ÁLGEBRA MATRICIAL

PROF. MARIELA SARMIENTO

 

SESIÓN 1:  VECTORES EN EL PLANO

 

RESUMEN

Un vector es un segmento de recta orientado que va desde un punto inicial P hasta un punto final Q y lo denotamos por

Al trasladar un vector al origen, obtenemos otro vector llamado representación posicional de dicho vector, que no es más que el vector con punto inicial en el origen del plano y punto final en algún A(a1,a2), tal que  ambos vectores tienen la misma longitud (magnitud), dirección y sentido.

La magnitud del vector A viene dada por:   

La dirección del vector A viene dada por el ángulo director (ángulo medido desde el eje positivo x hasta el vector A, en sentido positivo):

 

Los vectores pueden sumarse, restarse o multiplicarse por un escalar, esto es:

Suma :  A + B = (a1 , a2) + (b1 , b2) = (a1+b1 , a2+b2)

Resta:  A – B = (a1 – b1 , a2 – b2)

Multiplicación por un escalar:  aA = a (a1 , a2) = (aa1 , aa2)

 

EJERCICIOS RESUELTOS

EJERCICIOS PROPUESTOS

PAGINAS SIMILARES AUTOEVALUACIÓN

 


Profa. Mariela Sarmiento Santana
Dra.  en Pedagogía
ULA-NURR.  
Última modificación: 30 de Julio de 2005