1377 Effect of Chlorhexidine on Microtensile Bond Strength of Self-etching Adhesives

Thursday, July 15, 2010: 4:45 p.m. - 6 p.m.
Location: Exhibit Hall (CCIB)

V. SETIÉN1, N. ORELLANA1, R. RAMIREZ1, J.H. ANDRADE1, K. BIGOTT2, R. AJLOUNI3, and J. LEON1, 1Universidad de Los Andes, Merida, Venezuela, 2Private practice, Merida, Venezuela, 3Baylor College of dentistry, Dallas, TX

Presentation

The use of self-etching dental adhesives have become very practical and popular in dental practice. The effect of chlorhexidine pretreatment on Self-etch adhesive bond is not clearly understood. Objective: To determine the effect of chlorhexidine pretreatment on the microtensile bond strength (µTBS) of two different one-step self-etch dental adhesives, One Coat Bond 7.0, Coltene (OC) and Futurabond NR, Voco (FB). Methods: Exposed flat occlusal dentine surface of 16 human molars were polished up to 320-grit silicon carbide paper. Teeth were assigned into 4 groups: Group A (OC), Group B (OC) + Chlorhexidine gluconate 2%, Group C (FB), and Group D (FB) + Chlorhexidine gluconate 2%. A 4-mm layer of Z250 hybrid composite applied in two increments. A water irrigated low speed diamond saw was used cut the samples to obtain 4 micro-specimens from each tooth. Micro-specimens were glued to two stiff acetate veneers and tested to failure in tension at 1 mm/min using a Shimadzu universal testing machine. Data was recorded in MPa and analyzed with ANOVA and Tukey post hoc test in SPSS software. Results: Mean µTBS expressed in MPa and standard deviation (±SD) are shown here: Group A: 20.33 (± 6.9); Group B 14.21 (± 7.49 ); Group C 16.17 (± 6.65); Group D 10.05 (± 7.32). There was statistically significant difference (p=0.0015) among the groups, being A>B and C>D. Conclusions: The two one-step self-etch dental adhesives used in this study showed decrease in the bond strength when a 2% chlorhexidine treatment is applied prior to composite bonding thus such pretreatment should be used with caution with self-etch adhesives.

See more of: Dental Materials 1: Adhesion - Bond Strength Testing and Mechanisms