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Abstract: This paper proposes a new equation for the effective length factor �k-factor� for reinforced concrete columns in braced frames.
The new formula is valid both for normal and high-strength concrete. The equation was obtained from a sensitivity analysis performed on
a two-dimensional nonlinear finite-element numerical model that takes into account the inelastic behavior of the concrete columns
�cracking, yielding, and second order effects�. The numerical model was calibrated with 44 experimental tests performed by the writers’
research group. A comparative study was carried out between the numerical model and different national design codes, displaying
important differences with respect to all of them: the ACI code �from 37 to �3%�, the Spanish code EHE �from 26 to �9.26%�, and the
Eurocode 2 �from 14 to �14%�. It was decided to propose two additional simplified equations: one for checking and the second for
design.

DOI: 10.1061/�ASCE�0733-9445�2009�135:9�1034�

CE Database subject headings: Buckling; Reinforced concrete; Concrete columns; Inelasticity; Effective length.
Introduction

The evaluation of the effective length factor �k factor� in real
concrete columns is not properly studied at the present time. This
is due to the fact that most of the equations to obtain such factor
are developed assuming a linear elastic material behavior or a
reduced stiffness EI of the column, which is far from the real
behavior of reinforced concrete columns, where the strength of
concrete, the reinforcement ratio, the slenderness, and the stiff-
ness of the joints have an important effect on the curvature of the
support.

As is well known, the k factor transforms the buckling of a
column with different stiffness restraints at the ends in the buck-
ling of another equivalent pinned-pinned column with an effective
buckling length �Leff=kL�. The differential equations of both
problems have been widely solved for an elastic material �Duan
and Chen 1999� and they are implemented in the national design
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codes �both for steel or concrete structures� through the use of
simplified equations of the effective length factor or the well-
known alignment charts.

Typically the k-factor depends on the relative stiffness of the
joints �i, also called “end restrain factor” �the sum of the column
stiffness divided by the sum of beam stiffness�. This factor is used
in the American code ACI_�American Concrete Institute 2005� or
the Spanish EHE �2001�, which can vary from 0 to infinite
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But Aristizábal-Ochoa �1994� proposed a “fixity factor” ��i� that
varies from 0 to 1
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where Ec=elastic modulus of concrete; Ig=gross moment of iner-
tia of the column section; L=unsupported length of the column;
K1 and K2=stiffness of each spring �end restraint condition�.
These springs represent the stiffness of the two beams and the
exterior column that arrive to the joint. Typically EI and K1 and
K2 are considered elastic.

Both the end restraint factors and fixity factor result in the
same effective length factor because they are the solutions to the
same differential equation in the elastic range, but use different
nomenclature. The elastic k-factor for nonsway columns varies
from 0.5 �clamped-clamped� to 1 �pinned-pinned�.

For reinforced concrete structures there were a lot of studies in

the elastic range regarding the design of slender columns. Cran-
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ston �1972� proposed simplified equations for the effective length
factor. Also, a lot of work studying the influence of different end
restraint conditions was completed by Hu et al. �1993� who pro-
posed a new equation based on the partial fraction model.

Inelastic Behavior

Moreover, the theoretical problem of inelastic buckling was
pointed out a long time ago with the tangent elastic modulus
theory and employing the reduced modulus theory or the Shan-
ley’s theory �Shanley 1947�.

For steel structures, Yura �1971� and Disque �1973� presented
an inelastic k-factor method for steel structures using the concept
of tangent elastic modulus, employing the same alignment charts
but modifying the end restrains factors.

Besides, the problem for reinforced concrete structures has not
been deeply studied, although MacGregor et al. �1970� and Breen
et al. �1972� pointed out the necessity to get deeper in this subject.
A simple but good manner to include the inelastic behavior of
beams and columns is the one implemented in the ACI code
�American Concrete Institute 2005�, where the stiffness of beams
and columns for calculating the end restraint factor is reduced
using a fixed factor �i.e., for columns EI=0.7EcIg�.

But the influence of the k-factor on the behavior of reinforced
concrete structures is dependent on the strength of concrete
�Broms and Viest 1961�, the slenderness, the fixity factors, and
the steel reinforcement ratio because they contribute to the non-
linearity of the column. Moreover, if a column is cracked or
yielded, its stiffness is lower than the elastic one. In this case the
k-factor will be lower than the elastic one. Conceptually this
makes sense because it is as though the rotational springs are
relatively more rigid, having a tendency toward the behavior of
the clamped-clamped column �for which the elastic k is 0.5�.

With the actual sophistication of the numerical models, the
concrete can be modeled closer each time to the real behavior.
Thereupon, Bazant and Xiang �1997� studied the inelastic buck-
ling of concrete columns in braced frames but focused the study
to improve the method of analysis and not to obtain the k factor.
They assumed a sine curve as the deflection curve of the column
and implemented all the nonlinearities of concrete. The improve-
ment consisted in considering the wavelength as unknown and
variable during loading. Conceptually this is the same as the ef-
fective length factor. Later, Furlong �1998� discusses about the
interest for practitioners to include a very complex method �al-
though more realistic� in the codes.

Moreover, concrete technology has been improved consider-
ably and now high-strength concrete �HSC� can be easily ob-
tained, whose mechanical behavior cannot be extrapolated simply
from that of normal strength concrete �NSC�. The different sim-
plified methods that can be used for analysis in failure for slender
columns therefore need to be checked, so that their application
might be extended to HSC from NSC.

The objective of this paper is therefore to establish an im-
proved k-factor equation which includes the complicated behavior
observed for reinforced concrete structures, in which inelastic de-
formations are combined with tensile cracking and bond slip. The
equation is limited to nonsway columns.

Numerical Simulation

To simulate this behavior a nonlinear finite-element software was

selected and calibrated with 44 experiments performed by this
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research group. The required numerical software had to be two-
dimensional �2D� �membrane elements and trusses� to recreate:
2D strain-softening constitutive relations, distributed cracking,
bond-slip, plastic behavior of steel and concrete, the appearance
of plastic hinges, second order effects, etc. The software selected
was ATENA �Cervenka 1998�. The model included a biaxial frac-
ture criteria, tension stiffening, and quadratic isoparametric finite
elements with 4 G integration points. So as not to extend the
paper too much, the complex task of calibration can be read in
Bendito �2006�, where an error of 2.03% was achieved. Herein-
after, this virtual laboratory allowed performing more tests to pro-
pose a new equation for the buckling length.

The 2D finite-element software with membranes elements can-
not simulate directly the classical rotational spring, because it has
only 2D degrees of freedom �u and v�. To do that, special purpose
geometry was created: a column with two elastic beams. These
beams represent the rotational springs �Fig. 1�.

A preliminary study to test the geometrical 2D model was
developed in three steps to verify that the buckling behavior is
acceptable.
1. Column and springs �that is, beams� were modeled initially

using elastic materials to compare the numerical k factor
with the theoretical elastic solution. Both k factors were simi-
lar to the second decimal.

2. The second test was accomplished supposing an inelastic be-
havior for columns but the springs were modeled with 0
stiffness. Load-slenderness graphs were obtained to compare
with the elastic Euler’s hyperbola values. Also normalized
load-slenderness curves were created to check coherence in

Table 1. Parameters of Study in the Sensitivity Analysis

Parameters of study Scope

Strength of concrete fc� 30, 60, and 90 MPa

Longitudinal reinforcement ratio �g 2, 3, and 4%

Geometric slenderness �=L /h 20,30,35, 40, and 50

Yield stress of steel, fy 400 and 500 MPa

Fixity factor of the rotational springs,
�1 and �2

�1=0.2 and �2=0.2

�1=0.2 and �2=0.8

�1=0.8 and �2=0.8

Kb

Ka

N

N

Hormigón armado 2D

Kb

Ka

N

N

Hormigón armado 2D

Elastic beam, equivalent
to the spring Kb

Elastic beam, equivalent
to the spring Ka

L 2D reinforced
Concrete column

Fig. 1. Geometry of the problem
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type of concrete and the reinforcement ratio influence. A
statement from Broms and Viest �1961� was numerically
verified: “An increase in the proportion of the load carried by
the reinforcement leads to a more stable column, i.e., high-
strength concrete columns, or those with less longitudinal
reinforcement ratio tend to be more affected by length.” Geo-
metrical model with 0 stiffness value for beams shows simi-
lar behavior to that of a pinned-pinned column, so they could
be used to define the buckling length for different column
lengths and different stiffness of beams simulating springs.
Load-slenderness curves with beam stiffness equal to 0 and
inelastic columns will be called “base curves.” There was
generated a base curve for each parameter combination �fc�,
fy, and �g�.

3. Analyze inelastic columns with different elastic stiffness
springs. There were found important differences between
elastic and inelastic effective length factors �lower k-factor
values�. This preliminary study made necessary a deeper
study of sensitivity to detect the parameters of major influ-
ence on the effective length factor.

Sensitivity Numerical Study

The variables that were studied are presented in Table 1. Both,
column and beams had a square section of 30�30 cm2. The
reinforcement was four bars, located at each corner of the column
in a symmetric distribution. The mechanical reinforcement cover
was fixed at 10% of the height and the width of the section. As it
was said in the previous section, a real curve of the critical axial
load versus slenderness was obtained for each section configura-
tion with the numerical model for a pinned-pinned column �base
curve�. This curve improved the elastic Euler’s hyperbola, be-
cause it includes the nonlinearities of the model. It was adjusted
with a fifth degree polynomial.

The maximum load under compression was obtained for each
parameter using the numerical model and also including the

0

1000

2000

3000

4000

0 10 20 30 40
Slenderness

A
xi
al
Lo
ad Ncrit

h
Lk

g
·

=λ

Base curve(k
N
)

Fig. 2. Procedure to obtain the inelastic buckling coefficient
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Fig. 3. Curve inelastic k−� for �g=3%, fy =500 MPa, changing fc
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equivalent rotational springs. Substituting this critical axial load
in the base curve, the equivalent slenderness was obtained. The
inelastic k-factor was obtained from it, �k= ��h� /L	 �see Fig. 2�.
The hypothesis that the effective length factor of the inelastic,
pinned column is equal to unity, i.e., the same as for elastic col-
umns is accepted. Many graphs were generated in the sensitivity
study but only some of them are presented in this paper �Figs. 3
and 4�. From the complete sensitivity study it can be inferred that
k factor increases with the concrete strength and the longitudinal
reinforcement ratio, and decreases with the increment of the fixity
factor �obvious�. Both parameters had the same influence in the
inelastic effective length factor, around 35 and 37%. However,
only 1% of difference is observed when the strength of steel was
modified between 400 and 500 MPa. So, the steel strength was
fixed to 500 MPa.

Comparison between the Numerical Model
and the Design Codes

The inelastic k factor was compared with the codes ACI-318
�American Concrete Institute 2005�, the Spanish code EHE
�1999�, the Eurocode 2 �EC2� �European Committee for Stan-
dardization 2004�, and with a previous equation proposed by
Traver and Bonet �2002�. This last equation comes from a one-
dimensional finite-element analysis.

It was deduced that for all the cases and for any slenderness,
the inelastic k-factor was lower than that obtained using the equa-
tion from the ACI and Spanish EHE code. Regarding the EC2 and
concerning some of the slenderness, however, the inelastic effec-
tive length was higher �Figs. 5 and 6�.

Higher differences were observed for the lower strength of
concrete �fc��, lower reinforcement ratio ��g� and for the lower
stiffness rotational springs ��1 and �2�. It is important to find out
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2009

ASCE license or copyright; see http://pubs.asce.org/copyright



that the buckling coefficient of the ACI and EHE codes does not
take into account the reinforcement ratio; hence for different per-
centages of it, the values of the k factor are the same. However,
the simplified equation of Traver and Bonet �2002�, the equation
of the EC2, and the inelastic k factor change with fc�, reinforce-
ment ratio and the slenderness. The errors are shown in Table 2.
Because there are representative differences with respect to all of
them: the ACI code �between 37 and �3%�, with the Spanish
code EHE �26 and �9.26%�, with the Eurocode 2 �between the
14 and �14%�, and regarding Traver and Bonet �14 and �7%�, it
was decided to propose a new equation for the effective length
factor for nonsway columns.

Equation of the Inelastic Effective Length Factor

It is better to adjust the equation in terms of the fixity factors �
�Eq. �2��, which varies between 0 and 1, whereas the rotational
stiffness varies between 0 and infinity. Thereby, the k factor is
calculated in terms of the fixity factors “�” initially with respect
to a fixed slenderness ��=35� to include in the main part of the
equation only the variables of the strength of concrete and the
longitudinal reinforcement ratio. Later on, the slenderness will be
included using a correcting parameter.

For a particular case of fc�=60 MPa and a 2% of longitudinal
reinforcement ratio the procedure to obtain an equation of k is
explained below. A graph of k−�2 is obtained, with fixed �1 �not
presented for simplicity�. The first graph is for �1=0.2 and the
second one is for �1=0.8.

Only these two graphs are obtained to create initially a very
simple equation of k, which is a linear interpolation of �2

k = a�2 + b �3�

But what is very important is that the coefficients “a” and “b” are
not constant; they vary with �1.

If the values of a and b are presented in terms of �1, it can be
inferred that they are also linear functions. These coefficients,
shown in Table 3, are obtained from a trend line.
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Table 2. Analysis of Errors

Values TB EHE ACI EC2

Maximum �%� 14.1 26.2 37.7 14.2

Minimum �%� �7.7 �9.2 �3.6 �13.8

Standard deviation 0.056 0.07 0.093 0.062

Average �%� 2.9 5.4 16.7 �1.6
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Replacing the values of a and b, the following equation is
obtained:

k = �0.15�1 − 0.28��2 + �− 0.2817 + 0.9167� �4�

Simplifying the previous equation, Eq. �5� is obtained

k = 0.15�1�2 − 0.28��1 + �2� + 0.92 �5�

The same procedure is performed for each case of longitudinal
reinforcement ratio and strength of concrete, reaching the values
of k presented in Table 4.

Correcting Factor “�”

The fixity factors �1 and �2 depend on the rotational stiffness of
the beams K1 and K2, the unsupported length L, and the stiffness
EcIg of the column �Eq. �2��. In the real behavior of the columns,
the stiffness EI is not elastic because it will vary due to the crack-
ing of concrete, the creep, the reinforcement, etc., but to include a
complex equation of EI will complicate extremely the method.
The influence of fc�, fy, and �g was included in the previous sec-
tion in the equations of “k.” Hereby, it is necessary to complement
the previous equations with a correction parameter to include the
effect of the geometric slenderness because in the previous step it
was fixed to �=35. Eq. �2� is reformulated as

�i =
1

1 +
3

Ri

Ri =
Ki

��EcIg

L
� �6�

where �=slenderness correcting factor.
The parameter � can be calculated by performing the follow-

ing steps in sequence, for the other cases of slenderness ��=20,
30, 40, and 50�:
• The values of the fixity factors �1 and �2 are analytically re-

placed in the corresponding equation of Table 4.

Table 3. Values of a and b

�1 a b

0.2 �0.25 0.86

0.8 �0.16 0.69

Table 4. Equations of the Inelastic k Factor with respect to the Stiffness
Factors, with fy =500 MPa

�g fc�=30 MPa

2% k=0.20�1�2−0.28��1+�2�+0.90

3% k=0.20�1�2−0.28��1+�2�+0.92

4% k=0.20�1�2−0.28��1+�2�+0.95

�g fc�=60 MPa

2% k=0.15�1�2−0.28��1+�2�+0.92

3% K=0.15�1�2−0.28��1+�2�+0.95

4% K=0.15�1�2−0.28��1+�2�+0.97

�g fc�=90 MPa

2% K=0.15�1�2−0.28��1+�2�+0.95

3% K=0.15�1�2−0.28��1+�2�+0.98

4% k=0.15�1�2−0.28��1+�2�+1
STRUCTURAL ENGINEERING © ASCE / SEPTEMBER 2009 / 1037
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• The value of inelastic k factor is known because it was previ-
ously obtained numerically. In this case, the value of k can be
related to only one unknown, the parameter �.

• As the equation of k depends on � in a quadratic form; an
iterative procedure is performed. The first value of � will be
termed “alpha-trial.”

• The values of � are adjusted until both values of k are
matched. Doing that, the effect of the last variable � is in-
cluded in the procedure.

• The values of � are obtained in terms of the slenderness. A
relationship is obtained �=0.04�–0.40.

Simplified Equations for Design and Checking
the Codes

In this section, simplified equations valid for implementation in
national codes are presented. The equations are valid for normal
and HSC both for design and checking.

Proposed Equations for Checking

The equations for checking are in terms of strength of concrete fc�,
the longitudinal reinforcement ratio �g, and the fixity factors �1

and �2 �Table 5�.

Comparison between the Proposed Simplified
Equation for Checking and the Exact Inelastic k Factor

Fig. 7 compares the proposed equation for checking with the
exact inelastic effective length factor to demonstrate that it has
better accuracy than that existing in the codes. The errors have
been diminished from the initial 14% until 5.7%.

If some random cases are computed for casual values of slen-
derness, rotational stiffness, and strength of concrete, the maxi-
mum error is as low as 1.8%. In conclusion, the proposed

Table 5. Proposed Equation of k Factor for Checking

Normal strength concrete
�up to 50 MPa�

k=0.2�1�2−0.28��1+�2�+A
where A=0.025�g+0.85� =1

High-strength concrete
�between 50 and 90 MPa�
�higher than 90 MPa�

k=0.15�1�2−0.28��1+�2�+B
B=0.03�g+ fc /70� =1
B=0.025�g+ fc /100� =1

where �g�longitudinal reinforcement ratio

Slenderness correcting factor �=0.04�–0.4

where ��geometric slenderness

k-factor
ρ1=0.2,ρ2=0.8; fy=500MPa; 2%, 60MPa
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Fig. 7. Comparison between the proposed equation for checking and
the inelastic k-factor
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equation has a good accuracy for the calculation of the k factor
for inelastic columns and elastic rotational springs.

Proposed Equation for Design

The proposed equation for design is simplified to not depend on
the longitudinal reinforcement ratio. They depend on fc� and �1

and �2 �Table 6�. Table 7 summarizes the errors for both equations
�checking and design�. It can be noticed that the average error is
2.6% for checking and around 7.6% for design in the safe side,
which improves greatly the existing methods in the codes.

Conclusions

The calculation of the effective length factor in real concrete col-
umns is not properly addressed now. The reason is, most of the
research to obtain such length assumes a linear elastic material
behavior, which is not the case for reinforced concrete. There is
no research study prior to the present one that uses 2D nonlinear
finite-element analysis to study the effective length factor.
• It was demonstrated that if the real behavior of the column is

modeled, the k-factor is lower than the elastic one.
• If a sensitivity study is performed, the strength of concrete and

the longitudinal reinforcement ratio have the same influence
on the inelastic k-factor coefficient, around 35 and 37%. How-
ever the yield stress of steel has not any influence.

• If a comparative study is performed between the numerical
model and the different codes, it can be shown that there are
representative differences with respect to all of them: the ACI
code �between 37 and �3%�, with the Spanish code EHE �26
and �9.26%�, with the Eurocode 2 �between the 14 and
�14%�, and regarding Traver and Bonet �14 and �7%�. It was
decided to propose a new equation for the effective length
factor for nonsway columns.
Three types of equations were proposed for the inelastic

k-factor: one complete and two simplified �checking and design�.
It can be noticed that the medium error is 2.6% for checking and
around 7.6% for design in the safe side, which improves greatly
on the existing methods in the codes.

Table 6. Proposed Equation for Design

Normal strength concrete k=0.2�1�2−0.28��1+�2�+0.95

High-strength concrete k=0.15�1�2−0.28��1+�2�+1

where �g�longitudinal reinforcement ratio

Slenderness correcting factor �=0.04�–0.4

where ��geometric slenderness

Table 7. Error for Both Methods

Values

Error for
checking

�%�

Error for
design
�%�

Maximum 6.19 19.02

Minimum 0.00 0.00

Typical deviation 0.02 0.04

Average 2.60 7.63
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Notation

The following symbols are used in this paper:
Ec � elastic modulus of concrete;
fc� � cylinder strength of concrete;
fy � yield stress of steel;
h � height of the column cross section;
Ig � gross moment of inertia;

K1 and K2 � stiffness of end springs �end restrain
condition�;

k factor � effective length factor;
L � unsupported length of the column;
� � slenderness correcting factor;
� � geometric slenderness=L /h; and
�i � fixity factors.
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