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Abstract. In this paper we study composition operators on spaces of
entire functions. We determine which entire functions induce bounded
composition operators on the Paley-Wiener space, L2

π, and on the E2(γ)
spaces. In addition, we characterize compact composition operators
on these spaces. We also study the cyclic properties of composition
operators acting on L2

π.

1. Introduction and preliminaries

Let Hol (D) denote the space of all analytic functions in a domain D ⊂ C
endowed with the topology of uniform convergence on compact subsets of
D, and let H be a linear subspace of Hol (D). If ϕ is an analytic self-map
of D such that f ◦ ϕ belongs to H for all f ∈ H, then ϕ induces a linear
operator Cϕ : H → H defined as Cϕ(f) := f ◦ ϕ.

Cϕ is called the composition operator with symbol ϕ.
A Hilbert subspace H of Hol (D) is said to be a functional Hilbert space

if for all w ∈ D, the evaluation functional:

δw : H → C; f 7→ f(w),

is continuous. In this case, as a consequence of the Riesz representation
theorem, for each w ∈ D, there exists a function kw ∈ H such that

f(w) = 〈f, kw〉, f ∈ H.

Eeach function kw (w ∈ D) is known as a reproducing kernel of H.
A straightforward application of the closed graph theorem shows that a

holomorphic function ϕ : D → D induces a continuous operator Cϕ : H → H
if and only if f ◦ ϕ ∈ H for each f ∈ H.

In this paper we will study bounded composition operators acting on
certain functional Hilbert spaces of entire functions. In a recent paper ([6]),
composition operators acting on the Fock space of entire functions were
studied.

We refer the reader to [3] or [13] for the background on entire functions
that we will use here. As usual, given an entire function f , we can estimate
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its radial growth by means of the function

Mf (r) := max
|z|=r

|f(z)|.

We recall that an entire function f is said to be of finite order if the inequality
Mf (r) < exp(rk) holds for sufficiently large values of r, for some k > 0. The
order of an entire function f of finite order is the greatest lower bound of
those values of k for which this asymptotic inequality is satisfied.

An entire function f , of order ρ, is said to be of finite type if for some
A > 0 the inequality Mf (r) < eArρ

holds for sufficiently large values of r.
The greatest lower bound of those values of A for which this asymptotic
inequality is satisfied is called the type of the function f . Following [3], we
will say that an entire function f , is of exponential type σ if it is of order
ρ ≤ 1 and type σ ∈ (0,∞).

Another interesting issue in this context, is the study of the cyclic prop-
erties of composition operators. See, for example [5] and [10]. A bounded
operator T acting on the Hilbert space H is called cyclic if there is a vector
x ∈ H whose orbit under T

Orb(T, x) := {Tnx : n ∈ N}
have dense linear span. If the set of all scalar multiples of Orb(T, x) is dense
in H, then T is called supercyclic, and if the Orb(T, x) itself is dense in H,
then T is called hypercyclic. As usual, x is called a cyclic (resp. supercyclic,
hypercyclic) vector for T .

In Section 2, we will study composition operators on the so called Paley-
Wiener space, L2

π. We will characterize bounded and compact composition
operators on L2

π. On the other hand, we will investigate some aspects of the
cyclic behavior of these operators. In Section 3, we will study composition
operators on the Hilbert spaces of entire functions E2(γ) studied in [7].

2. Composition Operators on the Paley-Wiener space

2.1. The Paley-Wiener space. The Paley-Wiener space L2
π is the space

of those entire functions of exponential type less or equal than π whose
restriction to the real line belongs to the space L2(−∞,∞) (cf. [3, 13]). L2

π

with the norm given by

‖f‖2
L2(−∞,∞) =

∫ ∞

−∞
|f(x)|2 dx,

is a closed subspace of L2(−∞,∞) and thus, it is a Hilbert space. Further-
more, the inequality

|f(x + iy)| ≤
√

2
π

eπ(|y|+1)‖f‖L2(−∞,∞),
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shows that L2
π is a functional Hilbert space. It can be shown (cf. [13]) that

its reproducing kernels are given by

kw(z) =
sinπ(z − w)

π(z − w)
, (w ∈ C)

and that set {kn}n∈Z is an orthonormal basis in L2
π. Therefore by Parseval’s

identity,

‖f‖2
L2(−∞,∞) =

∑

n∈Z
|f(n)|2.

As usual we will write

sinc z :=
sinπz

πz
.

As a consequence of the well-known Paley-Wiener theorem, the Unitary
Fourier transform (the usual Fourier transform normalized) f̂ := F(f) of a
function f ∈ L2

π is supported in [−π, π]. Each function f ∈ L2
π admits the

representation

f(z) =
1√
2π

∫ π

−π
f̂(t)eitz dt, f̂ ∈ L2(−π, π),

where L2(−π, π) denote the closed subspace of L2(−∞,∞) consisting of
those functions which vanish a.e. outside of (−π.π). Then,

L2
π = F−1(L2(−π, π)).

In fact, the Parseval’s identity

‖f‖L2(−∞,∞) = ‖f̂‖L2(−π,π),

shows that the Unitary Fourier transform F : L2
π → L2(−π, π) is an iso-

metric isomorphism.

2.2. Bounded operators and compact operators on L2
π. As it was

pointed out in [1], composition operators on the Paley-Wiener space appear
also in the field of signal processing. A function f in L2(−∞,∞) is con-
sidered as a signal (with “finite energy”) and belongs to the Paley-Wiener
space if its frequency domain (the domain of its Unitary Fourier transform)
is limited to the band [−π, π].

In this setting the symbol ϕ is called a warping function and the operator
f 7→ f ◦ ϕ is a warping operator. In [1] (cf. also [2], a shorter version
published) the authors considered the case ϕ : R → R. We will study the
case in which ϕ is an entire function. In the first place, we will consider
the problem of characterizing the symbols ϕ such that Cϕ acts as bounded
operator on L2

π.
In order to characterize the bounded composition operators on the Paley-

Wiener space we will use the following results proved in [15] (see also [1, 11]).
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Theorem 2.2.1. Let f and ϕ be entire functions with ϕ(0) = 0. Let F =
f ◦ ϕ. Then there is a constant c ∈ (0, 1) such that

MF (r) ≥ Mf (cMϕ(r/2)).

Theorem 2.2.2 (Pólya’s Theorem). Let f and ϕ be entire functions such
that F = f ◦ ϕ is of finite order. Then either

(1) ϕ is a polynomial and f is of finite order, or
(2) ϕ is not a polynomial (but a function of finite order) and f is of

order 0.

Pólya’s theorem implies that if a warping function ϕ : R→ R maps every
bandlimited functions to bandlimited functions, then ϕ is affine (cf. [1, 2]).
In the proof of the following lema we use the ideas given in [1] and [2].

Lemma 2.2.3. Let ϕ : C → C be a holomorphic map (no null), if the
operator Cϕ maps L2

π into itself then ϕ is an affine map.

Proof. Suppose that Cϕ maps L2
π into itself, then the function sinc ◦ϕ is in

L2
π and since sinc has order exactly one, Theorem 2.2.2 implies that ϕ is

a polynomial. Let n denotes the degree of ϕ. We are going to show that
n = 1.

Without loss of generality we may assume that ϕ(0) = 0. Then there is
a positive constant a such that Mϕ(r) ≥ arn for r large, and by Theorem
2.2.1 there exists a constant c, 0 < c < 1 such that

Mf◦ϕ(r) ≥ Mf (carn/2n),

for each function of order one in L2
π. Let 0 < b < 1. If the order of f

is one, then there are arbitrarily large values of R for which the inequality
Mf (R) ≥ expRb holds. Thus, there are arbitrarily large values of r such
that

Mf (carn/2) ≥ exp(cabrnb/2nb).
If f ◦ ϕ is of order ρ ≤ 1, then there exist constants A,B such that

Mf◦ϕ(r) ≤ A exp(Br),

for all r. Thus, there are arbitrarily large values of r such that

exp(cabrnb/2nb) ≤ A exp(Br).

It follows that nb ≤ 1. Since b is any positive number less that one, we must
have n = 1 (n > 0 because a constant function can not be a symbol). ¤
Theorem 2.2.4. Let ϕ be a nonconstant entire function. The operator Cϕ

is bounded on L2
π if and only if ϕ(z) = az + b, (z ∈ C) with 0 < |a| ≤ 1, and

a ∈ R.

Proof. It is easy to see that the order and type of entire functions are pre-
served by translations. The Plancherel-Pólya theorem (cf. [13, Section 7.4])
shows that∫

|f(x + s + it)|2 dx =
∫
|f(x + it)|2 dx ≤ ‖f‖L2(−∞,∞)e

2π|t|.
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Therefore, the space of entire functions of exponential type ≤ π that
belong to L2(−∞,∞) is invariant under translations.

Now, ∫
|f(ax)|2 dx = (1/|a|)

∫
|f(x)|2 dx, (a ∈ R);

on the other hand, if the order of f(z) is ρ, then the order of f(az) is also
ρ while if the type of f(z) is σ, then the type of f(az) is |a|ρσ.

This shows, in addition, that if Cϕ(L2
π) ⊂ L2

π then ϕ(z) = az + b with
0 < |a| ≤ 1. In order to see that a ∈ R it suffices to show that if ψ(z) = iz,
then the function f(z) = sinc z belongs to L2

π but f ◦ ψ 6∈ L2
π. Indeed,

| sinc ix| = |eπx − e−πx|
2πx

≥ eπx

2πx
− e−πx

2πx
≥ eπx

2πx
− 1

2π
, (x ≥ 1),

and if A > 0 is such that eπx

2πx − 1
2π ≥ 1 when x ≥ A we have

∫ ∞

−∞
| sinc ix|2 dx ≥

∫ ∞

A
| sinc ix|2 dx ≥

∫ ∞

A
1 dx = ∞.

The proposition is proved. ¤

Corollary 2.2.5. No bounded composition operator on L2
π is compact.

Proof. Clearly, the operator Cϕ is compact in L2
π if and only if the operator

Cϕ−ϕ(0) is compact.
Since f(n) −−−−→

n→±∞ 0 for all f ∈ L2
π, the sequence of orthonormal vectors

{kn}∞n=0 converges weakly to zero. However, an easy computation shows
that

‖Cϕ−ϕ(0)(kn)‖ = 1/
√
|a|

for all n. Consequently, Cϕ can not be compact. ¤

2.3. The adjoint of a composition operator on L2
π. Recall that by the

Paley-Wiener Theorem, L2
π and L2(−π, π) are isometrically isomorphic via

F. If f ∈ L2
π we have:

f(z) =
1√
2π

∫ π

−π
f̂(t)eitz dt,

with f̂ ∈ L2(−π, π). Thus, if ϕ(z) = az + b, b = λ + iη, a ∈ R, 0 < a ≤ 1
(for the sake of simplicity we may assume that a > 0), then we have

Cϕ(f)(z) = f(az + λ + iη) =
1√
2π

∫ π

−π
f̂(t)eitazeiλte−ηt dt

=
1

a
√

2π

∫ aπ

−aπ
f̂

(x

a

)
eiλ(x

a)e−η(x
a)eixz dx.

Therefore, the composition operator Cϕ corresponds, via F, to the oper-
ator Ĉϕ : L2(−π, π) → L2(−π, π) defined as
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(Ĉϕ g)(x) :=
1
a

g
(x

a

)
χ(−aπ,aπ)(x)eiλ(x

a)e−η(x
a), (1)

Now let f, g ∈ L2(−π, π), then

〈Ĉϕ g, f〉 =
1

2aπ

∫ aπ

−aπ
g

(x

a

)
eiλ x

a e−η x
a f(x) dx

=
1
2π

∫ π

−π
g(t)eiλte−ηtf(ta) dt

= 〈g, Ĉ∗
ϕ f〉.

Consequently, the operator C∗
ϕ corresponds, via F, to the operator

(Ĉ∗
ϕ f)(x) = e−iλxe−ηxf(ax), f ∈ L2(−π, π). (2)

Since F is an isometry, we can compute C∗
ϕ acting on the Paley-Wiener

space as follows: Let f ∈ L2
π and f̂ ∈ L2(−π, π) its respective Unitary

Fourier transform, then since 0 < a ≤ 1, we have Ĉ∗
ϕf̂ ∈ L2(−π, π) and

F−1(Ĉ∗
ϕf̂) ∈ L2

π. Now,

(F−1(Ĉ∗
ϕf̂))(z) =

1√
2π

∫ π

−π
e−iλxe−ηxf̂(ax)eizx dx

=
1

a
√

2π

∫ π

−π
f̂(t)e−iλ t

a e−η t
a eiz t

a dt

=
1

a
√

2π

∫ π

−π
f̂(t)eit( z−λ+iη

a ) dt

=
1
a
f

(
z − λ + iη

a

)
.

Therefore,

(C∗
ϕf)(z) =

1
a
f

(
z − λ + iη

a

)
, f ∈ L2

π. (3)

As a consequence of the equation (3) we have the following

Proposition 2.3.1. A bounded composition operator Cϕ on L2
π is normal

if and only if ϕ′(0) = 1 .

Proof. Let ϕ(z) = az + b. Using (3) it is straightforward to check that
CϕC∗

ϕ − C∗
ϕCϕ = 0 if and only if b = 0. ¤

2.4. Cyclic behavior of composition operators on L2
π. We shall now

use equation (1) in order to prove the following result.

Theorem 2.4.1. No bounded composition operator on L2
π is supercyclic.
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Proof. Let ϕ(z) = az + (λ + iη) and suppose that Cϕ is supercyclic. For
the sake of simplicity we will assume a > 0 and η > 0 (in the general case,
the modifications needed are straightforward). Then there exists a function
g ∈ L2(−π, π), a sequence {αk} in C, and a sequence {nk} in N such that{

αkĈ
nk
ϕ (g)

}
converges in L2(−π, π) to the function f ≡ 1. By taking a

subsequence, if necessary, we may assume that αkĈ
nk
ϕ (g)(x) → 1, a.e. but

it is easy to see, using (1) that lim
k→∞

αkĈ
nk
ϕ (g)(x) = 0 if a < 1.

If a = 1, then Cϕ(g)(x) = g(x)eiλxe−ηx. That is, Cϕ is the multipli-
cation operator Mh : g 7→ hg on L2(−π, π) with h(x) = eiλxe−ηx. Now
we are going to use the angle criterion for supercyclic vectors [10]. Let
g ∈ L2(−π, π) \ {0}. Then Bessel’s inequality implies that for every k ∈ Z+

|〈χ(−π,0)√
π

, e−kη(·)|g|〉|2 + |〈χ(0,π)√
π

, e−kη(·)|g|〉|2 ≤ ‖e−kη(·)g‖2

and therefore there exists a constant ε > 0, depending on g, such that for
every k ∈ Z+,

√
π

(∫ π

−π
e−2kηx|g(x)|2 dx

) 1
2

>

∫ π

0
e−kηx|g(x)| dx + ε.

Thus

sup
k

∫ π
0 e−kηx|g(x)| dx

√
π

(∫ π
−π e−2kηx|g(x)|2 dx

) 1
2

< sup
k

∫ π
0 e−kηx|g(x)| dx + ε

√
π

(∫ π
−π e−2kηx|g(x)|2 dx

) 1
2

≤ 1.

Therefore,

sup
k

|〈Mk
hg, χ(0,π)〉|

‖Mk
hg‖‖χ(0,π)‖

< 1.

Consequently, g can not be a supercyclic vector for Mh. ¤

2.5. Composition operators on Lp
π. Let us consider now the general

Paley-Wiener spaces Lp
π, 1 ≤ p < ∞, i.e., Lp

π is the space of those en-
tire functions of exponential type ≤ π whose restrictions to the real line
belongs to the space Lp(−∞,∞).

In a standard way (cf. [6]) the boundedness and compactness of Cϕ is
closely related to the properties of a certain Carleson-type measure associ-
ated with ϕ. However, a careful revision of the proof of theorem 2.2.4 will
show to the reader that the result can be easily generalized to the setting of
Lp

π spaces. The next two results involving Carleson measures have interest
by themselves.

In what follows, we will assume that 1 ≤ p ≤ q < ∞.
We shall say that a measure µ on R is a (p, q)-Carleson measure (for the

Paley-Wiener space) if the space Lp
π is boundedly contained in Lq(µ), that is:

if the inclusion map i : Lp
π → Lq(µ) is bounded. If the map i is compact, we
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will say that µ is a (p, q)-vanishing Carleson measure (for the Paley-Wiener
space).

For a given entire function ϕ, the weighted pullback measure µϕ on R is
given by

µϕ(E) := l(ϕ−1(E)),
for every Borel subset E of R, where l denotes the arc-length measure. Since
one can easily check that ‖Cϕ(f)‖Lq(−∞,∞) = ‖f‖Lq(µϕ) for every f ∈ Lp

π,
we have that if the operator Cϕ : Lp

π → Lq
π is bounded, then µϕ is a (p, q)-

Carleson measure. Furthermore, if 1 < p then Cϕ is compact if and only if
µϕ is a (p, q)-vanishing Carleson measure.

In this section, we shall characterize both Carleson and vanishing Carleson
measures on Paley-Wiener spaces. In [14], a similar result is mentioned.

Now, we list some well-known facts about Paley-Wiener spaces Lp
π (1 ≤

p < ∞) that we will require (cf. [13, 20.1]).

Remarks 2.5.1. (i) As a consequence of Plancherel-Pólya theorem and
since |f |p is a subharmonic function, then for any x, y ∈ R we obtain

|f(x + iy)|p ≤ 2
π

eπ(|y|+1)‖f‖p
Lp(−∞,∞).

In particular, there is a constant K (depending on p, but neither on
x nor on f) such that

|f(x)|p ≤ K‖f‖p
Lp(−∞,∞).

(ii) Let {λn} ⊂ C be a sequence and let H, δ be positive numbers such
that

|Im λn| ≤ H < ∞, |λn − λm| ≥ δ for n 6= m.

Then, for each f ∈ Lp
π,∑

n

|f(λn)|p ≤ C‖f‖p
Lp(−∞,∞),

where the constant C depends on δ, and H but not on f .
(iii) If 1 < p < ∞, then for any sequence {ck} in lp(Z) there exists

a unique solution in Lp
π for the interpolation problem f(k) = ck,

k ∈ Z. In addition, the norms of f and the corresponding {ck} are
comparable, i.e. there exists constants m,M such that

m

( ∞∑

k=−∞
|f(k)|p

)1/p

≤ ‖f‖Lp(−∞,∞) ≤ M

( ∞∑

k=−∞
|f(k)|p

)1/p

,

for all functions f ∈ Lp
π. In particular, this last inequality implies

that if 1 ≤ p < q < ∞, then Lp
π ⊂ Lq

π.
Actually, we only are going to need the result for a simpler prob-

lem: given x0 ∈ R we want to find a function f ∈ Lp
π such that

f(x0) = 1. This is obtained by considering the sequence ck = 0 if
k 6= 0 and c0 = 1 and translating the function with f(k) = ck by x0.
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(iv) Bernstein Inequality: (cf. [3, 11.1.2]) If f is an entire function of
exponential type τ and |f(x)| ≤ M for all x ∈ R, then |f ′(x)| ≤ Mτ .

D(x, r) will denote the usual open ball in R with center x and radius r.

Theorem 2.5.2. Let 1 ≤ p ≤ q < ∞. The following statements are equiv-
alent:

(a) The measure µ is a (p, q)-Carleson measure.
(b) For each r > 0 there exists a constant C such that µ(D(x, r)) ≤ C

for all x ∈ R.
(c) There exist r > 0 and a constant C such that µ(D(x, r)) ≤ C for all

x ∈ R.

Proof. Assertions (b) and (c) are clearly equivalent.
(c)⇒(a): Let C > 0 be such that µ(D(x, 1)) < C for each x ∈ R and let

xn ∈ [n, n+1] be such that |f(xn)| = max[n,n+1] |f(x)|. Then, we decompose
the sequence {xn} in two subsequences: {λn} and {λ′n}, with |λn−λm| ≥ 1/2
and |λ′n − λ′m| ≥ 1/2 if n 6= m. Now,

(∫
|f |q dµ

) 1
q

=

( ∞∑
n=−∞

∫ n+1

n
|f |q dµ

) 1
q

≤
( ∞∑

n=−∞
|f(xk)|qµ([n, n + 1])

) 1
q

≤ C
1
q

( ∞∑
n=−∞

|f(xk)|q
) 1

q

≤ C
1
q

( ∞∑
n=−∞

|f(xk)|p
) 1

p

= C
1
q

( ∞∑
n=−∞

|f(λk)|p +
∞∑

n=−∞
|f(λ′k)|p

) 1
p

≤ C
1
q (2K)

1
p ‖f‖Lp(−∞,∞),

where the constant K is as in 2.5.1(ii).

(a)⇒(c): Let K and M be constants such that |f(x)| ≤ K‖f‖Lp(−∞,∞) ≤
KM

(∑∞
k=−∞ |f(k)|p)1/p, for all x ∈ R, f ∈ Lp

π (cf. 2.5.1(i,iii)). Let r > 0
be such that πKMr < 1. If (c) is false, then for each n ∈ N there exist xn

in R such that µ(D(xn, r) > n. But, by (ii) above, for each n ∈ N, there
exists fn ∈ Lp

π such that fn(xn) = 1 and ‖fn‖Lp(−∞,∞) ≤ M , (cf. 2.5.1(iii)).
Bernstein’s Inequality (2.5.1 (iv)) implies then that |f ′n(x)| ≤ πKM for all
x ∈ R, n ∈ N, and an application of the Mean Value Theorem gives:

1− |fn(x)| ≤ |1− fn(x)| = |fn(xn)− fn(x)| = |f ′n(ξ)| |x− xn| ≤ πKMr,
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for all x ∈ D(xn, r) and some real number ξ in this ball.
Finally, we have

∫
|fn|q dµ ≥

∫

D(xn,r)
|fn|q dµ ≥ (1− πKMr)qn,

which contradicts the fact that µ is a Carleson measure and hence there must
exists a constant C > 0 such that ‖fn‖Lq(µ) ≤ C‖fn‖Lp(−∞,∞) ≤ CM ¤

For vanishing Carleson measures, we have the following.

Theorem 2.5.3. Let 1 < p ≤ q < ∞. The following statements are equiv-
alent:

(a) The measure µ is a (p, q)-vanishing Carleson measure.
(b) For each r > 0 µ(D(x, r)) → 0 as x →∞.
(c) There exist r > 0 such that µ(D(x, r)) → 0 as x →∞.

Proof. Again, assertions (b) and (c) are clearly equivalent.
(c)⇒(a): Let {fn} be a sequence in Lp

π weakly convergent to zero; this is,
the sequence

{‖fn‖Lp(−∞,∞)

}
is bounded (without loss of generality we may

assume that it is bounded by 1), and fn converges uniformly on compact
sets to zero. We shall see that

∫ |fn|q dµ → 0.
As in the proof of Theorem 2.5.2, for each n we choose the sequence

{xn,k}k as follows: xn,k will be a number in [k, k + 1] where |fn| reaches
its greatest value. Then, we decompose this sequence in two subsequences
{λn,k} and

{
λ′n,k

}
so that |λn,k−λn,j | ≥ 1/2 and |λ′n,k−λ′n,j | ≥ 1/2 when k 6=

j. By remark 2.5.1(ii), there exists a constant C such that
∑

k |fn(λn,k)|p ≤
C‖fn‖p

Lp(−∞,∞) (and
∑

k |fn(λ′n,k)|p ≤ C‖fn‖p
Lp(−∞,∞)) for all n. Then for

all n ∈ N:

(∑

k∈Z
|fn(xn,k)|q

) 1
q

≤
(∑

k∈Z
|fn(xn,k)|p

) 1
p

≤ (2C)
1
p ‖fn‖Lp(−∞,∞) ≤ (2C)

1
p .

Given ε > 0, we take N ∈ N such that µ(D(x, 1)) < εq

(4C)
q
p

if |x| ≥ N , and

if n is large enough such that |fn(x)|q ≤ ε
2µ([−N,N ]) for all x in the compact

set [−N, N ], then

∫ N

N
|fn|q dµ ≤ ε

2
.
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Hence
(∫

|x|>N
|fn|q dµ

) 1
q

≤
( ∞∑

k=N

|fn(xn,k)|qµ([k, k + 1]) +
∞∑

k=N

|fn(xn,−k−1)|qµ([−k − 1,−k])

) 1
q

≤
(

ε

8C

∞∑

k=N

|f(xn,k)|q +
ε

8C

∞∑

k=N

|f(xn,−k−1)|q
) 1

q

≤ ε/2,

thus,
∫ |fn|q dµ < ε for such n.

(a)⇒(c): As in the proof of (a)⇒(c) in Theorem 2.5.2 (with the notation
of that proof) we take r > 0 such that πKMr < 1. If (c) is not true,
then there exists ε > 0 and a sequence {xn} ⊂ R such that xn → ∞ and
µ(D(xn, r) ≥ ε. Of course, we can assume that these discs are disjoint. We
take now fn ∈ Lp

π with fn(xn) = 1 and ‖fn‖p
Lp(−∞,∞) ≤ M .

Since the inclusion operator i : Lp
π → Lq(µ) is compact, we can assume

(by taking a subsequence if necessary) that fn → f ∈ Lq(µ).
Again, as in the proof of theorem 2.5.2, by using Bernstein Inequality

and the mean value theorem, we see that |fn(x)| ≥ 1 − πKMr in the disc
D(xn, r) for each n, and then∫

|fn|q dµ ≥
∫

D(xn,r)
|fn|q dµ ≥ (1− πKMr)qε.

Now, by observing that

‖fn − f‖Lq(µ) ≥
(∫

D(xn,r)
|fn − f |q dµ

)1/q

≥
(∫

D(xn,r)
|fn|q dµ

)1/q

−
(∫

D(xn,r)
|f |q dµ

)1/q

≥ (1− πKMr)ε1/p −
(∫

D(xn,r)
|f |q dµ

)1/q

,

we obtain
(∫

D(xn,r) |f |q dµ
)1/q

≥ (1−πKMr)ε1/p−‖fn−f‖Lq(µ), and since
‖fn − f‖Lq(µ) → 0, then there exists n ≥ N such that

∫

D(xn,r)
|f |q dµ ≥

(
(1− πKMr)ε1/p

2

)q

.

But ∫
|f |q ≥

∑

n≥N

∫

D(xn,r)
|f |q dµ,
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which is a contradiction because f ∈ Lq(µ). ¤
An important consequence of these characterizations is that the Carleson

(vanishing Carleson) condition is actually independent of p and q, 1 ≤ p ≤
q < ∞. From this last result and from section 2.2 we may conclude the
following

Theorem 2.5.4. Let 1 < p ≤ q < ∞ and suppose that Cϕ acts from Lp
π to

Lq
π. Then

(1) Cϕ is bounded if and only if ϕ(z) = az + b, with 0 < |a| ≤ 1, a ∈ R.
(2) Cϕ is not compact.

3. Composition operators on the spaces E2(γ)

3.1. Spaces E2(γ). According to Chan and Shapiro [7], an entire function
γ(z) =

∑
γnzn is called a comparison function if γn > 0 for all n and if the

sequence of ratios γn+1/γn decreases to zero as n → ∞. In case that the
sequence (n+1)γn+1/γn decreases monotonically to τ ≥ 0, then γ is said to
be an admissible comparison function.

For each comparison function γ, we define E2(γ) as the Hilbert space of
entire functions

f(z) =
∞∑

n=0

anzn,

such that

‖f‖2
2,γ :=

∞∑

n=0

γ−2
n |an|2 < ∞.

In this case, the inner product of E2(γ) is given by

〈
∞∑

n=0

anzn,
∞∑

n=0

bnzn〉 :=
∞∑

n=0

γ−2
n anbn,

and the functions en(z) := γnzn, n = 0, 1, 2 . . . , form an orthonormal basis
for E2(γ). Moreover, if f(z) =

∑
anzn ∈ E2(γ), then the following in-

equality [7, Prop. 1.4] shows that the spaces E2(γ) are functional Hilbert
spaces.

|f(z)| ≤
∞∑

n=0

|an||z|n =
∞∑

n=0

|an|
γn

γn|z|n

≤ ‖f‖2,γ

( ∞∑

n=0

γ2
n|z|2n

)1/2

≤ ‖f‖2,γγ(|z|).
In fact, the reproducing kernels of E2(γ) are given by

Kw(z) = γ̂(wz),

where γ̂(z) :=
∑

γ2
nzn.
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From [7, Prop. 1.3], it follows that the order and type of comparison
functions γ affects the behavior of the functions in the corresponding Hilbert
space E2(γ). Actually, every element of E2(γ) has order and type no more
than that of γ.

On the other hand, in [7, Prop. 1.3], it is proved that if (n+1)γn+1/γn ↓ τ ,
τ > 0, then γ is of order one and type τ . The case in which τ = 0 is more
delicate. For example, if we take γ1(z) := 1 +

∑∞
n=1

(
e
2n

)2n
zn, then γ1

is clearly an admissible comparison function with τ = 0 , order 1/2 and
type 1. However, the function γ2(z) :=

∑∞
n=0 e−n2

zn is also an admissible
comparison function with τ = 0 but of order zero, see [13, Chapter 1]. This
shows that the order and type of an admissible comparison function γ is not
determined by τ in this case.

3.2. Bounded Composition Operators on E2(γ). In [7], Chan and
Shapiro showed that if the sequence {(n + 1)γn+1/γn} is bounded, then each
translation operator is bounded on E2(γ). In this section, we will consider
the problem of characterizing the symbols that induce bounded composition
operators and compact composition operators on E2(γ) when τ > 0.

First, we need to observe that for each σ < τ , the function fσ(z) := eσz

belongs to E2(γ). This follows from the fact that, for each n, the inequality
(n + 1)γn+1/γn ≥ τ implies that γn ≥ τnγ0/n! and thus

‖fσ‖2
2,γ =

∞∑

n=0

1
γ2

n

σ2n

(n!)2
≤ 1

γ2
0

∞∑

n=0

(n!)2

τ2n

σ2n

(n!)2
=

1
γ2

0

∞∑

n=0

(σ

τ

)2n
< ∞.

Theorem 3.2.1. Let ϕ be an entire function. The operator Cϕ is bounded
on E2(γ) if and only if ϕ(z) = az + b with |a| ≤ 1.

Proof. Suppose that f ∈ E2(γ) is of non zero finite order. If f ◦ ϕ belongs
to E2(γ), then it is of finite order, and by Pólya’s Theorem (2.2.1), ϕ must
be a polynomial. Let ϕ(z) = anzn + · · ·+ a0, an 6= 0, n ≥ 1. If σ < τ , then
fσ ◦ϕ(z) = exp(σ(anzn + · · ·+ a0)) belongs to E2(γ), which is a function of
order n and type σ|an|. Thus n = 1 and σ|an| ≤ τ . Since σ is arbitrary, it
has to be |an| ≤ 1.

In order to see that the condition is sufficient, it suffices to show that
the symbol ϕ(z) = az, |a| ≤ 1 induces a bounded composition operator
on E2(γ), since every translation operator is bounded in E2(γ) (cf. [7]).
Indeed, if f(z) =

∑
cnzn belongs to E2(γ) then,

‖Cϕf‖2
2,γ =

∞∑

n=0

γ−2
n |a|2n|cn|2 ≤

∞∑

n=0

γ−2
n |cn|2 = ‖f‖2

2,γ .

¤
3.3. Compact Composition Operators on E2(γ). In order to charac-
terize the symbols that induce compact composition operators on E2(γ),
we shall show first that this space is closely related to the space Hol (C) ∩
L2(C, e−2τ |·| dA) where dA denotes the area measure on C. The ideas and
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computations below follow those in [16, 6.8] where it was considered the
space E(ez).

In general, HW is defined as the Hilbert space of entire functions such
that

‖f‖2
W :=

∫

C
|f(z)|2W (|z|) dA(z) < ∞,

where W is a certain weight function.

Lemma 3.3.1. Let γ(z) =
∑

γnzn be an admissible comparison func-
tion such that 0 < τ = limn→∞(n + 1)γn+1/γn. The space HWτ , where
Wτ (|z|) := e−2τ |z| is contained in E2(γ), and there exists a constant K such
that ‖f‖2,γ ≤ K‖f‖Wτ for all f ∈ HWτ .

On the other hand, the space E2(γ) is contained in the space HWt, where
Wt(|z|) := e−2t|z|, t > τ . In this case there exists a constant C such that
‖f‖Wt ≤ C‖f‖2,γ for all f ∈ E2(γ).

Proof. As pointed out before, limn→∞(n + 1)γn+1/γn = τ > 0, implies that

γn ≥ τnγ0/n! n = 0, 1, 2, . . . . (4)

Moreover, if t > τ then we can find a constant C (depending only on t) such
that

γn < C
tn

n!
n = 0, 1, 2, . . . . (5)

Now, if Wt(|z|) = e−2t|z|, t ≥ τ , and f(z) =
∑

anzn, then

‖f‖2
Wt

= 2π
∞∑

n=0

pn|an|2

where pn :=
∫ ∞

0
r2n+1Wt(r) dr = (2n + 1)!(2t)−2(n+1) and thus

pn

(n!)2
= (2n + 1)

[
(2n)!
(n!)2

]
(2t)−2(n+1), n = 0, 1, 2 . . .

The bracketed term is (by Stirling’s formula) asymptotically a constant times
4n/

√
n, and therefore pn is asymptotically a constant times

√
n(n!)2t−2n.

If t = τ by using (4) we see that there is a constant C such that

‖f‖2
Wτ

= C
∞∑

n=0

√
n

(n!)2

τ2n
|an|2

≥ C
∞∑

n=0

√
n

1
γ2

n

|an|2

≥ C

∞∑

n=0

1
γ2

n

|an|2 = C‖f‖2
2,γ .
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On the other hand if t > τ , we take τ < s < t, and (5) gives:

‖f‖Wt = C
∞∑

n=0

√
n

(n!)2

t2n
|an|2

= C
∞∑

n=0

(n!)2

s2n

√
n

(s

t

)2n
|an|2

≤ C
∞∑

n=0

1
γ2

n

√
n

(s

t

)2n
|an|2

≤ C
∞∑

n=0

1
γ2

n

|an|2 = C‖f‖2
2,γ .

¤
The following lemma holds in any analytic functional Hilbert space. For

the sake of completeness, we include here the proof for the case of E2(γ).

Lemma 3.3.2. Let {fn} be a sequence in E2(γ). {fn} converges weakly
to zero if and only if {fn} converges to zero uniformly on compact subsets
of C.

Proof. The if part is inmediate. On the other hand, if {fn} converges
weakly to zero, then it converges pointwise to zero (cf. [9]) and there exists
M > 0 such that ‖fn‖2,γ ≤ M for all n. Let K ⊂ C compact, then for each
w ∈ K we have,

|fn(w)| = |〈fn,Kw〉| ≤ ‖fn‖2,γ‖Kw‖
= ‖fn‖2,γ γ̂(|w|2) ≤ M sup

w∈K
γ̂(|w|2).

Thus, {fn} is locally bounded and is therefore a normal family. If {fn} does
not converge to zero uniformly on compacts subsets of C, then there exists
ε > 0 and a subsequence {fnk

} such that supw∈K |fnk
(w)| > ε. But {fnk

} is
a normal family and then it has a subsequence converging to zero uniformly
on compact subsets of C. This is a contradiction. ¤
Theorem 3.3.3. Let ϕ be an entire function and γ =

∑
γnzn an admissible

comparison function such that lim(n + 1)γn+1/γn = τ > 0. Then, Cϕ is
compact in E2(γ) if and only if ϕ(z) = az + b where |a| < 1.

Proof. Recall that the sequence {en}, en(z) = γ(n)zn is an orthonormal
basis of E2(γ), in particular, {en} is weakly convergent to zero. If ϕ(z) = az
with |a| = 1, then

‖Cϕen‖2
2,γ = ‖anen‖2

2,γ = 1,

and Cϕ can not be compact. It follows then that if ϕ(z) = az + b (|a| = 1),
then Cϕ can not be compact either.

Now, we shall prove that if ϕ(z) = az, |a| < 1, then Cϕ has to be
compact. Let {fn} be a sequence in E2(γ) weakly convergent to zero. Then
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by lemma 3.3.2, {fn} is bounded by M > 0 and converges to zero uniformly
on compact subsets of C. We must prove that ‖fn◦ϕ‖2,γ converges to zero.

By lemma 3.3.1, there exists a constant c > 0 such that

‖f‖2
2γ ≤ c

∫
|f(z)|2e−τ |z| dA(z).

Thus, is suffices to show that
∫ |fn(az)|2e−2τ |z| dA(z) converges to zero, or

by changing variables that∫
|fn(w)|2e−2τ |w|/|a| dA(w) → 0.

Given ε > 0, we take τ < t < τ/|a|. Again be lemma 3.3.1, there exists a
constant C > 0 such that∫

|f(w)|2e−t|w| dA(w) ≤ C‖f‖2
2,γ .

Now we may take a compact set K ⊂ C such that e−2τ |w|/|a|et|w| < ε/2CM
for each w out of K; therefore,∫

C\K
|fn(w)|2e−2τ |w|/|a| dA(z) =

∫

C\K
|fn(w)|2e−2τ |w|/|a|e2t|w|e−2t|w| dA(w)

≤ ε

2CM

∫

C\K
|fn(w)|2e−2t|w|/|a| dA(z)

≤ ε

2CM
C‖f‖2

2,γ

≤ ε

2CM
CM =

ε

2
.

Finally, we may take n large enough such that, for each w ∈ K,

|fn(w)| ≤ ε/2
∫

e−2τ |z| dA(z).

Then ∫

K
|fn(w)|2e−2τ |w|/|a| dA(w) ≤ ε/2,

and this completes the proof. ¤
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