the market saturates, word 
of mouth and advertising no longer matter, and the only remaining uncertainty (in 
this simple analysis) is in replacement consumption per capita. The interactions of 
the feedback loops and accumulations in dynamic models mean that the dynamic 
confidence bounds generated by multivariate sensitivity analysis can be very dif- 
ferent from a distribution of a given variance around the base case traje~tory.'~ 

16The seemingly natural assumption that each parameter is independently distributed is actually 
not realistic. Typically, a model is calibrated to data. Varying the parameters independently results 
in many combinations that significantly degrade historical fit, indicating that these combinations 
are much less likely than the independence assumption would suggest. Suppose the base case 
trajectory for sales fit the historical data well. With independent sampling, all three parameters in 
the sensitivity runs will many times take on high values, leading the model to grossly overestimate 
historical sales. In reality, if word of mouth were stronger than assumed in the base case the ef- 
fectiveness of advertising and consumption per capita would have to be smaller than their base 
case values for the model to correspond reasonably well to the data. Ford (1990) describes how to 
account for such correlations in multivariate sensitivity analysis. 

"In interpreting dynamic confidence bounds remember that they represent the envelope of 
values in a sample of simulations and not a particular trajectory. For example, sales do not follow 
the path of the upper 95% confidence interval in any of the simulations. 
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Sensitivity results such as these can help the firm decide how much dedicated 
capacity to build and how much capacity to lease or outsource so it can meet peak 
demand while avoiding excess capacity when the market saturates.” 

Another sensitivity analysis tool, dubbed the “Automated Nonlinear Test” or 
ANT by Miller (1998), asks whether parameter values can be found that generate 
anomalous results. ANT analysis is similar to policy optimization. In policy opti- 
mization the modeler specifies an objective function such as maximizing the pres- 
ent value of firm profits. The modeler then selects a set of policy instruments, such 
as the parameters in the decision rules for pricing, marketing expenditure, and ca- 
pacity planning. The software then finds the set of parameters that maximizes the 
objective function. Many system dynamics and simulation packages have built in 
policy optimization capability. In ANT analysis, the modeler specifies an objective 
function designed to break the model by finding unrealistic behavior. 

Miller (1998) demonstrated the ANT using the WORLD3 model (Meadows et 
al. 1974). The base case of the model generated an overshoot and decline of world 
population sometime before the year 2100 (see section 12.1.5). By setting the ob- 
jective function to maximize the world population in the year 2100, the ANT auto- 
matically identified combinations of parameters that kept population from 
declining (within the time horizon). If any of these parameter combinations were 
plausible, the ANT would call the results of the study into question. The ANT is a 
very flexible tool. Adding a term to the objective function that reduces the payoff 
as the square of the number of perturbed parameters increases causes the ANT to 
find the most influential parameters (with respect to the specified objective func- 
tion), automating the search for high leverage points. ANTs can also be used to do 
traditional policy optimization. Any general-purpose optimization method suitable 
for rugged landscapes with multiple optima can be used in ANTs. Miller compared 
hill-climbing and genetic algorithms as optimization methods, finding both worked 
well and significantly outperformed traditional multivariate Monte Carlo analysis. 

Miller’s analysis of the WORLD3 model showed that the range of populations 
generated in the year 2100 is wide. The ANTs also found several of the high lever- 
age parameters. The fundamental mode of behavior, however, remained overshoot 
and collapse, showing that the model exhibits significant numerical sensitivity but 
low behavior mode sensitivity. Miller did not test for policy sensitivity, though the 
ANT technique could be used for this purpose. 

21.4.1 2 System Improvement Tests 
The ultimate goal of modeling is to solve a problem. System improvement tests ask 
whether the modeling process helped change the system for the better. To pass the 
test, the modeling process must identify policies that lead to improvement, those 
policies must be implemented, and the performance of the system must actually 
improve. In practice, assessing the impact of a model is extremely difficult. It is 
hard to assess the extent to which the modeling process changed people’s mental 

lsIn very large models the number of simulations required to explore parameter space using a 
simple Monte Carlo approach can be prohibitive. Various efficient sampling schemes such as Latin 
hypercube designs can reduce the number of simulations required. Ford (1990) describes these 
tools for sensitivity analysis of large models, with examples from the electric utility industry. 
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models and beliefs. It is rare that clients adopt the recommendations of any model 
promptly or without modification. When new policies are implemented, it takes a 
long time for their effects to manifest. Many other variables and conditions change 
at the same time new policies are implemented, confounding attempts to attribute 
any results to the policies. Performance improvement following a study does not 
mean the model-based policies were responsible; the system may have improved 
for reasons unrelated to the modeling process. Likewise, deteriorating performance 
after policy implementation does not mean the model failed since the outcome 
could have been even worse without the new policies. 

The keys to successful assessment of a modeling intervention are (1) prospec- 
tive evaluation, (2) use of multiple data sources, and ( 3 ) ,  to the extent possible, ad- 
herence to proper experimental protocols. Rigorous follow-up research is essential 
to build a strong foundation for the refinement and wise use of the tools of system 
dynamics and systems thinking-a goal of academics and practitioners alike. 

First, modeling projects should be designed with evaluation in mind from the 
beginning. Prospective evaluations are more effective than retrospective studies. 
After the fact you may discover that the data you need were not collected, memo- 
ries are distorted by hindsight, and key actors have left the scene. Discuss with 
your clients how you will know if the project is successful as part of the initial 
problem definition phase. Resources for assessment should be allocated when bud- 
gets, staff, and time lines for the project are set. 

Second, modeling interventions can change people’s beliefs and attitudes, their 
behavior, formal organizational policies, and, of course, the actual performance of 
the system. You should measure change in all these dimensions to assess the extent 
to which any changes in performance can be attributed to the intervention. Often 
you will have to create instruments such as interview protocols and surveys to doc- 
ument people’s mental models, behavior, and changes in policies (see Doyle 1997). 

Third, to the extent possible, design your intervention as an experiment. While 
most organizational interventions cannot be carried out using the double-blind ran- 
domized trials required in the assessment of new medical treatments, you should 
use these techniques wherever possible. Create control and treatment groups. Look 
for opportunities to conduct natural experiments, for example, comparing the per- 
formance of the intervention to that of business units or companies that did not un- 
dertake the modeling process. Consider partnerships with academics and others 
who can serve as neutral observers to document the impact of your work. 

In practice, follow-up studies for any type of management innovation are all 
too rare. It is understandable that proper design and resources for evaluation and 
assessment suffer when a new project begins. Identifying potential partner organi- 
zations, negotiating entry, building trust, and working with the client team to un- 
derstand the business is difficult and demanding. Often, clients do not appreciate 
that follow-up research is not only for academic purposes but also benefits them 
directly. They are reluctant to provide the resources to support it or to permit basic 
protocols such as treatment and control groups and randomized assignment. 

Nevertheless, as a modeler it is in your best interest and the best interests of the 
clients to overcome these problems and design assessment into your projects from 
the start. Without rigorous follow-up research the efficacy of all management in- 
terventions remains the province of anecdote. Anecdotes are unreliable because 
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they are not subject to independent confirmation, because people tend to highlight 
their successes and hide their failures, because people often have a financial or rep- 
utational stake in the success of their work, and because even apparently success- 
ful interventions may have succeeded due to placebo effects or other factors 
unrelated to the intervention. Without rigorous follow-up research it is difficult for 
modelers and clients to learn which tools and processes work or how to improve 
them. At best, the result is inefficiency; at worst it hurts the organization and the 
people in it. 

Example: Avoiding Proof by Anecdote 
Cavaleri and Sterman (1997) evaluated the impact of a system dynamics interven- 
tion designed to improve quality and performance in the claims processing unit of 
a US insurance firm. The intervention, begun in the late 1980s, used tools includ- 
ing group modeling, management flight simulators, and learning laboratories. The 
intervention was widely cited as a successful application demonstrating the effi- 
cacy of these systems thinking tools (see Senge 1990). Through a questionnaire, 
interviews, and extensive review of company records we established that the inter- 
vention did succeed in changing the mental models and behavior of key managers. 
We found compelling evidence that the managers redesigned policies for hiring 
and workload management in accordance with the recommendations arising from 
the modeling process. However, because the original study was not designed with 
evaluation in mind, it was impossible to find clear evidence that the intervention 
improved business performance. There were too many confounding changes in the 
environment. Data needed to test these plausible rival hypotheses were not col- 
lected during the original project, weakening claims for project success. Failure to 
document the impact of the project may also have hurt the company, which is no 
longer using any of these tools. 

It is encouraging that an increasing number of system dynamics interventions 
have been designed to facilitate evaluation from the start (see, e.g., Vennix 1996 
and the papers in Vennix, Richardson, and Andersen 1997). Despite its difficulties 
rigorous follow-up study is vital if the potential to learn about the efficacy of sys- 
tems thinking in organizations is to be fully realized. 

Model Testing 
Apply the tests described above to the following models. The goal of your testing 
is to identify problems in the models that render them unsuitable for their purposes. 
If the purpose of the model is not made explicit by the documentation, then suggest 
plausible purposes for which the model might be used and evaluate it relative to 
each of these. Not all tests can be run on all models. For example, quantitative be- 
havior reproduction tests cannot be carried out on an illustrative model that is not 
calibrated to a particular case. 

1.  The epidemic and innovation diffusion models described in chapter 9. 
2. The model of path dependence and market dominance described in 

chapter 10. 
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3 .  The market growth model described in chapter 15. 
4. The supply chain models described in chapters 17-19. 
5. The commodity model described in chapter 20. 
6. Models in the literature (many are cited in the references). 

21.5 SUMMARY 
The word validation should be struck from the vocabulary of modelers. All mod- 
els are wrong, so no models are valid or verifiable in the sense of establishing their 
truth. The question facing clients and modelers is never whether a model is true but 
whether it is useful. The choice is never whether to use a model. The only choice 
is which model to use. Selecting the most appropriate model is always a value 
judgment to be made by reference to the purpose. Without a clear understanding of 
the purpose for which the model is to be used, it is impossible to determine 
whether you should use it as a basis for action. 

Models rarely fail because the modelers used the wrong regression technique 
or because the model didn’t fit the historical data well enough. Models fail because 
more basic questions about the suitability of the model to the purpose aren’t asked, 
because the model violates basic physical laws such as conservation of matter, be- 
cause a narrow boundary cut critical feedbacks, because the modelers kept the as- 
sumptions hidden from the clients, or because the modelers failed to include 
important stakeholders in the modeling process. 

To avoid such problems, whether as a modeler or model consumer, you must 
insist on the highest standards of documentation. Your models must be fully rep- 
licable and available for critical review. Use the documentation to assess the 
adequacy of the model boundary and the appropriateness of its underlying 
assumptions about the physical structure of the system and the decision-making 
behavior of the people acting within it. Consider extreme condition tests and sen- 
sitivity to alternative assumptions, including assumptions about model boundary 
and structure, not only sensitivity to variations in parameter values. 

Model testing is iterative and multidimensional and begins at the start of the 
project. Build into the budget and time line sufficient resources to assess the im- 
pact of the work and to document it fully so others can help you improve it. 

No one test is adequate. A wide range of tests helps you understand the ro- 
bustness and limitations of your models. These tests involve direct inspection of 
equations and simulations of the whole model, the assessment of historical fit, and 
behavior under extreme conditions. 

Use all types of data, both numerical and qualitative. Multiple data sources 
provide opportunities for triangulation and cross-checkmg. 

Test the robustness of your conclusions to uncertainty in your assumptions. 
While parametric sensitivity testing is important, model results are usually far 
more sensitive to assumptions about the model boundary, level of aggregation, and 
representation of decision making. 



Chapter 21 Truth and Beauty: Validation and Model Testing 891 

Test as you go. Testing is an integral part of the iterative process of modeling. 
By continuously testing your assumptions and the sensitivity of results as you de- 
velop the model you uncover important errors early, avoid costly rework, and gen- 
erate insights throughout the project, thus involving your clients more deeply and 
building their-and your-understanding of the problem and the nature of high 
leverage policies. 

Open the modeling process to the widest range of people you can. Implemen- 
tation success requires changing the clients’ mental models. To do so the clients 
must become partners with you in the modeling process. Ultimately, your chances 
of success are greatest when you work with your clients to find the limitations of 
your models, mental and formal, then work together to correct them. In this fash- 
ion you and your clients gradually develop a deep understanding of the system and 
the confidence to use that understanding to take action. 

Design assessment into your work from the start so you can determine both 
the extent to which you meet your goals and how you can improve the process 
in the future. Work with your clients to collect data that can reveal how your work 
affected the beliefs, attitudes, and behavior of the people in the system, along with 
changes in system performance. Track the impact of your work with long-term 
follow-up studies. A careful testing and assessment process helps you and your 
clients improve your ability to think systemically in every aspect of your lives, not 
just in one project. 









22 

Challenges for the Future 

It is not knowledge, but the act of learning, not possession but the act of getting 
there, which grants the greatest enjoyment. 

-Karl Friedrich Gauss (1777-1855) 

This chapter briefly describes the major challenges facing the further development 
of system dynamics. I discuss five important areas of future development: theory, 
technology, education, implementation, and applications. The categories are nei- 
ther mutually exclusive nor exhaustive, and any such list is necessarily subjective, 
incomplete, and biased.' I invite you to develop your own priorities and to work 
toward their realization. 

22.1 THEORY 
System dynamics models rest on the theory of nonlinear dynamics, an area in 
which tremendous progress has been made over the past two decades. Where non- 
linear dynamic systems were once largely terra incognita, now there is a large body 
of theory describing the local and global dynamics of a wide range of complex 
nonlinear systems. However, important challenges for the future remain, and the 
mathematical foundations are but one area in which basic research is needed. 

Theory of nonlinear dynamics and complex systems. When and how do 
systems self-organize to produce coherent patterns in both time and space? 
To what extent are dynamics and complex systems self-similar across 
different temporal and spatial scales? What determines these scaling 

'Richardson (1996) provides a particularly thoughtful approach to these issues. 
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relationships? What forces create entrainment of individual subsystems 
into coherent macrodynamics (e.g., the entrainment of individual firms into 
coherent aggregate business cycles)? What are the underlying generic 
structures that create similar dynamics in different domains? 
Agent-based modeling. Stimulated by improvements in computer power, 
applications of agent-based modeling are growing rapidly. In an agent- 
based model, the individual members of a population such as firms in an 
economy or people in a social group are represented explicitly rather than 
as a single aggregate entity. Important heterogeneities in agent attributes 
and decision rules can then be represented. There are different simulation 
methods for agent-based modeling, ranging from simple cellular automata 
to detailed, disagreggate system dynamics models. Though much progress 
has been made lately, much remains to be learned about the dynamics of 
agent-based models as well as techniques for analyzing their behavior, for 
testing their decision rules, and so on. What principles should guide the 
choice of modeling method and level of aggregation? How should modelers 
trade off the number of different agents they can represent in the model 
against the complexity of the individual agents? What rules of interaction, 
level of rationality, and learning capabilities should be ascribed to 
the agents? 
Mental models, dynamic decision making, and learning. Laboratory 
research and fieldwork have revealed much about the way people make 
decisions in complex dynamics environments, but our understanding is 
still poor. What are the mental models people use in situations of dynamic 
complexity? How sensitive to the characteristics of the environment are the 
decision rules people use? Are the misperceptions of feedback (chapter 1) 
documented in so many cases innate or learned? What types of experience 
and education might mitigate them and develop our systems thinking 
capabilities? What incentives, information systems, and organizational 
structures would catalyze such learning? How can these learning processes 
be captured in models? 
Organizational and social evolution. Even if individuals learn slowly, 
social structures such as organizations might improve through evolution, 
as the higher-performing agents prosper and are imitated while the low 
performers are selected out of the population. Formal modeling of social 
evolution is growing rapidly, but many questions remain. What are 
the units of selection? What are the “genes” in an organization? What 
determines the length of a generation? What rules determine the selection 
of winners and losers, and what does reproductive success mean in an 
organization? When can selective pressures reward dysfunctional behavior 
and perpetuate low performance? 

22.2 TECHNOLOGY 
Until recently learning about the dynamics of a model proceeded essentially by 
trial and error, guided by intuition and experience, one simulation at a time. Since 
complex nonlinear systems can generate a wide range of behaviors, many of which 
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are counter to intuition, developing insight into the dynamics of a complex system 
has often been difficult. 

As computers become ever faster and more capable, simulations will not 
merely run faster, but the nature of the models, simulation software, and ways of 
interacting with models will be transformed. Among the tools future simulation 
software will include are: 

Automated mapping of parameter space. Hitting the run button will 
generate a high-resolution map of model behavior over a user-specified 
range of parameters and initial conditions. 
Automated sensitivity analysis. The software will automatically identify 
the high-leverage policies and most influential parameters in the model 
(relative to user-specified criteria). 
Automated extreme condition testing. The modeler or client will specify 
extreme conditions the model must satisfy (e.g., no labor, no production; no 
inventory, no shipments). The simulation software will automatically 
implement these “reality checks” and report the results (see Peterson and 
Eberlein 1994). 
Automatic, interactive parameter estimation, calibration, and policy 
optimization. Modelers can now specify (possibly nonlinear) criteria and 
weights for different variables and constraints on the plausible values of 
parameters; the software then finds the best parameter values and 
confidence bounds around the estimated values (using methods from 
ordinary least squares to Kalman filtering). However, the process is often 
tedious and it is difficult to combine quantitative and qualitative 
information. Future simulation software will automate model calibration, 
allowing the user to explore the consequences of alternate criteria 
interactively in real time. Similarly, optimization of system dynamic models 
has a long history (see, e.g., Coyle 1985, 1998). Currently available 
software allows the user to specify a (possibly nonlinear) multiattribute 
objective function and a set of policy instruments (parameters), then 
searches the policy space for the optimal solution. In the future, this process 
will be so fast that it can take place interactively and in real time, with the 
user getting immediate feedback on the consequences of alternative 
objective functions and policy instruments. 

0 Automated identification of dominant loops and feedback structure. 
Several methods now exist to identify the dominant loops at any point in a 
simulation, quantify the contribution of any parameter or loop to a given 
mode, and show how nonlinearities change the dominant feedback structure 
(see, e.g., Eberlein 1989; Kampmann 1996; Mojtahedzadeh 1997; and 
N. Forrester 1982). Future simulation software will automate and speed 
these computations so that users can get immediate feedback showing 
the dominant loops in the system and how the influence of parameters 
and feedback structures waxes and wanes as the dynamics unfold. 

0 Automated help. Through expert systems, pattern recognition software, 
and other artificial intelligence tools it should soon be possible for 
simulation software to serve as an automated model-building tutor and 
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guide. The modeling tutor could, for example, examine each equation 
as it is entered for dimensional consistency, robustness under extreme 
conditions, and other basic principles of good formulations. The tutor 
would then suggest improved formulations from a library of standard 
structures, links to related models and literature, and reasonable parameters. 
Imagine building, say, a marketing model. The software might tell you that 
your formulation for customer defection to competitors lacks feedback from 
the stock of current customers (allowing the customer stock to become 
negative), suggest an improved formulation, and guide you through a series 
of questions to help you specify the parameters and nonlinear relationships. 
Similarly, the software may suggest tests you can conduct and hints to help 
you better understand the behavior of your model. 

A major challenge facing software designers is organizing and presenting the 
huge masses of data generated by the tools described above. Data presentation and 
visualization will be a critical arena for future software development, including 

Visualization of model behavior. Improvements in graphics and animation 
are needed to display the global dynamics of complex models with high- 
dimensional state and parameter spaces. 
Linking behavior to generative structure. Computations of dominant 
structure and parameter sensitivity should automatically be displayed on 
the structural diagram. Imagine the size, color, and other attributes of the 
stocks, flows, variables, and loops displayed on the screen changing to 
indicate shifts in loop dominance or parameter sensitivity as a simulation 
unfolds, or as you vary input conditions and policies. 
Data input. Input devices such as joysticks and data gloves can provide 
rapid, continuous input of parameter values and control graphical displays. 
Imagine using a joystick to “fly” over a three-dimensional projection of 
model behavior as a function of any model parameters you wish to explore. 

Linking models with one another and with a wide range of databases is another 
important area of technological development. At present, finding, checking, and 
updating data is difficult, expensive, and time-consuming. Incompatibilities 
abound. Future simulation software will seamlessly integrate data from a variety of 
sources, automatically identify inconsistencies, and automatically update the 
model by querying the data servers over public or private networks. Integrating dy- 
namic models with enterprise management software will enable managers to go 
beyond spreadsheets. 

The key challenge is using technology to learn more effectively about the dy- 
namics of our models, to develop tools to aid understanding of complex systems. 
There are dangers, however. Modelers must resist the temptation to use greater 
computer power to build bigger and bigger models in the vain belief that the more 
detailed and comprehensive the model, the better it must be. While computer 
power grows exponentially, our ability to absorb information remains the same. 
Larger and larger models may only result in less and less understanding, fewer in- 
sights and less implementation success. 
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22.3 IMPLEMENTATION 
Improvements in theory and better technology alone will not improve the chances 
of successful implementation. Ultimately the client team must still come to a deep 
understanding of the problem issue and develop enough confidence in model- 
generated policy insights to act. Despite great strides, successful implementation 
remains an art. Issues for further research include 

Communicating modeling insights. How can models be made transparent 
and accessible to clients as technology improves and models grow more 
complex? How do you reach the client when the client is the entire society 
and your message is filtered by the media (see, e.g., Meadows 1989)? 
Improving group modeling. Much progress has been made (e.g., Vennix 
1996; Vennix, Richardson, and Andersen 1997; and Morecroft and Sterman 
1994) and models have long been used in dispute resolution (see, e.g., 
section 2.3). How can modeling be used well in the larger groups often 
required to achieve consensus for implementation? How can modeling be 
used wisely in adversarial contexts, for example, to promote integrative 
dispute resolution (see, e.g., Di Stefan0 1992; Nyhart and Smarasan 1990; 
Reichelt and Sterman 1990; Weil and Etherton 1990)? 
Speeding the process. Faster communication, shorter product life cycles, 
and longer work hours are increasing the pressure on managers for fast 
answers to tough questions. Can the cycle time for the development of a 
model be reduced? Should it be? Perhaps the modeling process should 
encourage meditative reflection and prevent knee-jerk reactions. 
Integrating modeling methodologies. System dynamics does not stand 
alone. What synergies can be achieved by integrating dynamic modeling 
with other modeling approaches, including multiattribute utility assessment, 
decision analysis, market research methods, and other tools (see, e.g., 
Reagan-Cirincione et al. 1991)? 
Creating managerial practice fields. Rehearsal and practice have long 
been central to successful team performance in sports and the arts, and 
simulation has for 50 years been a basic element of military planning and 
training. Developments in technology and group process now enable 
managers to develop and use models to create rich, interactive practice 
fields to design new policies, test new ideas, and explore alternative 
theories for new phenomena. These management flight simulators will play 
a vital role in emerging decentralized, networked organizations (Senge et al. 
1994). At the same time the research clearly shows how difficult it can be 
for people to learn effectively from simulations and games (see chapter 1; 
also Isaacs and Senge 1992; Paich and Sterman 1993). Creating effective 
practice fields requires much more than exciting and realistic flight 
simulators. 
Assessing outcomes. Some organizations have recently realized that it is 
in their long-run best interest to share all their experiences with modeling, 
not only their successes. Too many, however, continue to withhold their 



900 Part VI1 Commencement 

experiences, even from their own employees, for fear of revealing 
proprietary information, the perceived short-run costs of documentation and 
follow-up, or embarrassment. How can the incentives to carry out rigorous 
follow-up studies be strengthened? 

22.4 EDUCATION 
Systems thinking and system dynamics modeling are no longer restricted to ad- 
vanced study in graduate schools or university courses. Over the past decade many 
dedicated teachers, administrators, and parents have worked to introduce these 
concepts and tools in primary and secondary schools. Although exciting ex- 
periments in curriculum and pedagogy are underway around the world (see, e.g., 
Brown 1992; Draper and Swanson 1990; Fisher and Zaraza 1997; Gould 1993; 
Mandinach and Cline 1994; Roberts and Feurzeig 1999) we are still very early in 
this process.2 Much work remains to develop system dynamics curricula appropri- 
ate to the K-12 grades, to develop pedagogy for children (and adults) that works, 
and to develop instruments and methods to assess the long-run impact of these 
approaches. 

Likewise, organizations should devote significant resources to continuing ed- 
ucation for all. Few have yet taken the challenge seriously. More commonly, orga- 
nizations look for the quick fix, faddishly embracing the latest hot management 
tool, only to abandon it for the next “flavor of the month” program. The result is 
cynicism and resentment among employees and senior management alike (see, 
e.g., Sterman and Wittenberg 1999 and Keating et al. 1999 for models of this 
process). After working intensively with systems thinking and system dynamics 
for several years, a manager at a US automaker reflected on the prospects for com- 
mitment to sustained learning in today’s organizations: 

It has taken me a long time to begin to get what this new worldview [system dy- 
namics] is all about. I’m beginning to feel like I felt in my freshman calculus class. 
After months of confusion, I began to get it. Within a year, I had begun to develop 
some competence. Within four years, the basic tools and way of thinking were an 
integrated part of my professional skills ... The problem is, if calculus were invented 
today, our organizations could never learn it. We would send everyone off to the 
three-day crash course and then tell them to go off and apply it. After three months 
we’d check if it was working. Since little would have been achieved, we’d con- 
clude that there really wasn’t much there, and we’d move on to the next program 
(Kim and Senge 1994, p. 278). 

Forrester, in his prescient paper “A New Corporate Design” (Forrester 1965/1975a, 
p. 107-108), prescribes 

Some 25 percent of the total working time of all persons in the corporation should 
be devoted to preparing for their future roles. This means time devoted to compe- 
tence some five years in the future and does not include the learning that may be a 
necessary part of the immediate task. Over a period of years this study would cover 
a wide range-individual and group psychology, writing, speaking, law, dynamics 

’The Creative Learning Exchange serves as a clearinghouse and resource center for people 
teaching system dynamics in the K-12 setting. See <http://sysdyn.mit.edu/cle/home.html>. 
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of industrial behavior, corporate policy design, advances in science and engineer- 
ing, and historical development of political and corporate organizations.. . The edu- 
cational program must become an integral part of corporate life, not a few weeks or 
months once in a lifetime at another institution. The over-all policies of the organi- 
zation must create incentives that protect the time for education from encroachment 
by short-term pressures. 

For centuries the reductionist program of ever-finer specialization has been very 
successful, often leading to deep and useful knowledge. Today, most of the prob- 
lems we face are fundamentally interdisciplinary. As a manager, you won’t face 
marketing problems, financial problems, and human resource problems. As an in- 
dividual, you don’t face economic problems, social problems, and personal prob- 
lems. You just have problems. We impose these categories on the world to simplify 
its overwhelming complexity. Some boundaries are necessary and inevitable. But 
all too often, ignoring what lies outside the familiar walls of our understanding cuts 
critical feedbacks and breeds arrogance about our ability to control nature and 
other people. The reductionist program is very powerful, and should not be re- 
placed by vague generalizations about systems and interconnectedness. The chal- 
lenge is to design an education for ourselves and our children that preserves the 
power of specialized study while simultaneously teaching practical and rigorous 
approaches to complexity and cross-disciplinary communication-then using these 
systems thinking capabilities to address the pressing problems we face in our pro- 
fessional and personal lives. 

22.5 APPLICATIONS 
System dynamics has been applied to issues from physics to physiology and 
psychology, from arms races to the war on drugs, from global climate change to 
organizational change. Yet there are countless problems and issues where under- 
standing is lacking and the dominant theories are event-oriented, exogenous, and 
static rather than structural, endogenous, and dynamic. The result is policy resis- 
tance, the loss of hope for the future, and the feeling of helplessness afflicting so 
many people today. 





Appendix A 

Numerical Integration 

System dynamics models are systems of nonlinear ordinary differential equations. 
Almost all the time, and certainly for any model of moderate realism, analytic so- 
lutions cannot be found and the behavior of the models must be computed nu- 
merically, a process known as numerical integration. The theory of numerical 
integration for differential equations is subtle and sophisticated and the literature is 
large. This appendix focuses on the most common methods and the pragmatics of 
the process. Which method should you use and in what circumstances? How 
should the time step be selected? How can you make sure the results of your sim- 
ulations are not corrupted by errors? Readers interested in the mathematical under- 
pinnings should consult introductory numerical methods texts such as Atkinson 
(1985), Burden and Faires (1989), or Maron (1987). 

As described in chapters 6 and 7, the stocks in a model S accumulate (inte- 
grate) their inflows I less their outflows 0. The flows, in turn, depend on the 
stocks, any exogenous variables U, and parameters (constants, C): 

S, = INTEGRAL(& - O,, S,) 

The initial condition S, gives the quantity in any stock today. What will its value 
be tomorrow? The quantity in the stock tomorrow will be the amount in the stock 
now, plus the quantity that flows in between today and tomorrow, less the amount 
that flows out. However, the values of the flows are only known at the current in- 
stant, and they usually won’t remain constant between today and tomorrow. The 
challenge is estimating the average flow over the next day (or whatever time inter- 
val you use), recognizing that the average over the interval usually won’t equal the 
flow right now. 

The simplest assumption is that the rates will remain constant between today 
and tomorrow. Denoting the time interval between periods as dt (for “delta time”), 
the assumption the rates remain constant during the next interval implies 
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Equation (A-3) is the most basic technique, known as Euler integration after the 
great mathematician Leonhard Euler (1707-1783). The assumption that the rates 
remain constant throughout the time interval dt is reasonable if the dynamics of the 
system are slow enough and dt is small enough. The definitions of “reasonable” 
and “small enough” depend on the accuracy you require, which in turn depends on 
the purpose of the model; see below for guidelines for testing the sensitivity of 
your model to the choice of dt. 

As the time step shrinks, the accuracy of Euler’s approximation improves. In 
the limit, when dt becomes an infinitesimal moment of time, equation (A-3) re- 
duces to the exact continuous-time differential equation governing the dynamics of 
the system: 

St+dt  - st - @ lim - = (I, - 0,) 
dt+O dt dt (A-4) 

Software packages for system dynamics such as DYNAMO, ithink, Powersim, and 
Vensim use Euler integration as their default simulation method. The only differ- 
ence between the numerical and analytic solution of the underlying differential 
equation system is the size of dt. The differential equation uses an infinitesimal, 
a true instant. Digital computers must proceed by discrete steps and use a finite 
time step. 

Sample Simulation Sequence 
The initial conditions for the stocks, the initial values of any exogenous variables, 
and the values of the constants allow you to calculate the initial values of the flows. 
Assuming the flows remain constant throughout the next time step dt allows you to 
calculate the stock in the next period. From the new value of the stock, the new 
values of the rates are then calculated and the next value of the stock is determined. 
Each period the values of the stocks are used to calculate the rates which are then 
used to update the values of the stocks. 

Consider a simple model of a population. The population P is increased by the 
Birth Rate B and decreased by the Death Rate D. Births and deaths are pro- 
portional to population. For simplicity assume the Fractional Birth Rate FBR and 
Average Lifetime AL are constant, at 4%/year and 80 years, respectively. The 
initial population is one million. The equations for the system are 

P = INTEGRAL(B - D, PtJ (A-5) 

Pt0 = le6 ( A 4  

B = F B R * P  (‘4-7) 

D = P/AL (A-8) 

FBR = 0.04 (A-9) 

AL = 80 (A-10) 

The model is a linear first-order system and can be solved analytically. The exact 
solution is 

P, = P, * exp[(FBR - UAL) * t] (A-11) 
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That is, population grows exponentially at the net fractional birth rate FBR - l/AL 
(see chapter 8). With these parameters the net fractional birth rate is 2.75%/year. 

Table A-1 shows how the dynamics are calculated. The time step is set to 0.25 
years. 

Time 0. The value of population at time t = 0 is one million people. The birth 
rate equals Fractional Birth Rate * Population, or 0.04 * le6 = 40,000 people/year. 
The Death Rate = Population/Average Lifetime = le6/80 = 12,500 people/year. 
The net birth rate is therefore 27,500 people/year. These values are the instanta- 
neous rates of flow at t = 0. 

In Euler integration, these rates are assumed to remain constant throughout the 
time interval defined by dt. The time step dt in this example is 0.25 years, so the 
total change in the population is dt * Net Birth Rate = 0.25 years * 27,500 peo- 
ple/year = 6875 people. Equivalently, 0.25 years * 40,000 people/year = 10,000 
people are born during the first quarter year, and 0.25 years * 12,500 = 3 125 peo- 
ple die. The simulated population at t = 0.25 is therefore 1,006,875. 

Time 0 + dt. Given the calculated value of population fort = 0 + dt, the birth 
rate now equals 0.04 * 1,006,875 = 40,275 people/year. The death rate is 
1,006,875/80 = 12,586 people/year. The net birth rate at that instant is 27,689 peo- 
ple/year. Again assuming the rates remain constant over the next quarter year, the 
quantity added to the population by time t = 0.5 is 0.25 years * 27,689 people/year 
= 6922 people. Equivalently, 0.25 years * 40,275 people/year = 10,069 people are 
born, and 0.25 years * 12,586 people year = 3147 people die. The population at t 
= 0.5 thus equals 1,013,797. 

Time 0 + 2dt. At time t = 0.5, the birth rate is 40,552 people/year and the 
death rate is 12,672 people/year, yielding an instantaneous net birth rate of 27,880 
people/year. Over the next quarter year, assuming that rate remains constant, 6970 
people are added, so the population at t = 0.75 years is 1,020,767 people. The sim- 
ulation continues in this fashion as long as you desire. 

Integra tion Error 
The use of a finite time step and resulting approximation to the average rates over 
the interval introduce error, known as integration errol; or dt errox The magnitude 

TABLE A-I Simulating a model with Euler integration 
~~ 

Population Birth Rate Death Rate Net Birth Rate People Added 
Ti me ( pe!o p I e) ( peo p I e/yea r) ( peo p I e/y ea r ) ( peo p I e/y ea r) (people) 
0.00 1,0~30,000 40,000 12,500 27,500 6875 
0.25 1,006,875 40,275 12,586 27,689 6922 
0.50 1,013,797 40,552 12,672 27,880 6970 
0.75 1,020,767 40,831 12,760 28,071 701 8 
'I .oo 1,027,785 41,111 12,847 28,264 7066 
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TABLE A-2 
Integration error Simulated YO Error 
depends on the Time Step (dt) Population at t = 100 (exact solution = 
time step. (years) (million people) 15.643 million) 

0.125 15.56 -0.53 
0.25 15.49 -0.98 
0.5 15.35 -1.87 
1 .o 15.07 -3.66 
2.0 14.54 -7.05 
5.0 13.15 - 15.94 

of integration error depends on how quickly the rates change relative to the time 
step. The faster the dynamics of the system, or the longer the dt, the greater the 
integration error will be. Table A-2 compares the simulated values of population 
after 100 years to the exact, continuous time solution in equation (A-11) for differ- 
ent values of dt. 

The exact value of population after 100 years in the continuous time model is 
le6 * exp(0.0275 * 100) = 15.643 million people. The time step is equivalent to 
the compounding interval for the computation of interest on a bank account. The 
more often interest is compounded (the smaller the time step), the faster the bal- 
ance grows, up to the continuous compounding limit. In this example, where the 
behavior is pure exponential growth, population grows exactly like a bank balance, 
and the simulated values are always less than the continuous compounding case. 
For small time steps, the errors are small. With a time step of 0.25 years, the sim- 
ulation is less than 1% too low after 100 years. Increasing the time step increases 
the magnitude of the error. 

The magnitude of integration error also depends on the stability of the system. 
The sample model here, a pure positive feedback, is unstable. Small errors grow 
over time at exponential rates, just as a bank balance of $1001 will eventually ex- 
ceed a balance of $1000 earning the same interest rate by an arbitrarily large 
amount, because the extra $1 grows exponentially at the interest rate. In models 
tending toward a stable equilibrium the integration error would probably be much 
smaller than shown in Table A-2 and would diminish as the system approached 
equilibrium. ' 

'Technically, the population model governed by positive feedback is termed "ill-conditioned" 
because small errors accumulate with each time step (a process known as error propagation). In the 
population example the error grows exponentially over time. In "well-conditioned" models errors 
die away over time. Roughly speaking, a stable system, dominated by negative feedback, tends 
to be well-conditioned. Since the stability of a system can change within a single simulation as 
the nonlinearities alter the dominant loops, a particular time step may work well in one part of 
a simulation and fail in another part. Whether the resulting errors matter depends on the rate at 
which errors propagate or die away and of course on the purpose of the model. 
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Selecting an Appropriate Time Step 
How should you set the time step? When you need to compare simulation output 
against data, you should obviously choose a time step that is evenly divisible into 
the data-reporting interval. It doesn’t do to calculate a model with quarterly data 
using a time step of 0.20 years. 

The primary consideration in selecting the time step, however, is the accuracy 
of the numerical integration process. The smaller the value of dt, the more accurate 
the assumption that the rates of change remain constant between time steps and the 
closer to the true continuous time solution your model output will be. However, the 
smaller the value of dt, the longer it will take your simulation to run. More subtly, 
the smaller the time step the greater the round-off and truncation error. Round-off 
and truncation errors arise because computers operate with finite precision arith- 
metic. The total numerical error in a simulation consists of the integration error and 
the round-off error. Round-off error means you cannot increase simulation accu- 
racy arbitrarily by shrinking the time step. As some point smaller time steps actu- 
ally cause the total error to increase as the cumulative effects of round off outweigh 
the reduction in integration error. 

Selecting the time step for your simulations is therefore a matter of trading off 
integration error against simulation cost and round-off error. As computers become 
faster, the time step you can select and still simulate quickly is dropping; likewise 
you can elect to use higher precision without much cost in computation time. The 
accuracyhimulation time trade-off is easing as technology improves. 

A widely used rule of thumb is to set the time step between one-fourth and 
one-tenth the size of the smallest time constant in your model. However, in a large 
model it is difficult to estimate all the time constants and select an appropriate time 
step, so you must always test the sensitivity of your results to the choice of time 
step (and integration method; see below). 

Test for integration error by running your model with your best estimate of an 
appropriate value for dt. Then cut the value of dt in half and run the model again. 
If there is no significant change in the behavior-that is, if the behavior does not 
change in ways that matter to the purpose of the model-then your original choice 
was fine. If the behavior changes in a significant way, repeat the test with dt cut in 
half again. Continue until the results no longer differ. 

In the population example Euler integration with dt = 0.25 years yields an er- 
ror of less than 1% after 100 years. The error is far smaller than likely uncertainty 
in the parameters or initial conditions and far, far smaller than the error caused by 
the assumption that fractional birth and death rates remain constant over this span. 

Round-off error also affects the computation of time in your models. Time is 
calculated as a stock that increases one time step per time step: 

Time, + dt = Time, + dt (A-12) 

In principle, the value of Time n periods of length dt from now should be 
Timeto + n * dt. However, if dt cannot be represented exactly with the precision 
used in the computations, the amount added to Time each period will not be cor- 
rect. Suppose you selected dt = % year, or 0.1666. . . . If you used only the first two 
digits, truncating the rest, the value of time after three iterations would be only 
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0.96, not 1 year. Though computers use more than two digits, they still truncate or 
round, so the problem remains. 

Since computers use the binary system you can minimize truncation and 
round-off error in the calculation of time by choosing a time step that can be rep- 
resented exactly in base 2 given the precision of your computer. Powers of 2 are 
most common (e.g., dt = 4, 2, 1, 0.5, 0.25, 0.125, 0.0625, and so on). Setting 
dt = 0.3 is not a good choice; its base 2 representation is 0.01001001001001 . . . 
and will be rounded down to a smaller number so that after n time steps the com- 
puted value of Time will increase less than n * dt. 

Occasionally you will need to select a value of dt that does not meet this crite- 
rion. The problem arises most often when time is measured in years and historical 
data are available monthly. In this case dt must be set to %2 = 0.0833 . . . years to 
match the data reporting interval. In such cases, enter as many digits for the time 
step as you can (e.g., 0.08333333333, not 0.083). Still, the computed value of time 
will eventually fall short as the round-off error accumulates. If the time horizon of 
the model is not too long, the problem may not arise. Another solution is to mea- 
sure time in months instead of years, set dt = l month, and divide all time con- 
stants and other parameters in which time appears by a factor of 12. 

Beyond Euler 
Euler integration is simple and adequate for many applications. In models of social 
and human systems the errors in initial conditions, parameters, and especially 
model specification are large and the data against which you might compare model 
output are often corrupted by significant measurement error. In such situations, 
Euler ’s errors are inconsequential. Spend your time improving the model rather 
than fine-tuning the numerical integration method. However, there are some sys- 
tems and some model purposes, particularly in engineering and physics, where 
Euler is not appropriate, either because the errors it generates are too large or the 
time step required to gain the needed accuracy slow model execution too much. 

There are many more advanced techniques for numerical integration of differ- 
ential equations. The most popular are the Runge-Kutta methods. Euler’s method 
assumes the rates at time t remain constant over the entire interval to time t + dt, 
that is, that the average rate over the interval equals the rate at the start of the in- 
terval. The Runge-Kutta method finds a better approximation of the average rate 
between t and t + dt. First, provisional estimates of the stocks at t + dt are calcu- 
lated by Euler’s method. Next the rates at time t + dt are calculated from the Euler 
estimate of the stocks at time t + dt. The estimated rates at time t and t + dt are av- 
eraged and used to calculate the value of the stocks at t + dt. This method, known 
as second-order Runge-Kutta, gives a more accurate approximation of the actual 
average rates over the interval [t, t + dt]. 

Higher-order Runge-Kutta methods work in essentially the same way but esti- 
mate the average rate over subintervals within [t, t + dt] to yield a still better ap- 
proximation. Most simulation packages offer fourth-order Runge-Kutta. 

While Runge-Kutta requires more computation per time step, the accuracy of 
the approximation is much greater than Euler’s method. Integration errors for a 
comparable choice of dt are much smaller and propagate at much smaller rates, al- 
lowing the modeler to use a larger time step or gain additional accuracy. 
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Error Control and Variable Time Step Methods 
In nonlinear systems the dominant feedback loops driving the dynamics can 
change as the system evolves. A system can be changing slowly then suddenly shift 
to a new regime where change is very fast. In such a system the optimal time step 
may vary depending on the speed of the dynamics. During calm periods where 
change is slow a large time step would best trade off integration error, round-off er- 
ror, and computation time. But that large time step would yield large integration er- 
rors during periods of turbulence. Setting the time step to a small value appropriate 
to the turbulent regime, however, might cause your model to run far too slowly or 
to generate too much round-off error. 

Variable time step methods automate the heuristic test for integration error in 
which you cut dt in half and ask whether the behavior changes in a significant way. 
The user specifies an error tolerance and an initial time step. The simulation pro- 
cedure calculates the next values of the stocks using the initial time step and also 
calculates them using half the initial step size. If the difference between the two re- 
sults is too large the time step is cut in half again and the process is repeated until 
the error falls within the specified tolerance. If the error is very small the time step 
can be increased (but usually only up to the initial step size). The simulation con- 
tinues, testing for and controlling the error at each point.’ Variable step size meth- 
ods minimize simulation time subject to the constraint on the magnitude of the 
errors, even as the dynamics speed or Many simulation packages offer vari- 
able step size fourth-order Runge-Kutta, an excellent method for situations where 
high accuracy is required, such as simulations of physical systems where the laws 
governing the rates, initial conditions, and parameters are known precisely and 
where small errors matter to the purpose. 

Choosing your Integration Method 
You can test whether Euler integration is acceptable by running the model with a 
higher-order integration method (using the same time step or using a variable time 
step method). If there is no significant change in the results, then Euler integration 
is fine. 

A caveat: Because higher-order methods such as Runge-Kutta perform calcu- 
lations between the specified time steps, care must be exercised when your models 
include discontinuous events. System dynamics models are generally formulated 

*These methods only control the local error, that is, the error introduced in the current time step. 
Modelers, however, are concerned with the global (cumulative total) error between the simulated 
and exact solutions. Though strictly speaking the global error is unknown, it can be estimated. 
Reducing it below some tolerance, however, requires going back and resimulating from some 
earlier point in time. Controlling the local error ensures that the global error also remains within 
certain tolerances for many but not all systems. 

3Some systems contain mixtures of very fast and very slow dynamics. For example, prices in a 
stock market adjust very rapidly to changes in buy and sell orders, while the underlying economic 
variables that drive changes in corporate earnings change much more slowly. If the differences in 
time constants governing the fast and slow dynamics are very large, the system is said to be “stiff.” 
Ordinary numerical methods can fail in stiff systems because the time step required to capture the 
fast dynamics must be so small that the evolution of the slow variables is corrupted by round-off 
error. The numerical methods texts referenced above discuss stiff system problems and methods 
specifically designed to solve them. 
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in continuous time but often include discontinuous elements such as test functions 
(e.g., a step or pulse), random noise, or queuing-type elements. The implementa- 
tion of policies can also introduce sudden shocks. These discontinuities create no 
problems for Euler integration, where the rates now depend only on the current 
state of the system. Care must be taken, however, that the higher-order integration 
method you are using does not average out these discontinuous changes. Consult 
the documentation for your simulation software to see how discontinuous events 
and random noise arc handled in the higher-order methods. 

Choosing a Time Step 
Consider the first-order linear negative feedback system in which the state of the 
system S adjusts to the desired state S* with an adjustment time AT 

S = INTEGRAL(NCS, S,) (A-13) 

NCS = (S* - S)/AT (A-14) 

where NCS is the net change in the state of the system. 

in section 8.3, is 
Assume S* = 100 and S, = 0. The analytic solution of the system, presented 

s, = s* - (S* - S ,) * exp(-t/AT) (A- 15) 

Assume the adjustment time is 1 time unit. Simulate the system with Euler inte- 
gration. What happens when the time step is l ?  What happens when it is 2? How 
small does the time step have to be to give a good approximation to the analytic so- 
lution? Implement the analytic solution as an auxiliary variable in the model and 
create a variable to calculate the fractional error between the simulated and ana- 
lytic solutions. When the time step is small relative to AT, do the errors grow larger 
or smaller over time? Repeat the analysis with the fourth-order Runge-Kutta 
method. How does Runge-Kutta affect the sensitivity of the simulation to the time 
step? Does it improve on the accuracy of Euler significantly when the time step 
is small? 

SUMMARY 

Guidelines for Numerical Integration 
Select a time step for your model that is a power of 2, such as 2, 1,0.5, 
0.25, etc. 
Make sure your time step is evenly divisible into the interval between data 
points or other periodic exogenous events. 
Select a time step one-fourth to one-tenth as large as the smallest time 
constant in your model. 
Test for integration error by cutting the time step in half and running the 
model again. If there are no significant differences (judged relative to 
your purpose), then the original value is fine. If the behavior changes 
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significantly, continue to cut the time step in half until the differences in 
behavior no longer matter. 
Note that Euler integration is almost always fine in models of social and 
human systems where there are large errors in parameters, initial conditions, 
historical data, and especially model structure. Test the robustness of your 
results to Euler by running the model with a higher-order method such 
as fourth-order Runge-Kutta. If there are no significant differences, 
Euler is fine. 
Consult a numerical methods text, your software manual, or an expert 
when in doubt. 
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Noise 

Most variables, such as industrial production (Figure 17-l), often appear to be 
somewhat “noisy.” We see part of the behavior as systematic-for example, the 
growth trend and cyclical movements in industrial production-and part as noise. 
What we judge to be a systematic pattern of behavior and what we judge to be 
meaningless random variation depends on our perspective and purpose. If the pur- 
pose of your model were to understand the determinants of long-run economic 
growth, movements in output other than the growth trend, including the business 
cycle, might be considered noise and excluded from your analysis. If your concern 
were the business cycle, your model would explain these cyclical movements, but 
you might treat the month-to-month movements around the business cycle as 
noise. An even more detailed model, however, might explain these rapid variations 
in output as part of the feedback structure. One person’s noise is another’s signal, 
depending on the questions in which each person is interested. 

The rate equations in system dynamics models capture the decision-making 
processes of the agents or the physical and biological laws that cause change in 
system states. Because all models are approximations, the model decision rules do 
not capture all the sources of change in the actual flows. As explained in section 
4.3.2, noise is the label we apply to that part of the actual decision stream our 
model cannot explain. Noise measures our ignorance. 

For example, production starts in the supply chain model developed in chap- 
ter 19 depend on the firm’s labor force, the workweek, and labor productivity: 

Production Start Rate = Labor * Workweek * Labor Productivity 

The workweek and productivity might themselves be endogenous variables, de- 
pendent on factors such as schedule pressure, worker experience, and equipment 
quality. The workweek and productivity represent averages: Some workers are 
more productive than others; some put in more hours than others. 

The actual start rate will rarely equal the average value. One worker’s baby 
kept him up all night, so he is less productive today. Another discovers a way to 
speed up her work, boosting productivity. An unexpected machine problem slashes 
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the productivity of a thud. For some purposes, including these variations adds little 
to the dynamics and only makes it more difficult to understand model behavior. 
In these cases, the deterministic dynamics are sufficient. Often, however, un- 
predictable variations around the average values play a critical role in the dynam- 
ics and must be modeled. As a general modeling strategy you should first 
understand the dynamics of your model without noise-even when noise is im- 
portant. The response of the model to shocks can be assessed through idealized test 
inputs such as the step function, pulse, ramp, and sine wave. Once you understand 
how and why the system responds as it does you can consider how more realistic 
inputs such as noise affect the dynamics. 

Variations around the average value of a variable are usually modeled as some 
type of random process. Noise represents those variables and states of the system 
we either cannot capture in the model or choose to omit. There are reasons for the 
variations in productivity not captured by the model, but we don’t have the infor- 
mation needed to capture them endogenously. We don’t have a way to model when 
a worker will lose sleep because the baby cried all night. 

If the unmodeled variations in productivity were important to the model pur- 
pose the formulation for productivity could be modified to include random varia- 
tions around the average, which itself could be an endogenous or exogenous 
variable: 

Productivity = Average Productivity * Random Effects on Productivity 

How should the random effects be formulated? You graph the productivity data 
supplied by your client (Figure B- 1) and find productivity varies randomly around 
a constant level. Next, you plot the distribution of productivity. The values closely 
approximate a normal distribution with a mean of about 0.25 widgetdperson-hour 
and a standard deviation of 0.0123 widgetdperson-hour, about 5% of the mean. 

Given the data in Figure B-1 you then specify the random variations in 
productivity as 

Random Effects on Productivity 
= NORMAL( 1, Standard Deviation in Productivity) 

The NORMAL(Mean, Standard Deviation) function generates, every time step, a 
value drawn randomly from a normal distribution with the specified mean and 
standard deviation.’ You set the mean of the distribution to 1 and the standard de- 
viation to 0.05. Since the random input has a multiplicative effect, productivity will 
be normally distributed with a mean of 0.25 and standard deviation of 0.0125, as 
observed in the data.2 

‘All simulation software packages include built-in functions to generate random variables in- 
cluding the normal and uniform distributions. Because the pseudorandom numbers generated by 
any software package are not truly random, however, caution must be exercised to ensure that they 
conform to the required statistical properties. See Hellekalek (1998). 

2The normal distribution generates values over [-”, “1 so occasionally productivity as speci- 
fied in equation (B-3) would become negative. A robust formulation requires Random Effects on 
Productivity 2 0. This can be accomplished by truncating the distribution with a MAX function. 
Alternatively, the random effects could be specified as a lognormal distribution. 
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To your surprise simulated productivity (Figure B-2) looks little like the actual 
productivity data in Figure B-1. Simulated productivity does conform to the nor- 
mal distribution with the proper mean and standard deviation but it changes too 
fast, jumping far too quickly from value to value. 

The problem is subtle. Random number generators such as the NORMAL 
function yield a new value every time step and successive values are independent. 
History doesn’t matter-the values that have come before have no effect on the 
next value drawn from the distribution, just as the last result on a roulette wheel 
has no bearing on the next. The values generated by the NORMAL() function are 
said to be IID-independently and identically distributed. Independence means the 
next value of the random effect can differ by any amount from the last value. Pro- 
ductivity might be very high right now, but independence means one instant later 
it could be very low. The time step for the simulation is 0.125 weeks. A new value 
for productivity, completely independent of the last, is chosen eight times a week. 
It is this frequent sampling from an independent process that explains why simu- 
lated productivity in Figure B-2 jumps around far too fast. 

Engineers call the random variations generated by IID processes “white 
noise.” Imagine you have just arrived at a lively party. Each guest is speaking in a 
perfectly intelligible manner (at least early in the evening), but when all these 
sounds reach your ear at once, the result is an indecipherable cacophony. Analo- 
gously, you can think of noise as the sum of tones of all frequencies, from the 
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deepest bass note to the highest high C. Because white noise contains all frequen- 
cies in equal measure its current value contains no information about future values, 
even in the next instant. 

While convenient statistically, the white noise assumption of independence 
does not hold in the real world. Real systems have inertia. Productivity, customer 
demand, the weather, and all other real quantities cannot change infinitely fast. 
Suppose a machine breaks down, lowering productivity. Productivity remains de- 
pressed at least until the machine can be repaired. The effects of the random shock 
persist for some period of time. Similar persistence applies, to varying degrees, to 
all causes of variations in productivity and to all variations in any quantity. The 
temperature in 1 hour obviously can't be too different from the temperature now. 
Similarly, the temperature tomorrow, the next day, and a week from now all de- 
pend, partially, on the temperature today. Temperature changes only slowly be- 
cause it depends on the quantity of heat in the air, a stock that, that like all stocks, 
changes only gradually as it accumulates its inflows and outflows. Similarly, the 
stock and flow structure of all real processes gives them a certain amount of in- 
ertia. consequently, real noise processes don't contain all frequencies in equal 
measure. The strength of the high frequencies diminishes above some point, just 
as a loudspeaker cannot generate sound at frequencies higher than, say, 20,000 
cycleshecond (Hertz) because the inertia of the mechanical elements in the speaker 
limits how fast it can vibrate. 
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It is therefore necessary to model noise as a process with inertia, or memov- 
as a process in which the next value is not independent of the last but depends in 
some fashion on history. Realistic noise processes with persistence are termed 
“pink noise.” Compared to white noise, which contains all frequencies in equal 
measure, pink noise filters out the high frequencies at the blue end of the spectrum, 
leaving more of the reddish frequencies. The challenge is to formulate a simple 
model of randomness that allows the modeler to specify the degree of persistence, 
or equivalently, the power spectrum of the noise (roughly, the amplitude or 
strength of each f req~ency) .~  The statistical properties of the resulting noise should 
also be insensitive to the choice of the time step (within broad limits). 

The inertia in real variables implies the existence of at least one stock in any 
noise generating process. A simple formulation for pink noise begins with white 
noise, then smooths it using some type of information delay. The information de- 
lay represents the sources of inertia in the noise generating process. The simplest 
formulation is first-order exponential smoothing. As described in chapter 11, first- 
order exponential smoothing means the current value is the exponentially weighted 
sum of all past values of the input. Figure B-3 shows the structure for first-order 
pink noise, also known as first-order autocorrelated noise. 

3The power of any signal is the energy it contains per time interval and is the integral of the 
squared signal. The power spectrum is the distribution of the total power by frequency. Pure white 
noise contains constant power in all frequency ranges. The power contained in the range from 1 Hz 
to 2 Hz is the same as that in the range from 1001 to 1002 Hz. Since white noise spans all frequen- 
cies from 0 to m, it contains infinite power, an impossibility. All real processes have finite power, 
meaning the power per frequency interval must eventually fall to zero as the frequency rises. 
A frequency domain analysis decomposes a time series into sine waves of different frequencies 
and phases. Frequency domain tools such as Fourier analysis measure the power in each frequency 
in any time series; other methods such as autocorrelation and cross-correlation functions, ARIMA 
models, and vector autoregressive models help modelers understand the way current values of a 
time series depend on its own past values and possibly the past values of other variables. Warner 
(1998) provides an elementary treatment of spectral analysis; Granger and Newbold (1977) 
provide a more mathematical approach covering frequency and time domain methods. See 
also Franses (1998). 
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Pink noise is formed by first-order exponential smoothing of a white noise in- 
put. The delay time is the correlation time constant: 

Pink Noise = INTEGRAL(Change in Pink Noise, Mean) 

Change in Pink Noise = (White Noise - Pink Noise)/Conelation Time 
03-41 

03-5) 

The white noise input is constructed from a uniform distribution on the interval 
[-0.5,0.5], sampled every time step of length dt.4 The user specifies the mean and 
standard deviation of the pink noise process, which determines the mean and stan- 
dard deviation of the white noise input: 

White Noise = Mean + Standard Deviation * [(24 * Correlation Time/dt)0,5] * UNIFORM(-0.5,0.5, Noise Seed) (B-6) 

where the UNIFORM(Min, Max, Seed) function generates a sequence of values 
drawn from a uniform distribution on the interval [Min, Max]. The user also spec- 
ifies the noise seed. By fixing the noise seed, every simulation will generate ex- 
actly the same sequence of random values, facilitating comparison of simulations 
with different policies and parameters. Changing the noise seed changes the real- 
izations of the random process but not its statistical properties. The scaling factor 
(24 * Correlation Time/dt)o,5 adjusts the amplitude of the white noise so that the 
standard deviation of the pink noise output equals the specified value.5 

In continuous time, noise can include all frequencies. Since simulations pro- 
ceed by discrete time steps, the highest frequency in any model variable is twice 
the time step dt (to complete one cycle of up-down-up requires a minimum of two 
time steps). Exponential smoothing attenuates high frequencies. It is known as a 
low pass filter because it lets low frequencies pass essentially full strength but pro- 
gressively attenuates cycle periods near or shorter than the time constant. The 
longer the correlation time, the greater the attenuation at any frequency. Thus, the 
longer the correlation time constant, the larger the amplitude of the white noise 
must be. The less frequently random values are sampled (the larger dt), the smaller 

q h i s  formulation for pink noise assumes the model is solved by Euler integration (appendix A). 
Higher-order integration methods such as Runge-Kutta change the power spectrum and other prop- 
erties of noise and should generally be avoided in models with random disturbances. 

5The pink noise formulation given here smooths a uniformly distributed white noise stream. 
Nevertheless, the distribution of the resulting pink noise is asymptotically normal. An alternate 
formulation smooths a normally distributed white noise signal to yield pink noise that is always 
Gaussian: 

White Noise = M + [ S2 * (2 - (dtiTc))]0'5 * NORMAL(0, 1, Noise Seed) 
(dt/T,) 

(B-6') 

where M is the mean, S is the standard deviation, T, is the correlation time constant, and 
NORMAL(0, 1, Noise Seed) generates a Gaussian distribution with mean 0 and variance 1. 

The structure of this alternate pink noise formulation is the same as the one above; the only 
difference is the distribution of the white noise and the resulting scaling factor to ensure the pink 
noise has the specified standard deviation. (You can easily derive the scaling factors for each for- 
mulation by expanding the Euler integration for the pink noise variable as the weighted sum of the 
white noise at time t, t - dt, t - 2dt, etc.). If you had strong data showing the unconditional distri- 
bution of noise in a process to be Gaussian, the formulation in equation (B-6') would be preferable. 
In practice, it is unlikely the data would allow you to discriminate between the two forms. 
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the amplitude of the white noise must be, because less frequent sampling means 
the power in the white noise is concentrated in lower frequencies that are not at- 
tenuated by the smoothing process. 

The correlation time constant captures the degree of inertia in the noise 
process. In first-order pink noise the correlation between current and past values 
decays exponentially with a time constant equal to the correlation time.6 

The data shown in Figure B-1 were generated by the pink noise structure with 
a standard deviation of 5%, correlation time constant of 4 weeks, and time step of 
0.125 weeks. 

Comparing Figures B-1 and B-2 it is clear that the (unconditional) distribu- 
tions of the two noise inputs are about the same. The pink noise structure generates 
a distribution that is essentially normal, with the specified mean and standard de- 
viation (the reported mean and standard deviation differ slightly from the specified 
values because the sample of data is finite). However, successive values of pink 
noise are correlated with past values, so the pink noise process does not change as 
rapidly as the independent, uncorrelated values generated by the normal distribu- 
tion in equation (B-3). 

Does it matter? Yes. Noise consists of signals of various frequencies and am- 
plitudes. Dynamic systems act as filters, selectively attenuating some frequencies 
while amplifying others. Many systems resonate strongly at certain frequencies. If 
the noise contains significant power near the resonant frequency, the system will 
fluctuate, sometimes violently. The Tacoma Narrows bridge, in the state of Wash- 
ington, vividly demonstrated the power of a system to amplify random noise. Built 
in 1940, people immediately noticed its tendency to swing in even light winds. On 
November 7, the bridge, driven by modest winds of about 40 miles per hour, began 
to oscillate through huge swings. A few hours later it collapsed. Unknown to the 
designers, the suspension span had a strong resonance near the frequencies in the 
vortices created as the wind passed around it. A new span was built on the same 
towers, but this time stiffened so its resonance peak was smaller and far from the 
frequencies created by the wind. It still stands today. Similar resonance phenom- 
ena arise in social and economic systems, as illustrated by the supply chain mod- 
els in chapters 17-20: Small random variations in customer orders induce large 
fluctuations in production near the natural frequency of each system. 

To illustrate, Figure B-4 and Table B-1 compare simulations of the inventory- 
workforce model developed in chapter 19 with the two noise inputs in Figures 
B-1 and B-Z7 In both simulations, customer orders are constant and the random 

60ccasionally data analysis will show that the autocorrelation function is not well approximated 
by exponential decay. In these cases, higher-order pink noise formulations may be used, formed by 
cascading several first-order pink noise delays in series (see chapter 11). The standard deviations of 
each stage must be scaled appropriately so the output has the proper standard deviation. In practice, 
it is rarely necessary to use higher-order noise processes. Complex autocorrelations and cross- 
correlations among the exogenous random effects in your model suggest there is significant feed- 
back and stock and flow structure you should probably be modeling explicitly and endogenously. 

7The model used in this appendix is identical to the inventory-workforce model developed in 
chapter 19 except that expected productivity, used in the determination of desired labor, is modeled 
as a first-order information delay of actual productivity with a time constant of 13 weeks. 
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FIGURE B-4 
Response of 
i nve n t o ry- 
workforce model 
to white and 
pink noise 
The system res- 
onates near its 
natural frequency 
when driven by 
noise. The noise 
input in both cases 
has a standard 
deviation of 5%. 
Most of the power 
in white noise is 
contained in the 
high frequencies, 
which are attenu- 
ated by the sys- 
tem. Pink noise 
contains more 
power near the 
system’s natural 
frequency, causing 
large cycles. 
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variations in productivity are the only perturbations disturbing the system. 
Both noise streams have the same standard deviation and distribution. The only 
difference is the degree of autocorrelation. The pink noise signal has a correla- 
tion time constant of 4 weeks, while the white noise signal is independent (no 
autocorrelation). 

The response of the production system to the two noise streams is very differ- 
ent. Very little happens when the system is perturbed by white noise. There are 
small variations in inventories, the workforce, and other variables, but the system 
attenuates nearly all of the noise because most of the power is concentrated in the 
high frequencies. The independent variations in productivity cause large changes 
in production starts from dt to dt. Since dt is 118 week, this means production starts 
vary widely from day to day. Low output today is more than likely to be offset by 
higher than normal values within a few days. Inventory absorbs most of the short- 
term variations and there is little need for the firm to alter its workforce. 

Pink noise, however, means that when output is low today it is likely to remain 
low for a few weeks. During this time, inventories can fall significantly, forcing the 
firm to hire workers to expand output and triggering the system’s latent oscillatory 
response to shocks. The variations in productivity are too slow to be absorbed by 
inventory or filtered out by the hiring delays. The noise contains significant power 
near the system’s natural frequency of about 1 year. Consequently, the system res- 
onates strongly-the standard deviation of production starts is 7.6% of the mean, 
even though the standard deviation of the noise input is only 5%. 

Table B-1 shows the standard deviation as a fraction of the mean value for key 
variables in both the white noise case and the pink noise case. Under white noise, 
the system strongly attenuates the random shocks. The standard deviation of in- 
ventory is less than 2%, showing how inventory buffers the system from the high 
frequency variations in production starts caused by the white noise. The standard 
deviations of production, inventory, and labor are all much less than that of pro- 
ductivity. Only the hiring rate amplifies the white noise input. 

Under correlated noise, however, inventory, workforce, and other key vari- 
ables all fluctuate by more than the variation in productivity. The standard devia- 
tion of hiring is six times greater than when the system is driven by white noise and 
13 times greater than the standard deviation in productivity. 



Noise 921 

TABLE B-1 
Autocorrelated 
noise alters the 
amplification 
generated by 
a system. 

Standard Standard 
DeviatiodMean Deviationmean 

Pink Noise White Noise Ratio 
~ 

Production Starts 0.0760 
Production 0.0547 
inventory 0.1055 
Labor 0.0591 
Hirina Rate 0.6539 

0.051 1 1.49 
0.0087 6.30 
0.01 60 6.59 
0.0085 6.99 
0.1097 5.96 

Various statistical tools can help you estimate the autocorrelation time con- 
stant, if sufficient data are available. Most regression and times series software 
packages readily compute the autocorrelation function, showing the correlation be- 
tween the current value of the variable and its values at each interval in the past. 
From the autocorrelation function you can estimate the time constant for the pink 
noise function. If numerical data are unavailable, use your best judgment and con- 
duct extensive sensitivity tests. 

To illustrate, Oliva (1996) developed a model of a bank’s retail loan operation 
to explore the determinants of service quality (chapters 14 and 21). Customer de- 
mand and worker absenteeism, two important inputs to the model, both exhibited 
small variations around their averages (the standard deviations were less than 4% 
of the means). To model these random variations Oliva estimated the autocorrela- 
tion functions for each, finding a correlation time constant of about 2 weeks for ab- 
senteeism and about 1 week for orders. That is, customer orders this week were 
weakly dependent on orders last week, but absenteeism tended to persist for longer 
periods. Oliva also found that the random variations in orders and absenteeism 
were independent of each other, so each could be modeled as a separate pink noise 
process.* Oliva was then able to simulate the effects of various policies affecting 
service quality while the model system was perturbed with realistic patterns of or- 
ders and absenteeism. 

Without random noise the loan center remained in equilibrium with demand 
and capacity in balance and constant service quality. However, when realistic ran- 
dom variations in demand and the workforce were added to the model, quality 
standards tended to erode over time, even when capacity was sufficient to meet de- 
mand on average and even though the random shocks were small. The random 

8Sometimes different noise processes are not independent but are cross-correlated. For example, 
unpredictable short-run variations in interest rates might be correlated with random shocks in com- 
modity prices. It is a simple matter to incorporate such cross-correlations (e.g., the shocks perturb- 
ing a variable can be modeled as an appropriately weighted sum of variable-specific noise and the 
noise with which it is correlated). Multivariate time series tools such as vector autoregressive mod- 
els and cross-spectral analysis can help you identify the correlational structure among the variables 
and their histories (see the references in note 3). However, a complicated set of cross-correlations 
suggests there is important feedback structure you should probably be modeling explicitly. A good 
model generates the variances, autocorrelations, and cross-correlations observed in the real system 
without being forced by too many exogenous inputs. 
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variations in demand and capacity meant the bank occasionally found itself short 
of capacity. Loan center personnel responded by spending less time with each cus- 
tomer so they could clear the backlog of work each day. These reductions in time 
per customer gradually became embedded in worker norms. Management inter- 
preted the reduction in time per customer as improvements in productivity caused 
by their get-tough management policies, unaware that spending less time with cus- 
tomers reduced service quality, eventually feeding back through customer defec- 
tions to other banks. Oliva found that reducing the time spent per customer caused 
a significant reduction in the value of loans issued, directly reducing bank revenue. 
Lower revenues then fed back to financial pressure leading to staff reductions and 
still more pressure to spend less time on each customer. The resulting positive 
feedback, if unchecked, could act as a death spiral for the organization. Small, ran- 
dom variations in capacity and orders elicited the latent self-reinforcing quality 
erosion created by the policies of the bank and the behavior of its workers and 
managers. 

Exploring Noise 
Use the inventory-workforce model and pink noise structure to explore the sensi- 
tivity of model behavior to the noise correlation time and simulation time step. 

1. Figure B-4 and Table B-1 show that increasing the noise correlation time 
from 0 (the white noise case) to 4 weeks increases the oscillatory response of the 
inventory-workforce model. Explore how the system responds to even longer 
correlation times. Does the amplitude of the production cycle continue to 
increase? What happens if the correlation time is very long? Why? 
2. In all the simulations above the time step was 0.125 weeks. Explore how the 
behavior of pink noise and of the inventory-workforce model depend on the time 
step. Can you correct the problems caused by rapid changes in white noise by 
using a longer time step? Whylwhy not? 
3. So far only one source of noise has been considered. Does the behavior of 
the model change if you also assume customer orders vary randomly? Assume 
customer orders vary randomly with a small standard deviation around a constant 
average. Also assume productivity and orders are independent of one another. 
Assume to start that the correlation time for orders is 13 weeks (one-quarter year) 
but conduct sensitivity tests. How does the inclusion of multiple sources of noise 
alter the behavior of the model? Does it alter any of the policy conclusions you 
reached in chapter 19 regarding ways to improve the stability of the system? 
Explain. 
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SUMMARY 

Guidelines for the Use of Noise 
It is usually best to omit noise until you understand the dynamics generated 
by the feedback structure of your model. Use idealized test inputs such as 
the step, pulse, ramp, and sine wave to develop your understanding of the 
system’s response to shocks, then add more realistic inputs such as noise 
or historical data as necessary. 
After you understand the dynamics of your model, ask yourself whether 
random variations in the environment are likely to be important. If so, 
you must add random variations at key points. You should test the effects 
of random variations on your conclusions and policy recommendations 
even if you think they probably won’t matter. If they don’t matter, you 
can omit them. 
In principle, effects outside the boundary of your model can perturb every 
variable. All parameters are candidates for the inclusion of some type 
of noise, and the reported values of all state variables include some 
measurement error. You do not need to include noise in every variable 
and parameter. Decide which are the most important sources of random 
variation to include. Important sources will be those parameters that 
are both variable in the real system and whose variation matters to the 
dynamics. There is no point in including noise in a parameter that has 
little impact on the behavior of the model. 
All real noise sources have inertia and attenuate high frequencies. Never use 
white noise in your models. Use the pink noise structure to model random 
shocks. Estimate the distribution, standard deviation, and correlation time 
constant from the data. Use your best judgment when numerical data are 
not available. 

0 If you have multiple sources of noise in your model, consider whether 
they are independent or correlated. Independence is convenient but not 
always accurate. Use the available data to estimate the cross-correlations 
of multiple noise inputs. 

0 Be sure your results are not sensitive to the choice of time step. As with any 
structure, the time step should be small relative to the smallest time constant 
in the model, including the correlation time for any pink noise processes 
(see appendix A). 

0 You can compare different sensitivity and policy tests in models with 
random effects by using the same noise seed in each simulation. Since the 
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sequence of random shocks will be exactly the same in each simulation with 
the same noise seeds, any differences among them must be due to your 
policy or parameter changes. 
When using random inputs be sure to run your model long enough, or 
enough times, to ensure your results are not contingent on the particular 
realizations of the random processes. Calculate the distributions of the 
variables over long time periods or over a large sample of simulations. 
Don’t assume any one simulation is representative of all. 
As with any model, conduct extensive sensitivity tests to be sure you 
assess the robustness of your results to plausible variations in assumptions, 
including assumptions about the statistical properties of any noise inputs. 
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numerical data available, 437-445 
numerical data not available, 445447 

first-order delay, 464-465 
general formulation, 462-463 
high-order delays, 465-466 

mathematics of 

nonlinear adjustment times, 436-437 
relation of material to information, 466 
source of dynamics, 403 
test inputs, 426,427 
variable, 434-437 

Delivery deadlines, 59n 
Delta time; see DT 
Demand 

for commodities, 800 
cyclical, 792 
in generic commodity market model, 81 1-813 
and income expectation, 718 

Demand forecasting, 716 
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Demand shock, 723 
Demographics 

age structure of organizations, 495-490 
of economic development, 481435 
population and infrastructure, 472-474 
population inertia, 480-48 1 
population pyramid, 474-480 

Demographic transition, 474-480,48 1-485 
Department of Energy, 97,98 
Depressions, 3 89-3 90 
Derivatives, 197 
Description phase of elicitation method, 586 
Designers, importance of, 84 
Design for disassembly program, 228 
Design win model, 455456 
Desired versus actual conditions, 5 19 
Dewald, W., 855-856 
Dewey, John, 15 
Diacu, E, 11511,284 
DICE climate model, 242 
Diehl, E., 27,29, 209,688,694 
Differentiation strategy, 37 1-373, 391 
Digital Equipment Corporation, 325, 390-39 1 
Dimensional consistency, 859, 866 
Dines, James, 63 1 
Dioxin, 425 
Dirac delta function, 413n 
Disaggregation, 2 13-2 16 

of net flows, 547-549 
Discourses (Machiavelli), 8 
Disequilibrium dynamics, 196-197 
Displaced emission vehicles, 11 
Disraeli, Benjamin, 853 
Di Stefano, J., 899 
Division of labor, 369, 386 
DNA, 353 
Dodson, J., 577 
Doman, A., 37811 
Dorner, D., 28 
Dostoevsky, Fyodor, 3 1 
Double-dip behavior of supplier delivery rate, 

Double-loop learning, 18-19, 25 
732-734 

Doubling time, 108-109,268-269 
Downing, Mark, 66n,73 
Downs, A., 17811, 189,701 
Doyle, J., 16, 888 
Drake, Edwin L., 92 
Draper, E, 900 
Draper, N., 867n 
Dresch, E, 865, 866 
Dreyfus, H., 37 
Dreyfus, S., 37 
Driving patterns, 352-353 
Drug abuse, 250-262 
Drug Enforcement Agency, 250 
Drug Enforcement Policy Board, 250 
DT (delta time), 903-904,907-908 
DT (delta time) error, 872, 905-906 
Duesenberry, James, 43 6 
Du Pont Corporation, 66-79 
Durable products, 345-346 
Dvorak keyboard, 387 
Dyer, W., 86n 
Dynamic complexity, 21-23 
Dynamic confidence bounds, 886 
Dynamic decision making, 896 
Dynamic equilibrium, 232 
Dynamic hypothesis 

auto leasing strategy, 44-47 
causal loop diagrams, 102 
definition, 86 
endogenous variables, 95-96 
from interview data, 157-159 
maintenance game, 67-73 
model boundary chart, 97-99 
policy structure diagrams, 102 
project management case, 58-61 
purpose in modeling, 94-95 
steps, 87 
stock and flow maps, 102 
subsystem diagram, 99-102 
supply chain reengineering, 746-749 
testing with simulation model, 102-103 
for VCR industry, 364 
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Dynamic systems; see also Complex systems 
and bounded rationality, 26 
common modes of behavior, 108 
fast versus sllow, 909n 
generating harmonics, 734n 
modes of behavior, 107 

chaos, 129-133 
exponential growth, 108-1 11 
goal seeking, 11 1-1 13 
interactions of, 118-127 
oscillation, 114-116 
overshoot and collapse, 123-127 
process po'int, 116-117 
randomness , 1 27- 1 2 8 
stasislequilibrium, 127 
S-shaped growth, 118-121 
S-shaped growth with overshoot, 121 

DYNAMO software, 904 
Dysfunction, 29 

E 
Early adopters, 324 
Easing-in strate:gy, 32-33 
Easter Island, 125-127 
Eberlein, R., 870, 897 
Eckstein, Otto, 632n, 857 
Ecology, carrying capacity, 11 8-121 
Econometrics/rnodels, 26 

added-factorled, 654 
estimating tiime lag, 437-445 
forecasting with, 857 

Economic deveilopment, 48 1-485 
Economic fluctuations, 132 
Economic growth, 385-386 
Economic long wave, 1 15n 
Economic modeling, 96 
EconomicsEconomy 

business cycles in, 757,782-788 
changes since 19th century, 787-788 
classical theory of commodity cycles, 79811 
corrective fetedback forces, 79 1 
forecasting commodity prices, 643-645 
forecasting energy consumption, 638-643 

forecasting inflation, 645-654 
hiring rates, 758-760 
limits to lock in, 389-391 
lock in to inferior technology, 387-389 
long wave theory, 115n, 132,784n 
market forces, 79 1 
modeling path dependence for, 392406 
path dependence, 359-364 
positive feedbacks in, 388 
ratchet effects, 436 
recovery from nuclear war, 865-866 
theory of rational choice, 599 

Economies of scale, 368-369 
Economies of scope, 369 
Eddington, Arthur, 882 
Eden, C., 36-37 
Effects, 11 
Efficient customer response, 740-742 
Egypt, 482 
Einhorn, H., 28,30 
Einstein, Albert, 128, 882 
Electricity consumption, 642 
Electric utility capability margin, 796 
Electric utility industry, 423424 
Electronic data interchange, 740-742 
Elicitation method 

case studies, 587-595 
description phase, 586 
for model relationships, 587-595 
positioning phase, 586 

Emmerson, R., 157 
Employee motivation, 147-148 
Employees 

in age structure of organizations, 485-493 
in company towns, 374-375 
learning curve, 490-493 
mentoring, 493497 
on-the-job training, 493-497 
promotion chains, 485493 
quality and loyaIty of, 376-378 

Employment, duration of, 758-759 
Enantiomers, 353 
Endogenous variables, 95-96 
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Energy consumption forecasts, 638-643 
Energy demand, 150-152 
Energy-economy interactions, 97-99 
Energy needs, 870-87 1 
Energy supply, lagged response to price, 438 
Engineering, procurement, and construction 

English auction, 8 13 
Entrainment, 78511 
Environment, carrying capacity, 118-121 
Epidemics 

process, 218-221 

conditions for, 305-306 
contact number, 308 
extending SIR model, 3 16-3 18 
herd immunity, 3 12-3 14 

moving past tipping point, 3 14-3 16 
reproduction rate, 308 
SI model, 300-303 
simple model of infections, 300-303 
SIR model, 202-209 
spread of, 3 12-3 13 
S-shaped growth modeling, 300,301 

HIV/AIDS , 3  19-323 

Epple, D., 338 
Epstein, J., 520 
Equilibrium, 127 

balanced, 7 16-7 18 
and decision rules, 519-520 
lock in to, 387-389 
and path dependence, 351-352 
in Polya process, 356 
stability of, 400401 
static or dynamic, 232 
unstable, 130-131, 267 

Equilibrium price, 8 14-821 
Erlang distributions, 462-466 
Error control, 909 
Error propagation, 906n 
Error rate, 583-584 
Etherton, R., Jr., 6511, 899 
Euler, Leonard, 904 
Euler integration, 234n, 904-908, 

909-111,918n 

Event-oriented worldview, 10-12 
Excess capacity, 776 
Excess inventory, 746-749,772 
Exogenous variables, 95-96,202 
Expanding oscillations, 130-132 
Expectations; see also Adaptive expectations; 

Growth expectations; Rational 
expectations 

modeling formation of, 63 1-634 
and models, 63 1 

Expected loss rate, 671-672 
Experience, dynamics of, 508-509 
Exponential decay, 112 

from negative feedback, 274-280 
time constants and half-lives, 279-280 

Exponential growth, 108-111,426,427 
and carrying capacity, 118-121 
counterintuitive and insidious character of, 

over different time horizons, 27 1 
doubling time, 268-269 
examples, 110 
misperceptions, 268-272 
overcoming overconfidence, 272-274 
from positive feedback, 264-274 
Rule of 70,268-270 
structure and behavior, 109 

Exponential smoothing 
first-order, 612, 634-636, 716, 803, 918 
in forecasting, 632 
in information delay, 428-432 

590,591-592,593 

270 

External precedence relationships, 587-589, 

Extrapolative expectations, 657-658 
Extreme conditions, 555-556 

automated testing, 897 
Extreme conditions test, 337 

F 
Fad and fashion, 339-342 
Faires, J., 903 
Falsification, 3 1 
Falsificationism, 847n 
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Family member tests, 860, 881-882 
Farman, J., 24 
Fashion, 339-342 
Fatigue and productivity, 577-584 
Federal Bureau of Investigation, 250 
Federal Emergency Management Agency, 866 
Federal Energy Administration, 96 
Feedback, 12-13; see also Causal loop diagrams 

driver of adoption and diffusion, 323-324 
generating modes of behavior, 107-108 
in information systems, 23-24 
interpretation of, 30 
learning as process of, 14-19 
linked with stock and flow structure, 212-213 
meaning in system dynamics, 13-14 
misperceptions of, 26-27 
operating in complex systems, 10-12 
and overconfidence, 272-273 
in system dyinamics, 137 

Feedback control, 5 
Feedback loops,, 12-13 

auto market, 45 
and barriers 1.0 learning, 19-20 
causal loop diagrams, 138-141 
in cognitive maps, 28 
decision making in context of, 15 
determining polarity, 143- 147 

fast way, 144 
mathematics of, 145-146 
right way, 144 
unambiguous polarities, 146-147 

with double-loop learning, 18-19 
in maintenance games, 67-73 
of markets, 168-177 
in modeling process, 86-89 
project management case, 58 
single-loop bearning, 16-17 
in system dynamics, 21-23 
with virtual worlds, 34-35 

Feedback structure 
adaptive expectations, 428 
automated, 897 
created by floating goals, 533 
HIV/AIDS epidemic, 322-323 

Festinger, Leon, 168 
Feurzeig, W., 900-90 1 
Fiddaman, Tom, 93n, 242-246,388,868 
FIFO inventory, 414 
Finan, J., 449 
Financial markets, 697-698 
Fine, C., 15811 
Fine, P., 310, 312 
First-order control, 545-547 
First-order delay, mathematics of, 464-465 
First-order exponential smoothing, 612, 803 

in demand forecasting, 7 16 
modeling perceptions, 429432 
in TREND function, 634-636 
of white noise, 918 

First-order information delay, 429432 
First-order linear negative feedback structure, 

First-order linear positive feedback, 29 
First-order material delay, 415417 
First-order systems 

274-275 

inability to oscillate, 290 
multiple-loop, 282-285 
nature of, 263-264 
negative feedback, 274-280 
nonlinear, 263,285-290 
positive feedback, 264-274 

Fischoff, B., 272 
Fish Banks, Ltd., 35 
Fisher, D., 900 
Fisher, Irving, 63 1, 632n 
Fisher, S., 577 
Fitzgerald, H., 38 
Flavin, C., 124 
Flenley, J., 125, 126, 127n 
Flexible workweeks, 776-778 
Floating goals, 532-535 
Flows, 140; see also Stocks and flows 

and accumulation, 19 1-1 97 
continuously divisible, 207-208 
definition, 192 
instantaneous, 206-207 
quantized, 207-208 
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Flows-(Cont.) 
ratedderivatives, 197 
stock change through rates of, 204-206 

analytical integration, 238 
in commodity markets, 792 
in supply chain, 665-666 

Flu epidemic of 1978,300, 301 
Flynn, Vince, 66n 
Food chain, 425 
Ford, A., 42n,93n, 424, 886n 
Ford, D., 16,6011, 58511,587 
Ford, Gerald, 7-8 
Ford Credit Corporation, 47, 54, 55 
Ford Motor Company, 43,53, 384 
Forecasting; see also Information delay 

bias, phase shift, and attenuation, 646 
bottom-up, 453 
commodity prices, 643-645 
demand, 7 16 
econometric, 857 
extrapolation and stability, 656-65 8 
implications for managers, 655-657 
judgmental, 432 
limitations and flaws, 655-656 
major issues in, 633-634 
modeling expectations formation, 63 1-634 
modeling growth expectations, 634-638 
models of process, 632 
semiconductor demand, 449-462 
as social/political activity, 633 
time series, 43 1-432 

Forgetting curves, 508 
Former adopters, 340 
Forrester, Jay W., 5, 15, 16, 21, 28, 29, 32, 37, 

Fluctuations 

38,41,79,84,99-100, 107, 11511, 122n, 

382n,441,461,472-474,481,484, 
485n,513,514,515,520n, 526, 
605-606,608,617n, 619,648,684,709, 
782n,783,846,854-855,858,861,881, 

130, 132, 189-190, 193,263,289,381, 

882-883,900-901 
Forrester, N., 897 

Fossil fuel production, 93-94 
Fourier analysis, 917n 
Fractional birth rate, 286-287 
Fractional decrease rate, 523 
Fractional growth rate, 296 
Fractional rate increase, 522 
Fractional rate of change, 11 1 
Frankel, J., 823 
Franklin, Benjamin, 3 
Franses, P., 917n 
Frazer, W., 646n 
Frequency domain analysis, 917n 
Freud, Sigmund, 261 
Friedman, Milton, 63211, 785 
Frisch, R., 786n 
Froot, K., 654, 823 
Fudge factor; see Add-factoring 
Functional silos, 740-742 
Fundamental modes of dynamic behavior 

exponential growth, 108-1 11 
goal seeking, 111-113 
interactions 

overshoot and collapse, 123-127 
S-shaped growth, 118-121 
S-shaped growth with overshoot, 121 

oscillation, 114-1 16 
process point, 116-117 

Fuzzy MAX function, 520-532 
Fuzzy MIN function, 529-530 

ti 
Galbraith, C., 632 
Galbraith, John Kenneth, 173n 
Galileo, 847-848 
Gardiner, B., 24 
Gardiner, L., 262n 
Garnett, G., 321n 
Garud, R., 389 
Gasoline prices, 150-152, 172-173,212-213 
Gates, Bill 

company growth aspirations, 383-384 
use of positive feedback, 385 
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Gauss, Karl Friedrich, 895 
Gaussian distribution, 9 18n 
Gearhardt, Kevin, 44911,454 
GE Capital, 54-55 
General Accounting Office, 857 
Generalized least squares, 867 
General Motors, 384 

auto leasing strategy, 42-55 
General Motors Acceptance Corporation, 43,47, 

General relativity theory, 882 
Generic commodity market model 

capacity utilization, 802-805 
demand in, 8 11-8 13 
desired capacity, 807-8 10 
price-setting process, 8 13-824 
production amd inventory, 801-802 
production capacity, 805-807 
for pulp and paper industry, 824-828 
stock and flow structure, 798-800 

54,55 

Gentner, D., 16 
Geometric lag; see Koyck lag 
Gerlow, M., 8;!3 
Geroski, P., 382 
Gibbs, W., 1781-1 
Gilbert, W. S., 191 
Gillette, R., 93n 
Glaser, B., 157 
Global stability, 130 
Global warming, 241-249, 273 
Glucksman, M., 37811 
Goal adaptation, 532 
Goals, floating, 532-535 
Goal seeking, 11 1-1 13 
Goal-seeking behavior, 264, 274, 28 1-282 
Goal setting, 601-602 
Goldbach, Rich, 5511, 56, 63, 65-66 
Goldratt, E., 753 
Goluke, U., 262n 
Gompertz model, 299,327, 330 
Gordon, R., 7S84 
Gould, J., 900 
Gould, S., 38911 
Goulden, M., 247 

Graham, A., 15, 12211,39011,474,77811 
Granger, C., 917n 
Graphical differentiation, 232-233 

dynamics and behavior, 231-232 
stocks and flows, 239-241 

Graphical integration, 232-233 
steps, 236 
stocks and flows, 234-239 
linear first-order systems, 266-268 
phase plot, 266-267 

Graphic design principles, 153 
Great Depression, 390, 65 1 
Green, E., 603n 
Greenberger, M., 846 
Greene, W., 867n 
Greenhouse gases, 241-249 
Griffith, J., 78n 
Grimes, Glenn, 643-645 
Grinspoon, L., 261 
Gross, D., 208 
Gross domestic product 

and aggregate demand, 7 18-7 19 
average growth rate, 269 
and business cycles, 782n 
growth fluctuations, 115-1 16 
and Microsoft growth, 384 

Gross national product, 870 
Gross world product, 273 
Group learning 

impediments to, 32-33 
pitfalls of virtual worlds, 35-37 
virtues of virtual worlds, 34-35 

Group modeling, 899 
Groupthink, 33, 36 
Growth; see also Exponential growth; 

Population growth; S-shaped growth 
fractional rate of, 296 
limits to, 295 

Growth aspirations, 380-382 
Growth expectations, 634-638 
Growth tigers, 382-383 
Gruber, H., 338 
Guvenen, O., 79811 
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H 
Ha, Y., 30 
HAART (highly active antiretroviral therapy), 

Haberler, Gottfried, 697n 
Habit, 601 
Habituation, 532 
Half-life, 112, 279-280 
Halford, G., 16 
Hall, R., 28 
Hamel, Gary, 381 
Hamill, D., 320 
Hamilton, M., 437 
Hansen, M., 17811, 184 
Hard data/variables, 853 
Harmonics, 734n 
Harris, C., 208 
Harris, R., 86n 
Haselden, Terry, 845 
Hauser, J., 347 
Haxholdt, C., 787n 
Hayes, D., 840n 
Haynes, Michael, 449n 
Health insurance, 175-177 
Heidenberger, K., 32111 
Hellekalek, P., 914 
Henderson, R., 390,508 
Hepatitis A, 3 16 
Hepatitis C, 316 
Heraclitus, 22 
Herd immunity, 3 12-3 14 
Herding, 654 
Hermann, K., 174 
Hernandez, K., 701 
Heteroscedasticity, 867 
Higher-order information delay, 432-434 
Higher-order material delay, 4 17-42 1 

High-leverage policies, 22 
High-order delays, mathematics of, 465466 
High School Senior Survey, 250,257 
High-tech growth firms 

modeling, 605-628 
supply chain reengineering, 743-755 

3 19-323 

examples, 423-425 

Hilbert, David, 263 
Hill-climbing optimization, 537-544, 6 15 
Hiring, 758-760 
Hirsch, G., 262n 
History-dependent systems, 22 
HIV/AIDS , 3  1 6 
HIV/AIDS epidemic 

feedback structure, 322-323 
modeling, 3 19-323 
simulating, 323 
stock and flow structure, 321 

Hogarth, R., 15,28,30,599-600,814n 
Holder, H., 262n 
Holmes, P., 11511,284 
Holt, C., 632n 
Home Depot, 383 
Homer, Jack, 37, 38, 65n, 86n, 120,218,251, 

252,253,255,256,258,259, 262n, 
347,381,474, 580n, 802,823,867-868, 
869,881 

Horizontal expansion, 375-376 
Hoyt, Homer J., 698, 699 
Huang, H., 840n 
Hubbard, R., 855,857 
Hubbert, M. King, 93-94 
Hump-shaped function, 577-584 
Hunter, J., 440 
Hydraulic metaphor, 193-195 

I 
IBM, 371,372-373,377-378,390-391 
If/then diagram, 152 
If-then-else formulation, 547 
Ill-conditioned models, 906n 
Immunity, loss of, 3 11-3 12 
Immunization programs 

effectiveness, 3 10-3 12 
eradication of smallpox, 309-3 10 
just-in-time vaccination, 3 17-3 18 

failure, 33 
focus on, 80 

Implementation, 899-900 
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Income expectation, 7 18 
Increasing returns, 385-386 
Incubation period, 3 16 
Individual responses to bounded rationality, 

Industrial Dynamics (Forrester), 15, 84 
Industrial revollution, 4 
Industry cycles, 796-798 
Inertia, resulting from delays, 423 
Infectious disease, 300-303 
Inflation, 7-8, 637 

601-603 

forecasting, 645-654 
sea-anchor model, 650-653 

ambiguous, 25-26 
limited, 23-25 
selective process, 23-25 

Information delay 
adaptive expectations, 428-432 
definition, 4 12 
exponential smoothing, 428-432 
first-order, 429-432 
higher-order, 432-434 
related to material delays, 466 
structure and behavior, 426-434 

Information 

Information economics, 175 
Information feedback, 16, 204 

Information processing ability, 599-600 
Information systems, feedback in, 23-24 
Infrastructure, 472-474 
Ingalls Shipbuilding, 55-66 
Innovation diffusion, 323-346 

Bass model, 332-339 
fad and fashion, 339-342 
learning curve, 337-338 
logistic model, 325-331 
replacement purchases, 342-344 
with SI epidemic model, 324-325 

devices, 898 
to nonlinear functions, 573-576 

Insight skills, 30 

delays in, 4;!6 

Input 

Instability 
in labor supply chain, 779-780 
in supply chains, 735-740 

Instantaneous flows, 206-207 
Integration error, 905-906 
Intel Corporation, 12, 349, 374, 383-384 
Intended rationality, 603-604 

of investment, 810-8 11 
testing, 605 

Interactive parameter estimation, 897 
Internal precedence relationships, 587-593 
Internet Explorer, 384 
Interpersonal impediments to learning, 32-33 
Interview data, 157-159 
Inventory, 192; see also Stock management; 

Stocks and flows; Supply chains 
excess, 746-749,772 
expected loss rate, 671-672 
feedback to capacity utilization, 835-836 
in generic commodity market model, 801-802 
order backlogs, 723-725 
of raw materials, 725-729 
vendor-managed, 740-742 

Inventory management, 764-782 
Inventory policy structure, 710-7 13 
Inventory-workforce interactions, 766-77 1 , 

Investment 
782-788 

decisions, 598-599 
intended rationality of, 8 10-8 11 

Investment function, 441-445 
Invisible hand, 169-177, 791ff 
Iranian revolution, 212 
Iraq, 310 
Irwin, M., 823 
Isaacs, W., 36, 858n, 899 
Iteration, 86-89 
ithink software, 904 

J 
Jacobs, R., 646n 
Jain, D., 332n 
Janis, I., 32, 33 
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Java, 384 
Jenner, Edward, 309 
Joglekar, N., 110 
Johnson, N., 356n 
Johnson-Laird, P., 16, 31 
Joint Economic Committee of Congress, 857 
Jones, A., 536 
Jones, P., 243 
Jones, R., 646n 
Jones, S., 36-37 
Jorgenson, D., 440 
Journal of Money, Credit and Banking, 855-856 
Judgmental errors, 30-32 
Judgmental forecasting, 432 
Judgmental parameter estimates, 884 
Just-in-time vaccination, 3 17-3 18 
JVC, 360 

K 
Kahneman, D., 30, 171,600,654,670 
Kalman filtering, 867, 897 
Kaminsky, P., 741n 
Kampmann, C., 27,289,575, 873474,897 
Kane, H., 124 
Kanizsa, Gaetano, 17 
Kanizsa triangle, 17 
Kantor, P., 507 
Karnopp, D., 26% 
Katz, S., 356n 
Kay, J., 17811, 184 
Keating, E. R., 900 
Kelvin, Lord, 854-855 
Kermack, W., 303 
Ken, R., 247 
Kestenbaum, D., 698 
Keyfitz, Nathan, 469,478 
Keynes, John Maynard, 436n 
Khazzoom, J., 438,439 
Kim, D., 140,209,900 
Kindleberger, Charles, 173n 
Kirch, P., 127 
Klayman, J., 30 
Kleiner, A., 157 

Kleinmuntz, D., 27 
Klopfenstein, B., 363 
Knetsch, J., 171 
Kofman, E, 2111, 100-101, 113,37811,436,780n 
Kondratiev cycle, 11.511, 784n 
Koshland, D., 25 
Koyck lag, 437,462-466 
Krishnan, T., 332n 
Krugman, Paul, 386 
Kuenzli, D., 78n 
Kuhn, Thomas, 24,849 
Kurian, G., 110, 113, 120 
Kuznets, Simon, 824 
Kuznets cycles, 824 
Kyoto Conference, 248 

L 
Labor, and inventory management, 764-782 
Labor capacitated process, 563-569 
Labor force, 758-760 
Labor productivity 

cutting corners versus overtime, 563-569 
stress and fatigue, 577-584 

adding overtime, 774-776 
adding training and experience, 780-782 
and business cycles, 782-788 
costs of instability, 779-780 
inventory management, 764-782 
model testing, 760-764 
oscillations, 767-773 
policy design to enhance stability, 773-774 
response to flexible workweek, 776-778 
structure of labor and hiring, 758-760 

Labor supply chain 

Labys, W., 798n 
Lagged response 

capital investment, 438-445 
in econometrics, 437-438 
energy supply to price, 438 
in monetary policy, 785-786 

Lakatos, I., 84811 
Landeen, R., 262n 
Lane, D., 37 
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Langley, P., 38 
Lant, T., 381, 532, 602 
Laplace, Pierre Simon de, 231 
Large-scale construction projects, 21 8-221 
Lusen, E., 93n 
Law of Acceleration, 4 
Law of unintended consequences, 5-10 
Lead times, of suppliers, 738-740 
Learner, E., 26, 880 
Lean manufacturing, 787-788 
Learning 

ambiguity, 25-26 
barriers to, 19-20 
bounded rationality, 26-27 
about complex systems, 4-5 
confounding variables, 25-26 
from continuous experimentation, 34 
defensive routines, 32-33 
double-loop, 18-19, 25 
and dynamic complexity, 21-22 
dynamics of, 508-509 
event-oriented, 10-1 2 
feedback misperceptions, 26-27 
as feedback process, 14-19 
flawed cognitive maps, 28-29 
implementation failure, 33 
interpersonal impediments, 32-33 
with limited information, 23-25 
mental models in, 16-18 
need for simulation, 37-39 
pitfalls of virtual worlds, 35-37 
requirements in complex systems, 33-39 
research on, 896 
single-loop, 16-17, 25 
unscientific reasoning, 30-32 
virtues of virtual worlds, 34-35 

Learning curve, 337-338,369-370 
and promotion chains, 490-493 

Learning curve models, 507 
Ledet, Winston J, 66 
Ledet, Winston P., 6&67,74-78 
Lee, E., 47811 
Lenstra, J., 61511 

Lesourd, J-B., 79811 
Levin, G., 262n 
Levine, R., 38 
Lichtenstein, S., 272 
Liebowitz, S., 38811 
LIFO inventory, 4 14 
Lima, Ohio, oil refinery, 77-79 
Limit cycle, 114, 130-132,689n 
Lincoln, Abraham, 350 
Lind, James, 19 
Linear first-order systems, 263 

analytic solution, 265-266 
graphical solution, 266-268 
multiple-loop, 282-285 
negative feedback, 274-280 
positive feedback, 264-274 

Linear growth, 109 
Linearization, 285 
Linear Polya process, 354-357 
Linear systems, 264 
Linear thinking, 10-12 
Link, J., 174 
Link polarity, 138-141 

Liquidated damages, 59n 
Little, John, 423 
Little’s Law, 421-425,678,724 
Liu, T., 823 
Livestock markets, 836-840 
Livingston, Joseph, inflation forecasts, 

646652,654 
Locally stable equilibrium, 351 
Locally unstable equilibrium, 35 1 
Local stability, 129-130 
Lock in, 352-353 

S or 0 notation, 140-141 

to equilibrium, 387-389 
limits to, 389-391 

Logistic growth model 
analytical solution, 297-298 
description, 296-297 
historical fit/model validity, 328-33 1 
for innovation diffusion, 325-33 1 
testing, 300 
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Long-run supply curve, 834 
Long Term Capital Management collapse, 698 
Long wave, 11511, 132,784n 
Loop knockout analysis, 880-881 
Loop polarity 

identifier, 13 
labeling, 142-143 

Loops, 897 
Lotka, A., 120,284 
Lotka-Voterra predator-prey model, 284 
Lotus Development Corp., 371 
Lovins, Amory, 643 
Low, G., 29011,718 
Low-leverage policies, 22 
Lucas, R., 516 
Lyneis, J., 780n 

M 
MacCoun, R., 250,258 
Machiavelli, N., 8 
Macintosh operating system, 370, 387, 388 
Macroeconomy, capital investment in, 438-445 
Mad cow disease, 312, 314-316 
Madnick, S., 65n,490n 
Magnetic Video, 363 
Mahajan, V., 324n, 330 
Maintenance Game, 34,66-79 

adoption of, 77-79 
dynamic hypothesis, 67-73 
implementation challenge, 74-76 
results, 76-77 

Makridakis, S., 41411,632 
Managerial practice, and decision rules, 5 18 
Managerial practice fields, 899 
Managers 

capacity expansion behavior, 6 12-6 13 
forecasting practices, 632 
implications of forecasting for, 655-657 
as organization designers, 84 
stock management task, 666-667 

Mandinach, E., 900 
Mann, C., 32 

Manrodt, K., 632 
Manufacturing 

capacity utilization, 1 16 
policy structure diagram, 710 

Manufacturing Game, 74-75 
Manufacturing supply chain, 709-755 

in balanced equilibrium, 7 16-7 18 
demand forecasting, 7 16 
instability and trust in, 735-740 
integration of management, 740-742 
interaction among partners, 729-742 
model testing, 720-723 
order fulfillment, 7 1 1-7 13 
policy structure of inventory, 7 10-7 13 
policy structure of production, 7 13-7 14 
production modeling case, 743-755 
production starts, 714-716 
reengineering, 74 1-742 

March, J., 157, 381,514, 515,598,602, 
63211,670 

Marchetti, C., 328 
Marcos, Ferdinand, 380 
Marginal cost, 543, 834-835 
Marginal productivity, 54 1-543 
Marginal revenue, 543 
Margolis, D., 265n 
Margolis, S., 38% 
Market failure, 174-177 
Market growth model, 607-628 

policy design in, 624-628 
Market power 

consolidation of, 376 
and corporate growth, 374-375 

Market price, 168-171 
Markets 

feedback structure, 168-177 
high-tech growth firms, 619-621 

determining, 402-403 
path dependence model, 392402 

Market share 

Markup pricing, 8 13 
Markup ratio, 803-805 
Markus, A., 76 
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Maron, M., 9031 
Marshall, Alfreld, 386 
Mass, Nathaniel J., 12211, 130, 37811,441, 474, 

Mass transit death spiral, 185-188 
Masuch, M., 378n 
Material delay 

663,74:3n, 746,785, 883 

average length of, 413 
definition, 4 1 1 
distribution of output around average delay 

time, 41 3-415 
examples, 423425 
first-order, 415417 
higher-order, 417421 
Little's law, '421425 
pipeline dela.y, 415, 416 
related to information delays, 466 
response to steps, ramps, and cycles, 425-426 
stock and flow structure, 41 1 
structure and behavior, 412-426 

Mathematics of loop polarity, 145-146 
Matsushita, 360, 363, 371, 403 
MAX function, 520-532 
Mayer, T., 439 
McCloskey, D., 847 
McKendrick, A, 303 
McKinsey and Company, 74311,746 
McPhee, John, 8n 
Meadows, D. H., 5, 24, 28, 32, 90, 9311, 99, 

11911, 125n, 262n, 270,272,481-485, 
849n,851,887,899 

Meadows, D. Id., 24, 11911, 12511,442,445,447, 
48511,79811,838 

Mean absolute error, 874-880 
Mean absolute error as a fraction of the mean, 

Mean absolute percent error, 874-880 
Mean square eirror, 648 
Mean time between failure, 76-77 
Measurement, as act of selection, 23 
Medex program, 175-177 
Media reports, 365-366 
Medicaid, 175 

874-880 

Medicare, 175 
Medigap insurance, 175-177 
Memory, short-term, 600 
Mental data, 853 
Mental models 

in auto industry, 42-43 
causal attributions, 28 
cause and effect in, 91 
dynamically deficient, 27 
improved by simulation, 37-39 
inadequacy of, 32 
in learning process, 16-18 
with limited information, 23-24 
research on, 896 
shift in, 79 
simulation capability, 29 
and simulation models, 88-89 
traffic congestion, 178-180 

Mental simulation, faulty, 29 
Mentoring, 493497,781 
Mergers and acquisitions, 374-376 
Merrill, G., 632, 633 
Merton, R., 368 
Mesarovic, Mihailo, 89-90 
Metro Machine, 65 
Michael, D., 86n 
Microsoft Corporation, 12, 349, 371, 

Microsoft DOS, 387 
Microsoft Windows, 387, 388 
Mill, John Stuart, 173 
Miller, G., 600 
Miller, J., 887 
Miller, P., 5 16 
MIN function, 529-530 
Misperception 

MIT, 487-489 
Mitchell, B., 122 
Model boundary, 8 1,222-225 
Model boundary chart, 97-99 
Model calibration, 897 
Modelers, questions asked by, 85 1, 852 

383-384,388 

of feedback, 26-27,29 
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Modeling 
agent-based, 896 
anchoring and adjustment, 534 
black box, 80 
with causal loop diagrams, 159-168 
characteristics, 83-84 
and client needs, 84-85 
continuous, 8 1 
design and effectiveness, 888-889 
by experts, 81 
integrating methodologies, 899 
as iterative process, 80 
keys to success, 888 
and mathematics, 23 1-232 
and organizational politics, 85 
proactive versus reflective, 858 
purpose of, 84,330-331 
sensitivity analysis, 562 
social evolution, 896 
with stocks and flows, 208-210 
supply chain reengineering, 749 

Modeling auto recycling, 227-229 
Modeling business cycles, 782-788 
Modeling coflows, 497-5 11 
Modeling commodity cycles, 792-798 

generic model, 798-829 
livestock markets, 836-840 
pulp and paper industry, 824-828 

common pitfalls 
Modeling decision making 

avoiding if-then-else formulation, 547 
disaggregation of net flows, 547-549 
outflows requiring first-order control, 

545-547 
formulation flaws, 520-522 
hill-climbing optimization, 537-544 
price setting process, 539-545 
principles, 513-522 

Baker criterion, 516-518 
decisions versus decision rules, 5 14-5 16 
desired versus actual conditions, 5 18-5 19 
managerial practice, 5 18 
not assuming equilibrium, 5 19-520 
robustness, 519 

rate equations, 522-545 

Modeling delays 
adaptive expectations, 428-432 
exponential smoothing, 428-432 
forecasting semiconductor demand, 449-462 

Modeling demographic transition, 48 1-485 
Modeling expectations formation, 63 1-634 
Modeling global warming, 241-249 
Modeling growth expectations 

energy consumption forecasts, 638-643 
forecasting commodity prices, 643-645 
forecasting inflation, 645-654 
with TREND function, 634-638 

behavior of full system, 621-624 
capacity acquisition, 609-6 15 
market sector, 619-621 
model structure, 606-607 
order fulfillment, 607-609 
sales force effectiveness, 615-619 

Modeling human behavior, 5 17,597-628 
bounded rationality versus rational 

cognitive limitations, 599-600 
goal setting and satisficing, 601-602 
habit, routines, and rules of thumb, 601 
intended rationality, 603-605 
managing attention, 601 
market growth model, 605-628 
responses to bounded rationality, 601-603 

Modeling information delay, 426-434 
Modeling insights, 899 
Modeling inventory management, 7 10-7 13 ; see 

Modeling inventory-workforce interactions, 

Modeling labor supply 

764-782 

Modeling high-tech growth firms, 605-628 

expectations, 598-599 

also Modeling production 

764-788 

interactions with inventory management, 

labor force and hiring rates, 758-760 
model testing, 760-764 

Modeling large construction projects, 2 18-221 
Modeling life cycle of durable products, 

Modeling material delays, 412-426 
345-346 
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Modeling path dependence 
model behavior, 396-402 
model structure, 392-396 
policy implications, 402-403 
standards formation, 391-406 

Modeling process, 103 
basic activities, 85-86, 87 
dynamic hypothesis 

endogenous explanation, 95-96 
mapping system structure, 97-102 
purpose, 9'4-95 
steps, 87 

iterative cyclle, 86-89 
policy design and evaluation, 103-104 
problem articulation 

importance of purpose, 89-90 
reference modes, 90 
steps, 87 
time horizon, 90-94 

simulation model formulation, 87, 102-103 
testing, 87 

adding order backlogs, 723-725 
demand forecasting, 716 
initializing model in equilibrium, 7 16-717 
interactions among supply chain partners, 

model testing, 720-723 
order fulfillment, 7 11-7 13 
policy structure of inventory, 710-713 
production rate policy structure, 713-714 
production starts, 714-716 
raw materials inventory, 725-729 
simultaneous initial condition equations, 

Modeling production 

7 29-74 2 

717-720 
Modeling S-shaped growth 

analytic solution of logistic model, 297-298 
epidemics 

extending SIR model, 3 16-3 18 
herd immunity, 3 12-3 14 

immunization programs, 3 10-3 12 
mad cow disease, 314-316 
SI model, 300-303 

HIV/AIDS, 3 19-323 

SIR model, 303-309 
tipping point, 305-309 

Gompertz model, 299 
innovation diffusion, 323-346 

Bass model, 332-339 
fad and fashion, 339-342 
logistics model, 325-33 1 
replacement purchases, 342-344 

logistic growth model, 296-297 
Richards model, 299 
testing logistic model, 300 
Weibull distribution, 299 

Modeling War on Drugs, 250-262 
Models 

for corporate growth, 99-100 
decision rules, 5 13 
defense against add-factoring, 857 
documentation, 855, 856 
DT error, 872 
energy-economy interactions, 97-99 
and expectations, 63 1 
extreme conditions test, 337 
false and refutable, 847-848 
of forecasting process, 632 
historical fit, 33 1 
ill-conditioned, 906n 
importance of purpose, 89-90 
initialized in balanced equilibrium, 7 16-7 18 
learning curve, 507 
limitations of, 846 
linking, 898 
manufacturing firm, 7 10 
with narrow boundaries, 96 
numerical integration, 903-91 1 
partial tests, 605 
pragmatics and politics of use, 851-858 
product development, 587-595 
purpose of, 79-80 
questions about, 851, 852 
reliance on exogenous variables, 95-96 
replicability, 855-858 
simultaneous initial condition equations, 

7 17-720 
skepticism of, 80 
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Models-(Cont.) 
specificity of, 89-90 
statistical significance, 868 
structure of, 513-514 
and submodels, 869 
Sugarscape, 520 
system dynamics national model, 441-445 
types of data for, 853-855 
visualization of behavior, 898 
well-conditioned, 906n 
with/without noise, 9 13-914 

behavior anomaly tests, 860, 880-881 
behavior reproduction tests, 860, 874-880 
boundary adequacy tests, 859,861-863 
dimensional consistency, 859, 866 
errors in, 845-846 
extreme conditions tests, 860, 869-872 
family member tests, 860, 881-882 
impossibility of validation, 846-850 
integration errors, 860, 872-874 
kinds of tests, 858-861 
in labor supply chain, 760-764 
loop knockout analysis, 880-881 
manufacturing supply chain, 720-723 
parameter assessment, 859, 866-869 
sensitivity analysis, 861, 883-887 
structure assessment tests, 859, 863-866 
supply chain reengineering, 749-752 
surprise behavior tests, 860, 882-883 
system improvement tests, 861, 887-889 

chaos, 129-133 
exponential growth, 108-1 11,263-264 
goal-seeking, 11 1-1 13,263-264 
interactions of, 118-127 
oscillation, 114-116 
overshoot and collapse, 123-127 
process point, 116-1 17 
randomness, 127-128 
stasis/equilibrium, 127 
S-shaped growth, 118-121 
S-shaped growth with overshoot, 121 

Model testing, 87, 103 

Modes of behavior, 107 

Modigliani, Franco, 632n 
Modis, T., 325, 328 
Mojtahedzadeh, M., 289, 897 
Molina, M., 24 
Monetary policy, 785-786 
Monopoly power, 374 
Monte Carlo simulation, 885-886, 887n 
Montgomery, M., 439,44111,680 
Monus, Paul, 66n, 77, 78 
Moore, G., 784 
More, Thomas, 5 
Morecroft, J., 37, 42n, 79,9511, 102, 157,602, 

Mortality, formulations for, 479-480 
Mosekilde, E., 4211, 133n 
Motorcycle production, 536-537 
Mowry, G., 376 
Moxnes, E., 388n 
Mueller, D., 382 
Mullen, T., 56, 58-59, 65n 
Muller, E., 32411, 330 
Mullineaux, D., 646n 
Multiple-loop systems, 282-285 
Multiple regression, 867 
Multiplicative effects, 528-529 
Multivariate time series tools, 921n 
Mundlak, Y., 840n 
Murphy’s Law, 5 
Murray, J., 131,306n 
Muth, J., 516 
Myers, L., 320 
Mylonadis, Y., 360, 363 

605n, 606,607, 710n, 899 

N 
Nadiri, M., 440 
Naill, Roger, 93n, 97,217,438,439, 575-576 
National Aeronautics and Space Administration, 

National Bureau of Economic Research, 782n 
National Household Survey, 250,252,254, 

National Institute of Justice, 250, 252 
National Institute on Drug Abuse, 250 

24-25,273 

256-257 
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National Small Business Prime Contractor of the 
Year, 65 

Natural price, 168-171 
Nautica, 383 
Neale, M., 434 
Negative feedback 

and exponential decay, 274-280 
goal-seeking behavior, 264,274,281-282 
governing supply chain, 665 

Negative feedback loops, 12-13 
as balancing loops, 142-143 
determining polarity, 144 
explicit goals, 155-156 
in free market, 168-177 
in goal seeking, 11 1-1 12 
origin of oscillations, 684 
oscillation behavior, 114-1 16 
in overshoot and collapse, 123-127 
in Polya process, 354-355 
S-shaped growth with overshoot, 121 
stasis/equilibrium, 127 
with time delays, 23 

Negative links. 139-140 
Negative stocks, 547, 864-865 
Nelson, C., 642 
Nelson, F., 395 
Nelson, R., 53,711, 542, 598 
Nerlove, M., 632n 
Net hiring rate, 617 
Netscape, 371 
Network effects, 370-37 1,40 1 
Newbold, P., 917n 
New England Haddock fishery collapse, 125 
New England Journal of Medicine, 260, 322 
New ideas/products; see Innovation diffusion 
New product development, 372-374 
Newton, Isaac. 848 
Nike, 383 
Nisbett, R., 16, 157 
Nixon, Richard M., 743,516 
Noise, 913-924 

degree of inertia, 919 
frequencies, 9 18-9 19 

guidelines for using, 923-924 
power spectrum, 917 

Nonconserved flows, 504-505 
Nonlinear birth/death rates, 286 
Nonlinear dynamics, 5 

theory of, 895-896 
Nonlinear effects, 525-529 
Nonlinear first-order systems, 263 

definition of loop dominance, 288-289 
inability to oscillate, 290 
S-shaped growth, 285-289 

Nonlinear functions 
building, 552-562 
common pitfalls 

avoiding hump-shaped functions, 577-5 84 
improper normalization, 576-577 
using wrong input, 573-576 

domain for independent variable, 556 
eliciting relationships interactively, 585-595 
estimated with qualitative and numerical data, 

extreme conditions, 555-556 
formulating, 566-567 
normalization, 554-555 
plausible shapes, 556 
product development model, 587-595 
reference points, 555 
reference policies, 555 
sensitivity analysis, 558-562 
specifying values, 556-557 
testing formulation, 557-558 

Nonlinearity, 22 
Nonlinear Polya process, 357-359, 

Nonlinear relationships 

569-583 

397-399,400 

cutting corners versus overtime, case, 

in dynamic systems, 55 1 
using table functions, 552-563 

563-569 

Nonlinear weighted average, 535-537 
Nonrecourse financing, 705 
Nord, O., 605 
Nordhaus, William, 217,273 



970 Index 

NORMAL function, 914-915 
Normalization, 554-555 

improper, 576-577 
North American Electric Reliability 

North American Free Trade Agreement 

Northcraft, G., 434 
Northern Securities, 376 
North Korea, 3 10 
Nuclear war, 865-866 
Numerical data, 853 

Numerical integration 

Council, 642 

model boundary assumptions, 862-863 

in parameter estimation, 867 

appropriate time step, 907-908 
choosing a method, 909-910 
error control, 909 
Euler integration, 904-908, 909-91 1, 9 18n 
guidelines for, 9 10-9 1 1 
integration error, 905-906 
Runge-Kutta methods, 908-9 11, 91 8n 
sample simulation sequence, 904-905 
variable time step methods, 909 

Numerical sensitivity, 562, 883 
Nyhart, J., 899 

0 
O’Connor, Flannery, 295 
Ogata, K., 265n, 46311, 821n 
Oil crisis, 70, 172-173, 212-213, 639 
Oil production and consumption, 91-94, 96 
Oil tanker industry cycles, 796, 797 
Oliva, R., 490n, 569,570,573,580, 868,921 
“On Coca” (Freud), 26 1 
On-the-job training, 493-497, 78 1 
Open loop gain, 145 
Open-loop steady state gain loop, 618n-619n 
Open outcry double auction, 8 13 
Optimization heuristics, 615n 
Order backlogs, 608-609 

effects of, 725 
in production model, 723-725 

Order fulfillment, 607-609,7 1 1-7 13 
Ordinary least squares, 867 
Oreskes, N., 847, 849 
Organizational evolution, 896 
Organizational Learning Center, MIT, 17 
Organization of Petroleum Exporting Countries, 

Organizations 
98, 172 

age structure, 485-490 
mentoring, 493-497 
modeling embedded in, 84-85 
on-the-job training, 493-497 
promotion chains, 485-490 
responses to bounded rationality, 601-603 

Oscillations, 114-1 16, 426,427 
Beer Distribution Game, 684-694 
chaotic, 132-133 
in commodity markets, 840-841 
damped, 129-130 
expanding, 130-132 
in labor supply chain, 767-773 
lacking in first-order systems, 290 
limit cycles, 13 1 
in manufacturing supply chain, 734 
real estate markets, 698-707 
in stock management, 663-664 
in supply chains, 664-666 

Oskamp, S., 272 
Outcome assessment, 899-900 
Outflows requiring first-order control, 545-547 
output 

of a delay, 413-415 
in delays, 41 1 
of supply chains, 663 

Overconfidence, 272-274,884 
Overshooting, 114 

and collapse, 123-127 
S-shaped growth with, 121 

versus cutting corners, 563-569 
and fatigue, 577-584 
in labor supply chain, 774-776 

Overtime 
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response to workweek flexibility, 776-778 
schedule pressure and workweek, 567-568 

Ozone depletioin, 24-25 

P 
Packer, D., 49011,605,619 
Paich, Mark, 2:7,42n, 43, 66n, 67,73, 124, 

44911,454,899 
Papadopolous, H., 208 
Papert, S., 34 
Papua New Guinea, 873 
Paradigms, 849-850 
Parallel activities 

aggregating, 217 
disaggregating, 216, 217 

Parallel stock and flow structure, 456-457 
Parameter assessment, 859, 866-869 
Parameter estirnates, 884, 897 
Parameter space, 897 
Parker, P., 32411, 334, 338 
Parkinson's Law, 166, 184 
Panell, Le Roy, 845 
Partee, J., 38n 
Partial model tests, 605, 609 
Pascal lags, 465 
Path dependence, 22 

characteristics, 349-353 
definition, 349 
in economy, 359-364 
and equilibnum, 35 1-352 
limits to lock in, 389-391 
lock in to equilibrium, 387-389 
modeling, 391-406 
Polya process, 354-359, 363 
and positive feedback, 35 1 
standards formation, 391-396 

Path dependent systems 
commonalit:y, 353 
lock in, 352 

PCBs, 425 
PDCA cycle, 15 

Pearce, D., 646n 
Peck, S., 642 
Pecos River, 864 
Peek, J., 646n 
People Express Management Flight 

Perceptions and feedback, 23-25 
Persistent Poppy, The (Levin et al), 262n 
Pesando, J., 646n 
Peterson, David, 488,489, 870, 897 
Peterson, I., 11% 
Peterson, Tom, 43 
Petroleum industry, 91-94, 172-173,212- 
Phase lag 

in manufacturing supply chain, 734 
in supply chains, 664-666 

Phase plot, 263,266267,274-275, 288 
Bass diffusion model, 333-334 
linear Polya process, 354-357 
network effects, 401 
stability of equilibrium, 400-401 

Simulatoq 35 

Phase shift, in forecasting, 646 
Phelps-Brown, E., 142 
Phillips, A. W., 785 
Phillips, L., 272 
Picardi, A., 94n 
Pindyck, R., 599 
Pink noise, 917-918, 919, 920 
Pipeline delay, 415,416,432 
Planck, Max, 128 
Plous, Scott, 24,28, 3011,272,649 

Poincark, Henri, 284 
Point-of-sales data, 740 
Policies, unanticipated side effects, 5-10 
Policy analysis 

supply chain reengineering, 752-753 
traffic congestion case, 188-1 90 

end of modeling process, 103-104 
in market growth model, 624-628 
steps, 87 

Pogo, 5 

Policy design and evaluation 

-213 
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Policy optimization, 887 
automatic, 897 

Policy resistance, 5-10 
causes of, 10-12 
in complex systems, 22 
definition, 3 
examples, 9 
Machiavelli on, 8 
Romanian birth rates, 6-7 
Lewis Thomas on, 8 
traffic congestion, 177-190 
wage and price controls, 7-8 

Policy sensitivity, 562, 883 
Policy structure 

of inventory, 7 10-7 13 
order fulfillment, 7 11-7 13 
of production, 7 13-7 14 

Policy structure diagram, 102, 709 
Polya, George, 354, 356 
Polya process, 397-399,400 

equilibrium distribution, 356 
linear, 354-359 
and lock in, 387,389 
nonlinear, 357-359 
and VCR industry, 363 

Popper, Karl, 847n 
Population 

age structure of organizations, 485-490 
age structure, 476 
Easter Island, 125-127 
and economic development, 48 1-485 
mortality formulations, 479480 
replacement rates, 480-481 
in Urban Dynamics, 472-474 

carrying capacity, 119-120 
overshoot and collapse, 123-127 
S-shaped, 285-289 

Population growth, 108-109 

Population inertia, 480-48 1 
Population pyramid, 474-480 
Porter, R., 603n 
Positioning phase of elicitation method, 586 
Positive feedback 

doubling time, 268-269 

in economy, 388 
engine of corporate growth, 364-385 
generating exponential growth, 264-274 
graphical solution, 266-268 
increasing returns and economic growth, 

overcoming overconfidence, 272-274 
path dependence, 349,35 1 
use by Bill Gates, 385 

Positive feedback loops, 12-13 
determining polarity, 144 
and exponential growth, 109 
first-order linear, 29 
in Polya process, 354-355 
as reinforcing loops, 142-143 

385-386 

Positive links, 139-140 
Post, Darren, 43 
Posted-price system, 8 13 
Postman, L., 24 
Powers, W., 15 
Powersim software, 904 
Power spectrum of noise, 917 
Prabhu, N., 208 
Pralahad, C. K., 381 
Precedence relationships, 587-595 
Prediction horizon, 132 
Prerecorded video tape industry, 363 
Price expectations 

in commodity markets, 823 
extrapolative, 833-834 

of commodities, 800 
and commodity cycles, 792-798 
of copper, 795 
and desired capacity, 807-810 
industry cycles, 796-798 
lagged response of energy supply to, 438 
markup ratio, 803-805 
and production costs, 368-370 
pulp and paper industry, 824-828 
response to changes in costs, 8 18-820 
response to demand, 811-813 
response to inventory coverage, 820-822 
and up-front development costs, 368 

Prices 
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Price setting/Pnlcing 
in generic commodity market model, 813-824 
livestock industry, 836-840 
process, 439--543 

Price wars, 603-604 
Prime Computer, 391 
Principles of Political Economy (Mill), 173 
Proactive modeling, 858 
Problem articulation 

reference modes, 90 
role in modeling, 89-90 
steps, 87 
time horizon, 90-94 

Problem decomposition, 602-603 
Problem definition 

in causal loop diagrams, 159-160 
supply chain reengineering, 743-745 

event-oriented approach, 10 
by modeling, 83-84 

Product attrac ti venes s , 3 92-3 95 
Product awareness, 365-367 
Product compatibility, 360, 387, 392-395 
Product development 

Problem solving 

estimating precedence relationships, 587-595 
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